KR20080023622A - Htsnp for determining a genotype of cytochrome p450 2d6 gene and genotyping chip using thereof - Google Patents

Htsnp for determining a genotype of cytochrome p450 2d6 gene and genotyping chip using thereof Download PDF

Info

Publication number
KR20080023622A
KR20080023622A KR1020070052764A KR20070052764A KR20080023622A KR 20080023622 A KR20080023622 A KR 20080023622A KR 1020070052764 A KR1020070052764 A KR 1020070052764A KR 20070052764 A KR20070052764 A KR 20070052764A KR 20080023622 A KR20080023622 A KR 20080023622A
Authority
KR
South Korea
Prior art keywords
seq
group
cyp2d6
gene
primer
Prior art date
Application number
KR1020070052764A
Other languages
Korean (ko)
Other versions
KR100973049B1 (en
Inventor
신재국
정현주
김은영
이상섭
손지홍
Original Assignee
인제대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인제대학교 산학협력단 filed Critical 인제대학교 산학협력단
Priority to CN201110239136.4A priority Critical patent/CN102277437B/en
Priority to PCT/KR2007/003102 priority patent/WO2008032921A1/en
Priority to CN201110240425.6A priority patent/CN102304572B/en
Priority to CN2007800336773A priority patent/CN101522911B/en
Priority to JP2009527287A priority patent/JP2010502212A/en
Priority to US12/440,634 priority patent/US20100159454A1/en
Publication of KR20080023622A publication Critical patent/KR20080023622A/en
Application granted granted Critical
Publication of KR100973049B1 publication Critical patent/KR100973049B1/en
Priority to US13/549,981 priority patent/US20130095478A1/en
Priority to US13/549,873 priority patent/US20130096010A1/en
Priority to JP2013017993A priority patent/JP5687720B2/en
Priority to JP2013017994A priority patent/JP5687721B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/172Haplotypes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

An htSNP(haplotype tag single nucleotide polymorphism) for determining a genotype of cytochrome p450 2D6(CYP2D6) gene found in Korean people is provided to detect mutation of CYP2D6 gene, anticipate abnormality caused by individual difference of CYP2D6 enzyme activity or CYP2D6 deficiency, and analyze genotype of CYP2D6 in other Asian people. A screening method of htSNP of human CYP2D6 gene comprises the steps of: (a) collecting a biological sample from human; (b) extracting nucleic acids from the sample; (c) PCR amplifying the extracted nucleic acids by using primers having one nucleotide sequences selected from SEQ ID NOs: 2, 3, 17-23, 25-30, 31, 32, 34, 35 and 45-46; (d) determining the presence of mutation in the nucleotide sequence of the obtained PCR product; (e) analyzing the haplotype in the nucleotide sequence of PCR product to be determined as having the mutation; and (f) analyzing the analyzed haplotype nucleotide sequence by using an SNPtagger software. Further, the biological sample is selected from a group consisting of blood, skin cell, mucous membrane cell and hair.

Description

사이토크롬 피450 2디6 유전자의 유전형 분석을 위한 해플로타입 마커 단일염기변이 및 이를 이용한 유전자 분석칩 {htSNP FOR DETERMINING A GENOTYPE OF CYTOCHROME P450 2D6 GENE AND GENOTYPING CHIP USING THEREOF}Haplotype marker single base mutation for genetic analysis of cytochrome P450 2di6 gene and gene analysis chip using the same {htSNP FOR DETERMINING A GENOTYPE OF CYTOCHROME P450 2D6 GENE AND GENOTYPING CHIP USING THEREOF}

도 1 내지 도 6은 본 발명에서 선별된 htSNP 조합을 예시한 것이다.1 to 6 illustrate the htSNP combination selected in the present invention.

도 7 및 8은 본 발명에서 선별된 htSNP 조합 중 한 종류에 대하여 스냅샷 (SNaPshot) 분석을 수행한 결과이다.7 and 8 are a result of performing a snapshot (SNaPshot) analysis for one type of htSNP combination selected in the present invention.

도 9는 유전자 분석칩을 이용하여 유전형을 분석하는 과정을 나타낸 것이다.9 shows a process for analyzing genotype using a gene analysis chip.

도 10은 유전자 분석칩상의 프로브를 나타낸 것이다.10 shows a probe on a gene analysis chip.

도 11은 롱 (long) PCR을 이용하여 CYP2D6 유전자를 증폭하는 것을 나타낸 것이다.11 illustrates amplification of the CYP2D6 gene using long PCR.

도 12는 ASPE 반응 과정을 나타낸 것이다.12 shows the ASPE reaction process.

도 13은 실시예 3에 따라 CYP2D6 유전자의 변이를 분석한 결과를 나타내는 유전자 칩이다.Figure 13 is a gene chip showing the result of analyzing the mutation of the CYP2D6 gene according to Example 3.

본 발명은 사이토크롬 P450 2D6 유전자의 유전형 분석을 위한 htSNP 및 이를 이용한 유전자 분석칩에 관한 것으로서, 보다 상세하게는 인간 CYP2D6 유전자의 일배체형 분석을 위한 htSNP의 선별 방법, 상기 htSNP를 이용하여 CYP2D6 유전자의 유전형을 결정하는 방법 및 이를 위한 유전자 분석칩에 관한 것이다.The present invention relates to an htSNP for genotyping of cytochrome P450 2D6 gene and a gene analysis chip using the same, and more particularly, to a method for selecting htSNP for haplotype analysis of human CYP2D6 gene, using the htSNP for the CYP2D6 gene. The present invention relates to a method for determining genotype and a gene analysis chip therefor.

개체간의 유전적 다양성은 약물의 독성 및 효능에 있어서 개체간 차이를 가져온다. 따라서, 약물 개발의 초기 단계에서 이와 같은 약제학적으로 중요한 단백질의 유전적 다양성에 대한 효과를 고려하는 것은 약물 개발의 실패에 대한 위험성을 낮출 수 있는 중요한 요소이다. 이러한 개체간 유전적 다양성을 측정하는 하나의 조사 집단이 되는 것이 "일배체형 (haplotype)"이다. 일배체형이란 하나의 조사 집단 내에 존재하는 각 유전자 서열의 다형성의 조합을 의미하며, 이것은 개별적인 다형성보다 유전적 다양성에 관한 보다 정확하고 신뢰할 수 있는 정보를 제공한다.Genetic diversity between individuals results in differences between individuals in drug toxicity and efficacy. Therefore, considering the effects on the genetic diversity of such pharmaceutically important proteins in the early stages of drug development is an important factor that can reduce the risk of drug development failure. It is the "haplotype" to be one research group that measures the genetic diversity between these individuals. Haplotypes refer to the combination of polymorphisms in each gene sequence present in one population, which provides more accurate and reliable information about genetic diversity than individual polymorphisms.

한편, 인간 사이토크롬 P450은 약물, 발암원 및 독소와 같은 외래 화학물질과 스테로이드, 지방산 및 비타민과 같은 내부 기질의 산화를 촉진하는 헴단백질의 일원이다 (Nelson et al., Pharmacogenetics 6:1-42, 1996). 간을 포함하여 신장, 장관 및 폐와 같은 기관에서 다양한 사이토크롬 P450의 아형이 발견되었다. 이 중에서 인간 사이토크롬 P450 2D6 (Cytochrome P450 2D6, 이하 'CYP2D6'라 함) 유전 자는 22번째 염색체에 위치해 있으며, CYP2D6 유전자의 한쪽 면에는 유사 유전자(pseudogenes)인 CYP2D7과 CYP2D8이 위치해 있다. 상기 유전자에 의해 코딩되는 효소는 정신활성약물 (psychoactive drugs), 심혈관계 약물, 모르핀계 약물 등 100여 가지 이상의 임상적으로 중요한 약물들을 대사하는 것으로 알려져 있다.Human cytochrome P450, on the other hand, is a member of heme proteins that promote the oxidation of foreign chemicals such as drugs, carcinogens and toxins and internal substrates such as steroids, fatty acids and vitamins (Nelson et al ., Pharmacogenetics 6: 1-42 , 1996). Various subtypes of cytochrome P450 have been found in organs such as the liver, kidneys, intestines and lungs. Among them, the human cytochrome P450 2D6 (Cytochrome P450 2D6, hereinafter referred to as 'CYP2D6') gene is located on the 22nd chromosome, and pseudogenes CYP2D7 and CYP2D8 are located on one side of the CYP2D6 gene. The enzyme encoded by the gene is known to metabolize more than 100 clinically important drugs, such as psychoactive drugs, cardiovascular drugs, morphine drugs.

CYP2D6 유전자에 의해 코딩되는 효소는 간에서 주로 생산되며 사이토크롬 P450 효소의 총량의 약 2%를 차지하지만 30% 정도의 약물 대사에 관여하는 중요한 효소이다. 개체 내에서 상기 효소의 활성은 매우 다양하여 이들은 그 활성 정도에 따라 각각 PM (poor metabolizers), IM (intermediate metabolizers), EM (extensive metabolizers) 및 UM (ultrarapid metaboilzers) 군으로 분류되고 있다. 상기와 같이 효소의 활성이 각각 다르게 나타나는 것은 CYP2D6의 유전적 다형성에 의한 것이다. 현재, CYP2D6의 유전적 다형성은 약 80여 가지 이상으로 알려져 있으며 (www.imm.ki.se/cypalleles/cyp2d6.htm), 종족간의 뚜렷한 차이를 보이고 있다. 그런데, 이러한 유전자 변이와 일배체형에 대해 다양한 종류가 보고되어 있기 때문에 분석시간과 비용의 효율성을 증대하기 위해 최소한의 단일염기다형성 (SNP)을 통해 정확한 일배체형을 결정하는 것이 중요하다. Enzymes encoded by the CYP2D6 gene are produced mainly in the liver and make up about 2% of the total amount of cytochrome P450 enzymes but are important enzymes involved in drug metabolism of about 30%. The activity of the enzymes in the individual is so diverse that they are classified into groups of pore metabolizers (PM), intermediate metabolizers (IM), extensible metabolizers (EM) and ultrarapid metaboilzers (UM), respectively. As described above, the activity of the enzyme is different due to the genetic polymorphism of CYP2D6. Currently, more than 80 genetic polymorphisms of CYP2D6 are known (www.imm.ki.se/cypalleles/cyp2d6.htm), with distinct differences between species. However, since various types of gene mutations and haplotypes have been reported, it is important to determine the correct haplotype through minimal monobasic polymorphism (SNP) in order to increase analysis time and cost efficiency.

최근에 서양인에서 주로 발견되는 CYP2D6 유전자 변이를 중심으로 스냅샷 (SNaPshot) 분석을 이용하여 11개의 SNP을 분석하는 방법 (Sistonen J et al., Clin Chem. 2005 Jul;51(7):1291-5), 및 로슈사나 쥬리랩사의 CYP2D6 진단칩이 보고되었다. 그러나, 이들은 CYP2D6 변이 유전자의 조합이 서양인에서 발견되는 변이를 중심으로 이루어져 있을 뿐이므로, 한국인을 포함한 동양인에 대한 CYP2D6 유전 자 변이 진단에 대한 연구는 매우 미흡한 실정이다. A method for analyzing 11 SNPs using SNaPshot analysis focusing on CYP2D6 gene mutation recently found mainly in Westerners (Sistonen J et al., Clin Chem . 2005 Jul; 51 (7): 1291-5 ), And the CYP2D6 diagnostic chip from Roche Corp. or Jury Lab. However, since the combination of CYP2D6 mutant genes is based only on mutations found in Westerners, studies on the diagnosis of CYP2D6 gene mutations in Asians, including Koreans, are very insufficient.

따라서, 한국인에서 주로 발견되는 CYP2D6 유전자의 일배체형 태그 SNP (haplotype tag SNP, 이하 'htSNP'라 함)를 선별하여 최소한의 표지 세트를 구성하고 이를 이용하여 CYP2D6 유전형을 결정할 수 있는 방법에 대한 개발이 절실히 요구되고 있다.Therefore, the development of a method for determining a CYP2D6 genotype by constructing a minimal set of markers by selecting haplotype tag SNP (hereinafter referred to as 'htSNP') of the CYP2D6 gene mainly found in Koreans There is an urgent need.

따라서, 본 발명의 목적은 한국인에서 발견되는 CYP2D6 유전자의 일배체형을 분석할 수 있는 htSNP를 선별하는 방법을 제공하는 것이다.Accordingly, an object of the present invention is to provide a method for selecting htSNPs capable of analyzing haplotypes of the CYP2D6 gene found in Koreans.

또한, 본 발명의 다른 목적은 상기 htSNP를 이용하여 인간 CYP2D6 유전자의 유전형을 결정하는 방법을 제공하는 것이다.In addition, another object of the present invention to provide a method for determining the genotype of the human CYP2D6 gene using the htSNP.

또한, 본 발명의 또 다른 목적은 유전자 분석칩을 포함하는 키트를 이용하여 인간 CYP2D6 유전자의 유전형을 결정하는 방법을 제공하는 것이다. In addition, another object of the present invention to provide a method for determining the genotype of the human CYP2D6 gene using a kit containing a gene analysis chip.

상기와 같은 목적을 달성하기 위하여, 본 발명은 In order to achieve the above object, the present invention

(a) 인간으로부터 생물학적 시료를 채취하는 단계;(a) taking a biological sample from a human;

(b) 상기 (a) 단계의 채취된 시료로부터 핵산을 추출하는 단계; (b) extracting nucleic acids from the sample taken in step (a);

(c) 상기 (b) 단계의 핵산을 주형으로 하고 인간 CYP2D6 유전자 또는 이의 단편을 증폭할 수 있는 프라이머로 PCR을 수행하는 단계;(c) performing PCR with a primer capable of amplifying the human CYP2D6 gene or fragment thereof as a template of the nucleic acid of step (b);

(d) 상기 (c) 단계에서 얻은 PCR 산물의 염기서열에서 변이의 존재 유무를 확인하는 단계; (d) confirming the presence or absence of a mutation in the base sequence of the PCR product obtained in step (c);

(e) 상기 (d) 단계에서 변이가 존재하는 것으로 확인된 PCR 산물의 염기서열에서 일배체형 (haplotype)을 분석하는 단계; 및(e) analyzing haplotypes in the nucleotide sequence of the PCR product identified as having a mutation in step (d); And

(f) 상기 (e) 단계에서 분석된 일배체형의 염기서열을 SNP태거 (SNPtagger) 소프트웨어를 이용하여 분석하여 htSNP를 선별하는 단계를 포함하는, 인간 CYP2D6 유전자의 htSNP를 선별하는 방법을 제공한다.(f) analyzing the nucleotide sequence of the haplotype analyzed in step (e) using SNP tagger (SNPtagger) software to provide a method for selecting htSNP of the human CYP2D6 gene, comprising the step of selecting htSNP.

본 발명의 다른 목적을 달성하기 위하여, 본 발명은In order to achieve the other object of the present invention,

(a) 인간으로부터 생물학적 시료를 채취하는 단계;(a) taking a biological sample from a human;

(b) 상기 (a) 단계의 채취된 시료로부터 핵산을 추출하는 단계;(b) extracting nucleic acids from the sample taken in step (a);

(c) 상기 (b) 단계의 핵산을 주형으로 하고 인간 CYP2D6 유전자 또는 이의 단편을 증폭할 수 있는 프라이머로 PCR을 수행하는 단계; 및(c) performing PCR with a primer capable of amplifying the human CYP2D6 gene or fragment thereof as a template of the nucleic acid of step (b); And

(d) 상기 (c) 단계에서 얻은 PCR 산물의 염기서열에서 -1426C>T, 100C>T 및 1039C>T 로 이루어진 군에서 하나; -1028T>C, -377A>G , 3877G>A, 4388C>T 및 4401C>T로 이루어진 군에서 하나; -740C>T, -678G>A, 214G>C, 221C>A, 223C>G, 227T>C, 232G>C, 233A>C, 245A>G 및 2850C>T로 이루어진 군에서 하나; 1611T>A; 1758G>A; 1887insTA; 2573insC; 2988G>A; 4125-4133insGTGCCCACT; 2D6 결실 (deletion); 및 2D6 중복 (duplication)으로 이루어진 군에서 선택되는 적어도 11개의 CYP2D6 유전자 변이의 존재 유무를 SNaPshot 기법을 이용하여 조사하는 단계 를 포함하는, 인간 CYP2D6 유전자의 유전형을 결정하는 방법을 제공한다.(d) one from the group consisting of -1426C> T, 100C> T and 1039C> T in the nucleotide sequence of the PCR product obtained in step (c); -1028T> C, -377A> G, 3877G> A, 4388C> T and 4401C> T; One from the group consisting of -740C> T, -678G> A, 214G> C, 221C> A, 223C> G, 227T> C, 232G> C, 233A> C, 245A> G and 2850C> T; 1611T> A; 1758G> A; 1887insTA; 2573insC; 2988G> A; 4125-4133insGTGCCCACT; 2D6 deletion; And investigating the presence or absence of at least 11 CYP2D6 gene mutations selected from the group consisting of 2D6 duplications using the SNaPshot technique.

본 발명의 또 다른 목적을 달성하기 위하여, 본 발명은 In order to achieve another object of the present invention, the present invention

(a) 검사하고자 하는 유전자를 추출한 다음, 다중 (multiplex) PCR을 수행하여 동정하고자 하는 SNP 주변을 포함하는 PCR 산물을 얻는 단계;(a) extracting a gene to be tested and then performing a multiplex PCR to obtain a PCR product including an SNP surrounding to be identified;

(b) 각 대립유전자 (allele)의 특이적인 염기를 동정할 수 있는 ASPE (allele specific primer extension) 프라이머를 이용하여 ASPE 반응을 수행하는 단계;(b) performing an ASPE reaction using an allele specific primer extension (ASPE) primer capable of identifying a specific base of each allele;

(c) 상기 반응산물을 유전자 칩에 혼성화시키는 단계; 및(c) hybridizing the reaction product to a gene chip; And

(d) 상기 칩을 분석하는 단계를 포함하는, 유전자 분석칩을 이용하여 인간 CYP2D6 유전자의 유전형을 결정하는 방법을 제공한다.It provides a method of determining the genotype of the human CYP2D6 gene using a gene analysis chip, comprising the step of (d) analyzing the chip.

또한, 본 발명은 CYP2D6 유전형 판별을 위한 SNaPshot 방법의 유전형 분석용 키트 및 SNP 검사용 Zip Code 올리고염기 칩을 포함하는 유전형 분석용 칩을 제공한다.The present invention also provides a genotyping chip including a genotyping kit of the SNaPshot method for CYP2D6 genotyping and a Zip Code oligobase chip for SNP testing.

본 발명에서 "생물학적 시료"는 피험자의 혈액, 피부 세포, 점막 세포 및 모발을 포함하며, 바람직하게는 혈액일 수 있다.In the present invention, a "biological sample" includes blood, skin cells, mucosal cells and hair of a subject, and preferably may be blood.

본 발명에서 핵산은 DNA 또는 RNA일 수 있으며, 바람직하게는 DNA, 보다 바람직하게는 게놈 (genomic) DNA 일 수 있다. In the present invention, the nucleic acid may be DNA or RNA, preferably DNA, more preferably genomic DNA.

본 명세서에 기재된 변이에 대하여 설명하면 다음과 같다.The variation described in this specification is as follows.

예컨대, "-1584C>T" 변이란 인간 CYP2D6 유전자의 염기서열에서 -1584번째 염기가 C에서 T로 치환된 것을 말한다.For example, the "-1584C> T" mutation refers to the substitution of C to T for the -1584th base in the nucleotide sequence of the human CYP2D6 gene.

"2573insC" 변이란 인간 CYP2D6 유전자의 염기서열에서 2573번째 염기에 C가 삽입(부가)된 것을 말하며, "4125-4133insGTGCCCACT" 변이란 인간 CYP2D6 유전자의 4125번째 염기부터 4133번째 염기 위치에 GTGCCCACT의 9개의 염기가 삽입된 것을 말한다.The "2573insC" mutation refers to the insertion (addition) of C to the 2573th base in the nucleotide sequence of the human CYP2D6 gene, and the "4125-4133insGTGCCCACT" mutation refers to the nine positions of GTGCCCACT at the 4125th to 4133th bases of the human CYP2D6 gene. The base is inserted.

또한, "2D6 결실 (deletion)" 변이란 인간 CYP2D6 유전자 전체가 염색체 상에서 결실된 것을 말한다.In addition, "2D6 deletion" mutations refer to the deletion of the entire human CYP2D6 gene on the chromosome.

나아가, 본 발명에서 "2D6 중복 (duplication)" 변이란 인간 CYP2D6 유전자가 둘 이상 동일 염색체 상에 중복되어 있는 것을 말한다. Furthermore, in the present invention, "2D6 duplication" mutation means that two or more human CYP2D6 genes overlap on the same chromosome.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 한국인 CYP2D6 유전자의 변이 분석을 통해 한국인에서 주로 발견되는 CYP2D6 유전자의 유전형을 규명하였고, 이를 토대로 각각의 일배체형의 최적의 표지 세트인 htSNP를 선별하고, 이의 유용성을 확인하였다는 점에 특징이 있다.The present invention is to identify the genotype of the CYP2D6 gene mainly found in Korean through mutation analysis of the Korean CYP2D6 gene, and based on this, htSNP, which is the optimal label set of each haplotype, was selected and confirmed its usefulness. There is this.

본 발명에 따른 인간 CYP2D6 유전자의 htSNP를 선별하는 방법은 다음의 단계를 포함한다:The method for selecting htSNPs of the human CYP2D6 gene according to the present invention comprises the following steps:

(a) 인간으로부터 생물학적 시료를 채취하는 단계;(a) taking a biological sample from a human;

(b) 상기 (a) 단계의 채취된 시료로부터 핵산을 추출하는 단계; (b) extracting nucleic acids from the sample taken in step (a);

(c) 상기 (b) 단계의 핵산을 주형으로 하고 인간 CYP2D6 유전자 또는 이의 단편을 증폭할 수 있는 프라이머로 PCR을 수행하는 단계;(c) performing PCR with a primer capable of amplifying the human CYP2D6 gene or fragment thereof as a template of the nucleic acid of step (b);

(d) 상기 (c) 단계에서 얻은 PCR 산물의 염기서열에서 변이의 존재 유무를 확인하는 단계; (d) confirming the presence or absence of a mutation in the base sequence of the PCR product obtained in step (c);

(e) 상기 (d) 단계에서 변이가 존재하는 것으로 확인된 PCR 산물의 염기서열에서 일배체형 (haplotype)을 분석하는 단계; 및(e) analyzing haplotypes in the nucleotide sequence of the PCR product identified as having a mutation in step (d); And

(f) 상기 (e) 단계에서 분석된 일배체형의 염기서열을 SNP태거 소프트웨어를 이용하여 분석하여 htSNP를 선별하는 단계. (f) selecting htSNP by analyzing the nucleotide sequence of the haplotype analyzed in step (e) using SNP tagging software.

상기 (a) 단계에서 채취된 시료로부터 핵산을 추출하는 방법은 특별히 한정되지 않으며 당업계에 공지된 기술 또는 시판되고 있는 추출용 키트를 사용할 수 있다. 예를 들면, DNA 또는 RNA 추출용 키트는 Qiagen (미국) 및 Stratagene (미국)에서 구입할 수 있다. 상기에서 RNA를 추출하여 사용하는 경우에는 역전사에 의해 cDNA를 제조하여 사용한다.The method of extracting nucleic acids from the sample collected in step (a) is not particularly limited, and techniques known in the art or commercially available kits for extraction may be used. For example, kits for DNA or RNA extraction can be purchased from Qiagen (USA) and Stratagene (USA). In the case of extracting and using RNA from the above, cDNA is prepared by reverse transcription.

상기 (c) 단계에서 상기 인간 CYP2D6 유전자의 단편은 인간 CYP2D6 유전자의 공지된 변이, 예컨대 단일염기다형성 (single nucleotide polymorphism; SNP)을 포함하고 있는 단편을 말한다. 상기 인간 CYP2D6 유전자 또는 이의 단편을 증폭할 수 있는 프라이머는 인간 CYP2D6 유전자 또는 이의 단편의 염기서열을 바탕으로 하여 디자인될 수 있으며, 예를 들어, 서열번호 2, 서열번호 3, 서열번호 17 내지 서열번호 23, 서열번호 25 내지 서열번호 30, 서열번호 31, 서열번호 32, 서열번호 34, 서열번호 35, 서열번호 45 및 서열번호 46으로 이루어진 군에서 선택되는 염기서열을 갖는 것일 수 있으나, 이에 제한되지는 않는다. In step (c), the fragment of the human CYP2D6 gene refers to a fragment containing a known variation of the human CYP2D6 gene, such as single nucleotide polymorphism (SNP). Primers capable of amplifying the human CYP2D6 gene or fragments thereof may be designed based on the nucleotide sequence of the human CYP2D6 gene or fragments thereof, for example, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 17 to SEQ ID NO: 23, SEQ ID NO: 25 to SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 45 and SEQ ID NO: 46, but may have a base sequence selected from the group consisting of Does not.

상기 (d) 단계에서 확인되는 변이는 단일염기다형성, 유전자의 결실 및 유전자의 중복을 포함하지만, 이에 제한되지는 않으며, 예를 들어, 표 11에 나타낸 33개의 변이를 포함할 수 있다. The mutations identified in step (d) include, but are not limited to, monobasic polymorphism, deletion of genes, and duplication of genes, and may include, for example, 33 mutations shown in Table 11.

또한, 상기 (d) 단계에서 변이의 존재 유무의 확인은 당업계에 공지된 변이 검출방법에 의해 수행될 수 있으며, 바람직하게는 서열분석, 전기영동분석, RFLP 분석 등을 이용하여 수행할 수 있다. 상기 서열분석은 자동염기서열분석기를 사용하거나 파이로시퀀싱 (pyrosequencing)을 이용하여 수행할 수 있다. 상기 파이로시퀀싱은 DNA 시퀀싱에 이용되기도 하는 공지의 SNP 분석방법으로 DNA가 중합되는 동안 방출되는 PPi (inorganic pyrophosphate)의 빛의 발현을 검출하는 방법이다.In addition, the presence or absence of the mutation in the step (d) may be performed by a mutation detection method known in the art, and preferably, may be performed using sequencing, electrophoresis, RFLP analysis, and the like. . The sequencing can be performed using an autobase sequencer or using pyrosequencing. The pyro sequencing is a known SNP analysis method, which is also used for DNA sequencing, is a method of detecting the expression of light of PPi (inorganic pyrophosphate) emitted during DNA polymerization.

변이의 존재 유무는 야생형 CYP2D6 유전자의 염기서열과 비교하여 확인할 수 있다. 야생형 CYP2D6 유전자의 염기서열은 당업계에 공지되어 있다. 예를 들면, 서열번호 1 (GenBank accession No. AY545216)의 염기서열, 또는 당업계에 공지된 CYP2D6 유전형들의 각 염기서열 또는 정보를 토대로 하여 비교하여 확인할 수 있다 (GenBank accession No. M33388, http://www.cypalleles.ki.se/cyp2d6.htm). 또는, RFLP를 수행하여 야생형 CYP2D6 유전자의 제한효소 절단 양상과 비교하여 확인할 수도 있다. CYP2D6 유전자의 결실 또는 중복 변이의 경우에는 PCR 산물의 전기영동분석을 통해 확인할 수 있다. The presence or absence of the mutation can be confirmed by comparing with the nucleotide sequence of the wild type CYP2D6 gene. The base sequence of the wild type CYP2D6 gene is known in the art. For example, the base sequence of SEQ ID NO: 1 (GenBank accession No. AY545216), or each base sequence or information of CYP2D6 genotypes known in the art can be identified and compared (GenBank accession No. M33388, http: / /www.cypalleles.ki.se/cyp2d6.htm). Alternatively, RFLP may be performed to compare the restriction enzyme cleavage pattern of the wild-type CYP2D6 gene. Deletion or duplication of the CYP2D6 gene can be confirmed by electrophoretic analysis of PCR products.

상기 (d) 단계에서 변이가 존재하는 것으로 확인된 PCR 산물의 염기서열에서 일배체형의 분석은 전장염기서열분석을 통해 수행할 수 있다.Analysis of the haplotype in the nucleotide sequence of the PCR product confirmed to exist in step (d) can be performed through full length sequencing.

본 발명의 방법은 상기 (a) 내지 (e) 단계를 반복하는 단계를 추가로 포함할 수 있다. 종족이나 환자 등과 같은 어떤 특정 집단에서 CYP2D6 유전자의 변이 양상을 분석하고자 하는 경우에는, 각 CYP2D6 유전형의 빈도를 조사하여 상기 집단에서 많이 발견되는 CYP2D6 유전형들을 선정한 후, 이를 대상으로 이후의 (f) 단계를 수행할 수 있다. The method of the present invention may further comprise repeating steps (a) to (e). If you want to analyze the variation of CYP2D6 gene in a specific population such as race or patient, the frequency of each CYP2D6 genotype is investigated and the CYP2D6 genotypes found in the population are selected, and then (f) Can be performed.

상기 (f) 단계에서는 상기 (e) 단계에서 분석된 일배체형의 염기서열을 SNP태거 소프트웨어로 분석하여 htSNP를 선별한다. 상기 SNP태거 소프트웨어는 당업계에 공지되어 있으며, 예를 들어 Genehunter, Merlin, Allegro, SNPHAP, htSNP finder (PCA based) 등을 들 수 있고, 바람직하게는 http://www.well.ox.ac.uk/∼xiayi/haplotype 또는 http://slack.ser.man.ac.uk/progs/htsnp.html의 웹사이트를 이용할 수 있다. In step (f), the htSNP is selected by analyzing the nucleotide sequence of the haplotype analyzed in step (e) by SNP tagging software. The SNP tagger software is known in the art and includes, for example, Genehunter, Merlin, Allegro, SNPHAP, htSNP finder (PCA based), and preferably http://www.well.ox.ac. You can use uk / ~ xiayi / haplotype or the website at http://slack.ser.man.ac.uk/progs/htsnp.html.

이렇게 선별된 htSNP는 다이플로타입 (diplotype) 결정시 정확도를 높이기 위하여 검증될 수 있다. 인체의 유전형은 두 가닥의 염색체에 의해 결정되므로 유전형을 판독하면 두 개의 일배체형 조합으로 판정된다. 그러나 여러 개의 SNP을 동시에 분석한 경우 특정 일배체형의 조합이 다른 일배체형의 조합과 동일한 변이 분석 결과를 나타낼 가능성이 있다. 따라서, 본 발명에 의해 개발된 진단법을 이용하여 유전형이 판독된 경우 정확한 유전형을 지목할 수 있는지 검증되어야 한다. 이러한 검증은 Matlab (The Math Works Inc., 미국) 프로그램을 이용하여 유전자 분석 결과로부터 정확한 유전형 판독이 가능한지 분석될 수 있다.The selected htSNPs can be verified to increase the accuracy in diplotype determination. Since the genotype of the human body is determined by two strands of chromosome, the reading of the genotype determines the combination of two haplotypes. However, when several SNPs are analyzed at the same time, there is a possibility that a specific haplotype combination shows the same mutation analysis result as a combination of other haplotypes. Therefore, it should be verified whether the correct genotype can be pointed out when the genotype is read using the diagnostic method developed by the present invention. This verification can be analyzed using the Matlab (The Math Works Inc., USA) program to ensure accurate genotyping from genetic analysis results.

본 발명의 일 실시예에서는 한국인에서 발견되는 CYP2D6 유전형에 대한 htSNP를 선별하기 위하여, 먼저 한국인에서 발견되는 CYP2D6 유전자의 변이를 조사하였다. 그 결과, 한국인에서 주로 발견되는 33개의 변이와 이에 따른 12종의 일배체형 (유전형)을 규명하였다 (표 11 및 12 참조). In one embodiment of the present invention, in order to select htSNP for the CYP2D6 genotype found in Koreans, the mutation of the CYP2D6 gene found in Koreans was first examined. As a result, 33 mutations found in Koreans and 12 haplotypes (genotypes) were identified (see Tables 11 and 12).

본 발명의 다른 실시예에서는 한국인에서 주로 발견되는 CYP2D6 유전형을 용이하게 구분할 수 있는 최소 마커인 htSNP를 선별하기 위하여, 12종의 CYP2D6 유전형의 염기서열을 SNPtagger 소프트웨어를 이용하여 분석하였다. 본 발명에서 선별된 htSNP 조합의 예를 도 1 내지 도 6에 나타내었다. In another embodiment of the present invention, in order to select htSNP, which is a minimum marker that can easily distinguish the CYP2D6 genotype found mainly in Koreans, nucleotide sequences of 12 CYP2D6 genotypes were analyzed using SNPtagger software. Examples of htSNP combinations selected in the present invention are shown in FIGS. 1 to 6.

상기 방법으로 본 발명에서 선별된 htSNP 조합은 인간 CYP2D6 유전자의 유전형을 분석하는데 사용될 수 있다. 따라서, 본 발명은 인간 CYP2D6 유전자의 유전형을 결정하는 방법을 제공한다. 상기 방법은 다음의 단계를 포함한다:The htSNP combination selected in the present invention by the above method can be used to analyze the genotype of the human CYP2D6 gene. Thus, the present invention provides a method for determining the genotype of the human CYP2D6 gene. The method includes the following steps:

(a) 인간으로부터 생물학적 시료를 채취하는 단계;(a) taking a biological sample from a human;

(b) 상기 (a) 단계의 채취된 시료로부터 핵산을 추출하는 단계;(b) extracting nucleic acids from the sample taken in step (a);

(c) 상기 (b) 단계의 핵산을 주형으로 하고 인간 CYP2D6 유전자 또는 이의 단편을 증폭할 수 있는 프라이머로 PCR을 수행하는 단계; 및(c) performing PCR with a primer capable of amplifying the human CYP2D6 gene or fragment thereof as a template of the nucleic acid of step (b); And

(d) 상기 (c) 단계에서 얻은 PCR 산물의 염기서열에서 -1426C>T, 100C>T 및 1039C>T 로 이루어진 군에서 하나; -1028T>C, -377A>G , 3877G>A, 4388C>T 및 4401C>T로 이루어진 군에서 하나; -740C>T, -678G>A, 214G>C, 221C>A, 223C>G, 227T>C, 232G>C, 233A>C, 245A>G 및 2850C>T로 이루어진 군에서 하나; 1611T>A; 1758G>A; 1887insTA; 2573insC; 2988G>A; 4125-4133insGTGCCCACT; 2D6 결실; 및 2D6 중복으로 이루어진 군에서 선택되는 적어도 11개의 CYP2D6 유전자 변이의 존재 유무를 조사하는 단계.(d) one from the group consisting of -1426C> T, 100C> T and 1039C> T in the nucleotide sequence of the PCR product obtained in step (c); -1028T> C, -377A> G, 3877G> A, 4388C> T and 4401C> T; One from the group consisting of -740C> T, -678G> A, 214G> C, 221C> A, 223C> G, 227T> C, 232G> C, 233A> C, 245A> G and 2850C> T; 1611T> A; 1758G> A; 1887insTA; 2573insC; 2988G> A; 4125-4133insGTGCCCACT; 2D6 deletion; And examining the presence or absence of at least 11 CYP2D6 gene mutations selected from the group consisting of 2D6 duplications.

상기 (b) 단계에서 핵산을 추출하는 방법은 위에서 기재한 바와 같다. Extracting the nucleic acid in the step (b) is as described above.

상기 인간 CYP2D6 유전자의 단편은 위에서 기재한 바와 같이 인간 CYP2D6 유전자의 공지된 변이, 예컨대 단일염기다형성을 포함하고 있는 단편을 말한다. 상기 (c) 단계에 사용될 수 있는 프라이머는, 이에 제한되지는 않으나, 서열번호 2, 서열번호 3, 서열번호 17 내지 서열번호 23, 서열번호 25 내지 서열번호 30, 서열번호 31, 서열번호 32, 서열번호 34, 서열번호 35, 서열번호 45 및 서열번호 46으로 이루어진 군에서 선택되는 염기서열을 갖는 것일 수 있다. Such fragments of the human CYP2D6 gene refer to fragments containing known variations of the human CYP2D6 gene, such as monobasic polymorphisms as described above. Primers that can be used in step (c), but are not limited to, SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 17 to SEQ ID NO: 23, SEQ ID NO: 25 to SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, It may have a nucleotide sequence selected from the group consisting of SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 45 and SEQ ID NO: 46.

상기 (d) 단계에서 조사되는 변이는 도 1 내지 도 6에 나타낸 htSNP 중에서 선택될 수 있다. 상기 (d) 단계에서는 도 1에 나타낸 -1426C>T, 100C>T 및 1039C>T 로 이루어진 군에서 하나; -1028T>C, -377A>G , 3877G>A, 4388C>T 및 4401C>T로 이루어진 군에서 하나; -740C>T, -678G>A, 214G>C, 221C>A, 223C>G, 227T>C, 232G>C, 233A>C, 245A>G 및 2850C>T로 이루어진 군에서 하나; 1611T>A; 1758G>A; 1887insTA; 2573insC; 2988G>A; 4125-4133insGTGCCCACT; 2D6 결실; 및 2D6 중복으로 이루어진 변이의 존재 유무를 조사할 수 있다.The mutation irradiated in step (d) may be selected from htSNPs shown in FIGS. 1 to 6. In the step (d), one in the group consisting of -1426C> T, 100C> T and 1039C> T shown in Figure 1; -1028T> C, -377A> G, 3877G> A, 4388C> T and 4401C> T; One from the group consisting of -740C> T, -678G> A, 214G> C, 221C> A, 223C> G, 227T> C, 232G> C, 233A> C, 245A> G and 2850C> T; 1611T> A; 1758G> A; 1887insTA; 2573insC; 2988G> A; 4125-4133insGTGCCCACT; 2D6 deletion; And the presence or absence of a mutation consisting of 2D6 overlap.

또한, 도 2에 나타낸 -1584C>G; -1426C>T, 100C>T 및 1039C>T로 이루어진 군에서 하나; 1611T>A; 1758G>A; 2573insC; -740C>T, -678G>A, 214G>C, 221C>A, 223C>G, 227T>C, 232G>C, 233A>C, 245A>G 및 2850C>T로 이루어진 군에서 하나; -1245insGA, -1028T>C, -377A>C, 3877G>A , 4388C>T 및 4401C>T로 이루어진 군에서 하나; 4125-4133insGTGCCCACT; 2D6 결실; 및 2D6 중복으로 이루어진 변이의 존재 유무를 조사할 수도 있다.Furthermore, -1584C> G shown in FIG. 2; One in the group consisting of -1426C> T, 100C> T and 1039C> T; 1611T> A; 1758G> A; 2573insC; One from the group consisting of -740C> T, -678G> A, 214G> C, 221C> A, 223C> G, 227T> C, 232G> C, 233A> C, 245A> G and 2850C> T; One in the group consisting of -1245insGA, -1028T> C, -377A> C, 3877G> A, 4388C> T and 4401C> T; 4125-4133insGTGCCCACT; 2D6 deletion; And presence of mutations consisting of 2D6 duplications.

또한, 도 3에 나타낸 -1426C>T, 100C>T 및 1039C>T 로 이루어진 군에서 하나; -1584C>G; -1028T>C, -377A>G , 3877G>A, 4388C>T 및 4401C>T로 이루어진 군에서 하나; -740C>T, -678G>A, 214G>C, 221C>A, 223C>G, 227T>C, 232G>C, 233A>C, 245A>G 및 2850C>T로 이루어진 군에서 하나; 1611T>A; 1758G>A; 1887insTA; 2573insC; 4125-4133insGTGCCCACT; 2D6 결실; 및 2D6 중복으로 이루어진 변이의 존재 유무를 조사할 수도 있다.In addition, one in the group consisting of -1426C> T, 100C> T and 1039C> T shown in FIG. 3; -1584C> G; -1028T> C, -377A> G, 3877G> A, 4388C> T and 4401C> T; One from the group consisting of -740C> T, -678G> A, 214G> C, 221C> A, 223C> G, 227T> C, 232G> C, 233A> C, 245A> G and 2850C> T; 1611T> A; 1758G> A; 1887insTA; 2573insC; 4125-4133insGTGCCCACT; 2D6 deletion; And presence of mutations consisting of 2D6 duplications.

또한, 도 4에 나타낸 -1584C>G; -1426C>T, 100C>T 및 1039C>T로 이루어진 군에서 하나; 1611T>A; 1758G>A; 2573insC; -740C>T, -678G>A, 214G>C, 221C>A, 223C>G, 227T>C, 232G>C, 233A>C, 245A>G 및 2850C>T로 이루어진 군에서 하나; -1245insGA, -1028T>C, -377A>G, 3877G>A, 4388C>T 및 4401C>T로 이루어진 군에서 하나; 4125-4133insGTGCCCACT; -1235A>G; 1887insTA; 2D6 결실; 및 2D6 중복으로 이루어진 변이의 존재 유무를 조사할 수도 있다. Furthermore, -1584C> G shown in FIG. 4; One in the group consisting of -1426C> T, 100C> T and 1039C> T; 1611T> A; 1758G> A; 2573insC; One from the group consisting of -740C> T, -678G> A, 214G> C, 221C> A, 223C> G, 227T> C, 232G> C, 233A> C, 245A> G and 2850C> T; One in the group consisting of -1245insGA, -1028T> C, -377A> G, 3877G> A, 4388C> T and 4401C> T; 4125-4133insGTGCCCACT; -1235A> G; 1887insTA; 2D6 deletion; And presence of mutations consisting of 2D6 duplications.

또한, 도 5에 나타낸 -1426C>T, 100C>T 및 1039C>T로 이루어진 군에서 하나; -1028T>C, -377A>G, 3877G>A, 4388C>T 및 4401C>T로 이루어진 군에서 하나; 1611T>A; 1661G>C 및 4180G>C로 이루어진 군에서 하나; 1758G>A; 1887insTA; 2573insC; 2988G>A; 4125-4133insGTGCCCACT; -1235A>G; 1887insTA; 2D6 결실; 및 2D6 중복으로 이루어진 변이의 존재 유무를 상기 (d) 단계에서 조사할 수도 있다.In addition, one in the group consisting of -1426C> T, 100C> T, and 1039C> T shown in FIG. 5; -1028T> C, -377A> G, 3877G> A, 4388C> T and 4401C> T; 1611T> A; One in the group consisting of 1661G> C and 4180G> C; 1758G> A; 1887insTA; 2573insC; 2988G> A; 4125-4133insGTGCCCACT; -1235A> G; 1887insTA; 2D6 deletion; And presence or absence of a mutation consisting of 2D6 overlapping may be investigated in step (d).

또한, 도 6에 나타낸 -1584C>G; -1426C>T, 100C>T 및 1039C>T로 이루어진 군에서 하나; 1611T>A; 1758G>A; 2573insC; -740C>T, -678G>A, 214G>C, 221C>A, 223C>G, 227T>C, 232G>C, 233A>C, 245A>G 및 2850C>T로 이루어진 군에서 하나; -1245insGA, -1028T>C, -377A>G, 3877G>A, 4388C>T 및 4401C>T로 이루어진 군에서 하나; 1887insTA; 2988G>A; 4125-4133insGTGCCCACT; 2D6 결실; 및 2D6 중복으로 이루어진 변이의 존재 유무를 조사할 수도 있다. Furthermore, -1584C> G shown in FIG. 6; One in the group consisting of -1426C> T, 100C> T and 1039C> T; 1611T> A; 1758G> A; 2573insC; One from the group consisting of -740C> T, -678G> A, 214G> C, 221C> A, 223C> G, 227T> C, 232G> C, 233A> C, 245A> G and 2850C> T; One in the group consisting of -1245insGA, -1028T> C, -377A> G, 3877G> A, 4388C> T and 4401C> T; 1887insTA; 2988G> A; 4125-4133insGTGCCCACT; 2D6 deletion; And presence of mutations consisting of 2D6 duplications.

바람직하게는 도 1에 예시한 변이의 존재 유무를 조사할 수 있다. 이와 같이 상기 (d) 단계에서 조사되는 변이는 한국인에서 주로 발견되는 CYP2D6 유전자 변이에 대한 것이므로 한국인에서 CYP2D6 유전자의 일배체형과 유전형을 결정하는데 매우 특이적이다.Preferably, the presence or absence of the variation illustrated in FIG. 1 may be examined. As described above, the mutation examined in step (d) is for the CYP2D6 gene mutation mainly found in Koreans, and thus is very specific for determining the haplotype and genotype of the CYP2D6 gene in Koreans.

상기 (d) 단계에서 상기 PCR 산물의 염기서열에 CYP2D6 유전자의 변이가 존재하는지 그 여부의 조사는 당업계에 공지된 다형성 분석 방법을 이용하여 수행할 수 있다. 바람직하게는 스냅샷 분석 ([Peter M. Vallone, et al., Int J Legal Med, 2004, 118:147-157] 참조), 전기영동 분석 또는 이들의 조합을 이용하여 수행할 수 있다. 상기 CYP2D6 유전자의 변이가 단일염기다형성인 경우에는 스냅샷 분석을 이용할 수 있다. In the step (d), whether the mutation of the CYP2D6 gene is present in the base sequence of the PCR product may be performed using a polymorphism analysis method known in the art. Preferably, snapshot analysis (see Peter M. Vallone, et al., Int J Legal Med , 2004, 118: 147-157), electrophoretic analysis or a combination thereof may be performed. When the mutation of the CYP2D6 gene is monobasic polymorphism, snapshot analysis may be used.

상기 스냅샷 분석은 SNP 위치의 인접부위에 어닐링 (annealing)되는 서열 (상기 SNP 부위는 포함하지 않음)을 갖는 프라이머와 ddNTP를 이용한 PCR 반응을 통하여 유전자형을 분석하는 방법이다. 본 발명에 사용되는 스냅샷 분석은 상기 단계 c)에서 조사되는 CYP2D6 유전자의 SNP를 토대로 하여 공지에 방법에 따라 설계 및 제작한 것을 사용할 수 있으며, SNP 위치의 바로 옆 염기가 3′말단이 되고 상기 SNP 위치의 인접부위에 어닐링되는 서열을 포함하며, 5′말단에는 T 염기가 부가된 것이라면 제한없이 사용될 수 있다. 이때, 상기 SNP 위치의 인접부위에 어닐링되는 서열은 약 20 bp의 길이를 갖는 것이 바람직하며, 한 번에 여러 개의 SNP를 구분하고자 하는 경우 각 SNP에 대한 스냅샷 프라이머들의 5′ 말단 T 염기의 길이를 각각 다르게 설계, 예를 들어 T 염기를 5개씩 5′위치에 더 첨가하여 프라이머 간에 사이즈 차이를 만들어 합성하여 PCR 산물의 길이를 각각 다르게 할 수 있다. 이렇게 만들어진 스냅샷 프라이머에 각 SNP에 상보적인 ddNTP가 결합을 하게 되고 이들 합성물들은 SNP에 따라 길이 차이가 발생함으로 한 번에 여러 개의 SNP 구분이 가능하다. The snapshot analysis is a method of genotyping through a PCR reaction using a ddNTP and a primer having a sequence annealed to the adjacent region of the SNP (not including the SNP region). Snapshot analysis used in the present invention can be designed and manufactured according to the known method based on the SNP of the CYP2D6 gene to be investigated in the step c), the base immediately next to the SNP position is 3 'end and It includes a sequence annealed to the adjacent region of the SNP position, and may be used without limitation as long as the T base is added to the 5 'end. At this time, the sequence annealed to the adjacent region of the SNP position is preferably about 20 bp in length, if you want to distinguish several SNPs at once the length of the 5 'terminal T base of the snapshot primers for each SNP Designed differently, for example, by adding 5 more T base at the 5 'position to make a difference in size between the primers can be synthesized by varying the length of the PCR product. The ddNTP complementary to each SNP is coupled to the snapshot primer thus made, and these compounds can be distinguished from several SNPs at a time because the length difference occurs depending on the SNP.

예컨대, 상기 (c) 단계에서 도 1에 나타낸 htSNP 조합을 조사하는 경우에는 서열번호 37 내지 서열번호 44, 서열번호 48 및 서열번호 49로 이루어진 군에서 선택되는 염기서열을 갖는 프라이머를 사용할 수 있으며, 바람직하게는 서열번호 37 내지 서열번호 44, 서열번호 48 및 서열번호 49의 프라이머를 모두 사용할 수 있다. 이후, 스냅샷 분석으로 증폭된 PCR 산물의 염기서열을 공지된 서열분석법으로 분석할 수 있다. 상기 서열분석법으로는 당업계에 공지된 방법이라면 제한없이 사용될 수 있으며, 바람직하게는 자동염기서열분석법일 수 있다. For example, when the htSNP combination shown in Figure 1 in the step (c) can be used a primer having a base sequence selected from the group consisting of SEQ ID NO: 37 to SEQ ID NO: 44, SEQ ID NO: 48 and SEQ ID NO: 49, Preferably, all primers of SEQ ID NO: 37 to SEQ ID NO: 44, SEQ ID NO: 48 and SEQ ID NO: 49 may be used. Thereafter, the nucleotide sequence of the PCR product amplified by the snapshot analysis can be analyzed by known sequencing methods. The sequencing method may be used without limitation as long as it is a method known in the art, and preferably may be an automatic sequencing method.

본 발명의 또 다른 실시예에서는 본 발명에서 선별된 htSNP 조합의 유용성을 확인하였다. 이를 위해 도 1에 나타낸 htSNP 조합을 이용하여 스냅샷 분석을 실시한 후, 얻은 PCR 산물의 염기서열을 분석하였다. 그 결과, 본 발명의 방법이 한국인에서 발견되는 CYP2D6 유전형을 동시에 고속으로 분석할 수 있음을 확인하였다 (도 7 및 8 참조). In another embodiment of the present invention confirmed the usefulness of the htSNP combination selected in the present invention. For this purpose, after performing a snapshot analysis using the htSNP combination shown in Figure 1, the base sequence of the obtained PCR product was analyzed. As a result, it was confirmed that the method of the present invention can simultaneously and rapidly analyze the CYP2D6 genotype found in Koreans (see FIGS. 7 and 8).

본 발명의 방법에 의해 분석될 수 있는 CYP2D6 유전자의 유전형은 CYP2D6*1A, CYP2D6*2A, CYP2D6*5, CYP2D6*2N, CYP2D6*10B, CYP2D6*14B, CYP2D6*18, CYP2D6*21B, CYP2D6*41A, CYP2D6*49, CYP2D6*52 및 CYP2D6*60을 포함한다. 각 유전형 및 이에 따른 변이에 대하여 표 11에 나타내었다. 표 11을 참고로 하여 설명하면, 예컨대 CYP2D6*1A 유전형은 야생형이고, CYP2D6*2A 유전형은 야생형 CYP2D6 유전자의 염기서열에서 SNP 1, SNP 5, SNP 8, SNP 9, SNP 12-SNP 18, SNP 21, SNP 25 및 SNP 28 위치에 변이를 포함하는 유전형이다. 또한, CYP2D6*5 유전형은 2D6 결실 변이를 포함하는 유전형으로서, CYP2D6 유전자가 인간 염색체 상에서 완전 결여된 것으로 효소생산이 전혀 일어나지 않는다. CYP2D6*2N 유전형은 2D6 중복 변이를 포함하는 유전형으로서 CYP2D6 유전자가 두 개 이상 동일 염색체에 존재한다.Genotypes of the CYP2D6 gene that can be analyzed by the methods of the present invention are CYP2D6 * 1A, CYP2D6 * 2A, CYP2D6 * 5, CYP2D6 * 2N, CYP2D6 * 10B, CYP2D6 * 14B, CYP2D6 * 18, CYP2D6 * 21B, CYP2D6 * 41A , CYP2D6 * 49, CYP2D6 * 52 and CYP2D6 * 60. Each genotype and the resulting variation is shown in Table 11. Referring to Table 11, for example, the CYP2D6 * 1A genotype is wild type, CYP2D6 * 2A genotype is SNP 1, SNP 5, SNP 8, SNP 9, SNP 12-SNP 18, SNP 21 in the base sequence of the wild type CYP2D6 gene , SNP 25 and SNP 28 are genotypes containing mutations. In addition, the CYP2D6 * 5 genotype is a genotype that includes a 2D6 deletion mutation, which completely lacks the CYP2D6 gene on the human chromosome and does not produce any enzyme production. The CYP2D6 * 2N genotype is a genotype containing 2D6 overlapping mutations in which two or more CYP2D6 genes are present on the same chromosome.

또한, 본 발명은 유전자 분석칩을 이용하여 인간 CYP2D6 유전자의 유전형을 결정하는 방법을 제공한다. 상기 방법은 다음의 단계를 포함한다:The present invention also provides a method for determining the genotype of human CYP2D6 gene using a gene analysis chip. The method includes the following steps:

(a) 검사하고자 하는 유전자를 추출한 다음, 다중 (multiplex) PCR을 수행하여 동정하고자 하는 SNP 주변을 포함하는 PCR 산물을 얻는 단계;(a) extracting a gene to be tested and then performing a multiplex PCR to obtain a PCR product including an SNP surrounding to be identified;

(b) 각 대립유전자 (allele)의 특이적인 염기를 동정할 수 있는 ASPE (allele specific primer extension) 프라이머를 이용하여 ASPE 반응을 수행하는 단계;(b) performing an ASPE reaction using an allele specific primer extension (ASPE) primer capable of identifying a specific base of each allele;

(c) 상기 반응산물을 유전자 칩에 혼성화시키는 단계; 및(c) hybridizing the reaction product to a gene chip; And

(d) 상기 칩을 분석하는 단계.(d) analyzing the chip.

또한, 본 발명은 SNP 검사용 Zip Code 올리고염기 칩을 포함하는 유전형 분석용 키트를 제공한다 (도 9 참조).The present invention also provides a kit for genotyping, including a Zip Code oligobase chip for SNP testing (see FIG. 9).

상기 단계 (b)에서, ASPE 반응을 위해서는 각각의 SNP에 맞는 한 쌍의 프라이머를 제작하게 되는데, 상기 ASPE 프라이머는 다형성을 나타내는 염기 (SNP site)를 3' 말단에 포함하여 대립유전자 (allele)와 특이적으로 결합하는 시퀀스로 제작되며, 5' 방향으로는 24 bp의 올리고뉴클레오타이드인 Zip Code가 포함되어 있으며, 상기 Zip Code는 각각의 대립유전자마다 다른 서열을 갖도록 제작된다.In the step (b), a pair of primers for each SNP is prepared for the ASPE reaction, wherein the ASPE primers include a polymorphic base (SNP site) at the 3 'end and the allele. It is produced in a specifically binding sequence, and the 5 'direction includes 24 bp of oligonucleotide Zip Code, which is prepared to have a different sequence for each allele.

본 발명에서는, 논문 등을 통해 공개된 서열들 및 생명정보학 기법을 통해 선별되어 설계된 서열들 중, 실험적 검증을 통해 다른 시료와 상호교차반응이 일어나지 않는 최적의 Zip Code 서열을 선별하였으며, 선별된 서열은 Tm 값이 61℃±2 이며 Zip code 서로 간에 간섭이 없도록 제작되었고, 헤어 핀 이차 구조의 ΔG 값이 -2 이상인 서열만이 선택되었다. In the present invention, an optimal Zip Code sequence that does not cross-react with other samples is selected through experimental verification among the sequences designed and selected through the publications and bioinformatics techniques disclosed in the paper. The T m value was 61 ° C. ± 2 and the zip code was produced so as not to interfere with each other. Only sequences having a ΔG value of the hairpin secondary structure of −2 or more were selected.

상기와 같이 구성된 ASPE 프라이머를 이용하여 ASPE 반응을 수행하면, 프라이머의 3' 말단에 해당되는 대립유전자를 가지고 있는 시료만이 프라이머와 반응하여 대립유전자 특이적 연장 반응이 일어나게 된다. 이때, 사이아닌 5 (Cyanine 5, Cy5) 형광물질이 공유결합된 dUTP (Cy5-dUTP)를 섞어 연장반응을 수행하면, 각 대립유전자를 가지고 있는 시료만이 Cy5 형광물질을 표지하게 된다 (도 12 참조). 이 때 형광물질은 Cy5에 제한되지 않고, Cy3, TAMRA, Texas-Red, Cy3.5, Rhodamin 6G, SyBR Green 등 당분야에서 사용가능한 여러 가지가 대체되어 사용될 수 있다. When the ASPE reaction is performed using the ASPE primer configured as described above, only a sample having an allele corresponding to the 3 'end of the primer reacts with the primer to cause an allele specific extension reaction. At this time, when the extension reaction is performed by mixing dUTP (Cy5-dUTP) covalently bonded with a cyanine 5 (Cyanine 5, Cy5) fluorescent substance, only a sample having each allele is labeled with a Cy5 fluorescent substance (FIG. 12). Reference). In this case, the fluorescent material is not limited to Cy5, and various kinds of fluorescently available compounds in the art, such as Cy3, TAMRA, Texas-Red, Cy3.5, Rhodamin 6G, and SyBR Green, may be used.

본 발명의 분석칩 상에는 상기 Zip Code와 상보적으로 결합하는 올리고뉴클레오타이드를 프로브 (cZip Code)가 심어져 있어, 상기와 같이 Zip Code 프라이머를 이용하여 연장된 시료에 포함되어 있는 각 대립유전자를 동정할 수 있게 된다 (도 10 참조). On the analysis chip of the present invention, a probe (cZip Code) is implanted with an oligonucleotide that complementarily binds to the Zip Code, and thus, alleles included in the extended sample can be identified using the Zip Code primer as described above. (See FIG. 10).

상기 프로브는 3' 방향에 10 bp의 염기 서열을 스페이서로 삽입하여 타겟과 교잡반응이 잘 일어나도록 유도하였으며, 예를 들어, 상기 스페이서 서열은 5'-CAG GCC AAGT-3'인 것이 바람직하다. The probe was inserted into the spacer 10 bp sequence in the 3 'direction to induce hybridization with the target well, for example, the spacer sequence is preferably 5'-CAG GCC AAGT-3'.

또한, 본 발명에 있어서, 상기 프로브는 서열번호 53 내지 서열번호 79의 염기 서열을 갖는 것이 바람직하다. In addition, in the present invention, the probe preferably has a nucleotide sequence of SEQ ID NO: 53 to SEQ ID NO: 79.

상기 단계 (c) 및 (d)에서 상기 반응산물을 유전자 칩에 혼성화시키고, 혼성화된 칩을 분석하는 방법은 당업계에 공지된 방법에 따라 수행될 수 있으며, 일반적인 DNA칩 스캐너를 어느 것이던지 사용할 수 있다. 보다 바람직하게는 Axon사의 GenePix 4100B 스캐너를 이용하고, 스캐닝된 이미지를 GenePix Pro 6.0 software를 이용하여 분석할 수 있다. In the steps (c) and (d), the method of hybridizing the reaction product to the gene chip and analyzing the hybridized chip may be performed according to a method known in the art, and any of the general DNA chip scanners may be used. Can be. More preferably, Axon's GenePix 4100B scanner can be used, and the scanned image can be analyzed using GenePix Pro 6.0 software.

본 발명의 유전자 분석칩을 이용하여 CYP2D6 유전자의 변이를 분석하면 서열분석을 통해 확인된 결과와 동일한 결과를 얻을 수 있으므로, 다양한 유전자의 변이를 경제적으로 용이하게 분석하는데 유용하게 사용될 수 있다. When the mutation of the CYP2D6 gene is analyzed using the gene analysis chip of the present invention, the same result as that obtained through sequencing can be obtained, and thus it can be usefully used for economically and easily analyzing the variation of various genes.

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited to the following examples.

실시예 1Example 1 : 한국인에서 CYP2D6 유전자의 유전형 분석: Genotyping of CYP2D6 Gene in Koreans

<1-1> 게놈 DNA의 분리<1-1> Isolation of Genomic DNA

174명의 한국인으로부터 채취한 혈액 시료로부터 게놈 DNA 분리 키트 (Qiagen 사)를 이용하여 게놈 DNA를 각각 분리하였다. Genomic DNA was isolated from the blood samples taken from 174 Koreans using a genomic DNA separation kit (Qiagen).

<1-2> CYP2D6 유전자의 증폭 및 전장 염기서열 분석<1-2> Amplification and Full-length Sequence Analysis of the CYP2D6 Gene

상기 실시예 <1-1>에서 분리된 총 174개의 게놈 DNA 샘플 중에서 임의로 택한 51개의 샘플을 주형으로 하고 하기의 프라이머 쌍으로 PCR을 수행하여 인간 CYP2D6 유전자를 구성하는 9개의 엑손과 1.8kb의 프로모터 부위가 증폭되도록 하였다.Nine exons and 1.8 kb promoters constituting the human CYP2D6 gene by PCR of the following primer pairs were used as a template with 51 samples arbitrarily selected from a total of 174 genomic DNA samples isolated in Example <1-1>. The site was allowed to amplify.

유전자 증폭에 사용된 프라이머Primers used for gene amplification 프라이머명Primer Name 염기서열 (5'→3')Sequence (5 '→ 3') 서열번호SEQ ID NO: CYP505CYP505 CACTGGCTCCAAGCATGGCAGCACTGGCTCCAAGCATGGCAG 22 3'2D63'2D6 ACTGAGCCCTGGGAGGTGGTAACTGAGCCCTGGGAGGTGGTA 33

PCR은 94℃에서 1분간 반응시킨 다음 98℃에서 10초, 64℃에서 30초 및 72℃에서 7분간 30 사이클을 반복하고 최종적으로 72℃에서 10분간 반응시켰다. 그 결과, 6,569 bp 크기의 PCR 산물을 수득하였다 (하기 표 2 참조).PCR was carried out for 1 minute at 94 ° C, then repeated 30 cycles at 98 ° C for 10 seconds, 64 ° C for 30 seconds, and 72 ° C for 7 minutes, and finally at 72 ° C for 10 minutes. As a result, a PCR product of 6,569 bp size was obtained (see Table 2 below).

프라이머의 위치와 PCR 산물의 크기Position of primer and size of PCR product 프라이머명Primer Name 위치location PCR 산물의 크기Size of PCR Product CYP505CYP505 -1848∼-1828-1848-1828 6,569 bp6,569 bp 3'2D63'2D6 4732∼47494732 ~ 4749

이후, 증폭된 PCR 산물을 주형으로 하고 하기 표 3에 나타낸 총 13종의 프라이머를 이용하여 증폭된 CYP2D6 유전자의 염기서열을 분석하였다. Thereafter, the amplified PCR product was used as a template, and the nucleotide sequence of the amplified CYP2D6 gene was analyzed using a total of 13 primers shown in Table 3 below.

전장 염기서열분석에 사용된 프라이머Primers used for full length sequencing 프라이머명Primer Name 염기서열 (5'→3')Sequence (5 '→ 3') 서열번호SEQ ID NO: CYP505CYP505 CACTGGCTCCAAGCATGGCAGCACTGGCTCCAAGCATGGCAG 22 3'2D63'2D6 ACTGAGCCCTGGGAGGTAGGTAACTGAGCCCTGGGAGGTAGGTA 33 CYP507CYP507 AACGTTCCCACCAGATTTCAACGTTCCCACCAGATTTC 44 CYP509CYP509 GTAAGTGCCAGTGACAGATAAGGTAAGTGCCAGTGACAGATAAG 55 2d6-112d6-11 AGGATCCTTTGTTCAGGATATGTTGCAGGATCCTTTGTTCAGGATATGTTGC 66 2d6-122d6-12 CACCAAGTACCCCACTTCCCCACCAAGTACCCCACTTCCC 77 2d6-12d6-1 CATGTGGACTTCCAGAACACACCCATGTGGACTTCCAGAACACACC 88 2d6-22d6-2 GGTTCAAACCTTTTGCACTGGGTTCAAACCTTTTGCACTG 99 2d6-32d6-3 GTCGTGCTCAATGGGCTGGTCGTGCTCAATGGGCTG 1010 2d6-42d6-4 AAGGTGGATGCACAAAGAGTAAGGTGGATGCACAAAGAGT 1111 2d6-52d6-5 GACCTAGCTCAG GAGGGACTGACCTAGCTCAG GAGGGACT 1212 2d6-62d6-6 AGCTGGATGAGCTGCTAACTAGCTGGATGAGCTGCTAACT 1313 2d6-72d6-7 CCTGACCTCCTCCAACATAGCCTGACCTCCTCCAACATAG 1414 2d6-82d6-8 CACCTAGTCCTCAATGCCACCACCTAGTCCTCAATGCCAC 1515 2d6-92d6-9 GAGTCTTGCAGGGGTATCACGAGTCTTGCAGGGGTATCAC 1616

<1-3> 각 유전형에 따른 개별적 분석<1-3> Individual analysis of each genotype

상기 실시예 <1-1>에서 분리한 나머지 123개의 게놈 DNA 샘플에 대해서는 하기의 방법에 따라 동양인에서 주로 발견되는 *2A, *5, *2N, *10B, *14B, *18, *21B, *41A, *49, *52, *60 변이에 대한 유전형 분석을 개별적으로 수행하였다.For the remaining 123 genomic DNA samples isolated in Example <1-1>, * 2A, * 5, * 2N, * 10B, * 14B, * 18, * 21B, which are mainly found in Asians, were Genotyping analyzes for * 41A, * 49, * 52, * 60 mutations were performed separately.

a) CYP2D6*5 유전형의 분석a) Analysis of CYP2D6 * 5 Genotypes

CYP2D6*5 유전형을 분석하기 위해 하기 표 4에 기재된 프라이머를 사용하여 PCR을 수행하였다. PCR 반응조건으로는 94℃에서 1분간 반응시킨 다음 98℃에서 10초, 64℃에서 30초 및 72℃에서 5분간 30 사이클을 반복하고 72℃에서 10분간 반응시켰다. 그 결과, 야생형의 경우 9개의 엑손을 포함하는 5.1 kb의 PCR 산물이 증폭되었고, CYP2D6*5 변이형의 경우 3.5 kb의 PCR 산물이 증폭되었다. PCR was performed using the primers described in Table 4 below to analyze the CYP2D6 * 5 genotype. As the PCR reaction conditions, the reaction was performed at 94 ° C. for 1 minute, then repeated 30 cycles at 98 ° C. for 10 seconds, 64 ° C. for 30 seconds, and 72 ° C. for 5 minutes, followed by reaction at 72 ° C. for 10 minutes. As a result, a 5.1 kb PCR product containing nine exons was amplified in the wild type, and a 3.5 kb PCR product was amplified in the CYP2D6 * 5 variant.

프라이머의 서열, 위치 및 PCR 산물의 크기 Sequence, position of primer and size of PCR product 프라이머명Primer Name 염기서열 (5'→3')Sequence (5 '→ 3') 서열번호SEQ ID NO: 위치location PCR 산물의 크기Size of PCR Product 5'2D65'2D6 CCAGAAGCCTTTGCAGGCTTCCCAGAAGCCTTTGCAGGCTTC 1717 1279∼13001279-1300 5.1 kb5.1 kb 3'2D63'2D6 ACTGAGCCCTGGGAGGTGGTAACTGAGCCCTGGGAGGTGGTA 33 6350∼63716350-6371 5'2D6*55'2D6 * 5 CACCAGGCACCTGTACTCCTC CACCAGGCACCTGTACTCCTC 1818 7396∼74167396-7416 3.5 kb3.5 kb 3'2D6*53'2D6 * 5 CAGGCATGAGCTAAGGCACCCAGAC CAGGCATGAGCTAAGGCACCCAGAC 1919 9353∼93779353-9377

b) CYP2D6*2N 유전형의 분석b) Analysis of CYP2D6 * 2N Genotypes

CYP2D6*2N 유전형을 분석하기 위해 하기 표 4에 기재된 프라이머를 사용하여 PCR을 수행하였다. PCR은 94 ℃에서 1분간 반응시킨 다음 98 ℃에서 10초, 64 ℃에서 30초 및 72 ℃에서 8분간 30 사이클을 반복하고 72 ℃에서 10분간 반응시켰다. 그 결과 CYP2D6*2N 변이형의 경우 7.8kb의 PCR 산물을 수득하였다. PCR was performed using the primers described in Table 4 below to analyze the CYP2D6 * 2N genotype. PCR was performed for 1 minute at 94 ° C., then repeated 30 cycles at 98 ° C. for 10 seconds, 64 ° C. for 30 seconds, and 72 ° C. for 8 minutes and at 72 ° C. for 10 minutes. As a result, a 7.8 kb PCR product was obtained for the CYP2D6 * 2N variant.

프라이머의 서열, 위치 및 PCR 산물의 크기Sequence, position of primer and size of PCR product 프라이머명Primer Name 염기서열 (5'→3')Sequence (5 '→ 3') 서열번호SEQ ID NO: 위치location PCR 산물의 크기Size of PCR Product 4268Cnew4268Cnew TGGGTGTTTGCTTTCCTGGTGAC TGGGTGTTTGCTTTCCTGGTGAC 2020 4245∼42684245-4268 7.8kb7.8kb Primer 10BPrimer 10B GTGGTGGGGCATCCTCAGTGTGGTGGGGCATCCTCAGT 2121 302∼321302-321

c) CYP2D6*2 및 *41 유전형의 분석c) Analysis of CYP2D6 * 2 and * 41 genotypes

CYP2D6*2 유전형과 CYP2D6*41 유전형의 경우, -1584C>G 변이를 제외하고는 동일한 변이 (-1235A>G; -740C>T; -678G>A; 인트론 1에서의 CYP2D7로의유전자 전환 (gene conversion); 1661G>C; 2850C>T; 4180G>C)를 가진다. 따라서, 우선 인트론 1에서의 CYP2D7로의 유전자 전환의 변이 서열을 하기 표 6에 기재된 프라이머를 이용하여 AS-PCR 방법 (Johanson, Molecular Pharmacology, 46:452-459, 1994)으로 분석하였다. For CYP2D6 * 2 genotypes and CYP2D6 * 41 genotypes, gene conversions from the same mutation (-1235A>G;-740C>T;-678G>A; intron 1 to CYP2D7 except for the -1584C> G mutation ); 1661G>C;2850C>T;4180G> C). Therefore, first, the mutant sequence of gene conversion to CYP2D7 in Intron 1 was analyzed by the AS-PCR method (Johanson, Molecular Pharmacology , 46: 452-459, 1994) using the primers described in Table 6 below.

인트론 1에서의 CYP2D7로의 유전자 전환이 일어난 경우, 서열번호 25의 프라이머 9와 서열번호 21의 프라이머 10B를 사용하여 PCR반응을 하면 증폭산물을 얻을 수 있으며, 정상인 경우에서는 서열번호 25의 프라이머 9와 서열번호 26의 프라이머 10의 조합으로 반응을 한 경우에만 증폭산물을 얻게 된다. 따라서, 두 개의 프라이머 조합, 즉 프라이머 9/프라이머 10과 프라이머9/프라이머10B의 조합으로 각각 반응하여 증폭된 산물의 유무에 따라 인트론 1에서의 CYP2D7로의 유전자 전환을 확인할 수 있다. When the gene conversion from CY 2D7 to Intron 1 occurred, PCR amplification was carried out using primer 9 of SEQ ID NO: 25 and primer 10B of SEQ ID NO: 21 to obtain an amplification product. In normal cases, primer 9 of SEQ ID NO: 25 and sequence The amplification product is obtained only when the reaction is performed with the combination of primer 10 of No. 26. Therefore, the gene conversion from intron 1 to CYP2D7 can be confirmed depending on the presence or absence of the amplified product by reacting with a combination of two primers, namely, primer 9 / primer 10 and primer 9 / primer 10B.

PCR은 94℃에서 5 분간 반응시킨 다음 94℃에서 30 초, 64℃에서 30 초 및 72℃에서 30 초간 35 사이클을 반복하고 72℃에서 10 분간 반응시켰다. 이후, -1584C>G 변이를 하기 표 6에 기재된 시퀀싱 프라이머를 이용하여 파이로시퀀싱으로 분석하여 -1584G 인 경우를 CYP2D6*2 유전형으로, -1584C인 경우를 CYP2D6*41 유전형으로 결정하였다. PCR reaction was carried out for 5 minutes at 94 ℃, then repeated 35 cycles for 30 seconds at 94 ℃, 30 seconds at 64 ℃ and 30 seconds at 72 ℃ and the reaction was carried out for 10 minutes at 72 ℃. The -1584C> G mutation was then analyzed by pyro sequencing using the sequencing primers described in Table 6 below to determine the case of -1584G as the CYP2D6 * 2 genotype and the case of -1584C as the CYP2D6 * 41 genotype.

프라이머의 서열Sequence of primer 변이transition 프라이머명 Primer Name 염기서열 (5'→3')Sequence (5 '→ 3') 서열번호SEQ ID NO: -1584C>G  -1584C> G FF Biotin-TCACCCCAGGAATTCAAGACBiotin-TCACCCCAGGAATTCAAGAC 2222 RR GGCTTCAAGCAATTCTCCTGGGCTTCAAGCAATTCTCCTG 2323 파이로시퀀싱 프라이머Pyro Sequencing Primer GTATTTTTTGTAGAGACC GTATTTTTTGTAGAGACC 2424

d) CYP2D6*10B, *14, *18 및 *49 유전형의 분석d) Analysis of CYP2D6 * 10B, * 14, * 18 and * 49 genotypes

CYP2D6*10B, *14, *18 및 *49 유전형은 PCR-RFLP 방법으로 분석하였다 (Johanson, Molecular Pharmacology, 46:452-459, 1994; Wang, Drug Metabolism and Dispososition, 27:385-388, 1998; 및 Geadigk, Pharmacogenetics, 9:669-682, 1999). 이때 사용한 프라이머는 하기 표 7과 같으며, 실험조건은 하기 표 8에 나타낸 바와 같다. CYP2D6 * 10B, * 14, * 18 and * 49 genotypes were analyzed by PCR-RFLP method (Johanson, Molecular Pharmacology , 46: 452-459, 1994; Wang, Drug Metabolism and Dispososition , 27: 385-388, 1998; And Geadigk, Pharmacogenetics , 9: 669-682, 1999). The primers used at this time are as shown in Table 7, and the experimental conditions are as shown in Table 8 below.

각 유전형에 따른 프라이머의 서열 및 위치Sequence and position of primer according to each genotype 유전형Genotype 프라이머명Primer Name 염기서열 (5'→3')Sequence (5 '→ 3') 서열번호SEQ ID NO: 위치location *10* 10 Primer 9Primer 9 ACCAGCCCCCTCCACCGGACCAGCCCCCTCCACCGG 2525 -196~197-196-197 Primer 10Primer 10 TCTGGTAGGGGAGCCTCATCTGGTAGGGGAGCCTCA 2626 302~321302 ~ 321 Primer 10BPrimer 10B GTGGTGGGGCATCCTCAGTGTGGTGGGGCATCCTCAGT 2121 302~321302 ~ 321 *14, *49* 14, * 49 Primer ePrimer e GTGGATGGTGGGGCTAATGCCTTGTGGATGGTGGGGCTAATGCCTT 2727 1637~16591637 ~ 1659 Primer fPrimer f CAGAGACTCCTCGGTCTCTCGCTCAGAGACTCCTCGGTCTCTCGCT 2828 2124~21022124-2102 *18* 18 5'42135'4213 GCATCCTAGAGTCCAGTCCGCATCCTAGAGTCCAGTCC 2929 5371~53895371 ~ 5389 3'42133'4213 CCTGTCTCAGCGGCCAGGCGGTGGGCCTGTCTCAGCGGCCAGGCGGTGGG 3030 5985~60155985 ~ 6015

각 유전형에 따른 제한효소 및 RFLP 양상Restriction Enzymes and RFLP Patterns for Each Genotype 유전형Genotype PCR 산물의 크기 (bp)PCR product size (bp) 제한효소Restriction enzyme 야생형의 RFLP 양상 (bp)RFLP Aspects of Wild-type (bp) 변이형의 RFLP 양상 (bp)RFLP Aspects of Variants (bp) *10B * 10B 534534 HphI Hph I 474+60474 + 60 376+98+60376 + 98 + 60 *14b* 14b 486486 MspI Msp I 279+207279 + 207 486486 *18* 18 645 또는 654645 or 654 MwoI Mwo i 348+258+39348 + 258 + 39 272+258+85+39272 + 258 + 85 + 39 *49* 49 486486 Sau3A I Sau3A I 347+142347 + 142 286+142+61286 + 142 + 61

e) CYP2D6*21, *52 및 *60 유전형의 분석e) Analysis of CYP2D6 * 21, * 52 and * 60 genotypes

CYP2D6*21, *52 및 *60 유전형의 분석은 PCR-파이로시퀀싱법으로 분석하였다. 분석에 사용한 프라이머의 서열을 하기 표 9에 나타낸 바와 같다.Analysis of CYP2D6 * 21, * 52 and * 60 genotypes was analyzed by PCR-pyro sequencing. The sequences of the primers used for analysis are shown in Table 9 below.

각 유전형에 따른 프라이머의 서열Sequence of primers for each genotype 유전형Genotype 프라이머명Primer Name 염기서열 (5'→3')Sequence (5 '→ 3') 서열번호SEQ ID NO: *21B* 21B FF biotin-TGGTGTAGGTGCTGAATGCTGTbiotin-TGGTGTAGGTGCTGAATGCTGT 3131 RR AGCCACTCTCACCTTCTCCATCAGCCACTCTCACCTTCTCCATC 3232 파이로시퀀싱 프라이머Pyro Sequencing Primer TCAGGTCTCGGGGGGGTCAGGTCTCGGGGGGG 3333 *52* 52 FF Biotin-AGGCAACGACACTCATCACCBiotin-AGGCAACGACACTCATCACC 3434 RR GATACCCCTGCAAGACTCCAGATACCCCTGCAAGACTCCA 3535 파이로시퀀싱 프라이머Pyro Sequencing Primer GGCATCCAGGAAGTGTGGCATCCAGGAAGTGT 3636 *60* 60 FF biotin-ATCTCCCACCCCCAGGACbiotin-ATCTCCCACCCCCAGGAC 4545 RR AGGGAGGCGATCACGTTGAGGGAGGCGATCACGTTG 4646 파이로시퀀싱 프라이머Pyro Sequencing Primer GGCGATCACGTTGCTGGCGATCACGTTGCT 4747

상기 실시예 <1-2> 및 <1-3>에서 얻은 데이터들을 GenBank accession No. M33388에 공지된 CYP2D6의 서열을 근거로 하여 비교 분석하고 각 대립인자들의 빈도를 조사하였다. 그 결과, 한국인에서 주로 발견되는 CYP2D6 유전자 일배체형의 종류 및 빈도는 하기 표 10과 같다.The data obtained in Examples <1-2> and <1-3> were used as GenBank accession No. Based on the sequence of CYP2D6 known in M33388 Comparative analyzes and frequency of each allele were examined. As a result, the type and frequency of the CYP2D6 gene haplotype mainly found in Korean are shown in Table 10 below.

한국인에서 발견되는 CYP2D6 유전자의 일배체형Haplotype of CYP2D6 Gene Found in Koreans 일배체형 (대립인자)Haplotype (Allele) 활성activation 대립인자 빈도Allele frequency 생체 내 (in vivo)In vivo 시험관 내 (in vitro)In vitro *1A* 1A NormalNormal NormalNormal 3131 *2A* 2A Normal(dx, d, s)Normal (dx, d, s) 1010 *2XN(*2N)* 2XN (* 2N) Incr (d)Incr (d) 1.41.4 *5* 5 NoneNone 6.36.3 *10B* 10B Decr (d)Decr (d) Decr (b)Decr (b) 42.242.2 *14B* 14B None (d)None (d) 0.860.86 *18* 18 None (d)None (d) Decr (d)Decr (d) 0.570.57 *21B* 21B NoneNone 0.860.86 *41A* 41 A Decr (s)Decr (s) 3.73.7 *49* 49 Decr (dx)Decr (dx) 2.582.58 *52* 52    Incr (dx)Incr (dx) 0.290.29 *60* 60 0.290.29

상기 표 10에서 Normal은 정상 수준, Incr는 증가함, Decr는 감소함, None은 활성 없음을 각각 나타낸다. 또한, 괄호안의 표기는 분석에 사용한 표지약물의 약자이다: b, bufuralol; d, debrisoquine; dx, dextromethorphan; s, sparteine.In Table 10, Normal indicates a normal level, Incr increases, Decr decreases, and None indicates no activity. In addition, the notation in parentheses is the abbreviation of the labeling drug used for the analysis: b, bufuralol; d, debrisoquine; dx, dextromethorphan; s, sparteine.

한국인에서 주로 발견되는 12종의 유전형을 중심으로 유전자를 선택하여 Cytochrome P450 (CYP) Allele Nomenclature Committee (http://www.cypalleles.ki.se/cyp2d6.htm)를 기준으로 각 유전형의 변이를 하기 표 11에 나타내었다. 표 11에서 '1'은 야생형을, '2'는 변이형을 각각 나타낸다. Genes were selected based on 12 genotypes mainly found in Koreans and mutations of each genotype based on the Cytochrome P450 (CYP) Allele Nomenclature Committee (http://www.cypalleles.ki.se/cyp2d6.htm) Table 11 shows. In Table 11, '1' represents wild type and '2' represents variant.

Figure 112007039776698-PAT00001
Figure 112007039776698-PAT00001

Figure 112007039776698-PAT00002
Figure 112007039776698-PAT00002

실시예 2Example 2 : htSNP의 선별 및 검증: Screening and Validation of htSNP

상기 실시예 1에서 확인한 한국인에서 발견되는 12종의 CYP2D6 유전형을 구분하기 위해, 표 11에 나타낸 33개의 변이를 모두 분석하는 것은 시간과 비용적인 면에서 효율성이 매우 떨어진다. 따라서, 상세한 일배체형의 정보를 이용하여 표지 유전자 변이인 htSNP를 선정하여 유전형을 결정하면 경제적인 유전형 판별이 가능하다. 상기 htSNP는 각각의 일배체형의 정확한 표시를 위해 필요한 마커이며 여러 가지 조합을 구성하게 된다. 이 최적화된 표지 세트인 htSNP 조합을 SNP태거 소프트웨어(http://www.well.ox.ac.uk/~xiayi/haplotype/)를 이용하여 선별하였다. 선별된 htSNP 조합의 예를 도 1 내지 도 6에 나타내었으며, 각 선별된 htSNP 조합은 최적의 표지 세트로서, '1'은 야생형을 '2'는 변이형을 나타내며, V 표시는 htSNP를 나타낸다. In order to distinguish the 12 CYP2D6 genotypes found in Koreans identified in Example 1, analyzing all 33 variations shown in Table 11 is very inefficient in terms of time and cost. Therefore, if genotype is determined by selecting htSNP, which is a marker gene variant, using detailed haplotype information, economic genotyping can be determined. The htSNP is a marker necessary for accurate display of each haplotype and constitutes various combinations. This optimized label set, htSNP combination, was selected using SNP tagger software (http://www.well.ox.ac.uk/~xiayi/haplotype/). Examples of selected htSNP combinations are shown in FIGS. 1 to 6, where each selected htSNP combination is an optimal label set, with '1' representing wild type and '2' variant, and the V designation representing htSNP.

이후, 찾아낸 조합 중 다이플로타입 (diplotype)을 고려하여 서로 겹치지 않고 다이플로타입 유전형을 결정할 수 있는지를 Matlab 소프트웨어 (version 7.1, The Math Works Inc., USA)를 사용하여 분석하였으며, 이를 이용하여 체크한 후 조합을 결정하였다.Then, it was analyzed using Matlab software (version 7.1, The Math Works Inc., USA) to determine whether diplotype genotypes could be determined without overlapping each other in consideration of diplotypes. The combination was then determined.

검증 결과, 서로 겹치지 않고 다이플로타입 유전형을 결정할 수 있음을 확인하였다. 이는 본 발명에서 선택한 htSNP 조합이 서로 동일한 것이 없어 유전형을 결정함에 있어 부정확한 분석이 전혀 없음을 나타내는 것이다.As a result of the verification, it was confirmed that the diplotype genotype could be determined without overlapping each other. This indicates that the htSNP combinations selected in the present invention are not identical to each other, and thus there is no inaccurate analysis in determining the genotype.

실시예 3Example 3 : SNaPshot 분석: SNaPshot Analysis

상기 실시예 2에서 선별된 htSNP 조합을 이용하여 CYP2D6 유전자의 고속 유전형 분석 기술의 하나인 스냅샷 분석을 수행하였다. 이를 위해 도 1의 htSNP 조합을 선택하였으며, 각 htSNP로 선별되는 변이의 위치는 하기 표 12와 같다. 하기 표 12에서 htSNP1 내지 htSNP3의 경우에는 해당하는 여러 개의 변이 중에서 하나의 SNP 만을 분석하여도 유전형 판별이 가능하다. 또한, htSNP9의 경우에는 9개의 염기(GTGCCCACT)가 삽입되어 반복되는 양상을 보이게 되므로, 4125번째 염기부터 4133번째 염기 위치 중 어느 하나의 염기 위치만을 분석하여 야생형 유전자의 염기서열과 비교함으로써 유전형 판별이 가능하다. The htSNP combination selected in Example 2 was used to perform a snapshot analysis, which is one of high speed genotyping techniques of the CYP2D6 gene. For this purpose, the htSNP combination of FIG. 1 was selected, and the positions of the mutations selected by each htSNP are shown in Table 12 below. In Table 12, in the case of htSNP1 to htSNP3, genotyping can be performed by analyzing only one SNP among a plurality of variations. In addition, in the case of htSNP9, since 9 bases (GTGCCCACT) are inserted and repeated, the genotyping is determined by analyzing only the base position of any one of the 4125 th to 4133 th base positions and comparing it with the base sequence of the wild type gene. It is possible.

본 발명에 따른 htSNP 조합으로 선별되는 변이의 위치 Location of mutations screened with htSNP combinations according to the present invention htSNPhtSNP 해당하는 변이Corresponding variations 변이 위치Mutation position htSNP 1htSNP 1 SNP 2, 7, 19SNP 2, 7, 19 -1426 C>T-1426 C> T htSNP 2htSNP 2 SNP 3,6,10,27,30,31SNP 3,6,10,27,30,31 3877 G>A3877 G> A htSNP 3htSNP 3 SNP 8, 9, 12, 13, 14, 15, 16, 17, 18, 25SNP 8, 9, 12, 13, 14, 15, 16, 17, 18, 25 2850 C>T2850 C> T htSNP 4htSNP 4 SNP 20SNP 20 1611 T>A1611 T> A htSNP 5htSNP 5 SNP 22SNP 22 1758 G>A1758 G> A htSNP 6htSNP 6 SNP 23SNP 23 1887insTA1887insTA htSNP 7htSNP 7 SNP 24SNP 24 2573insC2573insC htSNP 8htSNP 8 SNP 26SNP 26 2988 G>A2988 G> A htSNP 9htSNP 9 SNP 29SNP 29 4125-4133 ins9 bp4125-4133 ins9 bp htSNP 10htSNP 10 SNP 32SNP 32 결실fruition htSNP 11htSNP 11 SNP 33SNP 33 중복overlap

상기 실시예 <1-2>와 동일한 방법으로 CYP2D6 유전자를 증폭하여 약 6.7 kb 의 산물을 얻었다. 그리고, CYP2D6*5를 구분하기 위해 서열번호 50의 프라이머 CYP2D6_3 (5'-ACCTCTCTGGGCCCTCAGGGA-3')와 서열번호 19의 프라이머 3'2D6*5를 이용하여 CYP-REP-Del 부위를 증폭하였으며, PCR은 94℃에서 1분간 반응시킨 다음 98℃에서 10초, 64℃에서 30초 및 72℃에서 3분간 30 사이클을 반복하고 최종적으로 72℃에서 10분간 반응시켰다. 그 결과, 6,569 bp 크기의 PCR 산물을 수득하였다. The product of about 6.7 kb was obtained by amplifying the CYP2D6 gene in the same manner as in Example <1-2>. In order to distinguish CYP2D6 * 5, a primer CYP2D6_3 (5'-ACCTCTCTGGGCCCTCAGGGA-3 ') of SEQ ID NO: 50 and primer 3'2D6 * 5 of SEQ ID NO: 19 were used to amplify the CYP-REP-Del site. After reacting at 94 ° C for 1 minute, 30 cycles were repeated at 98 ° C for 10 seconds, at 64 ° C for 30 seconds, and at 72 ° C for 3 minutes, and finally, at 72 ° C for 10 minutes. As a result, a PCR product of 6,569 bp size was obtained.

상기와 같이 증폭된 PCR 산물의 반응되지 않은 프라이머와 dNTP 등은 남아 있으면 스냅샷 과정에 영향을 줄 수 있으므로, 이들을 제거하기 위해 PCR 산물 5 ㎕당 ExoSAP-IT (USB Corporation) 2㎕를 넣고 37℃에서 30분간 반응시킨 다음, 80℃에서 15분간 반응시켜 남아 있는 효소를 비활성화시켰다. 효소 처리된 산물을 주형 3 ㎕ (6.7 kb의 CYP2D6 유전자 2 ㎕와 3.5 kb의 CYP-REP-DEL 1 ㎕의 혼합물), 스냅샷 멀티플렉스 레디 리액션 믹스 (SNaPshot Multiplex Ready Reaction Mix, ABI) 1 ㎕, 1/2 텀 (term) 완충액 (200 mM Tris-HCl, 5 mM MgCl2, pH 9) 4 ㎕ 및 Pooled SNaPshot 프라이머를 넣어 전체 반응물의 양을 10㎕로 맞춘 다음, 96℃에서 10초, 50℃에서 5초, 60℃에서 30초간 40 사이클 반복하여 PCR을 수행하였다. PCR 반응하였다. 사용한 Pooled SNaPshot 프라이머의 처리 농도를 하기 표 13에 나타내었다. As unreacted primers and dNTPs of the PCR product amplified as described above may affect the snapshot process, to remove them, add 2 µl of ExoSAP-IT (USB Corporation) per 5 µl of the PCR product at 37 ° C. After reacting for 30 minutes at, and then reacted for 15 minutes at 80 ℃ to deactivate the remaining enzyme. 3 μl of the enzyme-treated product (mixture of 2 μl of 6.7 kb CYP2D6 gene and 1 μl of 3.5 kb CYP-REP-DEL), 1 μl of Snapshot Multiplex Ready Reaction Mix (ABI), 4 μl of 1/2 term buffer (200 mM Tris-HCl, 5 mM MgCl 2 , pH 9) and Pooled SNaPshot primers were added to adjust the total amount of the reaction to 10 μl, followed by 10 seconds at 96 ° C. and 50 ° C. PCR was performed by repeating 40 cycles of 5 seconds at 60 ° C. for 30 seconds. PCR reaction. The treatment concentration of the used Pooled SNaPshot primer is shown in Table 13 below.

Pooled SNaPshot 프라이머의 염기서열 및 처리 농도Sequence and Processing Concentration of Pooled SNaPshot Primer 프라이머명Primer Name 염기서열 (5'→3')Sequence (5 '→ 3') 농도 (M)Concentration (m) 서열번호SEQ ID NO: 2D6-1426R2D6-1426R GCCACCACGTCTAGCTTTTTGCCACCACGTCTAGCTTTTT 0.050.05 3737 2D6+1611R (P30)2D6 + 1611R (P30) TTTTTTTTTTGGGCCCATAGCGCGCCAGGATTTTTTTTTTGGGCCCATAGCGCGCCAGGA 0.30.3 3838 2D6+17582D6 + 1758 CGCCTTCGCCAACCACTCCCGCCTTCGCCAACCACTCC 0.20.2 3939 2D6+2573 (P38)2D6 + 2573 (P38) TTTTTTTTTTTTTTTTTGGGACCCAGCCCAGCCCCCCCTTTTTTTTTTTTTTTTTGGGACCCAGCCCAGCCCCCCC 0.020.02 4040 2D6+2850R (P55)2D6 + 2850R (P55) TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCAGGTCAGCCACCACTATGCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCAGGTCAGCCACCACTATGC 0.060.06 4141 2D6+2988 (P39)2D6 + 2988 (P39) TTTTTTTTTTTTTTTTTTTTAGTGCAGGGGCCGAGGGAGTTTTTTTTTTTTTTTTTTTTAGTGCAGGGGCCGAGGGAG 0.30.3 4242 2D6+3877 (P45)2D6 + 3877 (P45) TTTTTTTTTTTTTTTTTTTTTTTTTCTGGGCATCCAGGAAGTGTTTTTTTTTTTTTTTTTTTTTTTTTTTCTGGGCATCCAGGAAGTGTT 0.30.3 4343 2D6+4125 (P50)2D6 + 4125 (P50) TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCAGCTTCTCGGTGCCCACTGTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCAGCTTCTCGGTGCCCACTG 0.040.04 4444 2D6+1887R (P60)2D6 + 1887R (P60) TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAGGGAGGCGATCACGTTGCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTAGGGAGGCGATCACGTTGCT 0.20.2 4848 2D6-5R (P65)2D6-5R (P65) TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCTCGTCACTGGTCAGGGGTCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCTCGTCACTGGTCAGGGGTC 0.050.05 4949

반응이 끝난 후에 반응물 10 ㎕에 SAP (USB Corporation) 1 ㎕를 넣고 37℃에서 1시간, 65℃에서 15분간 반응시켰다. 반응이 모두 끝나면 반응물 0.5 ㎕, LIZ120 (ABI) 0.2 ㎕, Hi-Di 폼아미드 (ABI) 9.3 ㎕를 혼합하여 96 웰 플레이트에 분주하였다. 분주된 샘플들을 95℃에서 2분간 반응시킨 후, 3100 유전자 분석기 (ABI)로 분석하였다. 분석한 결과는 도 7에 나타낸 바와 같다. After the reaction was completed, 1 μl of SAP (USB Corporation) was added to 10 μl of the reaction, and reacted at 37 ° C. for 1 hour and 65 ° C. for 15 minutes. At the end of the reaction, 0.5 μl of the reaction, 0.2 μl of LIZ120 (ABI), and 9.3 μl of Hi-Di formamide (ABI) were mixed and dispensed into a 96 well plate. Aliquoted samples were reacted for 2 minutes at 95 ° C. and then analyzed by 3100 Genetic Analyzer (ABI). The analyzed result is as shown in FIG.

그 결과, 도 7에서 나타난 바와 같이, 각 SNP에 따라 피크의 색깔과 크기가 일치하였으며 야생형과 변이형이 명확히 구분이 됨을 알 수 있다. As a result, as shown in Figure 7, it can be seen that the color and size of the peak according to each SNP and the wild type and mutant is clearly distinguished.

또한, CYP2D6 중복을 스냅샷을 이용하여 분석하기 위해 CYP-REP-Dup 부위를 서열번호 51의 Dup-F_2 (5'-CCTCACCACAGGACTGGCCACC-3')와 서열번호 52의 Dup-R (5'-CACGTGCAGGGCACCTAGAT-3')을 이용한 것을 제외하고는 상기와 동일한 방법으로 증폭하여 3.3 kb 크기의 PCR 산물을 수득하였다. PCR 반응 이후, PCR 산물로부터 반응하고 남은 프라이머 등을 제거하기 위해 PCR 산물 5㎕당 ExoSAP-IT(USB Corporation) 2㎕를 넣고 37℃에서 30분간 반응시켰다.In addition, the CYP-REP-Dup site was analyzed using Dup-F_2 (5'-CCTCACCACAGGACTGGCCACC-3 ') of SEQ ID NO: 51 and Dup-R (5'-CACGTGCAGGGCACCTAGAT-) of SEQ ID NO: 52 to analyze CYP2D6 duplication using snapshots. Amplification was carried out in the same manner as above except for using 3 ′) to obtain a 3.3 kb PCR product. After the PCR reaction, 2 μl of ExoSAP-IT (USB Corporation) was added per 5 μl of the PCR product in order to remove the remaining primers from the PCR product and reacted at 37 ° C. for 30 minutes.

이후, 80℃에서 15분간 반응시켜 남아있는 ExoSAP-IT을 비활성화시켰다. 효소 처리된 산물을 주형 3 ㎕, 스냅샷 멀티플렉스 레디 리액션 믹스 1 ㎕, 1/2 텀 완충액 4 ㎕ 및 서열번호 53의 NaPshot 프라이머 (CYP2D6-5R, 5'-CTCGTCACTGGTCAGGGGTC-3')를 넣어 전체 반응물의 양을 10㎕로 맞춘 다음, 상기와 동일한 조건으로 스냅샷 반응을 수행한 다음, 3100 유전자 분석기로 분석하여 그 결과를 도 8에 나타내었다. Subsequently, the remaining ExoSAP-IT was inactivated by reaction at 80 ° C. for 15 minutes. Add 3 μl of the enzyme-treated product, 1 μl of Snapshot Multiplex Ready Reaction Mix, 4 μl of 1/2 Term Buffer and NaPshot Primer (CYP2D6-5R, 5′-CTCGTCACTGGTCAGGGGTC-3 ′) of SEQ ID NO: 53 to complete reaction. After adjusting the amount of 10 μl, the snapshot reaction was performed under the same conditions as above, and analyzed by 3100 gene analyzer, and the results are shown in FIG. 8.

그 결과, 도 8에 나타난 바와 같이, SNP에 따라 peak 피크의 색깔과 크기가 일치하였으며 야생형과 변이형이 명확히 구분이 됨을 알 수 있다.As a result, as shown in Figure 8, according to the SNP color and size of the peak peak is consistent, it can be seen that the wild type and mutant is clearly distinguished.

이와 같은 방법으로 야생형 및 변이 유전형을 포함하는 50개의 샘플에 대하여 시퀀싱을 통한 타당성 검사 (validation)를 수행한 결과, 100% 일치하는 결과를 얻었다. 이는 본 발명의 방법이 재현성이 높고 정확하다는 것을 나타낸다.In this manner, validation of the 50 samples including wild type and mutated genotypes by sequencing resulted in 100% agreement. This indicates that the method of the present invention is highly reproducible and accurate.

따라서, 상기 방법은 한국인에서 주로 발견되는 12종의 CYP2D6 일배체형을 구분함으로서 이들 조합에 의한 CYP2D6 유전형을 동시에 고속으로 분석할 수 있는 방법이며, 한국인에서 발견되는 유전적 변이를 포함함으로써 유전형 결정에 정확도가 높다. 또한, 한국인과 유전적 특성이 매우 유사한 일본인의 경우에도 거의 모든 유전형 분석이 가능하며, 기존에 알려진 결과로부터 중국인에서도 90% 이상의 범위에서 CYP2D6 유전형을 판별할 수 있는 기술이라 사료된다.Therefore, this method is capable of analyzing the CYP2D6 genotypes by these combinations at the same time by distinguishing 12 CYP2D6 haplotypes mainly found in Koreans, and including the genetic mutations found in Koreans to accurately determine genotypes. Is high. In addition, almost all genotypes can be analyzed in the case of Japanese, whose genetic characteristics are very similar to those of Koreans, and it is considered that the CYP2D6 genotype can be determined in the range of 90% or more from Chinese known results.

실시예 3Example 3 : 유전자 분석칩을 이용한 유전형 분석: Genotyping Using Genetic Analysis Chips

<3-1> Zip Code 칩의 제작<3-1> Zip Code Chip Fabrication

1) 프로브 제작1) Probe Fabrication

ASPE PCR 반응에 사용하는 ZipCode와 상보적인 염기서열로 디자인하였고 프로브는 3' 방향에 10 bp의 뉴클레오타이드 서열 (5'-CAG GCC AAGT-3')을 스페이서로 삽입하여 타겟과 교잡반응이 잘 일어나도록 유도하였다.Designed with base sequence complementary to ZipCode used for ASPE PCR reaction, the probe inserts a 10 bp nucleotide sequence (5'-CAG GCC AAGT-3 ') into the 3' direction as a spacer to facilitate hybridization with the target. Induced.

또한, 상기 스페이서의 5' 방향으로 24 bp의 Zip Code 올리고염기가 포함되어 있으며, 상기 프로브 (cZip Code)의 염기서열은 하기 표 14에 기재된 바와 같다. 이때, 굵은 글씨는 10개의 스페이서 서열이다 (도 10). In addition, the zip code oligobase of 24 bp is included in the 5 'direction of the spacer, and the base sequence of the probe (cZip Code) is as described in Table 14 below. In this case, bold letters are 10 spacer sequences (FIG. 10).

프로브명Probe Name 염기서열 (5'→3')Sequence (5 '→ 3') 서열번호SEQ ID NO: cZip2cZip2 CAGGCCAAGTATCTTGCGCGGCAGCTCGTCGACCG CAGGCCAAGT ATCTTGCGCGGCAGCTCGTCGACCG 5454 cZip7cZip7 CAGGCCAAGTGTGGTCCATCACAAACAGGGAGTCG CAGGCCAAGT GTGGTCCATCACAAACAGGGAGTCG 5555 cZip8cZip8 CAGGCCAAGTCTTGAGCGATGACGGACGGGAAAAG CAGGCCAAGT CTTGAGCGATGACGGACGGGAAAAG 5656 cZip9cZip9 CAGGCCAAGTAAGTTGGGGATCTGTAGACCCAGCC CAGGCCAAGT AAGTTGGGGATCTGTAGACCCAGCC 5757 cZip14cZip14 CAGGCCAAGTGGATTGCACCGTCAGCACCACCGAG CAGGCCAAGT GGATTGCACCGTCAGCACCACCGAG 5858 cZip15cZip15 CAGGCCAAGTTCCCAGGACGGCGCTGGCACGTTGA CAGGCCAAGT TCCCAGGACGGCGCTGGCACGTTGA 5959 cZip16cZip16 CAGGCCAAGTCGGCGTCCACGTCGAGTTCCTTCGC CAGGCCAAGT CGGCGTCCACGTCGAGTTCCTTCGC 6060 cZip19cZip19 CAGGCCAAGTTTCGGGGAAACTCCGCACCGCCACG CAGGCCAAGT TTCGGGGAAACTCCGCACCGCCACG 6161 cZip20cZip20 CAGGCCAAGTTAGGTTTGCCAGTGCGTTGGATCG CAGGCCAAGT TAGGTTTGCCAGTGCGTTGGATCG 6262 cZip21cZip21 CAGGCCAAGTTCGACAACCCGGTTGGAGGATTCAG CAGGCCAAGT TCGACAACCCGGTTGGAGGATTCAG 6363 cZip22cZip22 CAGGCCAAGTCCAAAAGCTTTACGCCAGCGCCGAA CAGGCCAAGT CCAAAAGCTTTACGCCAGCGCCGAA 6464 cZip24cZip24 CAGGCCAAGTAGATCGGTGAGCAGTTCAAAGCCGG CAGGCCAAGT AGATCGGTGAGCAGTTCAAAGCCGG 6565 cZip27cZip27 CAGGCCAAGTGGGTATCCGTTCGGTGTTGCGTAGT CAGGCCAAGT GGGTATCCGTTCGGTGTTGCGTAGT 6666 cZip31cZip31 CAGGCCAAGTTGGTGCTGGCGCAGACCTTTGTCTC CAGGCCAAGT TGGTGCTGGCGCAGACCTTTGTCTC 6767 cZip32cZip32 CAGGCCAAGTACCGCGCAAATGGACAGTGTGGCCA CAGGCCAAGT ACCGCGCAAATGGACAGTGTGGCCA 6868 cZip33cZip33 CAGGCCAAGTGACCCCAACTTGACACGTCGCAAGG CAGGCCAAGT GACCCCAACTTGACACGTCGCAAGG 6969 cZip40cZip40 CAGGCCAAGTCGTAAGCCTCGTCAGCTATCCGGGG CAGGCCAAGT CGTAAGCCTCGTCAGCTATCCGGGG 7070 cZip41cZip41 CAGGCCAAGTCCAAACGCACCCCAACCTGTCCGGA CAGGCCAAGT CCAAACGCACCCCAACCTGTCCGGA 7171 cZip44cZip44 CAGGCCAAGTCGGCGGTGGCATTGTCACTGCTGCT CAGGCCAAGT CGGCGGTGGCATTGTCACTGCTGCT 7272 cZip50cZip50 CAGGCCAAGTGCAGTTCGTGGCCATGGTGACCGCT CAGGCCAAGT GCAGTTCGTGGCCATGGTGACCGCT 7373 cZip56cZip56 CAGGCCAAGTCGTTGTGGTAGCGGCACTGGTGGTG CAGGCCAAGT CGTTGTGGTAGCGGCACTGGTGGTG 7474 cZip61cZip61 CAGGCCAAGTCTGGGTGTGGGTGCTCGTACGCCGA CAGGCCAAGT CTGGGTGTGGGTGCTCGTACGCCGA 7575 cZip101cZip101 CAGGCCAAGTCGGCACATAGGACGGGGTTCAGATA CAGGCCAAGT CGGCACATAGGACGGGGTTCAGATA 7676 cZip102cZip102 CAGGCCAAGTGAACAAGATTGGTCCTGGAGGTGCG CAGGCCAAGT GAACAAGATTGGTCCTGGAGGTGCG 7777 cZip104cZip104 CAGGCCAAGTTCGGATGGCGTTCAGTAGGAGAAGG CAGGCCAAGT TCGGATGGCGTTCAGTAGGAGAAGG 7878 cZip106cZip106 CAGGCCAAGTACACTCTCCATGCGGTAGACCTGAC CAGGCCAAGT ACACTCTCCATGCGGTAGACCTGAC 7979 cZip109cZip109 CAGGCCAAGTGAACCTAATGAAGACGGGGGGTGCT CAGGCCAAGT GAACCTAATGAAGACGGGGGGTGCT 8080

2) 스팟팅 및 프로브 고정2) Spotting and Probe Locking

칩 제작을 위한 기판은 아민이 코팅되어 있는 코닝 (Corning) 사의 GAPSII 유리 슬라이드를 사용하였다. SMP4XB 핀을 사용하여 OmniGrid100 스팟터로 스팟팅하였으며, 스팟팅 조건은 온도 22℃, 습도 54%로 하였고, 27종의 프로브는 각각 2회 반복으로 스팟팅하였다. 스팟팅 후 7,500 μJ/㎠의 UV를 조사하여 유리 슬라이드에 프로브를 고정시켰다.The substrate for chip fabrication used a Corning GAPSII glass slide coated with an amine. The SMP4XB pin was used to spot the OmniGrid100 spotter, and the spotting conditions were 22 ° C. and 54% humidity, and 27 probes were spotted in two replicates. After spotting, the probe was fixed to the glass slide by irradiation of 7,500 μJ / cm 2 UV.

3) Zip Code 테스트용 유전형분석칩 구성3) Composition of genotyping chip for Zip Code test

CYP2D6 유전자의 9개의 유전형 표지 (SNP; 위 표에서 굵은 글씨로 표시)를 이용하여, 11개의 유전형 (CYP2D6 *1, *2, *5, *10B, *14A, *14B, *18, *21, *41, *49, *2N)을 검증하였다.Eleven genotypes (CYP2D6 * 1, * 2, * 5, * 10B, * 14A, * 14B, * 18, * 21, using nine genotypic markers of the CYP2D6 gene (SNP; bolded in the table above) , * 41, * 49, * 2N).

CYP2D6의 대립유전자Allele of CYP2D6 염기 변화Base change *1*One 없음 (wt)None (wt) *2*2 1584C>G; 1235A>G; 2850C>T; 4180G>C 1584C>G;1235A>G;2850C>T;4180G> C *5* 5 CYP2D6 결실됨CYP2D6 deleted *10B* 10B 100C>T; 4180G>C 100C>T;4180G> C *14A* 14A 100C>T; 1758G>A; 2850C>T; 4180G>C 100C>T;1758G>A;2850C>T;4180G> C *14B* 14B 1758G>A; 2850C>T; 4180G>C 1758G>A;2850C>T;4180G> C *18* 18 4125-4133insGTGCCCACT4125-4133insGTGCCCACT *21* 21 1584C>G; 1235A>G; 2573 insC; 2850C>T 1584C>G;1235A>G; 2573 insC ; 2850C> T *41* 41 1584C; 1235A>G; 2850C>T; 4180G>C1584C; 1235A>G;2850C>T;4180G> C *49* 49 1235A>G; 100C>T; 1611T>A; 4180G>C1235A>G;100C>T;1611T>A;4180G> C *2N* 2N CYP2D6 중복됨CYP2D6 duplicate

<3-2> <3-2> 타겟제작Target production

1) 롱 (Long) PCR1) Long PCR

CYP 2D6 게놈 DNA 샘플 2 ㎕, 1X LA 완충액, 2.5 mM MgCl2, 0.4 mM dNTP, 하기 표 16의 각 0.2 pmol/㎕ 프라이머, LA 태그 DNA 폴리머라제 (taq DNA polymerase, TAKARA : cat. No. RR002A) 2.5 유닛, 3차 증류수를 넣어 50 ㎕로 맞춘 후 94℃ 에서 1분간 1회 변성시킨 후, 98℃ 10초, 64℃ 30초, 72℃ 6분간 30 사이클로 반응 후 72℃에서 1분간 연장 반응하여 증폭시켰다 (도 11). (CYP2D6 유전자는 *5, *2N 대립유전자 (allele), 및 그 외 대립유전자용으로 각 세 종류의 1st PCR 산물을 얻었으며 각 조건은 상기와 동일하다.)2 μl of CYP 2D6 genomic DNA sample, 1 × LA buffer, 2.5 mM MgCl 2 , 0.4 mM dNTP, each 0.2 pmol / μl primer of Table 16, LA tagged DNA polymerase (taq DNA polymerase, TAKARA: cat.No. RR002A) 2.5 units, tertiary distilled water was added to 50 μl, and then denatured once at 94 ° C. for 1 minute, followed by prolonged reaction at 72 ° C. for 10 minutes at 98 ° C. for 10 seconds, 64 ° C. 30 seconds, and 72 ° C. for 6 minutes. Amplified (FIG. 11). (The CYP2D6 gene obtained three types of 1 st PCR products for * 5, * 2N alleles, and other alleles, and the conditions were the same as above.)

롱 (Long) PCR 프라이머 서열 Long PCR Primer Sequence 유전자gene 프라이머primer 염기서열 (5’→3’)Sequence (5 '→ 3') 서열번호SEQ ID NO: CYP2D6CYP2D6 cyp505cyp505 CACTGGCTCCAAGCATGGCAGCACTGGCTCCAAGCATGGCAG 22 3’2D63’2D6 ACTGAGCCCTGGGAGGTAGGTAACTGAGCCCTGGGAGGTAGGTA 33 CYP2D6 *5CYP2D6 * 5 CYP2D6_3CYP2D6_3 ACCTCTCTGGGCCCTCAGGGAACCTCTCTGGGCCCTCAGGGA 5050 3'2D6 *53'2D6 * 5 CAGGCATGAGCTAAGGCACCCAGACCAGGCATGAGCTAAGGCACCCAGAC 1919 CYP2D6 *2NCYP2D6 * 2N Dup-F_2Dup-F_2 CCTCACCACAGGACTGGCCACCCCTCACCACAGGACTGGCCACC 5151 Dup-RDup-r CACGTGCAGGGCACCTAGATCACGTGCAGGGCACCTAGAT 5252

2) 다중 (Multiplex) PCR2) Multiplex PCR

상기에서 얻은 롱 PCR 산물 0.5 ㎕, 1X amplitaq 완충액, 0.2 mM dNTP, 각 프라이머 0.5 pmol/㎕씩 및 Ampli taq gold (Applied Biosystems : cat. No. N8080242) 0.5 unit에 3차 증류수를 넣어 10 ㎕로 맞춘 후 94℃ 에서 5분간 1회 변성시킨 후, 94℃ 45초, 57℃ 45초, 72℃ 1분간 30 사이클로 반응 후 72℃ 에서 1분간 연장 반응하여 증폭시켰다. 2nd PCR은 다중 PCR로 수행하고, 아래 표 17의 4개의 세트로 증폭시켰으며, 프라이머 서열은 표 18에 기재된 바와 같다.Long PCR product obtained above 0.5 μl, 1 × amplitaq buffer, 0.2 mM dNTP, 0.5 pmol / μl of each primer, and 0.5 μl of Ampli taq gold (Applied Biosystems: cat.No. N8080242) were added to 10 μl of tertiary distilled water. After denaturation once, the reaction was amplified by extending the reaction for 1 minute at 72 ° C for 30 cycles of 94 ° C 45 seconds, 57 ° C 45 seconds, 72 ° C for 1 minute. 2 nd PCR was carried out as a multi-stylized PCR, and amplified by the four sets of the following table 17, the primer sequences are as described in Table 18.

다중 PCR 세트Multiple PCR Set 세트set 주형template 위치location PCR 산물PCR products 1 One CYP2D6 1st PCR 산물 CYP2D6 1st PCR Product -1584C>G-1584C> G 502 bp502 bp 100C>T100C> T 460 bp460 bp 1611T>A1611T> A 347 bp347 bp 2850C>T2850C> T 477 bp477 bp 2 2 CYP2D6 1st PCR 산물 CYP2D6 1st PCR Product 1758G>A1758G> A 468 bp468 bp 2573insC2573insC 495 bp495 bp 4125 4133ins94125 4133ins9 484 bp484 bp 33 CYP2D6 *5 1st PCR 산물CYP2D6 * 5 1st PCR Product *5 대립유전자* 5 allele 222 bp222 bp 44 CYP2D6 *2N 1st PCR 산물CYP2D6 * 2N 1st PCR Product *2N 대립유전자* 2N allele 222 bp222 bp

다중 PCR 프라이머 서열 (게놈 PCR 프라이머)Multiple PCR Primer Sequence (Genome PCR Primer) 위치location 프라이머명Primer Name 염기서열 (5’→3’)Sequence (5 '→ 3') 서열번호SEQ ID NO: -1584C>G-1584C> G -1584 F1-1584 F1 GCTGCCATACAATCCACCTGGCTGCCATACAATCCACCTG 8181 -1584 R1-1584 R1 GCTCACTACAACCTTCACCTCGCTCACTACAACCTTCACCTC 8282 100C>T100C> T 100 F2100 F2 GTCCTGCCTGGTCCTCTGGTCCTGCCTGGTCCTCTG 8383 100 R2100 R2 CTTGCCCTACTCTTCCTTGGCTTGCCCTACTCTTCCTTGG 8484 1611T>A1611T> A 5'16115'1611 GTGGGCAGAGACGAGGTGGTGGGCAGAGACGAGGTG 8585 3'16113'1611 CGGAGTGGTTGGCGAAGGCGGAGTGGTTGGCGAAGG 8686 2850C>T2850C> T 1758 F11758 F1 CTTCTCCGTGTCCACCTTGCTTCTCCGTGTCCACCTTG 8787 1758 R11758 R1 TGTCCTTTCCCAAACCCATCTGTCCTTTCCCAAACCCATC 8888 1758G>A1758G> A 5' 25735 '2573 GTCCAGGTGAACGCAGAGGTCCAGGTGAACGCAGAG 8989 3' 25733 '2573 CGGCAGAGAACAGGTCAGCGGCAGAGAACAGGTCAG 9090 2573insC2573insC 5' 28505 '2850 CAGAGATGGAGAAGGTGAGAGCAGAGATGGAGAAGGTGAGAG 9191 3' 28503 '2850 TGGAGGAGGTCAGGCTTACTGGAGGAGGTCAGGCTTAC 9292 4125-4133ins94125-4133ins9 4125 F24125 F2 ACTCATCACCAACCTGTCATCACTCATCACCAACCTGTCATC 9393 4125 R24125 R2 GGAACTACCACATTGCTTTATTGGGAACTACCACATTGCTTTATTG 9494 *5 대립유전자* 5 allele D&D-F 1D & D-F 1 ACCTCTCTGGGCCCTCAACCTCTCTGGGCCCTCA 9595 D&D-R 1D & D-R 1 ATGCCACCTCCTCCTTCTCATGCCACCTCCTCCTTCTC 9696 *2N 대립유전자* 2N allele D&D-F 1D & D-F 1 ACCTCTCTGGGCCCTCAACCTCTCTGGGCCCTCA 9595 D&D-R 1D & D-R 1 ATGCCACCTCCTCCTTCTCATGCCACCTCCTCCTTCTC 9696

3) ASPE (allele specific primer extension) 반응3) ASPE (allele specific primer extension) reaction

상기에서 얻은 다중 PCR 산물 각 6 ㎕, 1X amplitaq 완충액, Cy5 dUTP (진켐) 10 μM, 각 ASPE 프라이머 125 nM, AmpliTaq gold (Applied Biosystems : cat. No. N8080242) 1 유닛, 1X Band doctor (솔젠트) 및 3차 증류수를 넣어 20 ㎕로 맞춘 후 94℃에서 5분간 1회 변성시킨 후, 94℃에서 30초, 60℃에서 1분, 72℃에서 1분간 30회의 사이클로 반응하여 증폭시켰으며 (도 12 참조), ASPE 반응 세트 및 프라이머 서열은 하기 표 19 및 20에 기재된 바와 같다.Each of the multiple PCR products obtained above 6 μl, 1X amplitaq buffer, Cy5 dUTP (ginchem) 10 μM, 125 nM each ASPE primer, 1 unit AmpliTaq gold (Applied Biosystems: cat.No. N8080242), 1X Band doctor (solgent) and tertiary distilled water 20 After denaturation, the cells were denatured once at 94 ° C. for 5 minutes, and then amplified by 30 cycles of 94 seconds at 30 ° C., 60 ° C. for 1 minute, and 72 ° C. for 1 minute (see FIG. 12). Primer sequences are as described in Tables 19 and 20 below.

ASPE 반응 세트ASPE reaction set 세트set 주형template 위치location 1  One CYP2D6 1 세트의 2nd PCR 산물  2nd PCR Products of CYP2D6 1 Set -1584C>G-1584C> G 100C>T100C> T 1611T>A1611T> A 2850C>T2850C> T 양성 대조군Positive control 2 2 CYP2D6 2 세트의 2nd PCR 산물 2nd PCR Products of CYP2D6 2 Sets 1758G>A1758G> A 2573insC2573insC 4125 4133ins94125 4133ins9 33 CYP2D6 3 세트의 2nd PCR 산물2nd PCR Products of 3 Sets of CYP2D6 *5 대립유전자* 5 allele 44 CYP2D6 4 세트의 2nd PCR 산물2nd PCR Products of CYP2D6 4 Sets *2N 대립유전자* 2N allele

ASPE 프라이머 서열ASPE primer sequence 위치location 프라이머명Primer Name 염기서열 (5’→3’)Sequence (5 '→ 3') 서열번호SEQ ID NO: -1584C>G-1584C> G -1584(C)zip15-1584 (C) zip15 TCAACGTGCCAGCGCCGTCCTGGGAGCTAATTTTGTATTTTTTGTAGAGACCG TCAACGTGCCAGCGCCGTCCTGGGAGCTAATTTTGTATTTTTTGTAGAGACCG 9797 -1584(G)zip16-1584 (G) zip16 GCGAAGGAACTCGACGTGGACGCCGGCTAATTTTGTATTTTTTGTAGAGACCCGCGAAGGAACTCGACGTGGACGCCGGCTAATTTTGTATTTTTTGTAGAGACCC 9898 100C>T100C> T 100(C)Zip27100 (C) Zip27 ACTACGCAACACCGAACGGATACCCCGCTGGGCTGCACGCTACCACTACGCAACACCGAACGGATACCCCGCTGGGCTGCACGCTACC 9999 100(T)Zip2100 (T) Zip2 CGGTCGACGAGCTGCCGCGCAAGATCGCTGGGCTGCACGCTACTCGGTCGACGAGCTGCCGCGCAAGATCGCTGGGCTGCACGCTACT 100100 1611T>A1611T> A 1611(T)zip401611 (T) zip40 CCCCGGATAGCTGACGAGGCTTACGCCCATAGCGCGCCAGGAACCCCGGATAGCTGACGAGGCTTACGCCCATAGCGCGCCAGGAA 101101 1611(A)zip441611 (A) zip44 AGCAGCAGTGACAATGCCACCGCCGCCCATAGCGCGCCAGGATAGCAGCAGTGACAATGCCACCGCCGCCCATAGCGCGCCAGGAT 102102 1758G>A1758G> A 1758(G)Zip101R1758 (G) Zip101R ATCTGAACCCCGTCCTATGTGCCGCCTTCTGCCCATCACCCACCATCTGAACCCCGTCCTATGTGCCGCCTTCTGCCCATCACCCACC 103103 1758(A)zip1091758 (A) zip109 AGCACCCCCCGTCTTCATTAGGTTCCCTTCTGCCCATCACCCACTAGCACCCCCCGTCTTCATTAGGTTCCCTTCTGCCCATCACCCACT 104104 2573insC2573insC 2573(G)Zip92573 (G) Zip9 GGCTGGGTCTACAGATCCCCAACTTGTCAGGTCTCGGGGGGGCGGCTGGGTCTACAGATCCCCAACTTGTCAGGTCTCGGGGGGGC 105105 2573(C)Zip412573 (C) Zip41 TCCGGACAGGTTGGGGTGCGTTTGGGTCAGGTCTCGGGGGGGGTCCGGACAGGTTGGGGTGCGTTTGGGTCAGGTCTCGGGGGGGG 106106 2850C>T2850C> T 2850(C)zip612850 (C) zip61 TCGGCGTACGAGCACCCACACCCAGGAACAGGTCAGCCACCACTATGCGTCGGCGTACGAGCACCCACACCCAGGAACAGGTCAGCCACCACTATGCG 107107 2850(T)Zip312850 (T) Zip31 GAGACAAAGGTCTGCGCCAGCACCAGAACAGGTCAGCCACCACTATGCAGAGACAAAGGTCTGCGCCAGCACCAGAACAGGTCAGCCACCACTATGCA 108108 4125-4133ins94125-4133ins9 4125-4133Zip214125-4133Zip21 CTGAATCCTCCAACCGGGTTGTCGAGCTTCTCGGTGCCCACTGGACTGAATCCTCCAACCGGGTTGTCGAGCTTCTCGGTGCCCACTGGA 109109 4125-4133insZip224125-4133insZip22 TTCGGCGCTGGCGTAAAGCTTTTGGGCTTCTCGGTGCCCACTGTGTTCGGCGCTGGCGTAAAGCTTTTGGGCTTCTCGGTGCCCACTGTG 110110 *5 대립유전자* 5 allele 6(A)zip1066 (A) zip106 GTCAGGTCTACCGCATGGAGAGTGTGCCCTCAGGGATGCTGCTGTAGTCAGGTCTACCGCATGGAGAGTGTGCCCTCAGGGATGCTGCTGTA 111111 7(C)zip1027 (C) zip102 CGCACCTCCAGGACCAATCTTGTTCCCCTCAGGGATGCTGCTGTCCGCACCTCCAGGACCAATCTTGTTCCCCTCAGGGATGCTGCTGTC 112112 *2N 대립유전자* 2N allele 7(C)zip327 (C) zip32 TGGCCACACTGTCCATTTGCGCGGTCCTCAGGGATGCTGCTGTCTGGCCACACTGTCCATTTGCGCGGTCCTCAGGGATGCTGCTGTC 113113 6(A)zip196 (A) zip19 CGTGGCGGTGCGGAGTTTCCCCGAACCTCAGGGATGCTGCTGTACGTGGCGGTGCGGAGTTTCCCCGAACCTCAGGGATGCTGCTGTA 114114 양성 대조군Positive control 2D6pc-1460(zip14)2D6pc-1460 (zip14) CTCGGTGGTGCTGACGGTGCAATCCCCAACATGGTGAAACCCTATCTCTACCTCGGTGGTGCTGACGGTGCAATCCCCAACATGGTGAAACCCTATCTCTAC 115115

4) PCR 정제4) PCR Purification

ASPE 반응에서 얻은 1 내지 4 세트의 산물을 pooling하여 Qiagen 정제 키트 (Qiagen: ca. no. 28106)를 이용하여 제조사의 매뉴얼에 따라 정제하였으며, 최종 용출 부피는 50 ㎕로 하였다.One to four sets of products obtained in the ASPE reaction were pooled and purified using the Qiagen purification kit (Qiagen: ca. no. 28106) according to the manufacturer's manual and the final elution volume was 50 μl.

정제돤 각 산물을 농축기 (Speed Vacuum concentrator, BioTron사 module 4080C)를 이용하여 부피가 1 내지 2 ㎕ 정도 남을 때까지 건조시켰다.Purification Each product was dried using a concentrator (Speed Vacuum concentrator, BioTron Corp. module 4080C) until the volume remained about 1-2 μl.

5) 칩 혼성화5) Chip Hybridization

전혼성화 (prehybridization) 완충액 (25% 폼아마이드, 5X SSC, 0.1% SDS, 10mg/ml BSA)을 42℃에서 데운 다음, 칩을 상기 완충액에 담그고 42℃에서 30분 이상 배양하였다. 상기 칩을 증류수로 1분씩 3회 세척한 후, 칩을 코니컬 (conical) 튜브에 넣고 800 rpm에서 5분 동안 원심분리하여 건조시켰다. Prehybridization buffer (25% formamide, 5X SSC, 0.1% SDS, 10 mg / ml BSA) was warmed at 42 ° C., then the chips were immersed in the buffer and incubated at 42 ° C. for at least 30 minutes. After washing the chip three times with distilled water for 1 minute, the chip was placed in a conical tube and dried by centrifugation at 800 rpm for 5 minutes.

이후, 혼성화 완충액 (25% 폼아마이드, 5X SSC, 0.1% SDS, 0.5 ㎎/㎖ 폴리 A, 25 ㎍/㎖ Cot-1 DNA, 10% 덱스트란 설페이트)을 미리 42℃에서 데운 후, 상기에서 얻은 건조된 샘플을 여기에 녹였다. 잘 녹인 샘플을 0.5 ㎖ PCR 튜브로 옮긴 후, 95℃에서 5분 동안 가열하였다. 혼성화 챔버 (chamber)를 준비하여 챔버 공간에 3M 페이퍼 조각을 넣고 3X SSC를 20 ㎕ 정도 떨어뜨렸다. 가열된 샘플을 전혼성화된 칩 위에 로딩한 다음, 챔버에 칩을 넣고 조립한 후, 42℃에서 밤새 혼성화시켰다. Then, hybridization buffer (25% formamide, 5X SSC, 0.1% SDS, 0.5 mg / ml poly A, 25 μg / ml Cot-1 DNA, 10% dextran sulfate) was previously warmed at 42 ° C., and then obtained above. The dried sample was dissolved here. The dissolved sample was transferred to a 0.5 ml PCR tube and then heated at 95 ° C. for 5 minutes. Hybridization chambers were prepared, 3M paper flakes were placed in the chamber space and 20 μl of 3X SSC was dropped. The heated sample was loaded onto the prehybridized chip and then assembled into the chamber in the chamber and hybridized overnight at 42 ° C.

상기 칩을 미리 50℃로 데워진 2X SSC 0.1% SDS 용액에서 10 분 동안 1회 세척한 후, 0.1X SSC 용액으로 1 분씩 상온에서 4회 세척하였다. 세척한 칩을 곧바로 코니컬 튜브에 넣고 800 rpm에서 5분 동안 원심분리하여 건조시켰다. The chip was washed once for 10 minutes in a 2X SSC 0.1% SDS solution previously warmed to 50 ° C, and then washed 4 times at room temperature for 1 minute with 0.1X SSC solution. The washed chips were immediately placed in conical tubes and dried by centrifugation at 800 rpm for 5 minutes.

6) 분석6) Analysis

상기와 같이 준비된 칩을 Axon의 GenePix 4100B 스캐너를 사용하여 출력파장은 650nm에 부근에서 스캐닝하였으며, 스캐닝된 이미지는 GenePix Pro 6.0 software를 사용하여 형광신호의 세기를 분석하였고 그 결과를 도 13 및 하기 표 21에 나타내었다. The chip prepared as described above was scanned using Axon's GenePix 4100B scanner at an output wavelength of about 650 nm, and the scanned image was analyzed using the GenePix Pro 6.0 software to analyze the intensity of the fluorescence signal. 21 is shown.

야생형 스팟Wild type spot 돌연변이 스팟Mutant spot 세기century 세기century 서열order 대립유전자Allele 서열분석 결과Sequencing results -1584C-1584C -1584G-1584G 336336 2434324343 GGGG 2D6 *2/*2    2D6 * 2 / * 2 *2/*2    * 2 / * 2 100C100C 100T100T 3241132411 155155 CCCC 1611T1611T 1611A1611A 67536753 228228 TTTT 1758G1758G 1758A1758A 38123812 370370 WWWW 2573WT2573WT 2573insC2573insC 58655865 842842 WWWW 2850C2850C 2850T2850T 803803 1391913919 TTTT 4125WT4125WT 4125ins9bp4125ins9bp 1304413044 608608 WWWW del A del A del Cdel C 1832618326 381381 WWWW dup CTGdup CTG dup ACAdup ACA 1245712457 553553 WWWW 양성 대조군Positive control PC2D6PC2D6 2894828948

그 결과, 유전자 분석칩을 이용하여 분석한 CYP2D6 유전자의 변이는 서열분석을 통해 확인된 결과와 동일하였다. As a result, the mutation of the CYP2D6 gene analyzed using the gene analysis chip was the same as the result confirmed through sequencing.

이상 살펴본 바와 같이, 본 발명에서 제공하는 방법들은 한국인에서 발견되는 CYP2D6 유전자의 변이 유전자 검사를 위해 유용하게 사용될 수 있다. 또한, 한국인에서 CYP2D6 효소활성의 개인차나 CYP2D6 결핍에 의해 발생가능한 이상징후를 예측하는데도 유용하게 사용될 수 있다. 또한, 한국인과 유전적 특성이 유사한 기타 아시아권 인종의 CYP2D6 유전형 분석에 활용될 수 있다. As described above, the methods provided by the present invention can be usefully used for testing the mutated genes of the CYP2D6 gene found in Koreans. In addition, it can be useful for predicting abnormalities caused by individual differences in CYP2D6 enzymatic activity or CYP2D6 deficiency in Koreans. It can also be used for CYP2D6 genotyping of other Asian ethnic groups with similar genetic characteristics.

<110> Inje university Industry-academic cooperation foundation <120> htSNP FOR DETERMINING A GENOTYPE OF CYTOCHROME P450 2D6 GENE AND GENOTYPING CHIP USING THEREOF <130> DPP070151KR <160> 115 <170> KopatentIn 1.71 <210> 1 <211> 6597 <212> DNA <213> Homo sapiens <400> 1 cactggctcc aagcatggca gctgccatac aatccacctg tagagggccc ggtcctcctg 60 tcctcagtgg atgatcccgt agaagtccag agctcggcag ctgccctccc acaaaagaca 120 ggattttgaa agcagcaaga gagaagagac gtatcaggta gtcacagtgg ctcaggcctg 180 taatcccagc actttgggag gcccaggtgg gaggatcgct tcaccccagg aattcaagac 240 cagcctggac aacttggaag aacccggtct ctacaaaaaa tacaaaatta gctgggattg 300 ggtgcggtgg ctcatgccta taatcccagc actttgggag cctgaggtgg gtggatcacc 360 tgaagtcagg agttcaagac tagcctggcc aacatggtga aaccctatct ctactgaaaa 420 tacaaaaagc tagacgtggt ggcacacacc tgtaatccca gctacttagg aggctgaggc 480 aggagaattg cttgaagcct agaggtgaag gttgtagtga gccgagattg catcattgca 540 caatggaggg gagccaccag cctgggcaac aagaggaaat ctccgtctcc aaaaaaaaaa 600 aaaaaaaaaa aagaattagg ctgggtggtg cctgtagtcc cagctacttg ggaggcaggg 660 ggtccacttg atgtcgagac tgcagtgagc catgatcctg ccactgcact ccggcctggg 720 caacagagtg agaccctgtc taaagaaaaa aaaaataaag caacatatcc tgaacaaagg 780 atcctccata acgttcccac cagatttcta atcagaaaca tggaggccag aaagcagtgg 840 aggaggacga ccctcaggca gcccgggagg atgttgtcac aggctggggc aagggccttc 900 cggctaccaa ctgggagctc tgggaacagc cctgttgcaa acaagaagcc atagcccggc 960 cagagcccag gaatgtgggc tgggctggga gcagcctctg gacaggagtg gtcccatcca 1020 ggaaacctcc ggcatggctg ggaagtgggg tacttggtgc cgggtctgta tgtgtgtgtg 1080 actggtgtgt gtgagagaga atgtgtgccc taagtgtcag tgtgagtctg tgtatgtgtg 1140 aatattgtct ttgtgtgggt gattttctgc gtgtgtaatc gtgtccctgc aagtgtgaac 1200 aagtggacaa gtgtctggga gtggacaaga gatctgtgca ccatcaggtg tgtgcatagc 1260 gtctgtgcat gtcaagagtg caaggtgaag tgaagggacc aggcccatga tgccactcat 1320 catcaggagc tctaaggccc caggtaagtg ccagtgacag ataagggtgc tgaaggtcac 1380 tctggagtgg gcaggtgggg gtagggaaag ggcaaggcca tgttctggag gaggggttgt 1440 gactacatta gggtgtatga gcctagctgg gaggtggatg gccgggtcca ctgaaaccct 1500 ggttatccca gaaggctttg caggcttcag gagcttggag tggggagagg gggtgacttc 1560 tccgaccagg cccctccacc ggcctaccct gggtaagggc ctggagcagg aagcaggggc 1620 aagaacctct ggagcagccc atacccgccc tggcctgact ctgccactgg cagcacagtc 1680 aacacagcag gttcactcac agcagagggc aaaggccatc atcagctccc tttataaggg 1740 aagggtcacg cgctcggtgt gctgagagtg tcctgcctgg tcctctgtgc ctggtggggt 1800 gggggtgcca ggtgtgtcca gaggagccca tttggtagtg aggcaggtat ggggctagaa 1860 gcactggtgc ccctggccgt gatagtggcc atcttcctgc tcctggtgga cctgatgcac 1920 cggcgccaac gctgggctgc acgctaccca ccaggccccc tgccactgcc cgggctgggc 1980 aacctgctgc atgtggactt ccagaacaca ccatactgct tcgaccaggt gagggaggag 2040 gtcctggagg gcggcagagg tgctgaggct cccctaccag aagcaaacat ggatggtggg 2100 tgaaaccaca ggctggacca gaagccaggc tgagaagggg aagcaggttt gggggacgtc 2160 ctggagaagg gcatttatac atggcatgaa ggactggatt ttccaaaggc caaggaagag 2220 tagggcaagg gcctggaggt ggagctggac ttggcagtgg gcatgcaagc ccattgggca 2280 acatatgtta tggagtacaa agtcccttct gctgacacca gaaggaaagg ccttgggaat 2340 ggaagatgag ttagtcctga gtgccgttta aatcacgaaa tcgaggatga agggggtgca 2400 gtgacccggt tcaaaccttt tgcactgtgg gtcctcgggc ctcactgctc accggcatgg 2460 accatcatct gggaatggga tgctaactgg ggcctctcgg caattttggt gactcttgca 2520 aggtcatacc tgggtgacgc atccaaactg agttcctcca tcacagaagg tgtgaccccc 2580 acccccgccc cacgatcagg aggctgggtc tcctccttcc acctgctcac tcctggtagc 2640 cccgggggtc gtccaaggtt caaataggac taggacctgt agtctggggt gatcctggct 2700 tgacaagagg ccctgaccct ccctctgcag ttgcggcgcc gcttcgggga cgtgttcagc 2760 ctgcagctgg cctggacgcc ggtggtcgtg ctcaatgggc tggcggccgt gcgcgaggcg 2820 ctggtgaccc acggcgagga caccgccgac cgcccgcctg tgcccatcac ccagatcctg 2880 ggtttcgggc cgcgttccca aggcaagcag cggtggggac agagacagat ttccgtggga 2940 cccgggtggg tgatgaccgt agtccgagct gggcagagag ggcgcggggt cgtggacatg 3000 aaacaggcca gcgagtgggg acagcgggcc aagaaaccac ctgcactagg gaggtgtgag 3060 catggggacg agggcggggc ttgtgacgag tgggcggggc cactgccgag acctggcagg 3120 agcccaatgg gtgaggctgg cgcatttccc agctggaatc cggtgtcgaa gtggggggcg 3180 gggaccgcac ctgtgctgta agctcagtgt gggtggcgcg gggcccgcgg ggtcttccct 3240 gagtgcaaag gcggtcaggg tgggcagaga cgaggtgggg caaagccctg ccccagccaa 3300 gggagcaagg tggatgcaca aagagtgggc cctgtgacca gctggacaga gccagggact 3360 gcgggagacc agggggagca tagggttgga gtgggtggtg gatggtgggg ctaatgcctt 3420 catggccacg cgcacgtgcc cgtcccaccc ccaggggtgt tcctggcgcg ctatgggccc 3480 gcgtggcgcg agcagaggcg cttctccgtg tccaccttgc gcaacttggg cctgggcaag 3540 aagtcgctgg agcagtgggt gaccgaggag gccgcctgcc tttgtgccgc cttcgccaac 3600 cactccggtg ggtgatgggc agaagggcac aaagcgggaa ctgggaaggc gggggacggg 3660 gaaggcgacc ccttacccgc atctcccacc cccaggacgc ccctttcgcc ccaacggtct 3720 cttggacaaa gccgtgagca acgtgatcgc ctccctcacc tgcgggcgcc gcttcgagta 3780 cgacgaccct cgcttcctca ggctgctgga cctagctcag gagggactga aggaggagtc 3840 gggctttctg cgcgaggtgc ggagcgagag accgaggagt ctctgcaggg cgagctcccg 3900 agaggtgccg gggctggact ggggcctcgg aagagcagga tttgcataga tgggtttggg 3960 aaaggacatt ccaggagacc ccactgtaag aagggcctgg aggaggaggg gacatctcag 4020 acatggtcgt gggagaggtg tgcccgggtc agggggcacc aggagaggcc aaggactctg 4080 tacctcctat ccacgtcaga gatttcgatt ttaggtttct cctctgggca aggagagagg 4140 gtggaggctg gcacttgggg agggacttgg tgaggtcagt ggtaaggaca ggcaggccct 4200 gggtctacct ggagatggct ggggcctgag acttgtccag gtgaacgcag agcacaggag 4260 ggattgagac cccgttctgt ctggtgtagg tgctgaatgc tgtccccgtc ctcctgcata 4320 tcccagcgct ggctggcaag gtcctacgct tccaaaaggc tttcctgacc cagctggatg 4380 agctgctaac tgagcacagg atgacctggg acccagccca gcccccccga gacctgactg 4440 aggccttcct ggcagagatg gagaaggtga gagtggctgc cacggtgggg ggcaagggtg 4500 gtgggttgag cgtcccagga ggaatgaggg gaggctgggc aaaaggttgg accagtgcat 4560 cacccggcga gccgcatctg ggctgacagg tgcagaattg gaggtcattt gggggctacc 4620 ccgttctgtc ccgagtatgc tctcggccct gctcaggcca aggggaaccc tgagagcagc 4680 ttcaatgatg agaacctgcg catagtggtg gctgacctgt tctctgccgg gatggtgacc 4740 acctcgacca cgctggcctg gggcctcctg ctcatgatcc tacatccgga tgtgcagcgt 4800 gagcccatct gggaaacagt gcaggggccg agggaggaag ggtacaggcg ggggcccatg 4860 aactttgctg ggacacccgg ggctccaagc acaggcttga ccaggatcct gtaagcctga 4920 cctcctccaa cataggaggc aagaaggagt gtcagggccg gaccccctgg gtgctgaccc 4980 attgtgggga cgcatgtctg tccaggccgt gtccaacagg agatcgacga cgtgataggg 5040 caggtgcggc gaccagagat gggtgaccag gctcacatgc cctacaccac tgccgtgatt 5100 catgaggtgc agcgctttgg ggacatcgtc cccctgggtg tgacccatat gacatcccgt 5160 gacatcgaag tacagggctt ccgcatccct aaggtaggcc tggcgccctc ctcaccccag 5220 ctcagcacca gcacctggtg atagccccag catggctact gccaggtggg cccactctag 5280 gaaccctggc cacctagtcc tcaatgccac cacactgact gtccccactt gggtgggggg 5340 tccagagtat aggcagggct ggcctgtcca tccagagccc ccgtctagtg gggagacaaa 5400 ccaggacctg ccagaatgtt ggaggaccca acgcctgcag ggagaggggg cagtgtgggt 5460 gcctctgaga ggtgtgactg cgccctgctg tggggtcgga gagggtactg tggagcttct 5520 cgggcgcagg actagttgac agagtccagc tgtgtgccag gcagtgtgtg tcccccgtgt 5580 gtttggtggc aggggtccca gcatcctaga gtccagtccc cactctcacc ctgcatctcc 5640 tgcccaggga acgacactca tcaccaacct gtcatcggtg ctgaaggatg aggccgtctg 5700 ggagaagccc ttccgcttcc accccgaaca cttcctggat gcccagggcc actttgtgaa 5760 gccggaggcc ttcctgcctt tctcagcagg tgcctgtggg gagcccggct ccctgtcccc 5820 ttccgtggag tcttgcaggg gtatcaccca ggagccaggc tcactgacgc ccctcccctc 5880 cccacaggcc gccgtgcatg cctcggggag cccctggccc gcatggagct cttcctcttc 5940 ttcacctccc tgctgcagca cttcagcttc tcggtgccca ctggacagcc ccggcccagc 6000 caccatggtg tctttgcttt cctggtgagc ccatccccct atgagctttg tgctgtgccc 6060 cgctagaatg gggtacctag tccccagcct gctccctagc cagaggctct aatgtacaat 6120 aaagcaatgt ggtagttcca actcgggtcc cctgctcacg ccctcgttgg gatcatcctc 6180 ctcagggcaa ccccacccct gcctcattcc tgcttacccc accgcctggc cgcatttgag 6240 acaggggtac gttgaggctg agcagatgtc agttaccctt gcccataatc ccatgtcccc 6300 cactgaccca actctgactg cccagattgg tgacaaggac tacattgtcc tggcatgtgg 6360 ggaaggggcc agaatgggct gactagaggt gtcagtcagc cctggatgtg gtggagaggg 6420 caggactcag cctggaggcc catatttcag gcctaactca gcccacccca catcagggac 6480 agcagtcctg ccagcaccat cacaacagtc acctcccttc atatatgaca ccccaaaacg 6540 gaagacaaat catggcgtca gggagctata tgccagggct acctacctcc cagggct 6597 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CYP505 primer <400> 2 cactggctcc aagcatggca g 21 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 3'2D6 primer <400> 3 actgagccct gggaggtggt a 21 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> CYP507 primer <400> 4 aacgttccca ccagatttc 19 <210> 5 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CYP509 primer <400> 5 gtaagtgcca gtgacagata ag 22 <210> 6 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> 2d6-11 primer <400> 6 aggatccttt gttcaggata tgttgc 26 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-12 primer <400> 7 caccaagtac cccacttccc 20 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 2d6-1 primer <400> 8 catgtggact tccagaacac acc 23 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-2 primer <400> 9 ggttcaaacc ttttgcactg 20 <210> 10 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> 2d6-3 primer <400> 10 gtcgtgctca atgggctg 18 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-4 primer <400> 11 aaggtggatg cacaaagagt 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-5 primer <400> 12 gacctagctc aggagggact 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-6 primer <400> 13 agctggatga gctgctaact 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-7 primer <400> 14 cctgacctcc tccaacatag 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-8 primer <400> 15 cacctagtcc tcaatgccac 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-9 primer <400> 16 gagtcttgca ggggtatcac 20 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 5'2D6 primer <400> 17 ccagaagcct ttgcaggctt c 21 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 5'2D6*5 primer <400> 18 caccaggcac ctgtactcct c 21 <210> 19 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 3'2D6*5 primer <400> 19 caggcatgag ctaaggcacc cagac 25 <210> 20 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 4268Cnew primer <400> 20 tgggtgtttg ctttcctggt gac 23 <210> 21 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer 10B <400> 21 gtggtggggc atcctcagt 19 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for -1584C>G <400> 22 tcaccccagg aattcaagac 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for -1584C>G <400> 23 ggcttcaagc aattctcctg 20 <210> 24 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> pyrosequencing primer for -1584C>G <400> 24 gtattttttg tagagacc 18 <210> 25 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Primer 9 <400> 25 accagccccc tccaccgg 18 <210> 26 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> Primer 10 <400> 26 tctggtaggg gagcctca 18 <210> 27 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer e <400> 27 gtggatggtg gggctaatgc ctt 23 <210> 28 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer f <400> 28 cagagactcc tcggtctctc gct 23 <210> 29 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> 5'4213 primer <400> 29 gcatcctaga gtccagtcc 19 <210> 30 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 3'4213 primer <400> 30 cctgtctcag cggccaggcg gtggg 25 <210> 31 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> F primer for *21B genotype <400> 31 tggtgtaggt gctgaatgct gt 22 <210> 32 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> R primer for *21B genotype <400> 32 agccactctc accttctcca tc 22 <210> 33 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> pyrosequencing primer for *21B genotype <400> 33 tcaggtctcg gggggg 16 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for *52 genotype <400> 34 aggcaacgac actcatcacc 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for *52 genotype <400> 35 gatacccctg caagactcca 20 <210> 36 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> pyrosequencing primer for *52 genotype <400> 36 ggcatccagg aagtgt 16 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2D6-1426R primer <400> 37 gccaccacgt ctagcttttt 20 <210> 38 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> 2D6+1611R (P30) primer <400> 38 tttttttttt gggcccatag cgcgccagga 30 <210> 39 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> 2D6+1758 primer <400> 39 cgccttcgcc aaccactcc 19 <210> 40 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> 2D6+2573 (P38) primer <400> 40 tttttttttt tttttttggg acccagccca gccccccc 38 <210> 41 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> 2D6+2850R (P55) primer <400> 41 tttttttttt tttttttttt tttttttttt tttttcaggt cagccaccac tatgc 55 <210> 42 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> 2D6+2988 (P39) primer <400> 42 tttttttttt tttttttttt agtgcagggg ccgagggag 39 <210> 43 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> 2D6+3877 (P45) primer <400> 43 tttttttttt tttttttttt tttttctggg catccaggaa gtgtt 45 <210> 44 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> 2D6+4125 (P50) primer <400> 44 tttttttttt tttttttttt tttttttttt cagcttctcg gtgcccactg 50 <210> 45 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> F primer for *60 genotype <400> 45 atctcccacc cccaggac 18 <210> 46 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> R primer for *60 genotype <400> 46 agggaggcga tcacgttg 18 <210> 47 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> pyrosequencing primer for *60 genotype <400> 47 ggcgatcacg ttgct 15 <210> 48 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> 2D6+1887R (P60) <400> 48 tttttttttt tttttttttt tttttttttt tttttttttt agggaggcga tcacgttgct 60 60 <210> 49 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> 2D6-5R (P65) <400> 49 tttttttttt tttttttttt tttttttttt tttttttttt tttttctcgt cactggtcag 60 gggtc 65 <210> 50 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CYP2D6_3 <400> 50 acctctctgg gccctcaggg a 21 <210> 51 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Dup-F_2 <400> 51 cctcaccaca ggactggcca cc 22 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Dup-R <400> 52 cacgtgcagg gcacctagat 20 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CYP2D6-5R <400> 53 ctcgtcactg gtcaggggtc 20 <210> 54 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip2 <400> 54 caggccaagt atcttgcgcg gcagctcgtc gaccg 35 <210> 55 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip7 <400> 55 caggccaagt gtggtccatc acaaacaggg agtcg 35 <210> 56 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip8 <400> 56 caggccaagt cttgagcgat gacggacggg aaaag 35 <210> 57 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip9 <400> 57 caggccaagt aagttgggga tctgtagacc cagcc 35 <210> 58 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip14 <400> 58 caggccaagt ggattgcacc gtcagcacca ccgag 35 <210> 59 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip15 <400> 59 caggccaagt tcccaggacg gcgctggcac gttga 35 <210> 60 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip16 <400> 60 caggccaagt cggcgtccac gtcgagttcc ttcgc 35 <210> 61 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip19 <400> 61 caggccaagt ttcggggaaa ctccgcaccg ccacg 35 <210> 62 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> cZip20 <400> 62 caggccaagt taggtttgcc agtgcgttgg atcg 34 <210> 63 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip21 <400> 63 caggccaagt tcgacaaccc ggttggagga ttcag 35 <210> 64 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip22 <400> 64 caggccaagt ccaaaagctt tacgccagcg ccgaa 35 <210> 65 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip24 <400> 65 caggccaagt agatcggtga gcagttcaaa gccgg 35 <210> 66 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip27 <400> 66 caggccaagt gggtatccgt tcggtgttgc gtagt 35 <210> 67 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip31 <400> 67 caggccaagt tggtgctggc gcagaccttt gtctc 35 <210> 68 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip32 <400> 68 caggccaagt accgcgcaaa tggacagtgt ggcca 35 <210> 69 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip33 <400> 69 caggccaagt gaccccaact tgacacgtcg caagg 35 <210> 70 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip40 <400> 70 caggccaagt cgtaagcctc gtcagctatc cgggg 35 <210> 71 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip41 <400> 71 caggccaagt ccaaacgcac cccaacctgt ccgga 35 <210> 72 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip44 <400> 72 caggccaagt cggcggtggc attgtcactg ctgct 35 <210> 73 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip50 <400> 73 caggccaagt gcagttcgtg gccatggtga ccgct 35 <210> 74 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip56 <400> 74 caggccaagt cgttgtggta gcggcactgg tggtg 35 <210> 75 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip61 <400> 75 caggccaagt ctgggtgtgg gtgctcgtac gccga 35 <210> 76 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip101 <400> 76 caggccaagt cggcacatag gacggggttc agata 35 <210> 77 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip102 <400> 77 caggccaagt gaacaagatt ggtcctggag gtgcg 35 <210> 78 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip104 <400> 78 caggccaagt tcggatggcg ttcagtagga gaagg 35 <210> 79 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip106 <400> 79 caggccaagt acactctcca tgcggtagac ctgac 35 <210> 80 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip109 <400> 80 caggccaagt gaacctaatg aagacggggg gtgct 35 <210> 81 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> -1584 F1 <400> 81 gctgccatac aatccacctg 20 <210> 82 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> -1584 R1 <400> 82 gctcactaca accttcacct c 21 <210> 83 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> 100 F2 <400> 83 gtcctgcctg gtcctctg 18 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 100 R2 <400> 84 cttgccctac tcttccttgg 20 <210> 85 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> 5'1611 <400> 85 gtgggcagag acgaggtg 18 <210> 86 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> 3'1611 <400> 86 cggagtggtt ggcgaagg 18 <210> 87 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> 1758 F1 <400> 87 cttctccgtg tccaccttg 19 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 1758 R1 <400> 88 tgtcctttcc caaacccatc 20 <210> 89 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> 5' 2573 <400> 89 gtccaggtga acgcagag 18 <210> 90 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> 3' 2573 <400> 90 cggcagagaa caggtcag 18 <210> 91 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 5' 2850 <400> 91 cagagatgga gaaggtgaga g 21 <210> 92 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> 3' 2850 <400> 92 tggaggaggt caggcttac 19 <210> 93 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 4125 F2 <400> 93 actcatcacc aacctgtcat c 21 <210> 94 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 4125 R2 <400> 94 ggaactacca cattgcttta ttg 23 <210> 95 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> D&D-F 1 <400> 95 acctctctgg gccctca 17 <210> 96 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> D&D-R 1 <400> 96 atgccacctc ctccttctc 19 <210> 97 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> -1584(C)zip15 <400> 97 tcaacgtgcc agcgccgtcc tgggagctaa ttttgtattt tttgtagaga ccg 53 <210> 98 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> -1584(G)zip16 <400> 98 gcgaaggaac tcgacgtgga cgccggctaa ttttgtattt tttgtagaga ccc 53 <210> 99 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> 100(C)Zip27 <400> 99 actacgcaac accgaacgga taccccgctg ggctgcacgc tacc 44 <210> 100 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> 100(T)Zip2 <400> 100 cggtcgacga gctgccgcgc aagatcgctg ggctgcacgc tact 44 <210> 101 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> 1611(T)zip40 <400> 101 ccccggatag ctgacgaggc ttacgcccat agcgcgccag gaa 43 <210> 102 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> 1611(A)zip44 <400> 102 agcagcagtg acaatgccac cgccgcccat agcgcgccag gat 43 <210> 103 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> 1758(G)Zip101R <400> 103 atctgaaccc cgtcctatgt gccgccttct gcccatcacc cacc 44 <210> 104 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> 1758(A)zip109 <400> 104 agcacccccc gtcttcatta ggttcccttc tgcccatcac ccact 45 <210> 105 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> 2573(G)Zip9 <400> 105 ggctgggtct acagatcccc aacttgtcag gtctcggggg ggc 43 <210> 106 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> 2573(C)Zip41 <400> 106 tccggacagg ttggggtgcg tttgggtcag gtctcggggg ggg 43 <210> 107 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> 2850(C)zip61 <400> 107 tcggcgtacg agcacccaca cccaggaaca ggtcagccac cactatgcg 49 <210> 108 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> 2850(T)Zip31 <400> 108 gagacaaagg tctgcgccag caccagaaca ggtcagccac cactatgca 49 <210> 109 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> 4125-4133Zip21 <400> 109 ctgaatcctc caaccgggtt gtcgagcttc tcggtgccca ctgga 45 <210> 110 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> 4125-4133insZip22 <400> 110 ttcggcgctg gcgtaaagct tttgggcttc tcggtgccca ctgtg 45 <210> 111 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> 6(A)zip106 <400> 111 gtcaggtcta ccgcatggag agtgtgccct cagggatgct gctgta 46 <210> 112 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> 7(C)zip102 <400> 112 cgcacctcca ggaccaatct tgttcccctc agggatgctg ctgtc 45 <210> 113 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> 7(C)zip32 <400> 113 tggccacact gtccatttgc gcggtcctca gggatgctgc tgtc 44 <210> 114 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> 6(A)zip19 <400> 114 cgtggcggtg cggagtttcc ccgaacctca gggatgctgc tgta 44 <210> 115 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> 2D6pc-1460(zip14) <400> 115 ctcggtggtg ctgacggtgc aatccccaac atggtgaaac cctatctcta c 51 <110> Inje university Industry-academic cooperation foundation <120> htSNP FOR DETERMINING A GENOTYPE OF CYTOCHROME P450 2D6 GENE AND          GENOTYPING CHIP USING THEREOF <130> DPP070151KR <160> 115 <170> KopatentIn 1.71 <210> 1 <211> 6597 <212> DNA <213> Homo sapiens <400> 1 cactggctcc aagcatggca gctgccatac aatccacctg tagagggccc ggtcctcctg 60 tcctcagtgg atgatcccgt agaagtccag agctcggcag ctgccctccc acaaaagaca 120 ggattttgaa agcagcaaga gagaagagac gtatcaggta gtcacagtgg ctcaggcctg 180 taatcccagc actttgggag gcccaggtgg gaggatcgct tcaccccagg aattcaagac 240 cagcctggac aacttggaag aacccggtct ctacaaaaaa tacaaaatta gctgggattg 300 ggtgcggtgg ctcatgccta taatcccagc actttgggag cctgaggtgg gtggatcacc 360 tgaagtcagg agttcaagac tagcctggcc aacatggtga aaccctatct ctactgaaaa 420 tacaaaaagc tagacgtggt ggcacacacc tgtaatccca gctacttagg aggctgaggc 480 aggagaattg cttgaagcct agaggtgaag gttgtagtga gccgagattg catcattgca 540 caatggaggg gagccaccag cctgggcaac aagaggaaat ctccgtctcc aaaaaaaaaa 600 aaaaaaaaaa aagaattagg ctgggtggtg cctgtagtcc cagctacttg ggaggcaggg 660 ggtccacttg atgtcgagac tgcagtgagc catgatcctg ccactgcact ccggcctggg 720 caacagagtg agaccctgtc taaagaaaaa aaaaataaag caacatatcc tgaacaaagg 780 atcctccata acgttcccac cagatttcta atcagaaaca tggaggccag aaagcagtgg 840 aggaggacga ccctcaggca gcccgggagg atgttgtcac aggctggggc aagggccttc 900 cggctaccaa ctgggagctc tgggaacagc cctgttgcaa acaagaagcc atagcccggc 960 cagagcccag gaatgtgggc tgggctggga gcagcctctg gacaggagtg gtcccatcca 1020 ggaaacctcc ggcatggctg ggaagtgggg tacttggtgc cgggtctgta tgtgtgtgtg 1080 actggtgtgt gtgagagaga atgtgtgccc taagtgtcag tgtgagtctg tgtatgtgtg 1140 aatattgtct ttgtgtgggt gattttctgc gtgtgtaatc gtgtccctgc aagtgtgaac 1200 aagtggacaa gtgtctggga gtggacaaga gatctgtgca ccatcaggtg tgtgcatagc 1260 gtctgtgcat gtcaagagtg caaggtgaag tgaagggacc aggcccatga tgccactcat 1320 catcaggagc tctaaggccc caggtaagtg ccagtgacag ataagggtgc tgaaggtcac 1380 tctggagtgg gcaggtgggg gtagggaaag ggcaaggcca tgttctggag gaggggttgt 1440 gactacatta gggtgtatga gcctagctgg gaggtggatg gccgggtcca ctgaaaccct 1500 ggttatccca gaaggctttg caggcttcag gagcttggag tggggagagg gggtgacttc 1560 tccgaccagg cccctccacc ggcctaccct gggtaagggc ctggagcagg aagcaggggc 1620 aagaacctct ggagcagccc atacccgccc tggcctgact ctgccactgg cagcacagtc 1680 aacacagcag gttcactcac agcagagggc aaaggccatc atcagctccc tttataaggg 1740 aagggtcacg cgctcggtgt gctgagagtg tcctgcctgg tcctctgtgc ctggtggggt 1800 gggggtgcca ggtgtgtcca gaggagccca tttggtagtg aggcaggtat ggggctagaa 1860 gcactggtgc ccctggccgt gatagtggcc atcttcctgc tcctggtgga cctgatgcac 1920 cggcgccaac gctgggctgc acgctaccca ccaggccccc tgccactgcc cgggctgggc 1980 aacctgctgc atgtggactt ccagaacaca ccatactgct tcgaccaggt gagggaggag 2040 gtcctggagg gcggcagagg tgctgaggct cccctaccag aagcaaacat ggatggtggg 2100 tgaaaccaca ggctggacca gaagccaggc tgagaagggg aagcaggttt gggggacgtc 2160 ctggagaagg gcatttatac atggcatgaa ggactggatt ttccaaaggc caaggaagag 2220 tagggcaagg gcctggaggt ggagctggac ttggcagtgg gcatgcaagc ccattgggca 2280 acatatgtta tggagtacaa agtcccttct gctgacacca gaaggaaagg ccttgggaat 2340 ggaagatgag ttagtcctga gtgccgttta aatcacgaaa tcgaggatga agggggtgca 2400 gtgacccggt tcaaaccttt tgcactgtgg gtcctcgggc ctcactgctc accggcatgg 2460 accatcatct gggaatggga tgctaactgg ggcctctcgg caattttggt gactcttgca 2520 aggtcatacc tgggtgacgc atccaaactg agttcctcca tcacagaagg tgtgaccccc 2580 acccccgccc cacgatcagg aggctgggtc tcctccttcc acctgctcac tcctggtagc 2640 cccgggggtc gtccaaggtt caaataggac taggacctgt agtctggggt gatcctggct 2700 tgacaagagg ccctgaccct ccctctgcag ttgcggcgcc gcttcgggga cgtgttcagc 2760 ctgcagctgg cctggacgcc ggtggtcgtg ctcaatgggc tggcggccgt gcgcgaggcg 2820 ctggtgaccc acggcgagga caccgccgac cgcccgcctg tgcccatcac ccagatcctg 2880 ggtttcgggc cgcgttccca aggcaagcag cggtggggac agagacagat ttccgtggga 2940 cccgggtggg tgatgaccgt agtccgagct gggcagagag ggcgcggggt cgtggacatg 3000 aaacaggcca gcgagtgggg acagcgggcc aagaaaccac ctgcactagg gaggtgtgag 3060 catggggacg agggcggggc ttgtgacgag tgggcggggc cactgccgag acctggcagg 3120 agcccaatgg gtgaggctgg cgcatttccc agctggaatc cggtgtcgaa gtggggggcg 3180 gggaccgcac ctgtgctgta agctcagtgt gggtggcgcg gggcccgcgg ggtcttccct 3240 gagtgcaaag gcggtcaggg tgggcagaga cgaggtgggg caaagccctg ccccagccaa 3300 gggagcaagg tggatgcaca aagagtgggc cctgtgacca gctggacaga gccagggact 3360 gcgggagacc agggggagca tagggttgga gtgggtggtg gatggtgggg ctaatgcctt 3420 catggccacg cgcacgtgcc cgtcccaccc ccaggggtgt tcctggcgcg ctatgggccc 3480 gcgtggcgcg agcagaggcg cttctccgtg tccaccttgc gcaacttggg cctgggcaag 3540 aagtcgctgg agcagtgggt gaccgaggag gccgcctgcc tttgtgccgc cttcgccaac 3600 cactccggtg ggtgatgggc agaagggcac aaagcgggaa ctgggaaggc gggggacggg 3660 gaaggcgacc ccttacccgc atctcccacc cccaggacgc ccctttcgcc ccaacggtct 3720 cttggacaaa gccgtgagca acgtgatcgc ctccctcacc tgcgggcgcc gcttcgagta 3780 cgacgaccct cgcttcctca ggctgctgga cctagctcag gagggactga aggaggagtc 3840 gggctttctg cgcgaggtgc ggagcgagag accgaggagt ctctgcaggg cgagctcccg 3900 agaggtgccg gggctggact ggggcctcgg aagagcagga tttgcataga tgggtttggg 3960 aaaggacatt ccaggagacc ccactgtaag aagggcctgg aggaggaggg gacatctcag 4020 acatggtcgt gggagaggtg tgcccgggtc agggggcacc aggagaggcc aaggactctg 4080 tacctcctat ccacgtcaga gatttcgatt ttaggtttct cctctgggca aggagagagg 4140 gtggaggctg gcacttgggg agggacttgg tgaggtcagt ggtaaggaca ggcaggccct 4200 gggtctacct ggagatggct ggggcctgag acttgtccag gtgaacgcag agcacaggag 4260 ggattgagac cccgttctgt ctggtgtagg tgctgaatgc tgtccccgtc ctcctgcata 4320 tcccagcgct ggctggcaag gtcctacgct tccaaaaggc tttcctgacc cagctggatg 4380 agctgctaac tgagcacagg atgacctggg acccagccca gcccccccga gacctgactg 4440 aggccttcct ggcagagatg gagaaggtga gagtggctgc cacggtgggg ggcaagggtg 4500 gtgggttgag cgtcccagga ggaatgaggg gaggctgggc aaaaggttgg accagtgcat 4560 cacccggcga gccgcatctg ggctgacagg tgcagaattg gaggtcattt gggggctacc 4620 ccgttctgtc ccgagtatgc tctcggccct gctcaggcca aggggaaccc tgagagcagc 4680 ttcaatgatg agaacctgcg catagtggtg gctgacctgt tctctgccgg gatggtgacc 4740 acctcgacca cgctggcctg gggcctcctg ctcatgatcc tacatccgga tgtgcagcgt 4800 gagcccatct gggaaacagt gcaggggccg agggaggaag ggtacaggcg ggggcccatg 4860 aactttgctg ggacacccgg ggctccaagc acaggcttga ccaggatcct gtaagcctga 4920 cctcctccaa cataggaggc aagaaggagt gtcagggccg gaccccctgg gtgctgaccc 4980 attgtgggga cgcatgtctg tccaggccgt gtccaacagg agatcgacga cgtgataggg 5040 caggtgcggc gaccagagat gggtgaccag gctcacatgc cctacaccac tgccgtgatt 5100 catgaggtgc agcgctttgg ggacatcgtc cccctgggtg tgacccatat gacatcccgt 5160 gacatcgaag tacagggctt ccgcatccct aaggtaggcc tggcgccctc ctcaccccag 5220 ctcagcacca gcacctggtg atagccccag catggctact gccaggtggg cccactctag 5280 gaaccctggc cacctagtcc tcaatgccac cacactgact gtccccactt gggtgggggg 5340 tccagagtat aggcagggct ggcctgtcca tccagagccc ccgtctagtg gggagacaaa 5400 ccaggacctg ccagaatgtt ggaggaccca acgcctgcag ggagaggggg cagtgtgggt 5460 gcctctgaga ggtgtgactg cgccctgctg tggggtcgga gagggtactg tggagcttct 5520 cgggcgcagg actagttgac agagtccagc tgtgtgccag gcagtgtgtg tcccccgtgt 5580 gtttggtggc aggggtccca gcatcctaga gtccagtccc cactctcacc ctgcatctcc 5640 tgcccaggga acgacactca tcaccaacct gtcatcggtg ctgaaggatg aggccgtctg 5700 ggagaagccc ttccgcttcc accccgaaca cttcctggat gcccagggcc actttgtgaa 5760 gccggaggcc ttcctgcctt tctcagcagg tgcctgtggg gagcccggct ccctgtcccc 5820 ttccgtggag tcttgcaggg gtatcaccca ggagccaggc tcactgacgc ccctcccctc 5880 cccacaggcc gccgtgcatg cctcggggag cccctggccc gcatggagct cttcctcttc 5940 ttcacctccc tgctgcagca cttcagcttc tcggtgccca ctggacagcc ccggcccagc 6000 caccatggtg tctttgcttt cctggtgagc ccatccccct atgagctttg tgctgtgccc 6060 cgctagaatg gggtacctag tccccagcct gctccctagc cagaggctct aatgtacaat 6120 aaagcaatgt ggtagttcca actcgggtcc cctgctcacg ccctcgttgg gatcatcctc 6180 ctcagggcaa ccccacccct gcctcattcc tgcttacccc accgcctggc cgcatttgag 6240 acaggggtac gttgaggctg agcagatgtc agttaccctt gcccataatc ccatgtcccc 6300 cactgaccca actctgactg cccagattgg tgacaaggac tacattgtcc tggcatgtgg 6360 ggaaggggcc agaatgggct gactagaggt gtcagtcagc cctggatgtg gtggagaggg 6420 caggactcag cctggaggcc catatttcag gcctaactca gcccacccca catcagggac 6480 agcagtcctg ccagcaccat cacaacagtc acctcccttc atatatgaca ccccaaaacg 6540 gaagacaaat catggcgtca gggagctata tgccagggct acctacctcc cagggct 6597 <210> 2 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CYP505 primer <400> 2 cactggctcc aagcatggca g 21 <210> 3 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 3'2D6 primer <400> 3 actgagccct gggaggtggt a 21 <210> 4 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> CYP507 primer <400> 4 aacgttccca ccagatttc 19 <210> 5 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> CYP509 primer <400> 5 gtaagtgcca gtgacagata ag 22 <210> 6 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> 2d6-11 primer <400> 6 aggatccttt gttcaggata tgttgc 26 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-12 primer <400> 7 caccaagtac cccacttccc 20 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 2d6-1 primer <400> 8 catgtggact tccagaacac acc 23 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-2 primer <400> 9 ggttcaaacc ttttgcactg 20 <210> 10 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> 2d6-3 primer <400> 10 gtcgtgctca atgggctg 18 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-4 primer <400> 11 aaggtggatg cacaaagagt 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-5 primer <400> 12 gacctagctc aggagggact 20 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-6 primer <400> 13 agctggatga gctgctaact 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-7 primer <400> 14 cctgacctcc tccaacatag 20 <210> 15 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-8 primer <400> 15 cacctagtcc tcaatgccac 20 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2d6-9 primer <400> 16 gagtcttgca ggggtatcac 20 <210> 17 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 5'2D6 primer <400> 17 ccagaagcct ttgcaggctt c 21 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 5'2D6 * 5 primer <400> 18 caccaggcac ctgtactcct c 21 <210> 19 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 3'2D6 * 5 primer <400> 19 caggcatgag ctaaggcacc cagac 25 <210> 20 <211> 23 <212> DNA <213> Artificial Sequence <220> 4223 Cnew primer <400> 20 tgggtgtttg ctttcctggt gac 23 <210> 21 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> Primer 10B <400> 21 gtggtggggc atcctcagt 19 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for -1584C> G <400> 22 tcaccccagg aattcaagac 20 <210> 23 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for -1584C> G <400> 23 ggcttcaagc aattctcctg 20 <210> 24 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> pyrosequencing primer for -1584C> G <400> 24 gtattttttg tagagacc 18 <210> 25 <211> 18 <212> DNA <213> Artificial Sequence <220> Primer 9 <400> 25 accagccccc tccaccgg 18 <210> 26 <211> 18 <212> DNA <213> Artificial Sequence <220> Primer 10 <400> 26 tctggtaggg gagcctca 18 <210> 27 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer e <400> 27 gtggatggtg gggctaatgc ctt 23 <210> 28 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Primer f <400> 28 cagagactcc tcggtctctc gct 23 <210> 29 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> 5'4213 primer <400> 29 gcatcctaga gtccagtcc 19 <210> 30 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 3'4213 primer <400> 30 cctgtctcag cggccaggcg gtggg 25 <210> 31 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> F primer for * 21B genotype <400> 31 tggtgtaggt gctgaatgct gt 22 <210> 32 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> R primer for * 21B genotype <400> 32 agccactctc accttctcca tc 22 <210> 33 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> pyrosequencing primer for * 21B genotype <400> 33 tcaggtctcg gggggg 16 <210> 34 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> F primer for * 52 genotype <400> 34 aggcaacgac actcatcacc 20 <210> 35 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> R primer for * 52 genotype <400> 35 gatacccctg caagactcca 20 <210> 36 <211> 16 <212> DNA <213> Artificial Sequence <220> <223> pyrosequencing primer for * 52 genotype <400> 36 ggcatccagg aagtgt 16 <210> 37 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 2D6-1426R primer <400> 37 gccaccacgt ctagcttttt 20 <210> 38 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> 2D6 + 1611R (P30) primer <400> 38 tttttttttt gggcccatag cgcgccagga 30 <210> 39 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> 2D6 + 1758 primer <400> 39 cgccttcgcc aaccactcc 19 <210> 40 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> 2D6 + 2573 (P38) primer <400> 40 tttttttttt tttttttggg acccagccca gccccccc 38 <210> 41 <211> 55 <212> DNA <213> Artificial Sequence <220> <223> 2D6 + 2850R (P55) primer <400> 41 tttttttttt tttttttttt tttttttttt tttttcaggt cagccaccac tatgc 55 <210> 42 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> 2D6 + 2988 (P39) primer <400> 42 tttttttttt tttttttttt agtgcagggg ccgagggag 39 <210> 43 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> 2D6 + 3877 (P45) primer <400> 43 tttttttttt tttttttttt tttttctggg catccaggaa gtgtt 45 <210> 44 <211> 50 <212> DNA <213> Artificial Sequence <220> <223> 2D6 + 4125 (P50) primer <400> 44 tttttttttt tttttttttt tttttttttt cagcttctcg gtgcccactg 50 <210> 45 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> F primer for * 60 genotype <400> 45 atctcccacc cccaggac 18 <210> 46 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> R primer for * 60 genotype <400> 46 agggaggcga tcacgttg 18 <210> 47 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> pyrosequencing primer for * 60 genotype <400> 47 ggcgatcacg ttgct 15 <210> 48 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> 2D6 + 1887R (P60) <400> 48 tttttttttt tttttttttt tttttttttt tttttttttt agggaggcga tcacgttgct 60                                                                           60 <210> 49 <211> 65 <212> DNA <213> Artificial Sequence <220> <223> 2D6-5R (P65) <400> 49 tttttttttt tttttttttt tttttttttt tttttttttt tttttctcgt cactggtcag 60 gggtc 65 <210> 50 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> CYP2D6_3 <400> 50 acctctctgg gccctcaggg a 21 <210> 51 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> Dup-F_2 <400> 51 cctcaccaca ggactggcca cc 22 <210> 52 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> Dup-R <400> 52 cacgtgcagg gcacctagat 20 <210> 53 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> CYP2D6-5R <400> 53 ctcgtcactg gtcaggggtc 20 <210> 54 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip2 <400> 54 caggccaagt atcttgcgcg gcagctcgtc gaccg 35 <210> 55 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip7 <400> 55 caggccaagt gtggtccatc acaaacaggg agtcg 35 <210> 56 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip8 <400> 56 caggccaagt cttgagcgat gacggacggg aaaag 35 <210> 57 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip9 <400> 57 caggccaagt aagttgggga tctgtagacc cagcc 35 <210> 58 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip14 <400> 58 caggccaagt ggattgcacc gtcagcacca ccgag 35 <210> 59 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip15 <400> 59 caggccaagt tcccaggacg gcgctggcac gttga 35 <210> 60 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip16 <400> 60 caggccaagt cggcgtccac gtcgagttcc ttcgc 35 <210> 61 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip19 <400> 61 caggccaagt ttcggggaaa ctccgcaccg ccacg 35 <210> 62 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> cZip20 <400> 62 caggccaagt taggtttgcc agtgcgttgg atcg 34 <210> 63 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip21 <400> 63 caggccaagt tcgacaaccc ggttggagga ttcag 35 <210> 64 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip22 <400> 64 caggccaagt ccaaaagctt tacgccagcg ccgaa 35 <210> 65 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip24 <400> 65 caggccaagt agatcggtga gcagttcaaa gccgg 35 <210> 66 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip27 <400> 66 caggccaagt gggtatccgt tcggtgttgc gtagt 35 <210> 67 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip31 <400> 67 caggccaagt tggtgctggc gcagaccttt gtctc 35 <210> 68 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip32 <400> 68 caggccaagt accgcgcaaa tggacagtgt ggcca 35 <210> 69 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip33 <400> 69 caggccaagt gaccccaact tgacacgtcg caagg 35 <210> 70 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip40 <400> 70 caggccaagt cgtaagcctc gtcagctatc cgggg 35 <210> 71 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip41 <400> 71 caggccaagt ccaaacgcac cccaacctgt ccgga 35 <210> 72 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip44 <400> 72 caggccaagt cggcggtggc attgtcactg ctgct 35 <210> 73 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip50 <400> 73 caggccaagt gcagttcgtg gccatggtga ccgct 35 <210> 74 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip56 <400> 74 caggccaagt cgttgtggta gcggcactgg tggtg 35 <210> 75 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip61 <400> 75 caggccaagt ctgggtgtgg gtgctcgtac gccga 35 <210> 76 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip101 <400> 76 caggccaagt cggcacatag gacggggttc agata 35 <210> 77 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip102 <400> 77 caggccaagt gaacaagatt ggtcctggag gtgcg 35 <210> 78 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip104 <400> 78 caggccaagt tcggatggcg ttcagtagga gaagg 35 <210> 79 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip106 <400> 79 caggccaagt acactctcca tgcggtagac ctgac 35 <210> 80 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> cZip109 <400> 80 caggccaagt gaacctaatg aagacggggg gtgct 35 <210> 81 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> -1584 F1 <400> 81 gctgccatac aatccacctg 20 <210> 82 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> -1584 R1 <400> 82 gctcactaca accttcacct c 21 <210> 83 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> 100 F2 <400> 83 gtcctgcctg gtcctctg 18 <210> 84 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 100 R2 <400> 84 cttgccctac tcttccttgg 20 <210> 85 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> 5'1611 <400> 85 gtgggcagag acgaggtg 18 <210> 86 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> 3'1611 <400> 86 cggagtggtt ggcgaagg 18 <210> 87 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> 1758 F1 <400> 87 cttctccgtg tccaccttg 19 <210> 88 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> 1758 R1 <400> 88 tgtcctttcc caaacccatc 20 <210> 89 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> 5 '2573 <400> 89 gtccaggtga acgcagag 18 <210> 90 <211> 18 <212> DNA <213> Artificial Sequence <220> <223> 3 '2573 <400> 90 cggcagagaa caggtcag 18 <210> 91 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 5 '2850 <400> 91 cagagatgga gaaggtgaga g 21 <210> 92 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> 3 '2850 <400> 92 tggaggaggt caggcttac 19 <210> 93 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> 4125 F2 <400> 93 actcatcacc aacctgtcat c 21 <210> 94 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> 4125 R2 <400> 94 ggaactacca cattgcttta ttg 23 <210> 95 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> D & D-F 1 <400> 95 acctctctgg gccctca 17 <210> 96 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> D & D-R 1 <400> 96 atgccacctc ctccttctc 19 <210> 97 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> -1584 (C) zip15 <400> 97 tcaacgtgcc agcgccgtcc tgggagctaa ttttgtattt tttgtagaga ccg 53 <210> 98 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> -1584 (G) zip16 <400> 98 gcgaaggaac tcgacgtgga cgccggctaa ttttgtattt tttgtagaga ccc 53 <210> 99 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> 100 (C) Zip27 <400> 99 actacgcaac accgaacgga taccccgctg ggctgcacgc tacc 44 <210> 100 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> 100 (T) Zip2 <400> 100 cggtcgacga gctgccgcgc aagatcgctg ggctgcacgc tact 44 <210> 101 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> 1611 (T) zip40 <400> 101 ccccggatag ctgacgaggc ttacgcccat agcgcgccag gaa 43 <210> 102 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> 1611 (A) zip44 <400> 102 agcagcagtg acaatgccac cgccgcccat agcgcgccag gat 43 <210> 103 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> 1758 (G) Zip101R <400> 103 atctgaaccc cgtcctatgt gccgccttct gcccatcacc cacc 44 <210> 104 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> 1758 (A) zip109 <400> 104 agcacccccc gtcttcatta ggttcccttc tgcccatcac ccact 45 <210> 105 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> 2573 (G) Zip9 <400> 105 ggctgggtct acagatcccc aacttgtcag gtctcggggg ggc 43 <210> 106 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> 2573 (C) Zip41 <400> 106 tccggacagg ttggggtgcg tttgggtcag gtctcggggg ggg 43 <210> 107 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> 2850 (C) zip61 <400> 107 tcggcgtacg agcacccaca cccaggaaca ggtcagccac cactatgcg 49 <210> 108 <211> 49 <212> DNA <213> Artificial Sequence <220> <223> 2850 (T) Zip31 <400> 108 gagacaaagg tctgcgccag caccagaaca ggtcagccac cactatgca 49 <210> 109 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> 4125-4133 Zip21 <400> 109 ctgaatcctc caaccgggtt gtcgagcttc tcggtgccca ctgga 45 <210> 110 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> 4125-4133insZip22 <400> 110 ttcggcgctg gcgtaaagct tttgggcttc tcggtgccca ctgtg 45 <210> 111 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> 6 (A) zip 106 <400> 111 gtcaggtcta ccgcatggag agtgtgccct cagggatgct gctgta 46 <210> 112 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> 7 (C) zip102 <400> 112 cgcacctcca ggaccaatct tgttcccctc agggatgctg ctgtc 45 <210> 113 <211> 44 <212> DNA <213> Artificial Sequence <220> (223) 7 (C) zip32 <400> 113 tggccacact gtccatttgc gcggtcctca gggatgctgc tgtc 44 <210> 114 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> 6 (A) zip 19 <400> 114 cgtggcggtg cggagtttcc ccgaacctca gggatgctgc tgta 44 <210> 115 <211> 51 <212> DNA <213> Artificial Sequence <220> <223> 2D6pc-1460 (zip14) <400> 115 ctcggtggtg ctgacggtgc aatccccaac atggtgaaac cctatctcta c 51  

Claims (21)

(a) 인간으로부터 생물학적 시료를 채취하는 단계;(a) taking a biological sample from a human; (b) 상기 (a) 단계의 채취된 시료로부터 핵산을 추출하는 단계; (b) extracting nucleic acids from the sample taken in step (a); (c) 상기 (b) 단계의 핵산을 주형으로 하고 인간 CYP2D6 유전자 또는 이의 단편을 증폭할 수 있는 프라이머로 PCR을 수행하는 단계;(c) performing PCR with a primer capable of amplifying the human CYP2D6 gene or fragment thereof as a template of the nucleic acid of step (b); (d) 상기 (c) 단계에서 얻은 PCR 산물의 염기서열에서 변이의 존재 유무를 확인하는 단계; (d) confirming the presence or absence of a mutation in the base sequence of the PCR product obtained in step (c); (e) 상기 (d) 단계에서 변이가 존재하는 것으로 확인된 PCR 산물의 염기서열에서 일배체형(haplotype)을 분석하는 단계; 및(e) analyzing haplotypes in the nucleotide sequence of the PCR product identified as present in step (d); And (f) 상기 (e) 단계에서 분석된 일배체형의 염기서열을 SNP태거 (SNPtagger) 소프트웨어를 이용하여 분석하여 htSNP를 선별하는 단계를 포함하는, 인간 CYP2D6 유전자의 htSNP를 선별하는 방법.(f) analyzing the nucleotide sequence of the haplotype analyzed in step (e) using SNP tagger (SNPtagger) software to select htSNP, the method for selecting htSNP of the human CYP2D6 gene. 제 1 항에 있어서, The method of claim 1, 상기 (a) 단계의 생물학적 시료가 혈액, 피부 세포, 점막 세포 및 모발로 이루어진 군에서 선택되는 것임을 특징으로 하는 방법.The biological sample of step (a) is characterized in that is selected from the group consisting of blood, skin cells, mucosal cells and hair. 제 1 항에 있어서, The method of claim 1, 상기 (c) 단계의 프라이머는 서열번호 2, 서열번호 3, 서열번호 17 내지 서 열번호 23, 서열번호 25 내지 서열번호 30, 서열번호 31, 서열번호 32, 서열번호 34, 서열번호 35, 서열번호 45 및 서열번호 46으로 이루어진 군에서 선택되는 염기서열을 갖는 것임을 특징으로 하는 방법.The primer of step (c) is SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 17 to SEQ ID NO: 23, SEQ ID NO: 25 to SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 35, sequence And a nucleotide sequence selected from the group consisting of SEQ ID NO: 45 and SEQ ID NO: 46. 제 1 항에 있어서, The method of claim 1, 상기 (d) 단계의 변이는 단일염기다형성, 유전자의 결실 및 유전자의 중복으로 이루어진 군에서 선택되는 것임을 특징으로 하는 방법.The variation of step (d) is characterized in that it is selected from the group consisting of monobasic polymorphism, deletion of the gene and duplication of the gene. 제 1 항에 있어서, The method of claim 1, 상기 (d) 단계에서 변이의 존재 유무의 확인은 서열분석, 전기영동분석 및 RFLP 분석으로 이루어진 군에서 선택되는 하나를 이용하여 수행하는 것을 특징으로 하는 방법.In step (d), the presence or absence of the presence of a mutation is characterized in that performed using one selected from the group consisting of sequencing, electrophoretic analysis and RFLP analysis. 제 1 항에 있어서, The method of claim 1, 상기 (a) 내지 (e) 단계를 반복하는 단계를 추가로 포함하는 것을 특징으로 하는 방법.And repeating steps (a) to (e). (a) 인간으로부터 생물학적 시료를 채취하는 단계;(a) taking a biological sample from a human; (b) 상기 (a) 단계의 채취된 시료로부터 핵산을 추출하는 단계;(b) extracting nucleic acids from the sample taken in step (a); (c) 상기 (b) 단계의 핵산을 주형으로 하고 인간 CYP2D6 유전자 또는 이의 단편을 증폭할 수 있는 프라이머로 PCR을 수행하는 단계; 및(c) performing PCR with a primer capable of amplifying the human CYP2D6 gene or fragment thereof as a template of the nucleic acid of step (b); And (d) 상기 (c) 단계에서 얻은 PCR 산물의 염기서열에서 -1426C>T, 100C>T 및 1039C>T 로 이루어진 군에서 하나; -1028T>C, -377A>G , 3877G>A, 4388C>T 및 4401C>T로 이루어진 군에서 하나; -740C>T, -678G>A, 214G>C, 221C>A, 223C>G, 227T>C, 232G>C, 233A>C, 245A>G 및 2850C>T로 이루어진 군에서 하나; 1611T>A; 1758G>A; 1887insTA; 2573insC; 2988G>A; 4125-4133insGTGCCCACT; 2D6 결실 (deletion); 및 2D6 중복 (duplication)으로 이루어진 군에서 선택되는 적어도 11개의 CYP2D6 유전자 변이의 존재 유무를 조사하는 단계를 포함하는, 인간 CYP2D6 유전자의 유전형을 결정하는 방법.(d) one from the group consisting of -1426C> T, 100C> T and 1039C> T in the nucleotide sequence of the PCR product obtained in step (c); -1028T> C, -377A> G, 3877G> A, 4388C> T and 4401C> T; One from the group consisting of -740C> T, -678G> A, 214G> C, 221C> A, 223C> G, 227T> C, 232G> C, 233A> C, 245A> G and 2850C> T; 1611T> A; 1758G> A; 1887insTA; 2573insC; 2988G> A; 4125-4133insGTGCCCACT; 2D6 deletion; And examining the presence or absence of at least eleven CYP2D6 gene mutations selected from the group consisting of 2D6 duplications. 제 7 항에 있어서, The method of claim 7, wherein 상기 (a) 단계의 생물학적 시료가 혈액, 피부 세포, 점막 세포 및 모발로 이루어진 군에서 선택되는 것임을 특징으로 하는 방법.The biological sample of step (a) is characterized in that is selected from the group consisting of blood, skin cells, mucosal cells and hair. 제 7 항에 있어서, The method of claim 7, wherein 상기 (c) 단계의 프라이머는 서열번호 2, 서열번호 3, 서열번호 17 내지 서열번호 23, 서열번호 25 내지 서열번호 30, 서열번호 31, 서열번호 32, 서열번호 34, 서열번호 35, 서열번호 45 및 서열번호 46으로 이루어진 군에서 선택되는 염기서열을 갖는 것임을 특징으로 하는 방법.The primer of step (c) is SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 17 to SEQ ID NO: 23, SEQ ID NO: 25 to SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 32, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 45 and SEQ ID NO: 46 characterized in that it has a nucleotide sequence selected from the group consisting of. 제 7 항에 있어서, The method of claim 7, wherein 상기 (d) 단계에서 -1426C>T, 100C>T 및 1039C>T 로 이루어진 군에서 하나; -1028T>C, -377A>G , 3877G>A, 4388C>T 및 4401C>T로 이루어진 군에서 하나; -740C>T, -678G>A, 214G>C, 221C>A, 223C>G, 227T>C, 232G>C, 233A>C, 245A>G 및 2850C>T로 이루어진 군에서 하나; 1611T>A; 1758G>A; 1887insTA; 2573insC; 2988G>A; 4125-4133insGTGCCCACT; 2D6 결실; 및 2D6 중복으로 이루어진 변이의 존재 유무를 조사하는 것을 특징으로 하는 방법.One from the group consisting of -1426C> T, 100C> T and 1039C> T in step (d); -1028T> C, -377A> G, 3877G> A, 4388C> T and 4401C> T; One from the group consisting of -740C> T, -678G> A, 214G> C, 221C> A, 223C> G, 227T> C, 232G> C, 233A> C, 245A> G and 2850C> T; 1611T> A; 1758G> A; 1887insTA; 2573insC; 2988G> A; 4125-4133insGTGCCCACT; 2D6 deletion; And examining the presence or absence of a mutation consisting of 2D6 overlap. 제 7 항에 있어서, The method of claim 7, wherein 상기 (d) 단계에서 -1584C>G; -1426C>T, 100C>T 및 1039C>T로 이루어진 군에서 하나; 1611T>A; 1758G>A; 2573insC; -740C>T, -678G>A, 214G>C, 221C>A, 223C>G, 227T>C, 232G>C, 233A>C, 245A>G 및 2850C>T로 이루어진 군에서 하나; -1245insGA, -1028T>C, -377A>C, 3877G>A , 4388C>T 및 4401C>T로 이루어진 군에서 하나; 4125-4133insGTGCCCACT; 2D6 결실; 및 2D6 중복으로 이루어진 변이의 존재 유무를 조사하는 것을 특징으로 하는 방법.In step (d) -1584C> G; One in the group consisting of -1426C> T, 100C> T and 1039C> T; 1611T> A; 1758G> A; 2573insC; One from the group consisting of -740C> T, -678G> A, 214G> C, 221C> A, 223C> G, 227T> C, 232G> C, 233A> C, 245A> G and 2850C> T; One in the group consisting of -1245insGA, -1028T> C, -377A> C, 3877G> A, 4388C> T and 4401C> T; 4125-4133insGTGCCCACT; 2D6 deletion; And examining the presence or absence of a mutation consisting of 2D6 overlap. 제 7 항에 있어서, The method of claim 7, wherein 상기 (d) 단계에서 -1426C>T, 100C>T 및 1039C>T 로 이루어진 군에서 하나; -1584C>G; -1028T>C, -377A>G , 3877G>A, 4388C>T 및 4401C>T로 이루어진 군에서 하나; -740C>T, -678G>A, 214G>C, 221C>A, 223C>G, 227T>C, 232G>C, 233A>C, 245A>G 및 2850C>T로 이루어진 군에서 하나; 1611T>A; 1758G>A; 1887insTA; 2573insC; 4125-4133insGTGCCCACT; 2D6 결실; 및 2D6 중복으로 이루어진 변이의 존재 유무를 조사하는 것을 특징으로 하는 방법.One from the group consisting of -1426C> T, 100C> T and 1039C> T in step (d); -1584C> G; -1028T> C, -377A> G, 3877G> A, 4388C> T and 4401C> T; One from the group consisting of -740C> T, -678G> A, 214G> C, 221C> A, 223C> G, 227T> C, 232G> C, 233A> C, 245A> G and 2850C> T; 1611T> A; 1758G> A; 1887insTA; 2573insC; 4125-4133insGTGCCCACT; 2D6 deletion; And examining the presence or absence of a mutation consisting of 2D6 overlap. 제 7 항에 있어서, The method of claim 7, wherein 상기 (d) 단계에서 -1584C>G; -1426C>T, 100C>T 및 1039C>T로 이루어진 군에서 하나; 1611T>A; 1758G>A; 2573insC; -740C>T, -678G>A, 214G>C, 221C>A, 223C>G, 227T>C, 232G>C, 233A>C, 245A>G 및 2850C>T로 이루어진 군에서 하나; -1245insGA, -1028T>C, -377A>G, 3877G>A, 4388C>T 및 4401C>T로 이루어진 군에서 하나; 4125-4133insGTGCCCACT; -1235A>G; 1887insTA; 2D6 결실; 및 2D6 중복으로 이루어진 변이의 존재 유무를 조사하는 것을 특징으로 하는 방법.In step (d) -1584C> G; One in the group consisting of -1426C> T, 100C> T and 1039C> T; 1611T> A; 1758G> A; 2573insC; One from the group consisting of -740C> T, -678G> A, 214G> C, 221C> A, 223C> G, 227T> C, 232G> C, 233A> C, 245A> G and 2850C> T; One in the group consisting of -1245insGA, -1028T> C, -377A> G, 3877G> A, 4388C> T and 4401C> T; 4125-4133insGTGCCCACT; -1235A> G; 1887insTA; 2D6 deletion; And examining the presence or absence of a mutation consisting of 2D6 overlap. 제 7 항에 있어서, The method of claim 7, wherein 상기 (d) 단계에서 -1426C>T, 100C>T 및 1039C>T로 이루어진 군에서 하나; -1028T>C, -377A>G, 3877G>A, 4388C>T 및 4401C>T로 이루어진 군에서 하나; 1611T>A; 1661G>C 및 4180G>C로 이루어진 군에서 하나; 1758G>A; 1887insTA; 2573insC; 2988G>A; 4125-4133insGTGCCCACT; -1235A>G; 1887insTA; 2D6 결실; 및 2D6 중복으로 이루어진 변이의 존재 유무를 조사하는 것을 특징으로 하는 방법.One from the group consisting of -1426C> T, 100C> T and 1039C> T in step (d); -1028T> C, -377A> G, 3877G> A, 4388C> T and 4401C> T; 1611T> A; One in the group consisting of 1661G> C and 4180G> C; 1758G> A; 1887insTA; 2573insC; 2988G> A; 4125-4133insGTGCCCACT; -1235A> G; 1887insTA; 2D6 deletion; And examining the presence or absence of a mutation consisting of 2D6 overlap. 제 7 항에 있어서, The method of claim 7, wherein 상기 (d) 단계에서 -1584C>G; -1426C>T, 100C>T 및 1039C>T로 이루어진 군에서 하나; 1611T>A; 1758G>A; 2573insC; -740C>T, -678G>A, 214G>C, 221C>A, 223C>G, 227T>C, 232G>C, 233A>C, 245A>G 및 2850C>T로 이루어진 군에서 하나; -1245insGA, -1028T>C, -377A>G, 3877G>A, 4388C>T 및 4401C>T로 이루어진 군에서 하나; 1887insTA; 2988G>A; 4125-4133insGTGCCCACT; 2D6 결실; 및 2D6 중복으로 이루어진 변이의 존재 유무를 조사하는 것을 특징으로 하는 방법.In step (d) -1584C> G; One in the group consisting of -1426C> T, 100C> T and 1039C> T; 1611T> A; 1758G> A; 2573insC; One from the group consisting of -740C> T, -678G> A, 214G> C, 221C> A, 223C> G, 227T> C, 232G> C, 233A> C, 245A> G and 2850C> T; One in the group consisting of -1245insGA, -1028T> C, -377A> G, 3877G> A, 4388C> T and 4401C> T; 1887insTA; 2988G> A; 4125-4133insGTGCCCACT; 2D6 deletion; And examining the presence or absence of a mutation consisting of 2D6 overlap. 제 7 항에 있어서, The method of claim 7, wherein 상기 (d) 단계에서 변이의 존재 유무 조사는 스냅샷 (SNaPshot) 분석을 이용하여 수행하는 것을 특징으로 하는 방법.In the step (d), the presence or absence of the investigation of the method characterized in that it is carried out using a snapshot (SNaPshot) analysis. 제 16 항에 있어서, The method of claim 16, 상기 스냅샷 분석은 단일염기다형성 위치의 바로 옆 염기가 3′말단이 되고 상기 단일염기다형성 위치의 인접부위에 어닐링되는 서열을 포함하며 5′말단에는 T 염기가 부가된 프라이머를 이용하여 수행하는 것을 특징으로 하는 방법.The snapshot analysis includes a sequence in which the base next to the monobasic polymorphism position is 3 'end and is annealed to an adjacent portion of the monobasic polymorphism position, and the 5' terminus is performed using a primer added with a T base. How to feature. 제 17 항에 있어서, The method of claim 17, 상기 프라이머는 서열번호 37 내지 서열번호 44, 서열번호 48 및 서열번호 49로 이루어진 군에서 선택되는 염기서열을 갖는 것을 특징으로 하는 방법.The primer has a base sequence selected from the group consisting of SEQ ID NO: 37 to SEQ ID NO: 44, SEQ ID NO: 48 and SEQ ID NO: 49. (a) 검사하고자 하는 유전자를 추출한 다음, 다중 (multiplex) PCR을 수행하여 동정하고자 하는 SNP 주변을 포함하는 PCR 산물을 얻는 단계;(a) extracting a gene to be tested and then performing a multiplex PCR to obtain a PCR product including an SNP surrounding to be identified; (b) 각 대립유전자 (allele)의 특이적인 염기를 동정할 수 있는 ASPE (allele specific primer extension) 프라이머를 이용하여 ASPE 반응을 수행하는 단계;(b) performing an ASPE reaction using an allele specific primer extension (ASPE) primer capable of identifying a specific base of each allele; (c) 상기 반응산물을 유전자 칩에 혼성화시키는 단계; 및(c) hybridizing the reaction product to a gene chip; And (d) 상기 칩을 분석하는 단계를 포함하는, 유전자 분석칩을 이용하여 인간 CYP2D6 유전자의 유전형을 결정하는 방법.(D) method for determining the genotype of the human CYP2D6 gene using a gene analysis chip, comprising the step of analyzing the chip. 제 19 항에 있어서, The method of claim 19, 유전자 칩이 서열번호 54 내지 80의 염기서열을 갖는 프로브를 갖는 것을 특징으로 하는 방법.Gene chip has a probe having a nucleotide sequence of SEQ ID NO: 54 to 80. SNP 검사용 Zip Code 올리고염기 칩을 포함하는, CYP2D6 유전형 분석용 키트.A kit for CYP2D6 genotyping, comprising a Zip Code oligobase chip for SNP testing.
KR1020070052764A 2006-09-11 2007-05-30 htSNP FOR DETERMINING A GENOTYPE OF CYTOCHROME P450 2D6 GENE AND GENOTYPING CHIP USING THEREOF KR100973049B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/KR2007/003102 WO2008032921A1 (en) 2006-09-11 2007-06-26 Htsnps for determining a genotype of cytochrome p450 1a2, 2a6 and 2d6, pxr and udp-glucuronosyltransferase 1a gene and multiplex genotyping methods using thereof
CN201110240425.6A CN102304572B (en) 2006-09-11 2007-06-26 Htsnps for determining a genotype of CYP2D6 gene, and multiplex genotyping methods using thereof
CN2007800336773A CN101522911B (en) 2006-09-11 2007-06-26 Htsnps for determining a genotype of cytochrome P450 1a2, 2A6 and 2D6, PXR and UPD-glucuronosyltransferase 1A gene and multiplex genotyping methods using thereof
JP2009527287A JP2010502212A (en) 2006-09-11 2007-06-26 HTSNPS for genotype analysis of cytochrome P4501A2, 2A6 and 2D6, PXR and UDP-glucuronosyltransferase group 1A genes, and gene multiplex analysis method using the same
CN201110239136.4A CN102277437B (en) 2006-09-11 2007-06-26 HtSNPs for determining a genotype of cytochrome p450 1a2, 2a6 and 2d6, pxr and udp-glucuronosyltransferase 1a gene and multiplex genotyping methods using thereof
US12/440,634 US20100159454A1 (en) 2006-09-11 2007-06-26 HtSNPs FOR DETERMINING A GENOTYPE OF CYTOCHROME P450 1A2, 2A6 AND 2D6, PXR AND UDP-GLUCURONOSYLTRANSFERASE 1A GENE AND MULTIPLEX GENOTYPING METHODS USING THEREOF
US13/549,981 US20130095478A1 (en) 2006-09-11 2012-07-16 HtSNPs FOR DETERMINING A GENOTYPE OF CYTOCHROME P450 1A2, 2A6 AND 2D6, PXR AND UDP-GLUCURONOSYLTRANSFERASE 1A GENE AND MULTIPLEX GENOTYPING METHODS USING THEREOF
US13/549,873 US20130096010A1 (en) 2006-09-11 2012-07-16 HtSNPs FOR DETERMINING A GENOTYPE OF CYTOCHROME P450 1A2, 2A6 AND 2D6, PXR AND UDP-GLUCURONOSYLTRANSFERASE 1A GENE AND MULTIPLEX GENOTYPING METHODS USING THEREOF
JP2013017993A JP5687720B2 (en) 2006-09-11 2013-02-01 HtSNPs for genotype analysis of cytochrome P2A6 gene, and gene multiplex analysis method using the same
JP2013017994A JP5687721B2 (en) 2006-09-11 2013-02-01 HtSNPs for genotype analysis of cytochrome P2D6 gene, and gene multiplex analysis method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060087179 2006-09-11
KR20060087179 2006-09-11

Publications (2)

Publication Number Publication Date
KR20080023622A true KR20080023622A (en) 2008-03-14
KR100973049B1 KR100973049B1 (en) 2010-07-29

Family

ID=39397123

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070052764A KR100973049B1 (en) 2006-09-11 2007-05-30 htSNP FOR DETERMINING A GENOTYPE OF CYTOCHROME P450 2D6 GENE AND GENOTYPING CHIP USING THEREOF

Country Status (2)

Country Link
KR (1) KR100973049B1 (en)
CN (1) CN101522911B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029473A1 (en) * 2019-08-14 2021-02-18 (주)에스피메드 Multi-high speed pharmacogenomic diagnostic kit for personalized pharmacotherapy and predicting drug side effects of multiple prescription drugs associated with cancer and chronic diseases

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101593750B1 (en) * 2013-08-01 2016-03-02 인제대학교 산학협력단 Immortalizatized standard cell lines for genotyping of drug metabolism genes included human cytochrome P450 2D6 gene
CN104988145A (en) * 2015-06-30 2015-10-21 广州金域医学检验中心有限公司 Primer and method for detecting CYP2C9*2 gene polymorphism
CN104988221A (en) * 2015-06-30 2015-10-21 广州金域医学检验中心有限公司 Primer and method for detecting CYP2C9*3 gene polymorphism
CN104988225A (en) * 2015-06-30 2015-10-21 广州金域医学检验中心有限公司 Primer and method for detecting XRCC1 gene polymorphism
CN104988222A (en) * 2015-06-30 2015-10-21 广州金域医学检验中心有限公司 Primer and method for simultaneously detecting polymorphism of CYP2C*2 and CYP2C*3 genes
CN104988226A (en) * 2015-06-30 2015-10-21 广州金域医学检验中心有限公司 Primer and method for detecting GSTP1 gene polymorphism
CN105506091A (en) * 2015-12-30 2016-04-20 广州金域检测科技股份有限公司 Primer of CYP2D6_G1661C gene polymorphism and detection method thereof
CN106222281A (en) * 2016-08-10 2016-12-14 中南大学湘雅三医院 Test kit, application and method of based on the gene pleiomorphism accurate medication of guiding children patient
CN106868172A (en) * 2017-03-27 2017-06-20 杭州迪安医学检验中心有限公司 The kit of pyrosequencing method quick detection CYP2D6 gene copy numbers and its application
CN107090517A (en) * 2017-07-09 2017-08-25 韩林志 For primer sets, kit and the method for instructing dexmedetomidine hydrochloride medication related gene polymorphism to detect
KR102050637B1 (en) * 2017-10-12 2019-11-29 인제대학교 산학협력단 Alleles associated with adverse drug reaction and detecting method thereof
CN107904302A (en) * 2017-11-29 2018-04-13 昆明理工大学 One group of primer for detecting anticoagulant related gene polymorphism at the same time and application
KR102102532B1 (en) * 2018-05-28 2020-04-21 (주)에스피메드 High-speed detection kit for human cytochrome P450 2D6 mutation gene

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960704069A (en) * 1994-07-06 1996-08-31 오쓰카 아키히코 Detection method of human cytochrome P4501A2 gene polymorphism
US20040091909A1 (en) * 2002-07-05 2004-05-13 Huang Doug Hui High throughput cytochrome P450 genotyping

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029473A1 (en) * 2019-08-14 2021-02-18 (주)에스피메드 Multi-high speed pharmacogenomic diagnostic kit for personalized pharmacotherapy and predicting drug side effects of multiple prescription drugs associated with cancer and chronic diseases
KR20210020253A (en) * 2019-08-14 2021-02-24 (주)에스피메드 Multiplex drug gene diagnosis kit for predicting drug side effects on chronic diseases and cancer related multi-prescription drugs and personalized drug treatment

Also Published As

Publication number Publication date
CN101522911B (en) 2012-09-05
KR100973049B1 (en) 2010-07-29
CN101522911A (en) 2009-09-02

Similar Documents

Publication Publication Date Title
KR100973049B1 (en) htSNP FOR DETERMINING A GENOTYPE OF CYTOCHROME P450 2D6 GENE AND GENOTYPING CHIP USING THEREOF
JP5687720B2 (en) HtSNPs for genotype analysis of cytochrome P2A6 gene, and gene multiplex analysis method using the same
CN110541033A (en) composition for detecting EGFR gene mutation and detection method
WO2008032921A1 (en) Htsnps for determining a genotype of cytochrome p450 1a2, 2a6 and 2d6, pxr and udp-glucuronosyltransferase 1a gene and multiplex genotyping methods using thereof
Bang‐Ce et al. Rapid detection of common Chinese glucose‐6‐phosphate dehydrogenase (G6PD) mutations by microarray‐based assay
US20160060696A1 (en) Method for the identification by molecular techniques of genetic variants that encode no d antigen (d-) and altered c antigen (c+w)
Shammas et al. ThalassoChip, an array mutation and single nucleotide polymorphism detection tool for the diagnosis of β-thalassaemia
KR101249635B1 (en) Novel EGR2 SNPs Related to Bipolar Disorder, Microarrays and Kits Comprising them for Diagnosing Bipolar Disorder
US20030054381A1 (en) Genetic polymorphisms in the human neurokinin 1 receptor gene and their uses in diagnosis and treatment of diseases
RU2729360C1 (en) Method of analyzing terminal mutations in brca1, brca2, atm and palb2 genes using multiplex pcr and subsequent hybridisation with an oligonucleotide biological microchip (biochip)
CN109825590B (en) Method, kit and primer for joint detection of tumor-driven gene mutation and microsatellite instability
KR20170049768A (en) Single nucleotide polymorphism markers for determining of skin color and melanism sensitivity and use thereof
KR101092580B1 (en) Polymorphic markers of VCAN for predicting susceptibility to gastric cancer and the prediction method using the same
Calabrese et al. Methods for the identification of mitochondrial DNA variants
EP1842927B1 (en) Methods for identification of Alport Syndrome
JP2007512231A5 (en)
KR20170051748A (en) Single nucleotide polymorphism markers for determining of probability of skin hydration and use thereof
KR101700623B1 (en) Novel SNP marker for discriminating level of amylase within porcine blood and use thereof
CN117385010A (en) qPCR method for detecting gene polymorphism
JP2010246400A (en) Polymorphism identification method
KR101072903B1 (en) htSNP FOR DETERMINING A GENOTYPE OF CYTOCHROME P450 2A6 GENE AND USE THEREOF
CN115362268A (en) Gene polymorphism marker for judging pigmentation skin type and application thereof
CN112501281A (en) Human APOE genotyping detection primer set, detection method and detection kit
KR20210122017A (en) Genetic polymorphic markers for determining type of skin pigmentation and use thereof
KR20130022435A (en) Snp for diagnosing susceptibility to gastric cancer and method for diagnosing susceptibility to gastric cancer using the lox gene snp

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130625

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140821

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150706

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160719

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170707

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180724

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190625

Year of fee payment: 10