KR20080001053A - Biodegradable aliphatic polyester resin compositionand preparation thereof on the excellence of bionics adapt - Google Patents

Biodegradable aliphatic polyester resin compositionand preparation thereof on the excellence of bionics adapt Download PDF

Info

Publication number
KR20080001053A
KR20080001053A KR1020060059111A KR20060059111A KR20080001053A KR 20080001053 A KR20080001053 A KR 20080001053A KR 1020060059111 A KR1020060059111 A KR 1020060059111A KR 20060059111 A KR20060059111 A KR 20060059111A KR 20080001053 A KR20080001053 A KR 20080001053A
Authority
KR
South Korea
Prior art keywords
dicarboxylic acid
aliphatic
weight
glycol
component
Prior art date
Application number
KR1020060059111A
Other languages
Korean (ko)
Other versions
KR100817905B1 (en
Inventor
이수영
김남태
Original Assignee
이수영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이수영 filed Critical 이수영
Priority to KR1020060059111A priority Critical patent/KR100817905B1/en
Publication of KR20080001053A publication Critical patent/KR20080001053A/en
Application granted granted Critical
Publication of KR100817905B1 publication Critical patent/KR100817905B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6494Catalysts containing a specific non-metal or metal-free compound organic containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Emergency Medicine (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

A biodegradable aliphatic polyester composition having excellent biocompatibility is provided to obtain a non-toxic resin decomposed into water and carbon dioxide in vivo, having excellent moldability, mechanical strength, flexibility and controlled decomposition rate, and useful as absorbable suture, drug carriers or other medical materials. A biodegradable aliphatic polyester composition is obtained from main ingredients containing an aliphatic dicarboxylic acid including succinic acid and an aliphatic glycol that is a mixture formed of at least two dicarboxylic acids in 1,4-butanediol and ethylene glycol, in the presence of an organic compound catalyst obtained by adding 0.1-2.0 g of a tetrahydric alcohol compound having a long aliphatic backbone derived from aleuritic acid and ethylene glycol functional groups per mole of the aliphatic dicarboxylic acid; 0.0001-0.002 g of a titanate-based organometallic catalyst per mole of the aliphatic dicarboxylic acid; and 0.5-1 parts by weight of a phosphate-based stabilizer per part by weight of the metal catalyst. The biodegradable aliphatic polyester composition has a number average molecular weight of 45,000-120,000, a weight average molecular weight of 200,000-500,000, a melting point of 50-120 deg.C and a melt index of 0.5-30(190 deg.C, 2,160 g).

Description

생체적합성이 우수한 생분해성 지방족 폴리에스테르 조성물 및 그 제조방법 {BIODEGRADABLE ALIPHATIC POLYESTER RESIN COMPOSITIONAND PREPARATION THEREOF ON THE EXCELLENCE OF BIONICS ADAPT} Biodegradable aliphatic polyester composition with excellent biocompatibility and preparation method thereof {BIODEGRADABLE ALIPHATIC POLYESTER RESIN COMPOSITIONAND PREPARATION THEREOF ON THE EXCELLENCE OF BIONICS ADAPT}

이 발명은 생체적합성이 우수한 생분해성 지방족 폴리에스테르 조성물 및 그 제조방법에 관한것이다. 이 발명이 제안하는 조성물은 체내에서 독성이 발현되지 않는 고분자량의 생분해성 지방족 폴리에스테르의 조성이다. 이 발명 조성물은 생분해성이고 성형가공성이 우수하여 섬유, 필름 및 사출성형의 형태로 사출하거나 압출할 수 있는 생분해성 지방족폴리에스테르 조성물이다.The present invention relates to a biodegradable aliphatic polyester composition excellent in biocompatibility and a method for producing the same. The composition proposed by this invention is a composition of a high molecular weight biodegradable aliphatic polyester in which no toxicity is expressed in the body. The composition of the present invention is a biodegradable aliphatic polyester composition which is biodegradable and has excellent moldability and can be injected or extruded in the form of fibers, films and injection molding.

종래에도 체내에서 독성이 발현되지 않는 고분자량의 생분해성 화합물로 지방족 폴리에스테르의 조성물이 의료분야의 수술용 봉합사, 인공혈관, 인공뼈, 약물전달체 등의 상품으로제공되고 있다.Conventionally, the composition of aliphatic polyester is a high molecular weight biodegradable compound that does not express toxicity in the body, and has been provided as a commodity such as surgical sutures, artificial blood vessels, artificial bones, drug carriers, etc. in the medical field.

의료분야에서 광범위하게 사용되는 수술용 봉합사의 재료는 천연고분자무질이나 폴리프로필렌류의 합성 고분자물질이 모두 사용되고 있다. 최근 수분, 미생물, 효소 등 체내 환경에서 분해되는 생분해성 고분자물질 의료비품의 제공은 정밀하고, 복잡한 의료기술의 발전에 공헌하고 있다.Surgical suture materials widely used in the medical field are both natural polymer and polypropylene synthetic polymer materials. Recently, the provision of biodegradable polymer material medical supplies that decompose in the body environment such as moisture, microorganisms, enzymes, etc. contributes to the development of precise and complex medical technology.

이러한 생분해성 고분자 물질로 폴리글리콜라이드(Polyglycolide); 글리콜라이드(glycolide)와 트리메틸렌카보네이트(trimethylene carbonate)의 공중합체인 폴리글리코넷(polyglyconet); 락트산(Latic acid)과 글리콜릭산(glycolic acid)의 공중합체인 폴리그락틴(polyglactin) 및; 폴리다옥사논(Polydioxanon), 클리코라이드-입실론-카프로락톤(glycolide-ε-caprolaction)의 공중합체인 폴리글리카프론(Polyglycapron)이 이용되고 있다.Polyglycolide (Polyglycolide) as such a biodegradable polymer material; Polyglyconet, which is a copolymer of glycolide and trimethylene carbonate; Polyglactin, a copolymer of lactic acid and glycolic acid; Polyglycapron, which is a copolymer of polydioxanonone and glycolide-epsilon-caprolactone, is used.

폴리글리콜라이드와 폴리그락틴은 연성 및 복원력이 부족하여 모노필라멘트로 봉합사를 만들면 사용할 수 없다. 이 물질은 결점을 보완하기 위하여 멀티필라멘트를 제조하고 편조하여 봉합사로 사용된다. Polyglycolide and polyglycine lack softness and resilience and cannot be used if sutures are made from monofilaments. This material is used as sutures to manufacture and braid multifilaments to compensate for shortcomings.

폴리락트산과 친수성인 폴리에틸렌글리콜을 블록공중합시킨 고분자물질로 흡수사를 제조하면 폴리에틸렌글리콜 공중합체의 함수율이 섬유강도를 약화시켜 적합하니 않고, 폴리락트산과 소수성인 폴리프로필렌글리콜을 블록공중합시킨 고분자물질로 제조된 흡수사는 체내 흡수성이 적어 적합하지 않다.When the absorbent yarn is made of a polymer material obtained by block copolymerization of polylactic acid and hydrophilic polyethylene glycol, the water content of the polyethylene glycol copolymer is not suitable for weakening the fiber strength. The absorbent sand thus prepared is not suitable due to its low absorption in the body.

미국특허 제 4,224,946호에 지방족/방향족 코폴리에스테르를 수술용 봉합사로 게시하고 있으나, 이 봉합사는 시술후 분해과정에서 발암물질인 방향족 성분이 잔류할 수 있다. 또한 가공시 냉각속도가 느려 흡수사의 제조 및 가공이 힘들고, 유연성과 신장율이 지나치고 인장강도가 적어 수술 봉합사로서 적당치 않다.Although US Pat. No. 4,224,946 discloses aliphatic / aromatic copolyesters as surgical sutures, these sutures may retain aromatic components, which are carcinogens, during the degradation after the procedure. In addition, it is difficult to manufacture and process absorbent yarns due to the slow cooling rate during processing, excessive flexibility and elongation rate, and low tensile strength, which is not suitable as a surgical suture.

방향족성분이 없는 지방족 폴리에스테르는 유연성 및 인장강도가 범용플라스틱인 폴리에틸렌과 폴리프로필렌과 비슷하고, 흡수사, 약물전달체, 인공뼈, 인공관절류가 요구하는 의료용 고분자물질의 기계적 특성에 적합하여 생분해성플라스틱의 재료로 사용되고 있는 추세이다. 하지만 우수한 물리적 성질과 가공성을 부여하기 위하여 평균 분자량 30,000이상인 중합물이 요구된다. 종래의 기술로는 이 분자량을 얻기위해 지방족 폴리에스테르 중합과정에서 Sn, Zn, Sb 류인 금속촉매 및 인계열 안정제를 다량 포함시키므로 체내에서 독성을 유발시킨다.Aliphatic polyesters without aromatics are similar to polyethylene and polypropylene, which are flexible and tensile strength, and are biodegradable because they are suitable for the mechanical properties of medical polymer materials required by absorbent sand, drug carriers, artificial bones, and artificial joints. It is being used as a material for plastics. However, in order to give excellent physical properties and processability, a polymer having an average molecular weight of 30,000 or more is required. In the prior art, in order to obtain this molecular weight, a large amount of Sn, Zn, Sb-based metal catalysts and phosphorus-based stabilizers are included in the aliphatic polyester polymerization process, thereby causing toxicity in the body.

이 발명은 새로운 구조와 특성을 가지는 생체적합성 화합물로 지방족 폴리에스테르 화합물을 제안한다. 이 발명은 최소 금속촉매의 존재하에 수평균 분자량 45,000∼120,000 이고 중량평균 분자량 200,000∼500,000인 수지 및 그 제조방법을 제안한다. 이 발명은 발암물질을 포함하지 않는 생분해성 지방족 폴리에스테르 조성물을 제안한다. 이 발명은 독성 유발이 없는 생분해성 지방족 폴리에스테르 조성물을 제안한다. 이 발명은 범용수지 수준의 기계적 성질 및 가공성을 가지는 생체적합성 지방족 폴리에스테르 화합물를 제안한다. The present invention proposes an aliphatic polyester compound as a biocompatible compound having a novel structure and properties. The present invention proposes a resin having a number average molecular weight of 45,000 to 120,000 and a weight average molecular weight of 200,000 to 500,000 in the presence of a minimum metal catalyst and a method for producing the same. This invention proposes a biodegradable aliphatic polyester composition containing no carcinogen. This invention proposes a biodegradable aliphatic polyester composition without causing toxicity. This invention proposes a biocompatible aliphatic polyester compound having mechanical properties and processability at the general resin level.

고분자량의 지방족폴리에스테르High molecular weight aliphatic polyester

이 발명의 연구자들은 최소 금속촉매의 존재하에 고분자량의 지방족폴리에스테르(I)를 제조하기 위한 새로운 유기화합물 촉매(II)를 제조하였다. 이 유기 화합물 촉매는 아레우리틱 산(Aleuritic acid)과 에틸렌글리콜을 반응시켜 주쇄가 길고 네 개의 수산화기를 가진 다관능 화합물로 주어졌다. 제조된 화합물 촉매를 지방족 폴리에스테르 합성 시 주 촉매로 사용한다. 화합물 촉매를 지방족 폴리에스테르 합성 단계 중 에스테르화 반응에 첨가하면 지방족 폴리에스테르 중합과정에서 많은 반응 작용기가 고분자 사슬의 길이를 더욱 길게 연결한다. 이렇게 얻은 지방족폴리에스테르는 종래의 기술로 상용화된 지방족 폴리에스테르 수준의 높은 분자량을 가지는 지방족 폴리에스테르이고, 더 나아가 이 발명 지방족 폴리에스테르는 무독성의 생체적합성과, 고분자 사슬의 곁가지가 분자구조의 비결정 영역을 증가시킴에 의한 우수한 생분해성도 주어진다.The researchers of this invention have prepared a new organic compound catalyst (II) for producing high molecular weight aliphatic polyester (I) in the presence of a minimum metal catalyst. The organic compound catalyst was given as a multifunctional compound having a long main chain and four hydroxyl groups by reacting eleuritic acid with ethylene glycol. The prepared compound catalyst is used as a main catalyst in the synthesis of aliphatic polyester. When the compound catalyst is added to the esterification reaction during the aliphatic polyester synthesis step, many reaction functional groups connect the polymer chain to a longer length during the aliphatic polyester polymerization. The aliphatic polyester thus obtained is an aliphatic polyester having a high molecular weight equivalent to that of a conventional aliphatic polyester, and furthermore, the aliphatic polyester of the present invention has a non-toxic biocompatibility, and a side chain of the polymer chain is an amorphous region of molecular structure. Good biodegradability is also given by increasing.

유기화합물 촉매(II)Organic Compound Catalyst (II)

상기 고분자 지방족 폴리에스테르(I) 수지인 생분해성 수지 조성물의 제조를 위하여 유기화합물 촉매(II)를 제조한다. 이 발명 촉매(II)는 반응기에 아레우리틱산을 투입하고 아레우리틱산 1몰에 대하여 에틸렌글리콜을 1.2몰 내지1.8몰 범위로 투입 후 테트라부틸렌티타네이트 촉매(IV) 조건 하에서 200℃까지 온도를 높이면서 교반하여 제조한다. 상기 과정에서 온도를 높이면 부산물로 반응식 1에 인용된 물이 발생한다. 이 물을 제거하고 잔류하는 물질로 지방족 다가 알코올(III)로 제조하여 이 발명 유기화합물 촉매(II)로 사용한다. 상기 과정에서 촉매(IV)인 테트라부틸렌티타네이트의 첨가량은 아레우리틱산 1몰에 대해 0.1g 내지 0.15g 이다. 더욱 바람직하게는 0.12g 내지 0.13g 이다. An organic compound catalyst (II) is prepared for preparing a biodegradable resin composition which is the polymer aliphatic polyester (I) resin. The catalyst (II) of the present invention was charged with auritic acid in the reactor, ethylene glycol was added in a range of 1.2 mol to 1.8 mol with respect to 1 mol of the aureic acid, and then the temperature was increased to 200 ° C. under the tetrabutylene titanate catalyst (IV). Prepare by stirring while raising. Increasing the temperature in the above process produces the water quoted in Scheme 1 as a by-product. This water is removed and the remaining material is made of aliphatic polyhydric alcohol (III) and used as the organic compound catalyst (II) of the present invention. In the above process, the addition amount of the tetrabutylene titanate as the catalyst (IV) is 0.1 g to 0.15 g based on 1 mole of aureic acid. More preferably, it is 0.12g-0.13g.

Figure 112006046618207-PAT00001
Figure 112006046618207-PAT00001

상기 다가 알코올 유기화합물 촉매(II) 제조시의 유의점은 에틸렌글리콜과 아레우리틱산의 몰비와 반응온도를 적절하게 조절함으로 아레우리틱산분자의 자가중합을 억제하도록 하고, 에틸렌글리콜이 아레우리틱산의 카르복실기에 결합할 수 있게하는 것이다. 아레우리틱산분자의 자가중합이 많아지면 말단기가 감소되므로 촉매효과가 반감된다. 이 상태가 심각하면 지방족 폴리에스테르 합성시 수지의 겔화 진행되고 반응기에서 수지의 토출이 불가능 하고 최종 제품의 가공이 불가능하다. 하지만 반응식 1과 같이 아레우릭틱산의 카르복실기에 에틸렌글리콜이 제대로 반응하면 각각의 하이드록실기가 각기 다른 활성을 나타내며, 화합물 중간의 짧은 하이드록실기는 양쪽에 긴 사슬로 인해 입체장애가 일어나고 이 장애는 관능기의 반응성을 저하시켜 수지 합성시 겔화 반응이 진행되지않을 정도의 반응이 진행된다. 이러한 반응과정은 얻어지는 폴리에스테르수지 사슬에 짧은 곁가지 사슬이 생성시키며, 이 부차 반응으로 수지합성의 반응속도가 증가되고 폴리에스테르의 분자량 분포를 증가시켜, 추후 얻어지는 폴리에스테르 수지의 가공성을 향상시키며 분자구조내에 비결정 영역을 증가시켜 주어 생분해 기능도 좋아진다.In the preparation of the polyhydric alcohol organic compound catalyst (II), it is important to properly control the molar ratio of ethylene glycol and areuritic acid and the reaction temperature so as to suppress the autopolymerization of the areuritic acid molecule, and the ethylene glycol is the carboxyl group of the areuritic acid. To be able to combine. As the self-polymerization of the areuritic acid molecules increases, the end group decreases, thereby reducing the catalytic effect. If this condition is serious, the gelation of the resin proceeds in the synthesis of aliphatic polyester, the discharge of the resin from the reactor is impossible, and the final product cannot be processed. However, when ethylene glycol reacts properly to the carboxyl group of the aureic acid, as shown in Scheme 1, each hydroxyl group exhibits different activity, and the short hydroxyl group in the middle of the compound causes steric hindrance due to long chains on both sides of the functional group. The reaction proceeds to the extent that the gelation reaction does not proceed during the synthesis of the resin by lowering the reactivity of the resin. This reaction process produces short side chains in the resulting polyester resin chain, and this secondary reaction increases the reaction rate of the resin synthesis and increases the molecular weight distribution of the polyester, thereby improving the processability of the polyester resin obtained later, and the molecular structure. By increasing the amorphous region in the biodegradation function is also improved.

폴리에스테르의 주 재료Main material of polyester

상기 과정으로 합성한 주쇄가 긴 4가 알코올 화합물(III)을 촉매(II)로 사용하여 합성하는 지방족 폴리에스테르(I)는 주재료로 숙신산을 포함하는 지방족(환상 지방족을 포함) 디카르복실산(또는 그 무수물)과, 1,4-부탄디올의 혼합물을 사용한다. 바람직하게는 ①숙신산 단독성분과 1,4-부탄디올; ②숙신산 단독성분과 에틸렌글리콜 단독성분 ③숙신산 단독성분 75 내지 100 중량부와 1,4-부탄디올 및 탄소 수가 2 내지 3 이거나 5 내지 10 인 알킬렌기(환상 알킬렌기를 포함) 글리콜 중 어느 하나를 25 내지 0 중량부를 혼합한 물질; ④숙신산 및 기타 디카르복실산(탄소수가 2 내지 3 이거나 5 내지 10 인 알킬렌기(환상 알킬렌기를 포함)를 가지는 디카르복실산) 중 어느 하나의 75 내지 100 중량부와 1,4-부탄디올의 단독성분 100 내지 0 중량부의 혼합물질 중; 어느 하나를 사용한다. Aliphatic polyester (I) synthesized using the long-chain tetrahydric alcohol compound (III) synthesized by the above process as a catalyst (II) is an aliphatic (including cyclic aliphatic) dicarboxylic acid containing succinic acid as a main material ( Or anhydride thereof) and 1,4-butanediol. Preferably, succinic acid alone component and 1,4-butanediol; ② Succinic acid single component and ethylene glycol single component ③ Succinic acid single component 75 to 100 parts by weight, 1,4-butanediol and any one of the alkylene group (including cyclic alkylene group) glycol having 2 to 3 or 5 to 10 carbon atoms 25 To 0 to 0 parts by weight of a mixed material; ④ 75 to 100 parts by weight of any one of succinic acid and other dicarboxylic acids (dicarboxylic acids having 2 to 3 or 5 to 10 alkylene groups (including cyclic alkylene groups)) and 1,4-butanediol In a mixture of 100 to 0 parts by weight of the sole component of; Use either.

이 발명은 2단계로 처리되는 지방족 폴리에스테르 수지 제조방법을 이해하므로 더욱 명확해질 것이다. This invention will become clearer as it understands the process for producing the aliphatic polyester resin processed in two steps.

제1단계는 촉매(II)를 얻는 단계로 반응기에 숙신산을 포함하는 지방족(환상 지방족을 포함) 디카르복실산(또는 그 무수물)과 지방족(환상 지방족 포함) 글리콜 단량체를 투입한다. 180℃ 내지 200℃의 온도에서 에스테르 교환반응을 유도한다. 생성된 물질인 물 또는 메탄올을 제거한다. 이 과정의 화학반응은 반응식 2와 같다. 반응식 2에서 글리콜은 1,4-부탄디올이고, 디카르복실산은 숙신산이다.The first step is to obtain a catalyst (II), and to the reactor, an aliphatic (including cyclic aliphatic) dicarboxylic acid (or anhydride thereof) containing succinic acid and an aliphatic (including cyclic aliphatic) glycol monomer are introduced. Induce a transesterification reaction at a temperature of 180 ℃ to 200 ℃. The resulting material, water or methanol, is removed. The chemical reaction in this process is shown in Scheme 2. In Scheme 2 glycol is 1,4-butanediol and dicarboxylic acid is succinic acid.

Figure 112006046618207-PAT00002
Figure 112006046618207-PAT00002

반응식 2는 반응계 내에서 진행되는 화학반응의 대표적인 예이다. 반응식 2의 n은 반응식 1에서와 같이 정수 1 내지 50이다.Scheme 2 is a representative example of a chemical reaction in the reaction system. N in Scheme 2 is an integer from 1 to 50 as in Scheme 1.

반응식 2에서 디카르복실산과 글리콜의 반응 몰비는 1:1.2 내지 1:1.8이다. 상기 몰비가 1:1.2 미만이면 반응성이 줄고, 색상에 영향을 준다. 상기 몰비가 1:1.8을 초과하면 비용이 커진다. 대립된 두 관점을 고려하면 반응식 2에서 바람직한 화합물의 몰비는 1:1.3이다.The reaction molar ratio of dicarboxylic acid and glycol in Scheme 2 is 1: 1.2 to 1: 1.8. If the molar ratio is less than 1: 1.2, the reactivity decreases and the color is affected. If the molar ratio exceeds 1: 1.8, the cost increases. Considering two opposing aspects, the molar ratio of the preferred compound in Scheme 2 is 1: 1.3.

제2단계는 촉매(II)를 이용하여 지방족 폴리에스테르(I)를 얻는 단계이다. 제2단계 반응에서 반응식 1에 보인 긴 지방족 주쇄를 가진 4가 알콜(III) 화합물을 주 재료인 지방족 디카르복실산(환상지방족 포함)에 대해 1몰당 0.1g 내지 2.0g을 가한 후 상기 제1단계 반응생성물인 폴리에스테르와 함께 240℃ 내지260℃의 온도 및 0.05 내지 2torr의 진공하에서 120 내지 360분 동안 중축합하여 지방족 폴리에스테르(I)를 생성한다. The second step is to obtain aliphatic polyester (I) using catalyst (II). In the second step, 0.1 g to 2.0 g per 1 mol of the tetrahydric alcohol (III) compound having the long aliphatic main chain shown in Scheme 1 is added to the aliphatic dicarboxylic acid (including the cycloaliphatic) as the main material, followed by The step reaction product is polycondensed with a polyester which is 120 to 360 minutes at a temperature of 240 to 260 ° C. and a vacuum of 0.05 to 2 torr to produce aliphatic polyester (I).

즉, 제1단계에서 생성된 반응 생성물 및 미반응 디카르복실산 성분이 각각 반응식 2와 같은 화학반응으로 계속하여 물, 에탄올 또는 글리콜 등 물질을 제거하면서 인접분자와 반응하여 수평균 분자량 45,000 내지 120,000 중량평균 분자량 200,000 내지 500,000인 폴리에스테르수지(I)를 성형한다. 단 이 때 사용되는 긴 지방족 주쇄를 갖는 4가 알코올 화화물(III)이 디카르복실산 1몰에 대해 2.0g을 초과하면 합성되는 지방족폴리에스테르의 겔화가 발생한다. 이러한 겔화 반응이 생기면 반응기에서 수지의 토출이 어렵고, 토출이 되어도 가공이 불가능하므로 무용해진다. 이와 반대로 4가 알코올 화화물(III) 투입량이 지방족 디카르복실산 1몰에 대해 0.1g미만 이면 촉매로서 미약한 반응만이 이루어지므로 충분한 고분자량의 수지를 얻을 수 없다. 바람직하게는 4가 알코올 화화물(III) 투입량이 지방족 디카르복실산 1몰에 대해 0.5g∼1.0g이다. 이 폴리에스테르수지(I) 생성 반응의 한 예를 반응식 3에 보였다.That is, the reaction product and the unreacted dicarboxylic acid component produced in the first step are each reacted with adjacent molecules while removing substances such as water, ethanol or glycol by the chemical reaction as in Scheme 2, respectively, and the number average molecular weight of 45,000 to 120,000. A polyester resin (I) having a weight average molecular weight of 200,000 to 500,000 is molded. However, the gelation of the synthesized aliphatic polyester occurs when the tetrahydric alcohol sulfide (III) having a long aliphatic main chain used at this time exceeds 2.0 g with respect to 1 mol of the dicarboxylic acid. When such a gelation reaction occurs, it is difficult to discharge the resin in the reactor, and even if discharged, the processing becomes impossible, thereby making it useless. On the contrary, when the amount of the tetrahydric alcohol sulfide (III) is less than 0.1 g per 1 mole of the aliphatic dicarboxylic acid, only a weak reaction is performed as a catalyst, and thus a sufficient high molecular weight resin cannot be obtained. Preferably, the amount of tetravalent alcohol sulfide (III) is 0.5 g to 1.0 g per mole of aliphatic dicarboxylic acid. An example of this polyester resin (I) formation reaction is shown in Scheme 3.

Figure 112006046618207-PAT00003
Figure 112006046618207-PAT00003

반응식 3에서 A는

Figure 112006046618207-PAT00004
이고, m, n은 중합도를 나타내는 정수이다. 정수 m은 n보다 크다.In Scheme 3, A is
Figure 112006046618207-PAT00004
And m and n are integers showing degree of polymerization. The integer m is greater than n.

이 발명은 상기 제2단계의 에스테르화 반응 또는 에스테르 교환반응의 초기 또는 말기에 촉매가 첨가될 수 있다. 이 때 촉매의 첨가량은 투입되는 지방족 디카르복실산 1몰에 대해 0.0001g∼0.002g 이하이다. 상기 첨가량이 지방족 디카르복실산 1몰에 대해 0.0001g 미만이면 에스테르화 반응이 어려우며, 0.002g을초과하면 이론량의 물, 메탄올 또는 글리콜은 쉽게 제거되나 촉매로부터 발현되는 독성으로 생체에 유해함으로 그 양을 준수하여야 한다. 촉매로는 티타네이트가 포함된 유기 금속화합물을 사용하며, 더욱 바람직하게는 테트라부틸티타네이트, 테트라프로필티타네이트 중 선택된 어느 하나 또는 둘 이상의 촉매가 사용된다.In the present invention, a catalyst may be added at the beginning or the end of the esterification reaction or transesterification reaction of the second step. At this time, the addition amount of a catalyst is 0.0001g-0.002g or less with respect to 1 mol of aliphatic dicarboxylic acid injected. If the added amount is less than 0.0001 g per 1 mole of aliphatic dicarboxylic acid, the esterification reaction is difficult, and if it exceeds 0.002 g, the theoretical amount of water, methanol or glycol is easily removed, but it is harmful to the living body due to the toxicity expressed from the catalyst. The quantity must be observed. As the catalyst, an organometallic compound containing titanate is used, and more preferably any one or two or more catalysts selected from tetrabutyl titanate and tetrapropyl titanate are used.

또한, 상기 제2단계의 에스테르화 반응 또는 에스테르 교환반응의 초기 또는 말기에 사이 안정제가 첨가될 수 있다. 안정제의 첨가량은 중량비로 금속촉매의 첨가량 1에 대하여 안정제 0.5 내지 1 의 비율 정도이다. 안정제의 첨가량이 금속촉매 첨가량 대비 0.5비율 미만이면 안정제로서 효과를 얻을 수 없고 색상이 나빠지고, 반응 부반응물인 테트라하이드로퓨란(Tetrahydrofuran)이 증가하여 생성물에 독성을 유발할 수 있다. 상기 안정제의 첨가량이 금속촉매 첨가량 대비 1 비율을 초과하면 반응속도가 길어지고 고분자량의 폴리에스테르를 얻기가 어렵다. 상기 안정제로서는 트리메틸포스페이트, 포스페릭산, 트리페닐포스페이트 등 포스페이트 계통의 안정제 하나 이상을 사용한다.In addition, a stabilizer may be added between the beginning or the end of the second esterification reaction or transesterification reaction. The addition amount of the stabilizer is about the ratio of the stabilizer 0.5-1 with respect to the addition amount 1 of a metal catalyst by weight ratio. If the amount of the stabilizer is less than 0.5 ratio compared to the amount of the metal catalyst, the effect may not be obtained as a stabilizer, the color may deteriorate, and the reaction side reactant tetrahydrofuran may increase, causing toxicity to the product. When the amount of the stabilizer is more than 1 ratio of the amount of the metal catalyst, the reaction rate is long and it is difficult to obtain a high molecular weight polyester. As the stabilizer, one or more stabilizers of a phosphate system such as trimethyl phosphate, phospheric acid, and triphenyl phosphate are used.

상기와 같이 이 발명의 폴리에스테르 수지는 2단계의 반응을 거치면서 고분자량화된 중합체이다. 상기와 같이 이 발명 제공하는 폴리에스테르 수지의 수수평균 분자량은 45,000 내지 120,000이고 중량평균 분자량은 200,000 내지 500,000이고, 융점은 50 내지 120℃이고, 용융지수는 0.5 내지 30(190℃, 2160g)이다.As described above, the polyester resin of the present invention is a high molecular weight polymer through a two-step reaction. As described above, the number average molecular weight of the polyester resin provided in the present invention is 45,000 to 120,000, the weight average molecular weight is 200,000 to 500,000, the melting point is 50 to 120 ° C, and the melt index is 0.5 to 30 (190 ° C, 2160 g).

이 발명의 실시 예는 다음과 같다. 이 발명은 인용된 실시예에 의해 한정되지 아니하며 이 발명이 제시하는 기술범위 내에서 다양한 실시 예가 포함된다.An embodiment of this invention is as follows. The present invention is not limited to the exemplified embodiments and various embodiments are included within the technical scope of the present invention.

비교 실시예 1Comparative Example 1

500㎖ 삼각플라스크내의 공기를 질소로 치환하하였다. 삼각플라스크에 1,4-부탄디올 108g, 숙신산 118g을 투입하였다. 질소기류 중에서 승온을 하고, 140∼200℃에서 5시간 또 질소를 정지하여 20∼2mmHg의 감압하에서 1.5시간에 걸쳐 축합에 의한 에스테르화 반응을 유도하였다. 이 때, 채취된 시료의 수평균 분자량이 4,900이고 중량평균 분자량이 11,200이었다. 계속하여 상압의 질소기류하에서 촉매 테트라이소프로필티탄 0.2g을 첨가하였다. 그리고 온도를 상승시켜 220℃의 온도에서 15∼0.2mmHg의 감압하에서 6시간, 탈 글리콜 반응을 유도하였다. 채취된 시료는 수평균 분자량이 16,100이고, 중량평균분자량이 44,100이었다. 이 시료를 니이더에서 폴리에스테르 100중량부에 대해서 헥사메틸렌 디이소시아네이트 1.5중량부를 가한 후 작업온도 180∼200℃에서 펠릿화를 하였다. 펠렛 시료는 수평균 분자량 42,000이고 중량평균 분자량 205,900이고, DSC법에 측정된 융점은 118℃이었다.The air in the 500 ml Erlenmeyer flask was replaced with nitrogen. Into the Erlenmeyer flask, 108 g of 1,4-butanediol and 118 g of succinic acid were added. The temperature was raised in a nitrogen stream, and nitrogen was stopped at 140 to 200 ° C for 5 hours to induce an esterification reaction by condensation over 1.5 hours at a reduced pressure of 20 to 2 mmHg. At this time, the number average molecular weight of the sample collected was 4,900, and the weight average molecular weight was 11,200. Subsequently, 0.2 g of catalyst tetraisopropyltitanium was added under an atmospheric nitrogen stream. And the temperature was raised and deglycol reaction was induced for 6 hours by the pressure of 15-0.2 mmHg at the temperature of 220 degreeC. The sample collected had a number average molecular weight of 16,100 and a weight average molecular weight of 44,100. 1.5 parts by weight of hexamethylene diisocyanate was added to 100 parts by weight of polyester in a kneader and pelletized at a working temperature of 180 to 200 ° C. The pellet sample had a number average molecular weight of 42,000 and a weight average molecular weight of 205,900, and the melting point measured by the DSC method was 118 ° C.

비교 실시예 2Comparative Example 2

500㎖ 삼각플라스크내의 공기를 질소로 치환하고 숙신산 118g, 3-아미노-4-히드록시벤조익산 4g을 투입한 후 서서히 온도를 높이면서 에스테르화 반응시켜 물을 유출시켰다. 온도가 200℃일 때 온도를 고정시키고 이론량의 물을 완전히 유출시킨 후 상기 500㎖ 삼각플라스크에 에틸렌글리콜 90g, 촉매로서 테트라부틸티타네이트 0.1g을 첨가하고 질소 기류 중에서 승온을 하고, 200℃에서 2시간 동안 반응시켜 이론량의 물을 유출시켰다. 다시 촉매로서 안티몬 아세테이트 0.1g, 디부틸틴옥사이드 0.2g 테트라부틸티타네이트 0.07g, 안정제로서는 트리메틸포스페이트 0.2g을 첨가하였다. 계속 온도를 상승시키고 온도가 245℃에서 0.3torr로 감압하고 200분동안 축중합을 실시하였다. 축중합후 시료는 용융지수(190℃, 2,160g)가 12, 수평균 분자량 32,000이고, 중량평균 분자량 197,000이고, DSC법에 측정된 융점은 97℃이었다.The air in the 500 ml Erlenmeyer flask was replaced with nitrogen, 118 g of succinic acid and 4 g of 3-amino-4-hydroxybenzoic acid were added thereto, followed by esterification while gradually raising the temperature to allow water to flow out. When the temperature was 200 ° C., the temperature was fixed, and the theoretical amount of water was completely flowed out. Then, 90 g of ethylene glycol and 0.1 g of tetrabutyl titanate as a catalyst were added to the 500 ml Erlenmeyer flask, and the temperature was raised in a nitrogen stream. The reaction was carried out for 2 hours to pour out the theoretical amount of water. In addition, 0.1 g of antimony acetate, 0.2 g of dibutyl tin oxide, 0.07 g of tetrabutyl titanate, and 0.2 g of trimethyl phosphate were added as a stabilizer. The temperature was further raised, the temperature was reduced to 0.3torr at 245 ° C, and condensation polymerization was carried out for 200 minutes. After the polycondensation, the sample had a melt index (190 ° C, 2160 g) of 12, a number average molecular weight of 32,000, a weight average molecular weight of 197,000, and a melting point of 97 ° C measured by DSC.

비교 실시예 3Comparative Example 3

500㎖ 삼각플라스크내의 공기를 질소로 치환하고 숙신산 118g, 아미노 살리 실산 12g을 투입하고 온도를 서서히 승온시키면서 에스테르화 반응을 유도하여 물을 유출시킨다. 200℃일 승온 온도를 고정시키고 이론량의 물을 완전히 유출시킨 후, 상기 500㎖ 삼각플라스크에 에틸렌글리콜 92g, 촉매로서 테트라부틸티타네이트 0.1g을 첨가하여 질소 기류 중에서 승온을 하고, 200℃에서 2시간 동안 반응시켜 이론량의 물을 유출시킨다. 다시 촉매로서 안티몬 아세테이트 0.1g, 디부틸틴옥사이드 0.2g, 테트라부틸티타네이트 0.07g, 안정제로서는 트리메틸포스페이트 0.2g을 첨가하였다. 계속 온도를 높여 온도가 245℃에서 0.3torr로 감압하고 150분동안 축중합을 실시하였다. 실시후 채취된 시료는 용융지수(190℃, 2,160g)가 9, 수평균 분자량 33,000이고, 중량평균 분자량 240,000이고, DSC법에 측정된 융점은 98℃이었다.The air in the 500 ml Erlenmeyer flask was replaced with nitrogen, 118 g of succinic acid and 12 g of amino salicylic acid were added thereto, and the temperature was gradually raised to induce an esterification reaction to inject water. After fixing the elevated temperature at 200 ° C. and completely distilling the theoretical amount of water, 92 g of ethylene glycol and 0.1 g of tetrabutyl titanate as a catalyst were added to the 500 ml Erlenmeyer flask, and the temperature was raised in a nitrogen stream. The reaction is carried out for a period of time to drain the theoretical amount of water. Again, 0.1 g of antimony acetate, 0.2 g of dibutyl tin oxide, 0.07 g of tetrabutyl titanate, and 0.2 g of trimethyl phosphate were added as a stabilizer. The temperature was further increased, the temperature was reduced to 0.3torr at 245 ° C, and condensation polymerization was performed for 150 minutes. Melt index (190 degreeC, 2160g) was 9, the number average molecular weight 33,000, the weight average molecular weight 240,000, and the melting point measured by the DSC method was 98 degreeC.

비교 실시예 4Comparative Example 4

500㎖ 삼각플라스크 내부공기를 질소로 치환하고, 1,4-부탄디올 108g 숙신산 100.3g, 아디프산 21.9g을 투입하였다. 질소기류중에서 승온을 하고, 200℃에서 2시간 질소 공급을 중지하고 20∼2mmHg의 감압하에서 0.5시간에 걸쳐 축합에 의한 에스테르화 반응을 유도하였다. 계속 상압의 질소기류하에 촉매 테트라이소프로필티탄 0.07g, 디부틸틴옥사이드 0.45g, 안정제인 트리메틸포스페이트를 첨가하였다. 온도를 상승시켜 250℃의 온도에서 15∼0.2mmHg로 감압하고 3.2시간동안 탈 글리콜 반응을 유도하였다. 이 시료를 니이더에서 폴리에스테르 100중량부에 대해서 헥사메틸렌 디이소시아네이트 1.5중량부를 가한 후 작업온도 180∼200℃에서 펠릿화를 하였다. 펠렛 시료는 수평균 분자량이 31,000이고, 또는 중량평균 분자량이 84,000이었으며, 상기 시료의 DSC법에 측정된 융점은 95℃이었다.The internal air of the 500 mL Erlenmeyer flask was replaced with nitrogen, and 100.3 g of 1,4-butanediol 108g succinic acid and 21.9 g of adipic acid were added thereto. The temperature was raised in a nitrogen stream, the nitrogen supply was stopped at 200 ° C. for 2 hours, and an esterification reaction was induced by condensation over 0.5 hours under a reduced pressure of 20 to 2 mmHg. Subsequently, 0.07 g of catalyst tetraisopropyl titanium, 0.45 g of dibutyltin oxide, and trimethyl phosphate as a stabilizer were added under a nitrogen stream at atmospheric pressure. The temperature was increased to reduce the pressure to 15-0.2 mmHg at a temperature of 250 ° C. and induce a deglycol reaction for 3.2 hours. 1.5 parts by weight of hexamethylene diisocyanate was added to 100 parts by weight of polyester in a kneader and pelletized at a working temperature of 180 to 200 ° C. The pellet sample had a number average molecular weight of 31,000 or a weight average molecular weight of 84,000, and the melting point measured by the DSC method of the sample was 95 ° C.

실시예 1Example 1

1000㎖ 제1삼각플라스크내의 공기를 질소로 치환하고, 아레우릭틱산 304.43g, 에틸렌글리콜 78.16g을 투입하고 촉매로 테트라부틸렌티타네이트를 0.12g 첨가한 후 온도를 서서히 승온시키면서 반응온도 200℃에서 반응을 진행시켜 물을 유출시켰다. 이론적인 물 발생량이 유출되면 반응을 종결시켜 지방족 긴 주쇄를 가지는 4가 알코올을 합성하였다. Substitute the nitrogen in the 1000 mL first triangle flask with nitrogen, add 304.43 g of areuretic acid and 78.16 g of ethylene glycol, add 0.12 g of tetrabutylene titanate as a catalyst, and slowly raise the temperature at 200 ° C. Reaction was advanced and water was distilled out. When the theoretical amount of water was released, the reaction was terminated to synthesize a tetrahydric alcohol having an aliphatic long chain.

다른 500㎖ 제2삼각플라스크의 내부 공기를 질소로 치환하고, 숙신산 118g, 1,4-부탄디올 117.16g을 투입하고 온도를 서서히 200℃로 승온시키면서 촉매로서 테트라부틸티타네이트 0.001g을 첨가하여 질소 기류 중에서 3시간동안 반응시켜 이론량의 물을 유출시켰다. Nitrogen was replaced by internal air of another 500 mL second triangular flask, 118 g of succinic acid and 117.16 g of 1,4-butanediol were added, and 0.001 g of tetrabutyl titanate was added as a catalyst while gradually raising the temperature to 200 ° C. The reaction was carried out for 3 hours in order to drain the theoretical amount of water.

다시 제1삼각플라스코에서 제조된 지방족 긴 주쇄의 4가 알코올을 0.6g, 촉매로서 테트라부틸렌티타네이트 0.001g, 안정제로서는 트리메틸포스페이트 0.001g을 제2삼각플라스코에 첨가하였다. 계속해서, 온도를 상승시키고 온도가 255℃에서 0.5Torr로 감압하고 240분 동안 축중합 반응을 유도하였다. 이 결과 얻어진 생분해성수지는 용융지수(190℃, 2160g)가 3.0, 수평균 분자량 58,000, 중량평균 분자량 153,000이고, DSC법에 측정된 융점은 118℃이었다.In addition, 0.6 g of an aliphatic long main chain tetrahydric alcohol prepared in the first triangle flask was added to 0.001 g of tetrabutylene titanate as a catalyst, and 0.001 g of trimethyl phosphate as a stabilizer to the second triangle flask. Subsequently, the temperature was raised and the temperature was reduced to 0.5 Torr at 255 ° C. and a condensation polymerization reaction was induced for 240 minutes. The resulting biodegradable resin had a melt index (190 占 폚 and 2160 g) of 3.0, a number average molecular weight of 58,000 and a weight average molecular weight of 153,000, and the melting point measured by the DSC method was 118 占 폚.

실시예 2Example 2

500㎖ 삼각플라스크 내부를 질소로 치환하고, 1,4-부탄디올 117.16g 숙신산 100.3g, 아디프산 21.9g을 투입하고 온도를 서서히 200℃로 승온시키면서 촉매로서 테트라부틸티타네이트 0.001g을 첨가하여 질소 기류 중에서 3시간동안 반응시켜 이론량의 물을 유출시켜 지방족 긴 주쇄의 4가 알코올을 얻었다. 제조한 지방족 긴 주쇄의 4가 알코올 0.6g에 대하여, 촉매 테트라부틸렌티타네이트 0.001g, 안정제 트리메틸포스페이트 0.001g을 첨가하였다. 계속해서, 온도를 상승시키고 온도가 255℃에서 0.5Torr의 감압하에서 192분 동안 축중합 반응을 유도하였다. 이 결과로 얻은 물질의 생분해성수지 시료는 용융지수(190℃, 2160g)가 6.0, 수평균 분자량 58,000이고, 중량평균 분자량 153,000이고, DSC법에 측정된 융점은 95℃이었다.Replace the inside of 500ml Erlenmeyer flask with nitrogen, add 1,4-butanediol 117.16g succinic acid 100.3g, adipic acid 21.9g, add 0.001g of tetrabutyl titanate as catalyst while gradually raising the temperature to 200 ° C After reacting for 3 hours in the air stream, the theoretical amount of water was flowed out to obtain an aliphatic long-chain tetrahydric alcohol. To 0.6 g of the produced aliphatic long main chain tetrahydric alcohol, 0.001 g of catalyst tetrabutylene titanate and 0.001 g of stabilizer trimethylphosphate were added. Then, the temperature was raised and the temperature induced a polycondensation reaction at 255 ° C. under a reduced pressure of 0.5 Torr for 192 minutes. The biodegradable resin samples of the resulting material had a melt index (190 DEG C and 2160 g) of 6.0, a number average molecular weight of 58,000, a weight average molecular weight of 153,000, and a melting point of 95 DEG C measured by the DSC method.

실시예 3Example 3

500㎖ 삼각플라스크 내부를 질소로 치환하고, 1,4-부탄디올 117.16g, 아디프산 146.14g을 투입하고 온도를 서서히 200℃로 승온시키면서 촉매로서 테트라부틸티타네이트 0.001g을 첨가하고 질소 기류 중에서 3시간동안 반응시켜 이론량의 물을 유출시켰다. 이와 같이 제조된 지방족 긴 주쇄의 4가 알코올 0.8g에 대하여, 촉매로서 테트라부틸렌티타네이트 0.001g, 안정제로서는 트리메틸포스페이트 0.001g을 첨가하였다. 계속 온도를 상승시켜 온도가 255℃일 때 0.5Torr의 감압하고 240분 동안 축중합 반응을 유도하였다. 이 결과로 제조된 생분해성수지 시료는 용융지수(190℃, 2160g)가 0.8, 수평균 분자량 72,000이고, 중량평균 분자량 238,000이 고, DSC법에 측정된 융점은 60℃이었다.The inside of the 500 ml Erlenmeyer flask was replaced with nitrogen, 117.16 g of 1,4-butanediol and 146.14 g of adipic acid were added, and 0.001 g of tetrabutyl titanate was added as a catalyst while gradually raising the temperature to 200 ° C. The reaction was carried out for a period of time to release the theoretical amount of water. To 0.8 g of an aliphatic long main chain tetrahydric alcohol prepared as described above, 0.001 g of tetrabutylene titanate was added as a catalyst and 0.001 g of trimethylphosphate as a stabilizer. The temperature was continuously raised to reduce the pressure of 0.5 Torr and induce a condensation polymerization reaction for 240 minutes when the temperature was 255 ° C. The resulting biodegradable resin sample had a melt index (190 ° C., 2160 g) of 0.8, a number average molecular weight of 72,000, a weight average molecular weight of 238,000, and a melting point of 60 ° C. measured by the DSC method.

실시예 4Example 4

비교예 1부터 4, 실시예 1부터 3에서 얻은 지방족 폴리에스테르를 압출기에 서 작업온도 180℃∼220℃, 연신비 6배, 직경 0.25mm로 모노필라멘트로 제작하여 각각의 강도를 조사하여 표 1의 결과를 었었다.The aliphatic polyesters obtained in Comparative Examples 1 to 4 and Examples 1 to 3 were produced as monofilaments at working temperature of 180 ° C. to 220 ° C., draw ratio 6 times, and diameter of 0.25 mm in the extruder. Had had the result.

모노필라멘트 강도 측정표Monofilament Strength Measurement Table 시 료sample 비교 실시예 1Comparative Example 1 비교 실시예 2Comparative Example 2 비교 실시예 3Comparative Example 3 비교 실시예 4Comparative Example 4 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 강도(kgf)Strength (kgf) 3.23.2 3.13.1 2.82.8 2.92.9 3.23.2 3.13.1 3.13.1

실시예 5Example 5

실시예 4로에서 얻은 모노필라멘트 시료들을 각각 5cm로 절단해 에틸렌옥사이드 가스로 24시간 소독 후, Bulbecco's minimum essential medium 1리터에 비활성화시킨 10% fetal bovine serum(FBS)을 넣고, 2gm 의 sodium bicarbonate, 200mM L-glutamine, HEPES 5.75 Gm 과 항생제(penicilline 10,000 U, Streptomycin 100mg, amphotericin B 25mg/ml)를 섞어 제조된, 배양액에 넣은 후 세포주 L929를 50.8x104개체 접종하고 5일후 증식된 세포수를 측정하고 대조군과 비교하여 표 2의 결과를 얻었다.The monofilament samples obtained in Example 4 were cut into 5 cm each and disinfected with ethylene oxide gas for 24 hours, and then inactivated 10% fetal bovine serum (FBS) in 1 liter of Bulbecco's minimum essential medium, and 2gm of sodium bicarbonate, 200 mM L-glutamine, HEPES 5.75 Gm and antibiotics (penicilline 10,000 U, Streptomycin 100 mg, amphotericin B 25 mg / ml) were added to the culture medium, and the cell line L929 was inoculated with 50.8x10 4 individuals, and the number of proliferated cells was measured 5 days later. The results in Table 2 were obtained in comparison with the control.

세포 증식 측정표Cell proliferation chart 세포수(x 104) 개Cell count (x 10 4 ) 대조군(블랭크, Blank)Control (blank) 182.75182.75 비교 실시예 1Comparative Example 1 137.0137.0 비교 실시예 2Comparative Example 2 138.2138.2 비교 실시예 3Comparative Example 3 142.1142.1 비교 실시예 4Comparative Example 4 137.2137.2 실시예 1Example 1 183.75183.75 실시예 2Example 2 187187 실시예 3Example 3 207207

실시예 6Example 6

비교예 1부터 4, 실시예 1부터 3에서 얻은 지방족 폴리에스테르를 Hot press를 이용하여 작업온도 120℃∼160℃의 범위에서 1.5톤의 압력을 가하여 100㎛의 필름을 제조하고, 깊이 30cm의 토양에 8주간 매립한 후 채취하여 무게분석법을 통하여 생분해도를 측정하였다. 표 3은 측정 결과이다.The aliphatic polyester obtained in Comparative Examples 1 to 4 and Examples 1 to 3 was subjected to a pressure of 1.5 tons at a working temperature of 120 ° C. to 160 ° C. using a hot press to produce a film having a thickness of 100 μm, and the soil having a depth of 30 cm. After 8 weeks of reclamation, the biodegradability was measured by gravimetric analysis. Table 3 shows the measurement results.

생분해도 측정표Biodegradability Chart 초기무게 (g)Initial weight (g) 매립8주 후 무게(g)Weight after 8 weeks of landfill (g) 생분해도 (%)Biodegradability (%) 비교 실시예 1Comparative Example 1 11.2111.21 1.081.08 90.490.4 비교 실시예 2Comparative Example 2 11.8311.83 0.920.92 92.292.2 비교 실시예 3Comparative Example 3 11.5411.54 1.011.01 91.291.2 비교 실시예 4Comparative Example 4 11.8111.81 0.980.98 91.791.7 실시예 1Example 1 11.3211.32 1.011.01 91.191.1 실시예 2Example 2 11.4911.49 0.900.90 92.292.2 실시예 3Example 3 11.8211.82 0.960.96 91.991.9

상기와 같이 이 발명에 의하면 지방족 폴리에스테르 합성에 있어 사슬 연장체로서 각기 활성이 다른 하이드로실기를 가진 다관능 지방족알콜을 반응에 첨가하 여 생성물을 얻음으로 종래의 다관능성 단량체를 사용함으로써 발생하는 저분자량의 폴리에스테르의 급격한 증가 및 겔화의 문제를 해소하였다. 뿐 아니라 이 발명은 기존의 지방족 폴리에스테르 합성과정에서 사용되는 인체에 유해 촉매성분을 거의 사용하지 않음으로 생체적합성이 우수한 수지를 얻을 수 있었고 더 나아가 보다 높은 분자량의 지방족 폴리에스테르를 얻을 수 있었다. 또한 이 발명은 생성된 지방족 폴리에스테르의 기계적 물성이 종래의 기술에 의한 지방족 폴리에스테르와 거의 같다. 이 발명에서 제조되는 폴리에스테르 수지 조성물은 저비용으로 제조되므로 의료용 흡수성 봉합사류를 저 비용으로 제조할 수 있다.As described above, according to the present invention, in the synthesis of aliphatic polyester, a low molecular weight generated by using a conventional polyfunctional monomer by adding a polyfunctional aliphatic alcohol having a hydrosil group with different activity as a chain extender to the reaction to obtain a product. The problem of abrupt increase of polyester and gelation was solved. In addition, the present invention was able to obtain a resin with excellent biocompatibility by using almost no harmful catalyst component to the human body used in the conventional aliphatic polyester synthesis process, and furthermore, it was possible to obtain a higher molecular weight aliphatic polyester. In addition, the present invention has almost the same mechanical properties of the resulting aliphatic polyester as the aliphatic polyester according to the prior art. Since the polyester resin composition produced in this invention is manufactured at low cost, medical absorbent sutures can be manufactured at low cost.

Claims (12)

숙신산을 포함하는 지방족 디카르복실산과 1,4-부탄디올 및 에틸렌글리콜 중에서 디카르복실산을 포함하는 2 이상의 혼합물인 지방족 글리콜인 주재료와; A main material which is aliphatic glycol which is a mixture of aliphatic dicarboxylic acid containing succinic acid and dicarboxylic acid in 1,4-butanediol and ethylene glycol; 상기 주재료인 지방족 디카르복실산 1몰에 대하여 관능기인 아레우리틱산과 에틸렌글리콜을 이용하여 제조된 지방족 긴 주쇄를 가지는 4가알코올 화합물 0.1g 내지 2.0g을 가한 유기화합물 촉매와;An organic compound catalyst added with 0.1 g to 2.0 g of a tetravalent alcohol compound having an aliphatic long main chain prepared by using auritic acid as a functional group and ethylene glycol with respect to 1 mole of aliphatic dicarboxylic acid as the main material; 상기 지방족 디카르복실산 1몰에 대해 0.0001g 내지 0.002g의 티타네이트계 유기금속촉매와;0.0001 g to 0.002 g of a titanate-based organometallic catalyst based on 1 mole of the aliphatic dicarboxylic acid; 및 상기 금속촉매 1중량부에 대하여 포스페이트계 안정제를 0.5 내지 1 중량부의 존재하에 제조되어; And a phosphate stabilizer based on 1 part by weight of the metal catalyst in the presence of 0.5 to 1 part by weight; 수평균 분자량이 45,000~120,000이고, 중량평균분자량이 200,000~500,000이고, 융점 50~120℃이고, 용융점도 0.5~30(190℃, 2,160g)인 폴리에스테르 수지 조성물.A polyester resin composition having a number average molecular weight of 45,000 to 120,000, a weight average molecular weight of 200,000 to 500,000, a melting point of 50 to 120 ° C, and a melt viscosity of 0.5 to 30 (190 ° C, 2,160 g). 제 1항에 있어서, 주재료는 상기 글리콜 1 몰에; 상기 디카르복실산 1.2 내지 1.8 몰의 비로 혼합하고 반응시킨 폴리에스테르 조성물.The method of claim 1, wherein the main material is in one mole of the glycol; A polyester composition mixed and reacted at a ratio of 1.2 to 1.8 moles of the dicarboxylic acid. 제 1항에 있어서, 상기 주재료의 디카르복실산 성분은 숙신산이고; 상기 글리콜성분은 1,4-부탄디올인; 폴리에스테르 조성물.The dicarboxylic acid component of the main material is succinic acid; The glycol component is 1,4-butanediol; Polyester composition. 제 1항에 있어서, 상기 주재료의 디카르복실산 성분은 숙신산이고; 지방족 글리콜성분은 1,4-부탄디올인; 폴리에스테르 조성물.The dicarboxylic acid component of the main material is succinic acid; Aliphatic glycol component is 1,4-butanediol; Polyester composition. 제 1항에 있어서, 상기 주재료의 디카르복실산 성분은 숙신산이고; 상기 글리콜 성분은 에틸렌글리콜인; 폴리에스테르 수지 조성물.The dicarboxylic acid component of the main material is succinic acid; The glycol component is ethylene glycol; Polyester resin composition. 제 1항에 있어서, 상기 주재료의 디카르복실산 성분은 숙신이고; 상기 글리콜 성분은 1,4-부탄디올 및 탄소수가 2∼3 이거나 5∼10인 알킬렌기의 혼합성분 중 어느 하나를 혼합한 글리콜중 어느 하나인; 폴리에스테르 수지 조성물.The dicarboxylic acid component of the main material is succinate; The glycol component is any one of glycol mixed with 1,4-butanediol and a mixed component of an alkylene group having 2 to 3 or 5 to 10 carbon atoms; Polyester resin composition. 제 6항에 있어서, 상기 1,4-부탄디올 75 내지 100중량부에 대하여 기타 글리콜이 25 내지 0 중량부로 구성된 폴리에스테르 수지 조성물.The polyester resin composition according to claim 6, wherein the other glycol is composed of 25 to 0 parts by weight based on 75 to 100 parts by weight of the 1,4-butanediol. 제 1항에 있어서, 상기 디카르복실산 성분은 숙신산 및 탄소수가 2∼3 이거나 5∼10인 알킬렌기를 갖는 디카르복실산의 혼합성분; 상기 1,4-부탄디올의 단독성분 에틸렌글리콜과의 혼합성분 중 어느하나로 구성된 폴리에스테르 수지 조성물.The dicarboxylic acid component according to claim 1, wherein the dicarboxylic acid component is a mixed component of succinic acid and dicarboxylic acid having an alkylene group having 2 to 3 or 5 to 10 carbon atoms; A polyester resin composition comprising any one of mixed components of the 1,4-butanediol with a single component ethylene glycol. 제 7항에 있어서, 상기 주재료의 디카르복실산 성분은 숙신산 75 내지 100중량부와; 기타 디카르복실산 25 내지 0 중량부의 혼합물인 폴리에스테르 수지 조성물.The dicarboxylic acid component of the main material is 75 to 100 parts by weight of succinic acid; Polyester resin composition which is a mixture of 25-0 weight part of other dicarboxylic acids. 제 1항 내지 제 9항에 얻은 폴리에스테르 수지 조성물로 제조된 흡수성 봉합사.An absorbent suture made of the polyester resin composition according to claim 1. 제 1항 내지 제 9항에서 얻은 폴리에스테르 수지 조성물을 압출 및 사출 중 어느 하나로 성형하여 제공되는 성형물.10. A molded article provided by molding the polyester resin composition obtained in any one of claims 1 to 9 by extrusion or injection. 숙신산을 포함하는 지방족 디카르복실산과 1,4-부탄디올 및 에틸렌글리콜 중 에서 디카르복실산을 포함하는 2 이상의 혼합물인 지방족 글리콜인 주재료를 조성하는 단계; Preparing a main material which is an aliphatic glycol which is a mixture of aliphatic dicarboxylic acid comprising succinic acid and dicarboxylic acid among 1,4-butanediol and ethylene glycol; 상기 주재료 1몰에 관능기로 아레우리틱산과 에틸렌글리콜을 이용하여 제조된 지방족 긴 주쇄를 가지는 4가알코올 화합물 0.1g 내지 2.0g인 촉매를 조성하는 단계;Preparing a catalyst having 0.1 g to 2.0 g of a tetrahydric alcohol compound having an aliphatic long main chain prepared by using auritic acid and ethylene glycol as a functional group in one mole of the main material; 상기 주재료에 촉매를 혼합하고 축합반응, 에스테르화 반응 및 에스테르교환반응 중 하나 이상의 반응과; 중축합반응을 유도하는 단계로구성하여;Mixing a catalyst with the main material and reacting at least one of condensation reaction, esterification reaction and transesterification reaction; Inducing a polycondensation reaction; 수평균 분자량이 45,000∼120,000이고, 중량평균분자량이 200,000∼500,000이고, 융점 50∼120℃이고, 용융점도 0.5∼30(190℃, 2,160g)인 폴리에스테르 수지 조성물을 제조하는 방법.A method of producing a polyester resin composition having a number average molecular weight of 45,000 to 120,000, a weight average molecular weight of 200,000 to 500,000, a melting point of 50 to 120 ° C, and a melt viscosity of 0.5 to 30 (190 ° C, 2,160 g).
KR1020060059111A 2006-06-29 2006-06-29 Biodegradable aliphatic polyester resin compositionand preparation thereof on the excellence of bionics adapt KR100817905B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060059111A KR100817905B1 (en) 2006-06-29 2006-06-29 Biodegradable aliphatic polyester resin compositionand preparation thereof on the excellence of bionics adapt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060059111A KR100817905B1 (en) 2006-06-29 2006-06-29 Biodegradable aliphatic polyester resin compositionand preparation thereof on the excellence of bionics adapt

Publications (2)

Publication Number Publication Date
KR20080001053A true KR20080001053A (en) 2008-01-03
KR100817905B1 KR100817905B1 (en) 2008-03-31

Family

ID=39213133

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060059111A KR100817905B1 (en) 2006-06-29 2006-06-29 Biodegradable aliphatic polyester resin compositionand preparation thereof on the excellence of bionics adapt

Country Status (1)

Country Link
KR (1) KR100817905B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101693546B1 (en) * 2016-03-22 2017-02-06 제경케미칼(주) Poly lactic acid based biodegradable resin composition with good processability and flexibility and biodegradable film prepared therefrom

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097172B1 (en) * 2009-08-19 2011-12-21 이수영 aliphatic/aromatic copolyester resin and method for preparing the same, and coating composition containing the resin

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69430291T2 (en) * 1993-11-18 2002-10-24 Mitsui Chemicals, Inc. Molded items made from degradable aliphatic polyester
JP3666525B2 (en) 1996-08-05 2005-06-29 三菱瓦斯化学株式会社 Aliphatic polyester carbonate and method for producing the same
KR100255116B1 (en) * 1997-09-19 2000-05-01 조정래 Process for preparing biodegradable polymer
JP3122659B1 (en) 1999-09-17 2001-01-09 工業技術院長 Method for producing biodegradable polyester

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101693546B1 (en) * 2016-03-22 2017-02-06 제경케미칼(주) Poly lactic acid based biodegradable resin composition with good processability and flexibility and biodegradable film prepared therefrom

Also Published As

Publication number Publication date
KR100817905B1 (en) 2008-03-31

Similar Documents

Publication Publication Date Title
US4118470A (en) Normally-solid, bioabsorbable, hydrolyzable, polymeric reaction product
US4048256A (en) Normally-solid, bioabsorbable, hydrolyzable, polymeric reaction product
US4122129A (en) Normally-solid, bioabsorbable, hydrolyzable, polymeric reaction product
US4095600A (en) Normally-solid, bioabsorbable, hydrolyzable, polymeric reaction product
EP0108912B1 (en) Poly(glycolic acid)/poly(alkylene glycol)block copolymers and method of manufacturing the same
US8357767B2 (en) High modulus polyurethane and polyurethane/urea compositions
CA2153867C (en) Bioabsorbable branched polymer containing units derived from dioxanone and medical/surgical devices manufactured therefrom
EP2285863B1 (en) Absorbable copolyesters of poly(ethoxyethylene diglycolate) and glycolide
CN115160546B (en) Long-chain random copolyester resin easy to crystallize and adjustable in biodegradation rate and preparation method thereof
US7652127B2 (en) Absorbable copolyesters of poly(ethoxyethylene diglycolate) and glycolide
GB2433743A (en) Aliphatic polyester copolymer
KR100817905B1 (en) Biodegradable aliphatic polyester resin compositionand preparation thereof on the excellence of bionics adapt
AU2014237773B2 (en) Polylactone polymers prepared from monol and diol polymerization initiators possessing two or more carboxylic acid groups
JP2000508017A (en) Crystal copolymer and method for producing the same
KR0163495B1 (en) Method of manufacturing polyester flat yarn
CN1191289C (en) Synthesis of amphiphilic biodegradable polyurethane elastomer
KR101177656B1 (en) Biodegradable polymer for suture and making method of it
KR101308661B1 (en) manufacturing method for biodegradable polyester-polyacetal block copolymer
KR101395357B1 (en) Polylactic acid-polysiloxane copolymer and method of manufacturing the same
KR101247442B1 (en) Branched polylactic acid-polycaprolactone copolymer and method of manufacturing the same
US9200112B2 (en) Semi-crystalline, fast absorbing polymer formulation
KR100308535B1 (en) Polyester resin composition and method for producing the same
JP3484813B2 (en) Aliphatic polyester carbonate and method for producing the same
KR20210067089A (en) Biodegradable block-copolymer for and preparation method the same
KR100596996B1 (en) Producing method of the biodecomposable aliphatic polyester copolymer

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110111

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee