KR20080022758A - Method for controlling yaw rate of electronic stability program - Google Patents

Method for controlling yaw rate of electronic stability program Download PDF

Info

Publication number
KR20080022758A
KR20080022758A KR1020060086325A KR20060086325A KR20080022758A KR 20080022758 A KR20080022758 A KR 20080022758A KR 1020060086325 A KR1020060086325 A KR 1020060086325A KR 20060086325 A KR20060086325 A KR 20060086325A KR 20080022758 A KR20080022758 A KR 20080022758A
Authority
KR
South Korea
Prior art keywords
vehicle
stability
reference value
speed
turning speed
Prior art date
Application number
KR1020060086325A
Other languages
Korean (ko)
Other versions
KR101103528B1 (en
Inventor
이신애
Original Assignee
주식회사 만도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 만도 filed Critical 주식회사 만도
Priority to KR1020060086325A priority Critical patent/KR101103528B1/en
Publication of KR20080022758A publication Critical patent/KR20080022758A/en
Application granted granted Critical
Publication of KR101103528B1 publication Critical patent/KR101103528B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • B60W30/045Improving turning performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/109Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

A yaw rate control method for an ESP(Electronic Stability Program) system of a vehicle is provided to secure stability of the vehicle by stably limiting the yaw rate of the vehicle by controlling vehicle wheels through the momentum of the vehicle and road state and to judge the state of the vehicle exactly by using information about the slip angle of the vehicle on the low-friction road. A yaw rate control method for an ESP system of a vehicle comprises the steps of: measuring the real momentum of the vehicle by reading measurement values from plural sensors detecting motion information of the vehicle(S100,S110); setting a stable reference value that a driver wants, from steering angle and vehicle speed measured from the sensors of the vehicle(S120); comparing the measured momentum of the vehicle and the set stable reference value and judging road conditions according to the degree of measured lateral acceleration if the momentum of the vehicle is over the stable reference value(S130,S140); and deciding the yaw rate limit timing and limit degree according to the judged road condition(S150).

Description

차량 안정성 제어시스템의 선회속도 제어방법{Method for controlling Yaw rate of Electronic Stability Program}Rotational speed control method of vehicle stability control system {Method for controlling Yaw rate of Electronic Stability Program}

도 1은 차량의 선회주행 시 오버스티어 상황을 도시한 개념도,1 is a conceptual diagram illustrating an oversteer situation when a vehicle is traveling in a circle;

도 2는 차량의 선회주행 시 언더스티어 상황을 도시한 개념도,2 is a conceptual diagram illustrating an understeer situation when the vehicle is traveling in a circle;

도 3은 차량의 선회주행 시 오버스티어와 언더스티어 거동이 복합적으로 나타나는 상황을 도시한 개념도,3 is a conceptual diagram illustrating a situation in which the oversteer and understeer behaviors appear in a complex manner when the vehicle is turning;

도 4는 본 발명에 의한 차량 안정성 제어시스템의 구성 블록도,4 is a block diagram of a vehicle stability control system according to the present invention;

도 5는 본 발명에 의한 차량 안정성 제어시스템의 선회속도 제어방법의 동작 흐름도,5 is an operation flowchart of a revolution speed control method of a vehicle stability control system according to the present invention;

도 6은 본 발명에 의한 차량 안정성 제어시스템의 선회속도 제한 진입조건을 나타낸 그래프.Figure 6 is a graph showing the turning speed limit entry condition of the vehicle stability control system according to the present invention.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10 : 조향각센서 20 : 차속센서10: steering angle sensor 20: vehicle speed sensor

30 : 선회속도센서 40 : 횡가속도센서30: revolution speed sensor 40: lateral acceleration sensor

60 : ESP 제어기 61 : 기준운동량 설정부60: ESP controller 61: reference momentum setting unit

62 : 차량운동량 측정부 63 : 운동량오차 산출부62: vehicle momentum measurement unit 63: momentum error calculation unit

64 : 노면판단부 65 : 언더스티어/오버스티어 결정부64: road decision unit 65: understeer / oversteer determination unit

66 : 언더스티어/오버스티어 제어부 70 : 브레이크 제어부66: understeer / oversteer control unit 70: brake control unit

80 : 엔진 제어부80: engine control unit

본 발명은 차량 안정성 제어시스템에서 차량 안정성 판단기준인 선회속도(Yaw rate)를 제한하기 위한 차량 안정성 제어시스템의 선회속도 제어방법에 관한 것이다.The present invention relates to a swing speed control method of a vehicle stability control system for limiting a yaw rate, which is a criterion for determining vehicle stability in a vehicle stability control system.

일반적으로 차량의 전자제어시스템은 차량의 슬립현상을 효율적으로 방지하여 강력하고 안정된 제동력을 얻기 위한 것으로, 제동 시 휠의 미끄러짐을 방지하는 안티록 브레이크 시스템(Anti-Lock Brake System;이하, ABS라 한다)과, 차량의 급발진 또는 급가속시 구동 휠의 슬립을 방지하는 트랙션 제어시스템(Traction Control System;이하, TCS라 한다)과, ABS와 TCS를 조합하여 브레이크 액압을 제어함으로써 차량의 주행 안정성을 향상시켜주는 차량 안정성 제어시스템(Electronic Stability Program) 등이 개시되어 있다.In general, the electronic control system of a vehicle is to obtain a strong and stable braking force by effectively preventing the slip phenomenon of the vehicle, an anti-lock brake system (hereinafter referred to as ABS) to prevent the slip of the wheel during braking. ), A traction control system (hereinafter referred to as TCS) that prevents slippage of the drive wheel during sudden start or acceleration of the vehicle, and ABS and TCS are combined to control brake hydraulic pressure to improve driving stability of the vehicle. A vehicle stability control system (Electronic Stability Program) and the like are disclosed.

이중에서, 차량 안정성 제어시스템은 기본적으로 차량의 요 거동을 제어하기 위한 것으로, 차량의 선회주행 시 타이어의 접촉한계에 이르는 위험한 운전상황에서 브레이크와 엔진을 제어하여 운전자가 원하는 궤적으로 선회가 가능하도록 유도해주는 장치이다.Among these, the vehicle stability control system is basically for controlling the yaw behavior of the vehicle. The vehicle stability control system controls the brake and the engine in a dangerous driving situation that reaches the tire contact limit when turning the vehicle so that the driver can turn to the desired trajectory. It is a device to guide.

보통, 차량이 선회 주행하는 경우 도 1 및 도 2에 도시한 바와 같이, 차량이 안정된 선회궤적을 기준으로 안쪽으로 말려드는 스핀 아웃(Spin out)인 오버스티어(Over steer)나, 이와 반대로 바깥쪽으로 밀려나가는 드리프트 아웃(Drift out)인 언더스티어가 발생하여 차량의 안정성을 해치게 된다.In general, when the vehicle is turning, as shown in FIGS. 1 and 2, an over steer is a spin out in which the vehicle is rolled inward based on a stable turning trajectory, or vice versa. Understeer, which is a drift out, is pushed out, which impairs the stability of the vehicle.

이를 방지하기 위해 차량 안정성 제어시스템은 도 1에 도시한 바와 같이, 차량의 회전반경이 급격히 작아지면서 운전자가 원하는 궤적에 비해 차량이 안쪽으로 말려들어 스핀되는 오버스티어 시 전륜 외측 휠에 제동력을 가하여 차량의 바깥쪽으로 작용하는 보상 모멘트를 생성시킴으로서 차량이 주행궤적에서 안쪽으로 치우치는 것을 방지하며, 이와 반대로 도 2에 도시한 바와 같이, 차량의 회전반경이 커지면서 차량이 운전자가 원하는 궤적의 바깥쪽으로 밀려나가는 언더스티어 시 후륜 내측 휠에 제동력을 가하여 차량의 안쪽으로 작용하는 보상 모멘트를 생성시킴으로써 차량이 원하는 궤적에서 바깥쪽으로 밀려나가는 것을 방지하여 차량의 궤적을 안정한 상태로 유지시켜 준다.In order to prevent this, the vehicle stability control system, as shown in FIG. 1, applies a braking force to the outer wheels of the front wheel during oversteer when the vehicle is rolled inwards and spins as compared to the trajectory desired by the driver while the rotation radius of the vehicle is rapidly reduced. By generating a compensating moment acting outward of the vehicle, the vehicle is prevented from inwardly shifting in the driving trajectory, and as shown in FIG. 2, as the turning radius of the vehicle increases, the undercut of the vehicle is pushed out of the trajectory desired by the driver. By applying braking force to the inner wheel of the rear wheel during steering, it creates a compensating moment acting inwardly of the vehicle to prevent the vehicle from being pushed outward from the desired trajectory, thereby maintaining the trajectory of the vehicle in a stable state.

이와 같이, 차량 안정성 제어시스템은 선회하는 차량의 안정성을 확보하기 위하여 현재 주행 중인 차량이 안정된 궤적을 그리고 있는지 또는 오버스티어인지 언더스티어인지를 판단하는 것이 매우 중요하다.As such, it is very important for the vehicle stability control system to determine whether the vehicle currently being driven is drawing a stable trajectory or oversteer or understeer in order to secure stability of the turning vehicle.

따라서 종래에는 운전자의 조향입력과 차량의 주행속도를 입력값으로 하는 기준 차량모델(Yaw Rate)을 만들어 차량모델로부터 얻어진 값을 선회속도센서로부터 측정되는 선회속도 값과 비교하여 오버스티어와 언더스티어 상황을 판단하고 있다.Therefore, in the related art, a reference vehicle model (Yaw Rate) is used as the input value of the driver's steering input and the driving speed of the vehicle, and the value obtained from the vehicle model is compared with the turning speed value measured by the turning speed sensor, thereby oversteering and understeering. Judging.

그런데, 이러한 종래 차량 안정성 제어방법은 고마찰 노면의 경우 차량모델 을 이용하여 이러한 상황을 판단하는 것이 비교적 용이하지만, 저마찰 노면의 경우에는 노면 한계 마진이 고마찰 노면 대비 매우 작아지기 때문에 도 3에 도시한 바와 같이 오버스티어 거동과 언더스티어 거동이 복합적으로 나타나게 되어 기존 선회속도 모델만으로는 차량의 상황을 정확히 판단하기 어려워 적절한 제어가 불가능하게 된다.However, the conventional vehicle stability control method is relatively easy to determine the situation using a vehicle model in the case of high friction road surface, but in the case of low friction road surface road margin margin is very small compared to the high friction road surface in Figure 3 As shown, the oversteer behavior and the understeer behavior are compounded, and it is difficult to accurately determine the situation of the vehicle using only the existing speed model, so that proper control is impossible.

따라서 본 발명은 상기와 같은 종래의 문제점을 해결하기 위해 안출된 것으로, 본 발명의 목적은 차량의 센서를 통해 얻어진 차량운동량과 추정을 통해 얻어진 노면상태 등을 이용하여 차륜을 제어함으로서 차량의 선회속도를 안정되게 제한하는 차량 안정성 제어시스템의 선회속도 제어방법을 제공하는데 있다.Therefore, the present invention has been made to solve the above-mentioned conventional problems, the object of the present invention is to control the wheel by using the vehicle movement amount obtained through the sensor of the vehicle and the road surface state obtained through the estimation, etc. To provide a method of controlling the revolution speed of the vehicle stability control system to stably limit.

본 발명의 다른 목적은, 저마찰 노면의 경우 차량모델 외에 차체 미끄럼각 정보를 이용하여 차량 상황을 보다 정확히 판단함으로서 노면 조건과 운전자 의지에 따라 선회속도를 차별적으로 적용하는 차량 안정성 제어시스템의 선회속도 제어방법을 제공하는데 있다.Another object of the present invention, in the case of low-friction road surface is to determine the vehicle situation more accurately using the vehicle body sliding angle information in addition to the vehicle model, the turning speed of the vehicle stability control system to apply the turning speed differentially according to the road conditions and driver will To provide a control method.

상기 목적을 달성하기 위하여 본 발명은, 차량 안정성 제어시스템에서 선회속도를 제어하는 방법에 있어서, 차량의 움직임 정보를 감지하는 다수의 센서로부터 측정값을 읽어 들여 실제 차량운동량을 측정하는 단계; 차량의 센서로부터 측정된 조향각과 차속으로부터 운전자가 원하는 안정 기준값을 설정하는 단계; 측정된 차량운동량과 설정된 안정 기준값을 비교하여 상기 차량운동량이 안정 기준값보다 큰 경우 측정된 횡가속도의 크기에 따라 노면조건을 판단하는 단계; 및 판단된 노면조건에 따라 선회속도 제한시기와 제한크기를 결정하는 단계;를 포함하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a method for controlling a turning speed in a vehicle stability control system, comprising: measuring actual vehicle movement by reading measurement values from a plurality of sensors for detecting motion information of a vehicle; Setting a stability reference value desired by the driver from the steering angle and the vehicle speed measured from the sensor of the vehicle; Comparing the measured vehicle movement amount with a set stability reference value and determining a road surface condition according to the magnitude of the measured lateral acceleration when the vehicle movement amount is greater than the stability reference value; And determining the turning speed limiting time and the limiting size according to the determined road surface condition.

또한, 상기 안정 기준값은 조향각과 차속으로부터 결정되는 선회속도인 것을 특징으로 한다.In addition, the stability reference value is characterized in that the turning speed determined from the steering angle and the vehicle speed.

또한, 상기 선회속도 제한시기와 제한크기를 결정하는 단계는, 상기 안정 기준값과 노면조건에 따라 선회속도의 제한시기와 제한크기를 다르게 적용하는 것을 특징으로 한다.The determining of the turning speed limiting time and the limiting size may be performed by applying the turning time limiting time and the limiting size differently according to the stability reference value and the road surface condition.

그리고, 본 발명은 차량 안정성 제어시스템에서 선회속도를 제한하기 위한 방법에 있어서, 차량의 센서로부터 측정된 조향각과 차속으로부터 운전자가 원하는 선회속도의 안정 기준값을 설정하고, 측정된 횡가속도의 크기에 따라 노면조건을 판단하고, 설정된 안정 기준값과 노면조건에 따라 선회속도의 제한시기와 제한크기를 결정하고, 결정된 선회속도 제한시기와 제한크기에 따라 구동력 또는 제동력을 제어하여 차량 안정성을 확보하는 것을 특징으로 한다.In addition, the present invention is a method for limiting the turning speed in the vehicle stability control system, from the steering angle and the vehicle speed measured from the sensor of the vehicle to set a stable reference value of the turning speed desired by the driver, according to the magnitude of the measured transverse acceleration Determine the road condition, determine the time limit and size of the turning speed according to the set stability reference value and the road condition, and control the driving force or braking force according to the determined speed limit time and the limit size to secure vehicle stability. do.

이하, 본 발명의 일실시예를 첨부된 도면을 참조하여 설명한다.Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

도 4는 본 발명에 의한 차량 안정성 제어시스템의 구성 블록도로서, 조향각센서(10), 차속센서(20), 선회속도센서(30), 횡가속도센서(40), 브레이크압력센서(50), ESP 제어기(60), 브레이크 제어부(70) 및 엔진 제어부(80)를 포함하여 구성된다.4 is a block diagram of a vehicle stability control system according to the present invention, which includes a steering angle sensor 10, a vehicle speed sensor 20, a turning speed sensor 30, a lateral acceleration sensor 40, a brake pressure sensor 50, ESP controller 60, brake control unit 70 and the engine control unit 80 is configured to include.

상기 조향각센서(10)는 조향 시 조향핸들의 조향각 크기를 검출하고, 차속센 서(20)는 다수(예를 들어, 4개)의 휠에 각각 설치되어 차량속도를 검출한다.The steering angle sensor 10 detects the steering angle of the steering wheel during steering, and the vehicle speed sensor 20 is installed on a plurality of wheels (for example, four) to detect the vehicle speed.

상기 선회속도센서(30)는 차량의 선회속도(Yaw rate)를 검출하고, 횡가속도센서(40)는 차량의 횡가속도(Ax)를 검출하며, 브레이크압력센서(50)는 마스터 압력을 검출한다.The revolution speed sensor 30 detects the yaw rate of the vehicle, the lateral acceleration sensor 40 detects the lateral acceleration Ax of the vehicle, and the brake pressure sensor 50 detects the master pressure. .

상기 ESP 제어기(60)는 조향각센서(10), 차속센서(20), 선회속도센서(30), 횡가속도센서(40) 및 브레이크압력센서(50)로부터 검출된 신호를 입력받아 차량의 상황이 오버스티어인지 언더스티어인지를 판단하고, 각 휠의 제동압력과 엔진토크를 제어하기 위한 브레이크 제어부(70)와 엔진 제어부(80)를 제어하는 것으로, 기준운동량 설정부(61), 차량운동량 측정부(62), 운동량오차 산출부(63), 노면판단부(64), 언더스티어/오버스티어 결정부(65) 및 언더스티어/오버스티어 제어부(66)를 포함한다.The ESP controller 60 receives signals detected from the steering angle sensor 10, the vehicle speed sensor 20, the turning speed sensor 30, the lateral acceleration sensor 40, and the brake pressure sensor 50 to determine the situation of the vehicle. The reference momentum setting unit 61 and the vehicle momentum measuring unit determine whether the oversteer or the understeer, and control the brake control unit 70 and the engine control unit 80 for controlling the braking pressure and engine torque of each wheel. (62), an exercise amount error calculation unit 63, a road surface determination unit 64, an understeer / oversteer determination unit 65, and an understeer / oversteer control unit 66.

상기 기준운동량 설정부(61)는 상기 조향각센서(10)와 차속센서(20)로부터 검출된 조향각과 차량속도를 이용하여 차량모델로부터 운전자가 원하는 차량의 궤적을 나타내는 안정 기준값을 설정하는 것으로, 운전자가 원하는 차량의 궤적을 나타내는 안정 기준값은 선회속도로 나타낼 수 있으며 이는 기본 차량동역학에 기초하여 조향각과 차량속도로부터 결정된다.The reference momentum setting unit 61 sets a stable reference value representing the trajectory of the vehicle desired by the driver from the vehicle model by using the steering angle and the vehicle speed detected by the steering angle sensor 10 and the vehicle speed sensor 20. The stability reference, which indicates the trajectory of the desired vehicle, can be represented by the turning speed, which is determined from the steering angle and the vehicle speed based on the basic vehicle dynamics.

상기 차량운동량 측정부(62)는 조향각센서(10), 차속센서(20), 선회속도센서(30), 횡가속도센서(40) 및 브레이크압력센서(50)로부터 검출된 값을 통해 실제 차량운동량을 측정하고, 운동량오차 산출부(63)는 기준운동량 설정부(61)에서 설정된 안정 기준값과 차량운동량 측정부(62)에서 측정된 실제 차량운동량을 비교하여 차량운동량과 안정 기준값의 차이 즉, 운동량오차를 산출한다.The vehicle momentum measuring unit 62 measures the actual vehicle momentum through values detected from the steering angle sensor 10, the vehicle speed sensor 20, the turning speed sensor 30, the lateral acceleration sensor 40, and the brake pressure sensor 50. And the momentum error calculation unit 63 compares the actual reference value measured by the vehicle momentum measurement unit 62 with the stable reference value set by the reference momentum setting unit 61, that is, the difference between the vehicle momentum and the stability reference value, that is, the amount of momentum. Calculate the error.

상기 노면판단부(64)는 횡가속도센서(40)로부터 검출된 횡가속도의 크기를 이용하여 차량이 주행하는 노면의 상태 즉, 타이어와 노면 사이의 마찰계수와 차체 미끄럼각(Side slip angle)을 판단한다.The road surface determination unit 64 uses the magnitude of the lateral acceleration detected by the lateral acceleration sensor 40 to determine the state of the road surface on which the vehicle travels, that is, the coefficient of friction between the tire and the road surface and the side slip angle. To judge.

상기 언더스티어/오버스티어 결정부(65)는 상기 운동량오차 산출부(63)에서 산출된 운동량 차이값과 상기 노면판단부(64)에서 판단된 노면마찰계수를 이용하여 차량의 상태가 언더스티어인지 또는 오버스티어인지를 결정한다.The understeer / oversteer determination unit 65 determines whether the state of the vehicle is understeer using the difference in the amount of exercise calculated by the momentum error calculation unit 63 and the road friction coefficient determined by the road surface determination unit 64. Or oversteer.

상기 언더스티어/오버스티어 제어부(66)는 상기 결정된 언더스티어 또는 오버스티어에 따라 브레이크 제어부(70), 엔진토크 제어부(80) 단독 또는 ABS 제어블록(71) 및 TCS 제어블록(81)과 협조 제어하여 차량의 안정성을 확보하기 위한 제동력 또는 엔진의 구동력을 제어하는 것으로, 차량 안정성 제어시스템에서 차량 안정성 판단 기준인 선회속도를 제한하기 위해 차량의 센서(10,20)로부터 추정된 선회속도와 횡가속도의 크기에 따라 노면을 판단하여 선회속도량 제한시기와 제한크기를 결정한다.The understeer / oversteer control unit 66 controls cooperative control with the brake control unit 70, the engine torque control unit 80 alone or the ABS control block 71 and the TCS control block 81 according to the determined understeer or oversteer. By controlling the braking force or the engine driving force to secure the stability of the vehicle, and the rotational speed and the lateral acceleration estimated from the sensors 10 and 20 of the vehicle to limit the turning speed, which is the criteria for determining vehicle stability in the vehicle stability control system. Determine the turning speed limit time and limit size by judging the road surface according to the size of.

또한, 상기 언더스티어/오버스티어 제어부(66)는 언더스티어/오버스티어 결정부(65)의 결정에 따라 후륜에서 먼저 타이어와 노면의 접착한계에 도달하여 오버스티어 현상이 나타날 경우 전륜의 제동장치를 제어하여 전륜에 의해 발생하는 선회모멘트를 줄여준다. 반대로 전륜에서 먼저 타이어와 노면의 접착한계에 도달하여 언더스티어 현상이 나타날 경우 후륜을 제어하여 차량이 원하는 궤적으로 운동하도록 제어한다. 노면마찰계수 변화 시에는 더욱 더 심한 오버스티어 현상이 나타날 수 있는데 여기서는 차량운동량과 안정 기준값의 차이가 규정된 값 이상의 변화율로 증가할 때 전륜 외측 휠 이외에 후륜 외측 휠도 제어함으로서 차량 안정성을 확보한다.In addition, the understeer / oversteer control unit 66 may apply the braking device of the front wheel when an oversteer phenomenon occurs because the rear wheel first reaches the adhesion limit between the tire and the road surface according to the determination of the understeer / oversteer determining unit 65. Control to reduce the turning moment generated by the front wheels. On the contrary, when the front wheel first reaches the adhesion limit between the tire and the road surface and the understeer phenomenon occurs, the rear wheel is controlled to move the vehicle in the desired trajectory. When the road friction coefficient changes, a more severe oversteering phenomenon may occur. In this case, when the difference between the vehicle movement amount and the stabilization reference value increases by a change rate more than the prescribed value, the rear wheel outside wheel is also controlled to secure vehicle stability.

또한, 상기 언더스티어/오버스티어 제어부(66)는 최적의 안정성과 승차감을 위해 제동력만으로 불충분한 경우에는 엔진에 의한 구동력을 감소시킴으로서 지나친 제동력에 의한 차량의 흔들임(Rocking) 현상을 최소화한다. 요구되는 구동력 감소량은 엔진 ECU와의 CAN(Controller Area Network) 통신을 통해서 이루어진다.In addition, the understeer / oversteer control unit 66 minimizes rocking of the vehicle due to excessive braking force by reducing the driving force caused by the engine when the braking force is insufficient for optimum stability and riding comfort. The required driving force reduction is achieved through controller area network (CAN) communication with the engine ECU.

상기 브레이크 제어부(70)는 ESP 제어기(60)로부터 출력되는 제동신호에 따라 휠 실린더에 공급되는 브레이크 액압을 제어하여 차량의 안정성을 최대한 확보하도록 ABS 제어블록(71)과 협조 제어하여 제동압력을 발생하고, 엔진 제어부(80)는 ESP 제어기(60)로부터 출력되는 엔진제어신호에 따라 엔진토크를 제어하여 차량의 안정성을 최대한 확보하도록 TCS 제어블록(81)과 협조 제어하여 엔진의 구동력을 제어한다.The brake control unit 70 controls the brake hydraulic pressure supplied to the wheel cylinder according to the braking signal output from the ESP controller 60 to cooperatively control the ABS control block 71 to generate the braking pressure so as to ensure the stability of the vehicle. In addition, the engine controller 80 controls the engine torque according to the engine control signal output from the ESP controller 60 to cooperatively control the driving force of the engine by cooperatively controlling the TCS control block 81 to secure the maximum stability of the vehicle.

이하, 상기와 같이 구성된 본 발명의 차량 안정성 제어시스템의 선회속도 제어방법의 동작과정 및 작용효과를 설명한다.Hereinafter, an operation process and an effect of the revolution speed control method of the vehicle stability control system of the present invention configured as described above will be described.

도 5는 본 발명에 의한 차량 안정성 제어시스템의 선회속도 제어방법의 동작 흐름도이다.5 is an operation flowchart of a revolution speed control method of the vehicle stability control system according to the present invention.

도 5에서, 주행 중인 차량의 조향각, 차속, 선회속도, 횡가속도 및 마스터 압력을 조향각센서(10), 차속센서(20), 선회속도센서(30), 횡가속도센서(40) 및 브레이크압력센서(50)에서 각각 읽어 들인다(S100).In FIG. 5, the steering angle, vehicle speed, turning speed, lateral acceleration and master pressure of the driving vehicle are determined by the steering angle sensor 10, the vehicle speed sensor 20, the turning speed sensor 30, the lateral acceleration sensor 40, and the brake pressure sensor. Each read at 50 (S100).

각 센서(10~50)에서 읽어 들인 차량의 조향각, 차속, 선회속도, 횡가속도 및 마스터 압력 등의 측정값을 ESP 제어기(60)의 차량운동량 측정부(62)에서 입력받아 차량의 실제 운동량 즉, 차량운동량을 측정한다(S110).The actual momentum of the vehicle is received from the vehicle momentum measuring unit 62 of the ESP controller 60 by inputting measurement values such as the steering angle, vehicle speed, turning speed, lateral acceleration, and master pressure read from each sensor 10 to 50. Measure the vehicle momentum (S110).

이때, ESP 제어기(60)의 기준운동량 설정부(61)에서는 기본 차량동역학에 의해서 운전자가 원하는 차량의 궤적을 나타내는 안정 기준값(Stability Criterion)을 설정하는데, 안정 기준값은 읽어 들인 차량의 조향각과 차속으로부터 결정되는 선회속도(Yaw rate)로 나타낼 수 있으며(S120), 안정 기준값을 설정하는 방법은 이후에 설명하기로 한다.At this time, the reference momentum amount setting unit 61 of the ESP controller 60 sets a stability criterion indicating the trajectory of the desired vehicle by the basic vehicle dynamics, and the stability reference value is determined from the steering angle and the vehicle speed of the vehicle. It may be represented by the determined yaw rate (S120), and a method of setting a stable reference value will be described later.

그리고, ESP 제어기(60)의 운동량오차 산출부(63)는 차량운동량 측정부(62)에서 측정된 실제 차량운동량과 기준운동량 설정부(61)에서 설정된 운전자가 원하는 차량운동량 즉, 선회속도의 안정 기준값을 비교하여 두 운동량의 차이값 즉, 운동량오차를 산출한다.In addition, the momentum error calculation unit 63 of the ESP controller 60 stabilizes the actual vehicle momentum measured by the vehicle momentum measurement unit 62 and the vehicle momentum desired by the driver set by the reference momentum setting unit 61, that is, the turning speed. Comparing the reference value to calculate the difference between the two momentum, that is, the momentum error.

따라서 ESP 제어기(60)의 언더스티어/오버스티어 결정부(65)는 산출된 운동량오차의 비교결과에 따라 차량이 언더스티어인지 오버스티어인지를 결정하고, 상기 차량운동량이 안정 기준값보다 큰가를 판단한다(S130).Accordingly, the understeer / oversteer determination unit 65 of the ESP controller 60 determines whether the vehicle is understeer or oversteer based on the result of the comparison of the calculated momentum error, and determines whether the vehicle movement amount is greater than the stability reference value. (S130).

상기 차량운동량이 안정 기준값보다 크지 않은 경우, 종래와 마찬가지로 언더스티어/오버스티어 결정부(65)에서 결정된 언더스티어 또는 오버스티어에 따라 언더스티어/오버스티어 제어부(66)에서 브레이크 제어부(70), 엔진 제어부(80) 단독 또는 ABS 제어블록(71) 및 TCS 제어블록(81)과 협조 제어하여 차량의 안정성을 확보하도록 제동력 또는 엔진의 구동력을 제어한다(S131).When the vehicle momentum is not greater than the stability reference value, the brake control unit 70 and the engine in the understeer / oversteer control unit 66 according to the understeer or oversteer determined by the understeer / oversteer determining unit 65 as in the prior art. The controller 80 alone or cooperatively controls the ABS control block 71 and the TCS control block 81 to control the braking force or the driving force of the engine to secure vehicle stability (S131).

한편, 상기 차량운동량이 안정 기준값보다 큰 경우 ESP 제어기(60)의 노면판단부(64)는 읽어 들인 횡가속도의 크기에 따라 노면의 조건을 판단하고(S140), ESP 제어기(60)의 언더스티어/오버스티어 제어부(66)는 차속 또는 노면조건에 따라 선회속도를 제한한다(S150).On the other hand, when the vehicle movement amount is greater than the stability reference value, the road surface determination unit 64 of the ESP controller 60 determines the condition of the road surface according to the magnitude of the lateral acceleration read (S140), the understeer of the ESP controller 60 The oversteer control unit 66 limits the turning speed according to the vehicle speed or the road surface condition (S150).

즉, 언더스티어/오버스티어 제어부(66)는 언더스티어/오버스티어 결정부(65)의 결정에 따라 후륜에서 먼저 타이어와 노면의 접착한계에 도달하여 오버스티어 현상이 나타날 경우 전륜의 제동장치를 제어하여 전륜에 의해 발생하는 선회모멘트를 줄여준다. 반대로 전륜에서 먼저 타이어와 노면의 접착한계에 도달하여 언더스티어 현상이 나타날 경우 후륜을 제어하여 차량이 원하는 궤적으로 운동하도록 제어한다. 노면마찰계수 변화 시에는 더욱 더 심한 오버스티어 현상이 나타날 수 있는데 여기서는 차량운동량과 안정 기준값의 차이가 규정된 값 이상의 변화율로 증가할 때 전륜 외측 휠 이외에 후륜 외측 휠도 제어함으로서 차량 안정성을 확보한다.That is, the understeer / oversteer control unit 66 controls the braking device of the front wheel when the oversteer phenomenon occurs because the rear wheel first reaches the adhesion limit between the tire and the road surface according to the determination of the understeer / oversteer determining unit 65. This reduces the turning moment caused by the front wheels. On the contrary, when the front wheel first reaches the adhesion limit between the tire and the road surface and the understeer phenomenon occurs, the rear wheel is controlled to move the vehicle in the desired trajectory. When the road friction coefficient changes, a more severe oversteering phenomenon may occur. In this case, when the difference between the vehicle movement amount and the stabilization reference value increases by a change rate more than the prescribed value, the rear wheel outside wheel is also controlled to secure vehicle stability.

또한, 언더스티어/오버스티어 제어부(66)는 최적의 안정성과 승차감을 위해 제동력만으로 불충분한 경우에는 엔진에 의한 구동력을 감소시킴으로서 지나친 제동력에 의한 차량의 흔들림(Rocking) 현상을 최소화한다. 요구되는 구동력 감소량은 엔진 ECU와의 CAN(Controller Area Network) 통신을 통해서 이루어진다.In addition, the understeer / oversteer control unit 66 minimizes rocking of the vehicle due to excessive braking force by reducing the driving force caused by the engine when the braking force is insufficient for optimal stability and riding comfort. The required driving force reduction is achieved through controller area network (CAN) communication with the engine ECU.

다음에는, 안정 기준값을 설정하여 선회속도를 제한하는 방법에 대하여 설명한다.Next, a method of limiting the turning speed by setting a stable reference value will be described.

안정 기준값은 차량을 2자 유도(Degree of Freedom) 시스템으로부터 모델링 함으로서 조향각, 차속과 운전자가 원하는 선회속도와의 관계를 구하여 설정하게 된다.The stability threshold is set by modeling the vehicle from the Degree of Freedom system to determine the relationship between steering angle, vehicle speed and driver's desired turning speed.

아래의 [식 1]은 차량의 선회속도(r)와 차체 미끄럼각(β)에 대한 차량운동 방정식을 나타낸다.Equation 1 below represents a vehicle motion equation for the vehicle's turning speed r and the vehicle sliding angle β .

[식 1][Equation 1]

Figure 112006064794381-PAT00001
Figure 112006064794381-PAT00001

뉴튼 제2법칙과 Derivation개념을 이용하여 유도된 이 식을 정리하면 아래의 [식 2]와 같이 조향각(δ sw )에 대한 선회속도량(r no )은 차속의 함수(V x )로 결정할 수 있다.By arranging this equation derived using the Newton's second law and the concept of derivation, the turning speed ( r no ) for the steering angle ( δ sw ) can be determined as a function of the vehicle speed ( V x ) as shown in [Equation 2] below. have.

[식 2][Equation 2]

Figure 112006064794381-PAT00002
Figure 112006064794381-PAT00002

이와 같이, 결정된 선회속도량으로부터 목표 선회속도량(r desired )은 아래의 [식 3]과 같이 차속(V x )과 [식 2]의 선회속도량(r no )으로 결정된 필터로부터 결정된다.In this way, the target turning speed amount r desired from the determined turning speed amount is determined from the filter determined by the vehicle speed V x and the turning speed amount r no of [Equation 2] as shown in [Equation 3] below.

[식 3][Equation 3]

Figure 112006064794381-PAT00003
Figure 112006064794381-PAT00003

노면마찰계수가 작을 경우 위에서 계산한 목표 선회속도량(r desired ) 값을 이용하여 제어를 하면 차량의 방향은 운전자가 원하는 쪽으로 될 수 있지만, 차체 미끄럼각이 커지게 되어 안정성을 잃게 되어 도 3의 저마찰 노면에서 선회속도의 제한이 없는 경우의 결과와 같이 차량은 불안정 상태로 제어된다.When the road friction coefficient is small, if the control is performed using the target value of the desired turning speed ( r desired ) calculated above, the direction of the vehicle may be in the direction desired by the driver, but the slippage angle of the vehicle increases, resulting in loss of stability. The vehicle is controlled in an unstable state as a result of the absence of a limit of turning speed on a low friction road surface.

따라서, 이와 같은 경우에는 목표 선회속도량(r desired )을 제한함으로서 차량 안정성과 원하는 방향으로의 운동을 동시에 확보할 수 있게 된다.Therefore, in such a case, by limiting the target turning speed r desired , vehicle stability and movement in a desired direction can be secured simultaneously.

제한된 선회속도의 최대치(r limited, max ) 값은 도 6에 도시한 바와 같이, 기본적인 차량운동의 동역학적 제한조건에서 결정될 수 있다. 여기서 차량 횡가속도(a y ) 값은 노면마찰계수(μ), 차속(V) 등으로부터 결정된다.The maximum value of the limited turning speed r limited, max can be determined in the dynamic constraint of basic vehicle motion, as shown in FIG. 6. The vehicle lateral acceleration ( a y ) is determined from the road friction coefficient ( μ ), the vehicle speed ( V ), and the like.

[식 4][Equation 4]

Figure 112006064794381-PAT00004
Figure 112006064794381-PAT00004

이와 같이, 차량의 운동조건 또는 노면조건의 다양성으로 인하여 동역학적인 제한조건에서 결정된 선회속도의 최대치(r limited, max )는 실제적인 차량제어에는 기본적인 아이디어만을 제공한다.As such, the maximum value of the turning speed ( r limited, max ) determined in the dynamic limiting conditions due to the variety of the movement conditions or the road surface conditions of the vehicle provides only the basic idea for the actual vehicle control.

선회속도 제한의 진입조건인 차량모델에서 계산된 횡가속도와 측정된 횡가속도 크기는 차량에서 측정되는 차체 미끄럼각을 이용해 결정된다. 차량이 불안정한 상태를 차체 미끄럼각으로 판단하고, 발생되는 차체 미끄럼각의 크기와 노면 조건 에 해당하는 측정된 횡가속도에 따라 진입조건인 계산된 횡가속도와 측정된 횡가속도의 차이를 결정한다.The calculated lateral acceleration and the measured lateral acceleration magnitude in the vehicle model, which are the entry conditions for the turning speed limit, are determined using the body sliding angle measured in the vehicle. The unstable state of the vehicle is determined by the body slip angle, and the difference between the calculated lateral acceleration and the measured lateral acceleration is determined according to the magnitude of the generated body slip angle and the measured lateral acceleration corresponding to the road condition.

상기의 설명에서와 같이, 본 발명에 의한 차량 안정성 제어시스템의 선회속도 제어방법에 의하면, 차량의 센서를 통해 얻어진 차량운동량과 추정을 통해 얻어진 노면상태 등을 이용하여 차륜을 제어함으로서 차량의 선회속도를 안정되게 제한하여 차량 안정성을 확보할 수 있다는 효과가 있다.As described above, according to the turning speed control method of the vehicle stability control system according to the present invention, the turning speed of the vehicle by controlling the wheel using the vehicle movement amount obtained through the sensor of the vehicle and the road surface state obtained through the estimation, etc. There is an effect that can be securely limited to secure the vehicle stability.

또한, 본 발명은 저마찰 노면의 경우 차량모델 외에 차량 미끄럼각 정보를 이용하여 차량 상황을 보다 정확히 판단함으로서 노면 조건과 운전자 의지에 따라 선회속도를 차별적으로 제한하여 차량 안정성 제어시스템의 신뢰도를 높일 수 있다는 효과가 있다.In addition, the present invention, in the case of low friction road surface, by determining the vehicle situation more accurately using the vehicle sliding angle information in addition to the vehicle model, it is possible to increase the reliability of the vehicle stability control system by differentially limiting the turning speed according to the road condition and the driver's will. There is an effect.

상기에서 설명한 것은 본 발명에 의한 차량 안정성 제어시스템의 선회속도 제어방법을 실시하기 위한 하나의 실시예에 불과한 것으로, 본 발명은 상술한 실시예에 한정되지 않고, 본 발명의 기술적 사상 내에서 당분야의 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능함은 물론이다.What has been described above is only one embodiment for implementing the swing speed control method of the vehicle stability control system according to the present invention, the present invention is not limited to the above-described embodiment, it is within the technical scope of the present invention Various modifications are possible by those skilled in the art.

Claims (4)

차량 안정성 제어시스템에서 선회속도를 제어하는 방법에 있어서,In the method of controlling the turning speed in the vehicle stability control system, 차량의 움직임 정보를 감지하는 다수의 센서로부터 측정값을 읽어 들여 실제 차량운동량을 측정하는 단계;Measuring actual vehicle movement by reading measurement values from a plurality of sensors that detect movement information of the vehicle; 차량의 센서로부터 측정된 조향각과 차속으로부터 운전자가 원하는 안정 기준값을 설정하는 단계;Setting a stability reference value desired by the driver from the steering angle and the vehicle speed measured from the sensor of the vehicle; 측정된 차량운동량과 설정된 안정 기준값을 비교하여 상기 차량운동량이 안정 기준값보다 큰 경우 측정된 횡가속도의 크기에 따라 노면조건을 판단하는 단계; 및Comparing the measured vehicle movement amount with a set stability reference value and determining a road surface condition according to the magnitude of the measured lateral acceleration when the vehicle movement amount is greater than the stability reference value; And 판단된 노면조건에 따라 선회속도 제한시기와 제한크기를 결정하는 단계;를 Determining a turning speed limit time and a limit size according to the determined road condition; 포함하는 것을 특징으로 하는 차량 안정성 제어시스템의 선회속도 제어방법.Rotational speed control method of a vehicle stability control system comprising a. 제 1항에 있어서,The method of claim 1, 상기 안정 기준값은 조향각과 차속으로부터 결정되는 선회속도인 것을 특징으로 하는 차량 안정성 제어시스템의 선회속도 제어방법.The stability reference value is a rotation speed control method of the vehicle stability control system, characterized in that the rotation speed determined from the steering angle and the vehicle speed. 제 1항에 있어서,The method of claim 1, 상기 선회속도 제한시기와 제한크기를 결정하는 단계는,Determining the turning speed limit time and limit size, 상기 안정 기준값과 노면조건에 따라 선회속도의 제한시기와 제한크기를 다 르게 적용하는 것을 특징으로 하는 차량 안정성 제어시스템의 선회속도 제어방법.A turning speed control method for a vehicle stability control system, characterized in that the limiting time and the limiting size of the turning speed are applied differently according to the stability reference value and road surface conditions. 차량 안정성 제어시스템에서 선회속도를 제한하기 위한 방법에 있어서,A method for limiting turning speed in a vehicle stability control system, 차량의 센서로부터 측정된 조향각과 차속으로부터 운전자가 원하는 선회속도의 안정 기준값을 설정하고,From the steering angle and the vehicle speed measured from the vehicle's sensors, the driver sets the reference value for the desired turning speed. 측정된 횡가속도의 크기에 따라 노면조건을 판단하고,The road condition is judged according to the measured lateral acceleration. 설정된 안정 기준값과 노면조건에 따라 선회속도의 제한시기와 제한크기를 결정하고,Determine the time limit and size of turning speed according to the set stability reference value and road condition. 결정된 선회속도 제한시기와 제한크기에 따라 구동력 또는 제동력을 제어하여 차량 안정성을 확보하는 것을 특징으로 하는 차량 안정성 제어시스템의 선회속도 제어방법.A rotation speed control method of a vehicle stability control system, characterized in that to secure vehicle stability by controlling the driving force or braking force according to the determined turning speed limit time and limit size.
KR1020060086325A 2006-09-07 2006-09-07 Method for controlling Yaw rate of Electronic Stability Program KR101103528B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060086325A KR101103528B1 (en) 2006-09-07 2006-09-07 Method for controlling Yaw rate of Electronic Stability Program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060086325A KR101103528B1 (en) 2006-09-07 2006-09-07 Method for controlling Yaw rate of Electronic Stability Program

Publications (2)

Publication Number Publication Date
KR20080022758A true KR20080022758A (en) 2008-03-12
KR101103528B1 KR101103528B1 (en) 2012-01-06

Family

ID=39396580

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060086325A KR101103528B1 (en) 2006-09-07 2006-09-07 Method for controlling Yaw rate of Electronic Stability Program

Country Status (1)

Country Link
KR (1) KR101103528B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845910B1 (en) * 2007-07-31 2008-07-11 주식회사 만도 Method for recovering torque after reduction of engine torque for improvement of stability in turning of vehicle
US20090093991A1 (en) * 2007-10-08 2009-04-09 Gm Global Technology Operations, Inc. System and method for detection of spun vehicle
KR20170114660A (en) * 2016-04-06 2017-10-16 현대자동차주식회사 Understeer/oversteer compensating control method of vehicle
KR102455791B1 (en) * 2022-03-04 2022-10-19 이래에이엠에스 주식회사 Method for controlling yaw of vehicles

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210077858A (en) 2019-12-17 2021-06-28 현대자동차주식회사 Method and apparatus for vehicle driving control according to baby mode
KR20220040102A (en) 2020-09-23 2022-03-30 현대자동차주식회사 Vehicle and method of controlling acceleration limit for the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071886A (en) * 1999-09-08 2001-03-21 Nissan Motor Co Ltd Yawing kinetic momentum control device for vehicle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100845910B1 (en) * 2007-07-31 2008-07-11 주식회사 만도 Method for recovering torque after reduction of engine torque for improvement of stability in turning of vehicle
US20090093991A1 (en) * 2007-10-08 2009-04-09 Gm Global Technology Operations, Inc. System and method for detection of spun vehicle
US8412435B2 (en) * 2007-10-08 2013-04-02 Gm Global Technology Operations, Llc System and method for detection of spun vehicle
KR20170114660A (en) * 2016-04-06 2017-10-16 현대자동차주식회사 Understeer/oversteer compensating control method of vehicle
KR102455791B1 (en) * 2022-03-04 2022-10-19 이래에이엠에스 주식회사 Method for controlling yaw of vehicles

Also Published As

Publication number Publication date
KR101103528B1 (en) 2012-01-06

Similar Documents

Publication Publication Date Title
US6842683B2 (en) Method of controlling traveling stability of vehicle
US7398145B2 (en) Wheel grip factor estimating apparatus and vehicle motion control apparatus
KR101103528B1 (en) Method for controlling Yaw rate of Electronic Stability Program
KR101152296B1 (en) Electronic Stability Program
KR20070069599A (en) Method for controlling stability of vehicle
KR20090100846A (en) Electronic stability program system and controlling method of the same
JP3039071B2 (en) Vehicle turning limit judgment device
KR100907868B1 (en) Control method of vehicle stability control system
KR100688451B1 (en) Method for controlling the stability of vehicle
KR101294037B1 (en) Apparatus for controlling behavior of vehicle and control method thereof
KR101144657B1 (en) Method to control stability of vehicle
KR100721046B1 (en) Electronic stability system for vehicle
KR100592518B1 (en) Method to control stability of vehicle
KR100774122B1 (en) The control method of safety for vehicle
KR100751216B1 (en) Electronic stability system for vehicle
KR100987076B1 (en) Rough road detection method for electronic stability program
KR100721108B1 (en) Electronic stability control system
KR20070060471A (en) Control method for electronic stability program in a vehicle
KR100750854B1 (en) Control method for electronic stability program in a vehicle
KR101103531B1 (en) Method to control stability of vehicle
KR101365008B1 (en) Control method for electronic stability control ina vehicle
KR100806077B1 (en) The method of Wheel speed calculation for vehicle
KR101072226B1 (en) Method to control stability of vehicle
KR100863552B1 (en) Control method for electronic stability program in a vehicle
KR101024948B1 (en) Method for controlling engine of Electronic Stability Program

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141222

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20151222

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20161222

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171222

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191219

Year of fee payment: 9