JP2005271618A - Accelerator reaction force controlling device of hybrid electric automobile - Google Patents

Accelerator reaction force controlling device of hybrid electric automobile Download PDF

Info

Publication number
JP2005271618A
JP2005271618A JP2004083893A JP2004083893A JP2005271618A JP 2005271618 A JP2005271618 A JP 2005271618A JP 2004083893 A JP2004083893 A JP 2004083893A JP 2004083893 A JP2004083893 A JP 2004083893A JP 2005271618 A JP2005271618 A JP 2005271618A
Authority
JP
Japan
Prior art keywords
reaction force
vehicle
engine
accelerator
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004083893A
Other languages
Japanese (ja)
Inventor
Masahito Ihara
雅人 井原
Katsuhiko Kawamura
克彦 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004083893A priority Critical patent/JP2005271618A/en
Publication of JP2005271618A publication Critical patent/JP2005271618A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To provide an accelerator reaction force controller applicable to a hybrid electric automobile. <P>SOLUTION: In this accelerator reaction force controlling device of a hybrid electric automobile, a vehicle operating condition has a motor traveling range for driving and traveling a vehicle by a vehicle driving motor 7, and an engine traveling range for driving and traveling the vehicle by an engine 6. The device has a treading reaction force generating mechanism 8 of an accelerator pedal 2, and a traveling range judging map (traveling range judging means) for determining whether a vehicle operating condition is in a motor traveling range or an engine traveling range according to a vehicle speed and a required torque. When the condition is shifted from the motor traveling range to the engine traveling range, the treading reaction force generating mechanism 8 is controlled to increase the treading reaction force of the accelerator pedal 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ハイブリッド電気自動車のアクセル反力制御装置に関する。   The present invention relates to an accelerator reaction force control device for a hybrid electric vehicle.

特許文献1には、高回転高負荷側の第1運転方式と第1運転方式よりも燃費効率が高い低回転低負荷側の第2運転方式との間で運転方式の切り替えを実施するにあたり、第2運転方式から第1運転方式へ内燃機関の運転方式が切り替わる直前においてアクセルペダルの踏込反力を急激に増大させ、必要以上に高回転高負荷領域での運転にならないようにして燃料消費量を低減させるアクセル反力制御装置が開示されている。
特開平2003−120339号公報
In Patent Literature 1, when switching the driving method between the first driving method on the high rotation high load side and the second driving method on the low rotation low load side, which has higher fuel efficiency than the first driving method, Immediately before the operation method of the internal combustion engine is switched from the second operation method to the first operation method, the accelerator pedal depressing reaction force is rapidly increased, and the fuel consumption is prevented so as not to operate in a high rotation / high load region more than necessary. An accelerator reaction force control device for reducing the above is disclosed.
Japanese Patent Laid-Open No. 2003-120339

しかしながら、上述した特許文献1においては、第1運転方式と第2運転方式との切り分けを内燃機関の回転数と負荷に応じて行っているため、ハイブリッド電気自動車(HEV)に対して適用することができないという問題がある。   However, in Patent Document 1 described above, the first driving method and the second driving method are separated according to the rotational speed and load of the internal combustion engine, and therefore, applied to a hybrid electric vehicle (HEV). There is a problem that can not be.

そこで、本発明におけるハイブリッド電気自動車のアクセル反力制御装置は、車両運転状態が、電動機により車両を駆動走行させる第1走行領域と、内燃機関により車両を駆動走行させる第2走行領域とを有するものであって、アクセルペダルの踏込反力を可変設定可能な踏込反力調整手段と、車速と要求トルクに応じて車両運転状態が第1走行領域及び第2走行領域のどちらの領域あるかを判定する走行領域判定手段と、を有し、第1走行領域から第2走行領域に移行する際には、アクセルペダルの踏込反力が増加するよう踏込反力調整手段を制御することを特徴としている。電動機による駆動走行を行う第1走行領域では、内燃機関による駆動走行を行う第2走行領域に比べ、低燃費・低騒音となる。   Therefore, the accelerator reaction force control device for a hybrid electric vehicle according to the present invention has a first driving region in which the vehicle is driven by the electric motor and a second driving region in which the vehicle is driven by the internal combustion engine. The stepping reaction force adjusting means capable of variably setting the depression reaction force of the accelerator pedal, and determining whether the vehicle driving state is the first traveling region or the second traveling region according to the vehicle speed and the required torque A travel region determination means that controls the stepping reaction force adjusting means so that the stepping reaction force of the accelerator pedal is increased when shifting from the first traveling region to the second traveling region. . In the first traveling region where the driving traveling by the electric motor is performed, the fuel consumption and the noise are reduced as compared with the second traveling region where the driving traveling by the internal combustion engine is performed.

本発明によれば、第1走行領域と第2走行領域との切り分けが内燃機関の回転数に拠らず車速と要求トルクとによって行われているので、ハイブリッド電気自動車(HEV)に適用することが可能となる。また、ハイブリッド電気自動車において、車両が電動機による駆動走行から内燃機関による駆動走行に切り替わる際には、アクセルペダルの踏込反力が増加し運転者に知らせるので、運転者が低燃費・低騒音で走行したい場合に、運転者の意志に沿わない内燃機関による走行を回避することができる。   According to the present invention, since the separation between the first traveling region and the second traveling region is performed by the vehicle speed and the required torque regardless of the rotational speed of the internal combustion engine, the present invention is applied to a hybrid electric vehicle (HEV). Is possible. In hybrid electric vehicles, when the vehicle switches from driving driven by an electric motor to driving driven by an internal combustion engine, the accelerator pedal depressing reaction force increases to inform the driver, so the driver can drive with low fuel consumption and low noise. When it is desired to do so, it is possible to avoid traveling by the internal combustion engine that does not conform to the will of the driver.

以下、本発明の一実施形態を図面に基づいて詳細に説明する。図1は、ハイブリッド電気自動車に適用されたアクセル反力制御装置のシステム構成の概略を示している。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an outline of a system configuration of an accelerator reaction force control device applied to a hybrid electric vehicle.

エンジンコントロールモジュール(ECM)1には、アクセルペダル2の踏み込み量を検知するアクセル開度センサ3、車両速度を検知する車速センサ4、電動機としての車両駆動用モータ7に電力を供給するバッテリ(図示せず)の充電量を検知するバッテリコントローラ5、エアフローメータ(図示せず)、クランク角センサ(図示せず)等の各種センサ類からの各種検出信号が入力されており、各種センサ類からの各種検出信号に基づいて、内燃機関であるエンジン6及び車両駆動用モータ7及び踏込反力調整手段としての踏込反力発生機構8の運転を制御している。   The engine control module (ECM) 1 includes an accelerator opening sensor 3 that detects the amount of depression of the accelerator pedal 2, a vehicle speed sensor 4 that detects vehicle speed, and a battery that supplies power to a vehicle drive motor 7 as an electric motor (see FIG. Various detection signals from various sensors such as a battery controller 5, an air flow meter (not shown), a crank angle sensor (not shown), etc., for detecting the amount of charge of the sensor are input. Based on the various detection signals, the operation of the engine 6 that is an internal combustion engine, the vehicle driving motor 7, and the stepping reaction force generating mechanism 8 as the stepping reaction force adjusting means is controlled.

車両の運転状態はアクセルペダル2の踏み込み量に基づく要求トルクと、車速とによって決定されている。そして、このように決定された車両運転状態が、車両を車両駆動用モータ7を用いて駆動走行させるモータ走行領域にあるのか、もしくは車両をエンジン6を用いて駆動走行させるエンジン走行領域であるのかを、図2に示す走行領域判定手段としての走行領域判定マップによって判定する。   The driving state of the vehicle is determined by the required torque based on the depression amount of the accelerator pedal 2 and the vehicle speed. Whether the vehicle operating state determined in this way is in a motor travel region where the vehicle is driven using the vehicle drive motor 7 or is an engine travel region where the vehicle is driven using the engine 6. Is determined by the travel area determination map as the travel area determination means shown in FIG.

この走行領域判定マップは、ECM1内部のROMに予め記憶させてあるものであって、車両駆動用モータ7で車両を駆動走行させるモータ走行領域と、エンジン6で車両を駆動走行させるエンジン走行領域とが、走行領域境界線により切り分けられている。   The travel area determination map is stored in advance in the ROM inside the ECM 1, and includes a motor travel area in which the vehicle is driven by the vehicle drive motor 7, and an engine travel area in which the engine 6 is driven to travel. Are separated by a travel region boundary line.

すなわち、車両運転状態と走行領域判定マップを用いて、車両を車両駆動用モータ7もしくはエンジン6のどちらか一方で駆動走行させる。換言すれば、車両が低要求トルク・低速の状態では車両がモータ走行領域にあるため車両駆動用モータ7のみで車両を駆動走行させる第1運転方式を選択し、車両が高要求トルク・高速の状態では車両がエンジン走行領域にあるためエンジン6のみで車両を駆動走行させる第2運転方式を選択する。尚、モータ走行領域は第1走行領域に相当するものであり、エンジン走行領域は第2走行領域に相当するものである。また、図2に示すモータ走行領域は、図2におけるエンジン走行領域に比べ、相対的に低燃費・低騒音となっている。   That is, the vehicle is driven by either the vehicle driving motor 7 or the engine 6 using the vehicle operating state and the travel region determination map. In other words, when the vehicle is in the low required torque / low speed state, the vehicle is in the motor travel region, so the first driving method for driving the vehicle with only the vehicle drive motor 7 is selected, and the vehicle has the high required torque / high speed. In the state, since the vehicle is in the engine traveling region, the second driving method for driving the vehicle by only the engine 6 is selected. Note that the motor travel area corresponds to the first travel area, and the engine travel area corresponds to the second travel area. In addition, the motor travel region shown in FIG. 2 has relatively low fuel consumption and low noise compared to the engine travel region in FIG.

踏込反力発生機構8は、アクセルペダル2の踏み込みに対してアクチュエータ等により発生させた摩擦力を反力として付与することで踏込反力を可変設定可能とするものであって、通常時には通常時踏込反力を発生させ、車両運転状態がモータ走行領域からエンジン走行領域に移行する際には通常時踏込反力よりも相対的に大きい増大時踏込反力を発生させるよう制御されている。詳述すると、車両運転状態がモータ走行領域からエンジン走行領域に移行する際には、モータ走行領域からエンジン走行領域に切り替わる直前にECM1からの指令によって、踏込反力発生機構8は踏込反力を増大、つまり増大時踏込反力を発生させ、このままアクセルペダル2を戻さない(踏み込みを緩めない)でいると第1運転方式から第2運転方式に移行すること運転者に知らせている。   The stepping reaction force generation mechanism 8 is configured to variably set the stepping reaction force by applying a frictional force generated by an actuator or the like to the depression of the accelerator pedal 2 as a reaction force. A stepping reaction force is generated, and when the vehicle operating state shifts from the motor travel region to the engine travel region, an increase stepping reaction force that is relatively larger than the normal stepping reaction force is generated. More specifically, when the vehicle operating state shifts from the motor travel region to the engine travel region, the stepping reaction force generation mechanism 8 generates the stepping reaction force in response to a command from the ECM 1 immediately before switching from the motor travel region to the engine travel region. When the increase, that is, the stepping reaction force at the time of increase is generated and the accelerator pedal 2 is not returned as it is (the stepping is not loosened), the driver is notified that the first driving method shifts to the second driving method.

ここで、車両運転状態がモータ走行領域にある時刻T1にて運転者がアクセルペダル2を踏み込み、時刻T2に至って車両運転状態がエンジ走行領域にある状態を例にとり図2及び図3を用いて、踏込反力発生機構8の動作を具体的に説明する。   Here, the driver depresses the accelerator pedal 2 at the time T1 when the vehicle driving state is in the motor traveling region, and the state where the vehicle driving state is in the engine traveling region at the time T2 is taken as an example with reference to FIGS. The operation of the stepping reaction force generating mechanism 8 will be specifically described.

車両運転状態がモータ走行領域にある時刻T1において、運転者がアクセルペダル2を踏み込むと、アクセル開度及び要求トルクが上昇し、アクセル開度及び要求トルクの上昇の立ち上がりにやや遅れて車速が上がる。   When the driver depresses the accelerator pedal 2 at time T1 when the vehicle driving state is in the motor travel region, the accelerator opening and the required torque increase, and the vehicle speed increases slightly after the rise of the accelerator opening and the required torque. .

そして、要求トルク>Trとなるタイミング(T3)で踏込反力発生機構8は、増大時踏込反力を発生させる。詳述すると、要求トルクの増加に伴い車両運転状態が、図2におけるモータ走行領域側から走行領域境界線に接近し、かつ走行領域境界線に近接すると、踏込反力発生機構8は瞬間的に通常時踏込反力から増大時踏込反力までアクセルペダル2の踏込反力を増大させ、このままアクセルペダル2を踏み続けると車両運転状態がモータ走行領域からエンジン走行領域に移行することを運転者に知らせる。   Then, at the timing (T3) when the required torque> Tr, the stepping reaction force generation mechanism 8 generates an increase stepping reaction force. More specifically, when the vehicle operating state approaches the traveling region boundary line from the motor traveling region side in FIG. 2 and approaches the traveling region boundary line as the required torque increases, the stepping reaction force generating mechanism 8 instantaneously When the accelerator reaction force of the accelerator pedal 2 is increased from the normal step reaction force to the increase step reaction force and the accelerator pedal 2 is kept depressed, the vehicle operating state shifts from the motor travel region to the engine travel region. Inform.

そして、車両運転状態が、図2の走行領域境界線を越えてエンジン走行領域に移行すると、踏込反力発生機構は、増大時踏込反力を発生させるのを中止し、通常時踏込反力を発生させる。つまり、車両運転状態がモータ走行領域からエンジン走行領域に移ると、アクセルペダル2の踏込反力は以降徐々に低下し、最終的には通常時踏込反力まで低下する。   Then, when the vehicle operating state shifts to the engine traveling region beyond the traveling region boundary line in FIG. 2, the stepping reaction force generation mechanism stops generating the stepping reaction force at the time of increase, and generates the stepping reaction force during the normal time. generate. That is, when the vehicle operating state shifts from the motor travel region to the engine travel region, the stepping reaction force of the accelerator pedal 2 gradually decreases thereafter, and finally decreases to the normal time stepping reaction force.

尚、車両運転状態がエンジン走行領域からモータ走行領域に移行する際に、踏込反力発生機構8は、アクセルペダル2の踏込反力を増大させることなく、通常時踏込反力を維持する。   Note that when the vehicle operating state shifts from the engine travel region to the motor travel region, the stepping reaction force generation mechanism 8 maintains the normal stepping reaction force without increasing the stepping reaction force of the accelerator pedal 2.

図4は、上述した実施形態におけるアクセル反力制御装置の車両運転中の制御の流れを示すフローチャートである。   FIG. 4 is a flowchart showing a control flow during vehicle operation of the accelerator reaction force control apparatus according to the embodiment described above.

ステップ(以下単にSと記す)1では、バッテリ充電量が所定値以上あるか否かを判定し、バッテリ充電量が所定値以上ある場合にはS2へ進み、バッテリ充電量が所定値未満の場合にはS9へ進む。すなわち、バッテリの充電量が少ない場合には、車両運転状態に関わらずエンジン6による車両の駆動走行を行いバッテリを充電する。   In step (hereinafter simply referred to as S) 1, it is determined whether or not the battery charge amount is greater than or equal to a predetermined value. If the battery charge amount is greater than or equal to the predetermined value, the process proceeds to S 2, and the battery charge amount is less than the predetermined value. To S9. That is, when the amount of charge of the battery is small, the vehicle is driven by the engine 6 to charge the battery regardless of the vehicle operating state.

S2では、走行領域判定マップを用い、要求トルク及び車速から車両運転状態がモータ走行領域であるか否かを判定し、モータ走行領域である場合にはS3へ進み、モータ走行領域でない場合、すなわちエンジン走行領域である場合にはS9へ進む。尚、S2にて、車両運転状態が走行領域境界線上にある場合はS3へ進む。   In S2, using the travel region determination map, it is determined from the required torque and the vehicle speed whether or not the vehicle driving state is the motor travel region. If it is the motor travel region, the process proceeds to S3. If it is the engine travel region, the process proceeds to S9. In S2, if the vehicle operating state is on the travel region boundary line, the process proceeds to S3.

S3では、車両駆動用モータ7により車両を駆動走行させる。尚、S3において、エンジン6が運転中の場合には、エンジン6を停止する。   In S3, the vehicle is driven by the vehicle driving motor 7. In S3, when the engine 6 is in operation, the engine 6 is stopped.

S4では、走行領域判定マップを用い、要求トルク及び車速から車両運転状態が走行領域境界線上にあるか否かを判定し、運転状態が走行領域境界線上にある場合にはS5へ進み、運転状態が走行領域境界線上にない場合にはS6へ進む。   In S4, it is determined whether or not the vehicle operating state is on the traveling region boundary line from the required torque and the vehicle speed using the traveling region determination map. If the driving state is on the traveling region boundary line, the process proceeds to S5, and the driving state is determined. If is not on the travel region boundary line, the process proceeds to S6.

S5では、アクセルペダル2の踏込反力を増大させ、S7へ進む。すなわち、アクセルペダル2の踏込反力を通常時踏込反力から増大時踏込反力まで増大させる。   In S5, the depression reaction force of the accelerator pedal 2 is increased, and the process proceeds to S7. That is, the depression reaction force of the accelerator pedal 2 is increased from the normal depression reaction force to the increase depression reaction force.

S7では、車両運転状態がエンジン走行領域であるか否かを判定し、エンジン走行領域である場合にはS8へ進み、エンジン走行領域でない場合にはS3へ進む。つまり、アクセルペダル2の踏込反力を増大させたにも関わらず、車両運転状態がモータ走行領域からエンジン走行領域に移行した場合に、S7からS8へ進む。   In S7, it is determined whether or not the vehicle operating state is the engine travel region. If the vehicle operation state is the engine travel region, the process proceeds to S8, and if not, the process proceeds to S3. That is, when the vehicle operating state shifts from the motor travel region to the engine travel region in spite of increasing the depression reaction force of the accelerator pedal 2, the process proceeds from S7 to S8.

S8では、アクセルペダル2の踏込反力を通常に戻し、S9へ進む。すなわち、アクセルペダル2の踏込反力を増大時踏込反力から通常時踏込反力に減少させる。   In S8, the stepping reaction force of the accelerator pedal 2 is returned to normal, and the process proceeds to S9. That is, the stepping reaction force of the accelerator pedal 2 is decreased from the stepping reaction force when increased to the normal stepping reaction force.

そして、S9では、エンジン6により車両の駆動走行させる。尚、S9において、車両駆動用モータ7が運転中の場合には、車両駆動用モータ7の駆動を停止する。   In S9, the vehicle is driven by the engine 6. In S9, when the vehicle drive motor 7 is in operation, the drive of the vehicle drive motor 7 is stopped.

一方、S4からS6へ進んだ場合、S6にてアクセルペダル2の踏込反力を通常時踏込反力に戻し、S3へ進む。ここで、S4からS6に進む場合は、アクセルペダル2の踏込反力を増大させている場合、つまりS7からS3へ経てS4に至ている状況も考えられるため、アクセルペダル2の踏込反力を通常時踏込反力を戻している。これは、アクセルペダル2の踏込反力が増大したことを運転者が知り、運転者が車両運転状態をモータ走行領域に保ちたいがためにアクセルペダル2の踏み込みを緩めた場合を考慮しているのである。   On the other hand, when the process proceeds from S4 to S6, the stepping reaction force of the accelerator pedal 2 is returned to the normal stepping reaction force in S6, and the process proceeds to S3. Here, in the case of proceeding from S4 to S6, since the depression reaction force of the accelerator pedal 2 is increased, that is, the situation from S7 to S3 to S4 can be considered, the depression reaction force of the accelerator pedal 2 is reduced. The normal reaction force is restored. This considers the case where the driver knows that the reaction force of depression of the accelerator pedal 2 has increased, and the driver has released the depression of the accelerator pedal 2 in order to keep the vehicle driving state in the motor travel region. It is.

このようなアクセル反力制御装置は、第1走行領域と第2走行領域との切り分けがエンジンの回転数に拠らず車速と要求トルクとによって行われているので、ハイブリッド電気自動車(HEV)に適用することが可能となり、かつ車両が車両駆動用モータ7による駆動走行からエンジン6による駆動走行に移行する際には、アクセルペダル2の踏込反力が増加し運転者に知らせるので、運転者が低燃費・低騒音で走行したい場合に、運転者の意志に沿わないエンジン6による駆動走行を回避することができる。   In such an accelerator reaction force control device, the separation between the first traveling region and the second traveling region is performed by the vehicle speed and the required torque regardless of the engine speed, so that the hybrid electric vehicle (HEV) can be used. When the vehicle shifts from driving driven by the vehicle driving motor 7 to driving driven by the engine 6, the reaction force of the accelerator pedal 2 is increased and the driver is informed so that the driver can When it is desired to travel with low fuel consumption and low noise, it is possible to avoid driving by the engine 6 that does not conform to the will of the driver.

また、バッテリ充電量が所定値以下の場合には、車両運転状態に関わらずエンジン6により車両の駆動走行が行われるので、バッテリが上がってしまう(充電量がゼロとなる)ことを確実に防止することができる。   In addition, when the battery charge amount is equal to or less than a predetermined value, the vehicle is driven by the engine 6 regardless of the vehicle operation state, so that it is possible to reliably prevent the battery from running up (the charge amount becomes zero). can do.

上述した実施形態から把握し得る本発明の技術的思想について、その効果とともに列記する。   The technical ideas of the present invention that can be grasped from the above-described embodiments will be listed together with their effects.

(1) アクセル反力制御装置は、車両運転状態が、電動機により車両を駆動走行させる第1走行領域と、内燃機関により車両を駆動走行させる第2走行領域とを有するハイブリッド電気自動車であって、電動機に電力を供給する充放電可能なバッテリと、アクセルペダルの踏込反力を可変設定可能な踏込反力調整手段と、車速と要求トルクに応じて車両運転状態が第1走行領域及び第2走行領域のどちらの領域あるかを判定する走行領域判定手段と、を有し、第1走行領域から第2走行領域に移行する際には、アクセルペダルの踏込反力が増加するよう踏込反力調整手段を制御する。これによって、第1走行領域と第2走行領域との切り分けが内燃機関の回転数に拠らず車速と要求トルクとによって行われているので、ハイブリッド電気自動車(HEV)に適用することが可能となる。また、ハイブリッド電気自動車において、車両が電動機による駆動走行から内燃機関による駆動走行に切り替わる際には、アクセルペダルの踏込反力が増加し運転者に知らせるので、運転者が低燃費・低騒音で走行したい場合に、運転者の意志に沿わない内燃機関による走行を回避することができる。   (1) The accelerator reaction force control device is a hybrid electric vehicle in which a vehicle operating state includes a first traveling region in which the vehicle is driven by an electric motor and a second traveling region in which the vehicle is driven by an internal combustion engine, A chargeable / dischargeable battery for supplying electric power to the electric motor, a stepping reaction force adjusting means capable of variably setting the stepping reaction force of the accelerator pedal, and the vehicle driving state according to the vehicle speed and the required torque, the first driving region and the second driving state A travel region determination means for determining which region of the region, and when changing from the first travel region to the second travel region, the stepping reaction force adjustment is performed so that the stepping reaction force of the accelerator pedal increases. Control means. As a result, the separation between the first traveling region and the second traveling region is performed based on the vehicle speed and the required torque regardless of the rotational speed of the internal combustion engine, and thus can be applied to a hybrid electric vehicle (HEV). Become. In hybrid electric vehicles, when the vehicle switches from driving driven by an electric motor to driving driven by an internal combustion engine, the accelerator pedal depressing reaction force increases to inform the driver, so the driver can drive with low fuel consumption and low noise. When it is desired to do so, it is possible to avoid traveling by the internal combustion engine that does not conform to the will of the driver.

(2) 上記(1)に記載のハイブリッド電気自動車のアクセル反力制御装置は、バッテリの充電量を検知するバッテリ充電量検出手段を有し、バッテリ充電量が所定値以下の場合に内燃機関により車両を駆動走行する。これによって、バッテリが上がってしまう(充電量がゼロとなる)ことを確実に防止することができる。   (2) The accelerator reaction force control device for a hybrid electric vehicle described in (1) has a battery charge amount detection means for detecting a charge amount of a battery, and is controlled by an internal combustion engine when the battery charge amount is a predetermined value or less. Drive the vehicle. Thus, it is possible to reliably prevent the battery from going up (the charge amount becomes zero).

本発明に係るアクセル反力制御装置のシステム構成の概略を示す説明図。Explanatory drawing which shows the outline of the system configuration | structure of the accelerator reaction force control apparatus which concerns on this invention. 本発明に係るアクセル反力制御装置に用いる走行領域判定マップ。The driving | running | working area | region determination map used for the accelerator reaction force control apparatus which concerns on this invention. 車両運転状態がモータ走行領域からエンジン走行領域に移行する際のアクセル開度、要求トルク、車速及びアクセルペダルの踏込反力の変化を示すタイミングチャート。6 is a timing chart showing changes in accelerator opening, required torque, vehicle speed, and accelerator pedal depression reaction force when the vehicle operating state transitions from the motor travel region to the engine travel region. アクセル反力制御装置の車両運転中の制御の流れを示すフローチャート。The flowchart which shows the flow of control during the vehicle driving | operation of an accelerator reaction force control apparatus.

符号の説明Explanation of symbols

1…エンジンコントロールモジュール(ECM)
2…アクセルペダル
3…アクセル開度センサ
4…車速センサ
5…バッテリコントローラ
6…エンジン(内燃機関)
7…車両駆動用モータ(電動機)
8…踏込反力発生機構(踏込反力調整手段)
1. Engine control module (ECM)
2 ... Accelerator pedal 3 ... Accelerator opening sensor 4 ... Vehicle speed sensor 5 ... Battery controller 6 ... Engine (internal combustion engine)
7 ... Motor for driving vehicle (electric motor)
8 ... Depression reaction force generation mechanism (Depression reaction force adjustment means)

Claims (2)

車両運転状態が、電動機により車両を駆動走行させる第1走行領域と、内燃機関により車両を駆動走行させる第2走行領域とを有するハイブリッド電気自動車であって、
電動機に電力を供給する充放電可能なバッテリと、
アクセルペダルの踏込反力を可変設定可能な踏込反力調整手段と、
車速と要求トルクに応じて車両運転状態が第1走行領域及び第2走行領域のどちらの領域あるかを判定する走行領域判定手段と、を有し、
第1走行領域から第2走行領域に移行する際には、アクセルペダルの踏込反力が増加するよう踏込反力調整手段を制御することを特徴とするハイブリッド電気自動車のアクセル反力制御装置。
The vehicle operating state is a hybrid electric vehicle having a first traveling region in which the vehicle is driven by an electric motor and a second traveling region in which the vehicle is driven by an internal combustion engine,
A chargeable / dischargeable battery for supplying power to the motor;
A stepping reaction force adjusting means capable of variably setting the stepping reaction force of the accelerator pedal;
Traveling region determination means for determining whether the vehicle driving state is the first traveling region or the second traveling region according to the vehicle speed and the required torque,
An accelerator reaction force control device for a hybrid electric vehicle, wherein the stepping reaction force adjusting means is controlled so as to increase the stepping reaction force of the accelerator pedal when shifting from the first traveling region to the second traveling region.
バッテリの充電量を検知するバッテリ充電量検出手段を有し、バッテリ充電量が所定値以下の場合に内燃機関により車両を駆動走行することを特徴とする請求項1に記載のハイブリッド電気自動車のアクセル反力制御装置。   The accelerator for a hybrid electric vehicle according to claim 1, further comprising battery charge amount detection means for detecting a charge amount of the battery, wherein the vehicle is driven by an internal combustion engine when the battery charge amount is a predetermined value or less. Reaction force control device.
JP2004083893A 2004-03-23 2004-03-23 Accelerator reaction force controlling device of hybrid electric automobile Pending JP2005271618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083893A JP2005271618A (en) 2004-03-23 2004-03-23 Accelerator reaction force controlling device of hybrid electric automobile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083893A JP2005271618A (en) 2004-03-23 2004-03-23 Accelerator reaction force controlling device of hybrid electric automobile

Publications (1)

Publication Number Publication Date
JP2005271618A true JP2005271618A (en) 2005-10-06

Family

ID=35171739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083893A Pending JP2005271618A (en) 2004-03-23 2004-03-23 Accelerator reaction force controlling device of hybrid electric automobile

Country Status (1)

Country Link
JP (1) JP2005271618A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008000063A1 (en) 2007-01-19 2008-07-31 Toyota Jidosha Kabushiki Kaisha, Toyota Control device for a hybrid vehicle
JP2009033893A (en) * 2007-07-27 2009-02-12 Hitachi Ltd In-vehicle actuator system
JP2009107619A (en) * 2007-10-31 2009-05-21 Ford Global Technologies Llc Method and system for alerting driver that motive power system is about to be activated
JP2010519133A (en) * 2007-02-27 2010-06-03 ルノー・エス・アー・エス Device for controlling the electric driving mode of the hybrid power unit of a hybrid vehicle by acting on the accelerator pedal
JP2010228593A (en) * 2009-03-27 2010-10-14 Nissan Motor Co Ltd Device for control of accelerator depression reaction force in hybrid vehicle
JP2013049404A (en) * 2011-08-30 2013-03-14 Hyundai Motor Co Ltd Accelerator pedal control method of hybrid vehicle
WO2013077143A1 (en) * 2011-11-25 2013-05-30 本田技研工業株式会社 Vehicle travel control device
WO2015063894A1 (en) * 2013-10-30 2015-05-07 本田技研工業株式会社 Pedal reactive force control device
CN104827930A (en) * 2015-03-25 2015-08-12 北汽福田汽车股份有限公司 Method and apparatus for controlling electric driving vehicle
GB2523589A (en) * 2014-02-28 2015-09-02 Bentley Motors Ltd Hybrid drive system
US9365112B2 (en) 2012-11-21 2016-06-14 Honda Motor Co., Ltd. Accelerator-pedal-counterforce control device and vehicle

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008000063A1 (en) 2007-01-19 2008-07-31 Toyota Jidosha Kabushiki Kaisha, Toyota Control device for a hybrid vehicle
US7878282B2 (en) 2007-01-19 2011-02-01 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle
DE102008000063B4 (en) 2007-01-19 2020-06-04 Toyota Jidosha Kabushiki Kaisha Control device for a hybrid vehicle
JP2010519133A (en) * 2007-02-27 2010-06-03 ルノー・エス・アー・エス Device for controlling the electric driving mode of the hybrid power unit of a hybrid vehicle by acting on the accelerator pedal
JP2009033893A (en) * 2007-07-27 2009-02-12 Hitachi Ltd In-vehicle actuator system
JP4620709B2 (en) * 2007-07-27 2011-01-26 日立オートモティブシステムズ株式会社 In-vehicle actuator system
JP2009107619A (en) * 2007-10-31 2009-05-21 Ford Global Technologies Llc Method and system for alerting driver that motive power system is about to be activated
JP2010228593A (en) * 2009-03-27 2010-10-14 Nissan Motor Co Ltd Device for control of accelerator depression reaction force in hybrid vehicle
JP2013049404A (en) * 2011-08-30 2013-03-14 Hyundai Motor Co Ltd Accelerator pedal control method of hybrid vehicle
JPWO2013077143A1 (en) * 2011-11-25 2015-04-27 本田技研工業株式会社 Vehicle travel control device
WO2013077143A1 (en) * 2011-11-25 2013-05-30 本田技研工業株式会社 Vehicle travel control device
DE112012004922B4 (en) 2011-11-25 2019-06-27 Honda Motor Co., Ltd. Vehicle travel / control device
US9145130B2 (en) 2011-11-25 2015-09-29 Honda Motor Co., Ltd. Vehicle travel control device
JP2015171888A (en) * 2011-11-25 2015-10-01 本田技研工業株式会社 Vehicle traveling controller
CN103958303A (en) * 2011-11-25 2014-07-30 本田技研工业株式会社 Vehicle travel control device
US9365112B2 (en) 2012-11-21 2016-06-14 Honda Motor Co., Ltd. Accelerator-pedal-counterforce control device and vehicle
DE112012007156B4 (en) 2012-11-21 2022-02-10 Honda Motor Co., Ltd. Accelerator reaction control device and vehicle
CN105555578A (en) * 2013-10-30 2016-05-04 本田技研工业株式会社 Pedal reactive force control device
US10025341B2 (en) 2013-10-30 2018-07-17 Honda Motor Co., Ltd. Pedal reactive force controller
WO2015063894A1 (en) * 2013-10-30 2015-05-07 本田技研工業株式会社 Pedal reactive force control device
GB2523589A (en) * 2014-02-28 2015-09-02 Bentley Motors Ltd Hybrid drive system
GB2523589B (en) * 2014-02-28 2020-04-22 Bentley Motors Ltd Hybrid drive system
CN104827930A (en) * 2015-03-25 2015-08-12 北汽福田汽车股份有限公司 Method and apparatus for controlling electric driving vehicle

Similar Documents

Publication Publication Date Title
JP5137239B2 (en) Control method of idling stop mode of hybrid vehicle
US9923490B2 (en) Vehicle
EP1861273B1 (en) Vehicle and control method of vehicle
JP2007064137A (en) Cruise control device
US8831859B2 (en) Method for accelerating a vehicle and hybrid vehicle
EP2789514A1 (en) Hybrid-vehicle control device
JP3956929B2 (en) Constant speed travel control device for hybrid vehicle
CN107776437B (en) Speed control device for low-speed electric vehicle
JP2010179882A (en) Restart control device and method for vehicle
EP2168830A2 (en) Motor control method for electric-powered vehicle and driving apparatus for electric-powered vehicle
JP2005271618A (en) Accelerator reaction force controlling device of hybrid electric automobile
JP4135030B1 (en) Vehicle control device, control method, program for realizing the method, and recording medium recording the program
KR102296463B1 (en) Regenerative brake control method and regenerative brake control device
JP2000278815A (en) Creep controller for electric vehicle
JP2007001327A (en) Traveling control device for following proceeding vehicle
JP2010130890A (en) Vehicle and its method of controlling
JP2019107980A (en) Vehicular control device
JP2007056789A (en) Idling operation control method
JP4483697B2 (en) Power generation control system
JPH1014010A (en) Generation control device of hybrid vehicle
JP2008154383A (en) Controller for vehicle generators
JP2006170265A (en) Automobile and method of controlling the same
JP3826295B2 (en) Vehicle power supply control device
JP4155962B2 (en) Hybrid vehicle
JP2006083706A (en) Engine stop control device for vehicle