KR20070115001A - Method for producing polyolefin having high stiffness - Google Patents

Method for producing polyolefin having high stiffness Download PDF

Info

Publication number
KR20070115001A
KR20070115001A KR1020060048743A KR20060048743A KR20070115001A KR 20070115001 A KR20070115001 A KR 20070115001A KR 1020060048743 A KR1020060048743 A KR 1020060048743A KR 20060048743 A KR20060048743 A KR 20060048743A KR 20070115001 A KR20070115001 A KR 20070115001A
Authority
KR
South Korea
Prior art keywords
catalyst
aluminum
compound
polymerization
reactor
Prior art date
Application number
KR1020060048743A
Other languages
Korean (ko)
Inventor
장호식
오상준
한재혁
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to KR1020060048743A priority Critical patent/KR20070115001A/en
Publication of KR20070115001A publication Critical patent/KR20070115001A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/602Component covered by group C08F4/60 with an organo-aluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/606Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by groups C08F4/60
    • C08F4/6065Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by groups C08F4/60 containing silicium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

A method for preparing polyolefin is provided to produce polyolefin having high stiffness in a continuous polymerization reactor with high polymerization activity by using a pre-polymerization catalyst obtained from a Ziegler-Natta catalyst. A method for preparing polyolefin includes a step of polymerizing or copolymerizing olefins in a multi-stage continuous polymerization reactor in the presence of a catalyst system consisting of (a) a pre-polymerization catalyst, (b) an organometallic compound of a group 1 or 3 metal on the periodic table, and (c) an external electron donor. The pre-polymerization catalyst is obtained by reacting olefin monomers in the presence of a Ziegler-Natta based solid complex titanium catalyst, at least two aluminum compounds comprising alkylaluminum and halogenated aluminum, and an electron donor to polymerize a high-molecular-weight monomer on the surface of the catalyst.

Description

고강성을 갖는 폴리올레핀 제조방법{METHOD FOR PRODUCING POLYOLEFIN HAVING HIGH STIFFNESS}Polyolefin manufacturing method with high rigidity {METHOD FOR PRODUCING POLYOLEFIN HAVING HIGH STIFFNESS}

본 발명은 연속 중합공정에서 높은 중합활성으로, 고강성을 갖는 폴리올레핀을 제조하는 방법에 관한 것으로서, 좀더 상세하게는 전중합촉매, 주기율표의 제I족 또는 제Ⅲ족 금속의 유기금속 화합물 및 외부전자공여체로 이루어진 촉매계의 존재하에서, 다단연속 중합반응기에서 올레핀을 중합 또는 공중합시키는 것을 특징으로 하는 올레핀 제조방법에 관한 것이다.The present invention relates to a method for producing a polyolefin having high rigidity with high polymerization activity in a continuous polymerization process, more specifically, prepolymerization catalyst, organometallic compound of Group I or Group III metal of the periodic table and external electrons In the presence of a catalyst system consisting of a donor, the present invention relates to a method for producing an olefin, characterized in that the olefin is polymerized or copolymerized in a multistage continuous polymerization reactor.

지금까지 많은 올레핀 중합 촉매 및 중합공정이 보고되어 왔으나, 발명된 촉매에 보다 큰 상업적인 의미를 부여하기 위해서, 발명된 촉매를 이용하여 얻어진 중합물의 물성을 향상시켜 생산성을 높이거나 제품의 품질을 향상시키려는 노력과, 촉매 자체의 활성과 입체규칙성을 향상시켜야 한다는 요구가 계속되었다.Although many olefin polymerization catalysts and polymerization processes have been reported so far, in order to give a greater commercial meaning to the catalysts invented, the properties of the polymers obtained by using the invention catalysts are improved to increase productivity or to improve product quality. Efforts and demands to improve the activity and stereoregularity of the catalysts themselves continue.

마그네슘을 포함하고 티타늄에 기초를 둔 많은 올레핀 중합 촉매 및 촉매 제조 공정이 보고되어 왔으며, 촉매의 입자 형상 및 크기 등을 조절하기 위해 마그네슘화합물의 용액을 이용하는 촉매 제조 방법이 많이 알려져 있다. 탄화수소 용매 존재하에서 마그네슘 화합물을 알코올, 아민, 에테르, 에스테르, 카르복실산 등과 같은 전자공여체와 반응시켜 마그네슘 용액을 얻는 방법이 있는데, 알코올을 사용한 경우는 미국특허 제4,330,649호, 제5,106,807호, 일본국 공개 특허 공보 소58-83006호에 언급되어 있다. 그리고 미국특허 제4,315,874호, 제4,399,054호, 제4,071,674호에 마그네슘 용액을 제조하는 방법이 보고되어 있다. Many olefin polymerization catalysts and catalyst production processes based on titanium, including magnesium, have been reported, and there are many known methods for preparing a catalyst using a solution of a magnesium compound to control the particle shape and size of the catalyst. There is a method of obtaining a magnesium solution by reacting a magnesium compound with an electron donor such as alcohol, amine, ether, ester, carboxylic acid, etc. in the presence of a hydrocarbon solvent. In the case of using alcohol, U.S. Patent Nos. 4,330,649, 5,106,807, and Japan Reference is made to published patent publication no. 58-83006. And US Patent Nos. 4,315,874, 4,399,054 and 4,071,674 report a method for preparing magnesium solutions.

미국특허 제4,347,158호, 제4,422,957호, 제4,425,257호, 제4,618,661호, 제4,680,381호에서는 지지체인 마그네슘클로라이드에 알루미늄클로라이드와 같은 루이스산 화합물을 첨가하여 분쇄한 다음 촉매를 제조하는 방법을 제안하고 있다. 그러나 상기 특허들에서 촉매활성은 보완이 되었으나, 촉매의 형태, 크기, 크기 분포도와 같은 촉매 형상면에서 불규칙한 면이 있고, 입체 규칙성이 보완되어야 하는 단점이 있다.U.S. Patent Nos. 4,347,158, 4,422,957, 4,425,257, 4,618,661, and 4,680,381 propose a method of preparing a catalyst after pulverizing a Lewis acid compound such as aluminum chloride to magnesium chloride as a support. However, although the catalytic activity is complemented in the above patents, there are disadvantages in that the shape of the catalyst, such as the shape, size, size distribution of the catalyst irregularities, and stereoregularity should be complemented.

촉매의 형상과 관련하여, 마그네슘화합물에 담지된 티타늄계 중합촉매의 제조에 있어서, 알코올과 환상에테르의 혼합용매를 사용하여 마그네슘할라이드 화합물을 용해시키고, 여기에 TiCl4와 같은 티타늄할라이드 화합물을 반응시킴으로써 촉매입자의 형상을 제어할 수 있음이 알려졌으나, 촉매의 제조수율이 낮은 단점이 있고, 이를 극복하기 위해서 알코올과 환상에테르의 혼합용매를 사용하여 마그네슘할라이드 화합물을 용해시키고, 금속화합물과 반응시키는 단계에서 일차로 비교적 낮은 온도에서 금속할라이드 화합물과 반응시켜 입자모양이 조절된 입자를 생성시키고, 2차로 금속할라이드 화합물과 추가로 반응시킴으로써 촉매의 제조 수율 및 형상을 제어할 수 있는 방법이 제안된 바 있다.Regarding the shape of the catalyst, in the preparation of a titanium-based polymerization catalyst supported on a magnesium compound, a mixed solvent of alcohol and a cyclic ether is used to dissolve the magnesium halide compound, and then a titanium halide compound such as TiCl 4 is reacted. It is known that the shape of the catalyst particles can be controlled, but there is a disadvantage in that the yield of the catalyst is low. In order to overcome this, the magnesium halide compound is dissolved using a mixed solvent of alcohol and cyclic ether, and reacted with a metal compound. Has been proposed to control the production yield and shape of catalysts by first reacting with metal halide compounds at relatively low temperatures to produce particles with controlled particle shape and further reacting with metal halide compounds secondly. .

그러나, 촉매활성과 입체규칙성을 더욱 향상시키고, 제조되는 중합체의 물성을 향상시킬 수 있는 효과적이고 새로운 촉매 제조방법 및 폴리올레핀 제조방법에 대한 개발은 계속 요구되고 있다. However, there is a continuing need for development of an effective new catalyst production method and polyolefin production method that can further improve catalytic activity and stereoregularity and improve physical properties of the polymer to be produced.

본 발명은 통상적으로 사용되는 지글러-나타 촉매를 응용하여 얻어진 전중합촉매를 사용하므로써, 연속 중합반응기에서 높은 중합활성으로, 고강성을 나타내는 폴리올레핀을 중합 및 공중합시키는 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a method for polymerizing and copolymerizing a polyolefin having high rigidity with high polymerization activity in a continuous polymerization reactor by using a prepolymer catalyst obtained by applying a commonly used Ziegler-Natta catalyst.

본 발명의 폴리올레핀 제조방법은, 지글러-나타 계열의 고체착물 티타늄 촉매와 알킬알루미늄과 할로겐화 알루미늄을 포함하는 2종 이상의 알루미늄화합물 및 전자공여체의 존재하에서, 저온, 저압하에서 올레핀 단량체를 반응시켜, 촉매 표면에 고분자량 단량체를 중합하여 얻어진 전중합촉매(a), 주기율표의 제I족 또는 제Ⅲ족 금속의 유기금속 화합물(b) 및 외부전자공여체(c)로 이루어진 촉매계의 존재하에서, 다단연속 중합반응기에서 올레핀을 중합 또는 공중합시키는 것을 특징으로 한다.The polyolefin production method of the present invention is a surface of the catalyst by reacting an olefin monomer at low temperature and low pressure in the presence of a Ziegler-Natta-based solid complex titanium catalyst, two or more aluminum compounds and alkyl donors including alkylaluminum and aluminum halides. Multistage continuous polymerization reactor in the presence of a catalyst system comprising a prepolymerization catalyst (a) obtained by polymerizing a high molecular weight monomer in an organic solvent, an organometallic compound (b) and an external electron donor (c) of a Group I or Group III metal of the periodic table. It is characterized in that the olefin is polymerized or copolymerized.

본 발명에서 사용되는 전중합촉매(a)는 지글러-나타 계열의 고체착물 티타늄 촉매를 다음의 전중합 공정을 통해서 전중합시켜 얻어진 것이다.The prepolymerization catalyst (a) used in the present invention is obtained by prepolymerizing a Ziegler-Natta-based solid complex titanium catalyst through the following prepolymerization process.

전중합 공정은 (1) 고체착물 티타늄 촉매; (2) 알킬알루미늄과 할로겐화 알루미늄을 포함하는 2종 이상의 알루미늄화합물; 및 (3) 전자공여체의 존재하, -50~50℃의 온도하에서 올레핀 단량체를 반응시켜, 촉매 표면에 고분자량 단량체를 중합하는 것으로 이루어진다.The prepolymerization process comprises (1) a solid complex titanium catalyst; (2) at least two aluminum compounds containing alkylaluminum and aluminum halides; And (3) reacting the olefin monomer at a temperature of −50 to 50 ° C. in the presence of an electron donor to polymerize a high molecular weight monomer on the surface of the catalyst.

본 발명에서 사용되는 전중합촉매의 제조에 사용되는 상기 고체착물 티타늄 촉매로는 통상의 올레핀 중합용 고체 티타늄 촉매를 모두 사용할 수 있으며, 이는 여러가지 방법으로 제조될 수 있다. 가장 보편적인 방법으로는, 마그네슘 화합물과 최소한 1개 이상의 할로겐을 함유하는 티타늄화합물을 접촉시키고, 필요시에는 그 생성물을 전자공여체로 처리하는 각종 방법이 알려져 있다. 이러한 방법중의 몇 가지는 독일연방공화국 공개특허 제2,230,672호, 제2,504,036, 제2,553,104호 및 제2,605,922호와 일본국 공개특허 제51-28189호, 제51-136625호 및 제52-87486호에 기재되어 있다. As the solid complex titanium catalyst used in the preparation of the prepolymerization catalyst used in the present invention, any conventional solid titanium catalyst for olefin polymerization may be used, which may be prepared by various methods. As the most common method, various methods are known in which a magnesium compound is brought into contact with a titanium compound containing at least one halogen and, if necessary, the product is treated with an electron donor. Some of these methods are described in JP 2,230,672, 2,504,036, 2,553,104 and 2,605,922 and JP 51-28189, 51-136625 and 52-87486. have.

또한, 본 발명의 전중합촉매의 제조에 사용되는 고체 티타늄 촉매로는, 미국특허 제4,482,687호, 제4,277,372호, 제3,642,746호, 제3,642,772호, 제4,158,642호, 제4,148,756호, 제4,477,639호, 제4,518,706호, 제4,946,816호, 제4,866,022호, 제5,013,702호, 제5,124,297호, 제4,330,649호, 유럽 특허 제131,832호, 일본 공개특허 소 63-54004호 등에 기재된 통상의 지글러-나타 촉매를 사용할 수 있다.In addition, as a solid titanium catalyst used in the preparation of the prepolymerization catalyst of the present invention, U.S. Patent Nos. 4,482,687, 4,277,372, 3,642,746, 3,642,772, 4,158,642, 4,148,756, 4,477,639, and Conventional Ziegler-Natta catalysts described in 4,518,706, 4,946,816, 4,866,022, 5,013,702, 5,124,297, 4,330,649, European Patent 131,832, JP-A-63-54004 and the like can be used.

바람직한 구체예로서는, 상기 고체착물 티타늄 촉매(1)의 제조방법은 다음의 4단계로 이루어진다:In a preferred embodiment, the process for preparing the solid complex titanium catalyst 1 consists of the following four steps:

(i) 마그네슘 할라이드 화합물을 환상에테르와, 1종 이상의 알코올 화합물의 혼합용매에 용해하는 단계, (ii) 상기 마그네슘 화합물 용액을 금속 할라이드 화합물과 비교적 낮은 온도에서 1차로 반응시켜 입자를 얻은 후 2차로 티타늄 화합물과 반응시켜 담체를 제조하는 단계, (iii) 상기 담체를 티타늄 화합물 및 전자 공여체 와 반응시켜 티타늄을 담지시키는 단계, (iv) 제조된 촉매를 고온의 탄화수소 용매하에서 세척하는 단계.(i) dissolving the magnesium halide compound in a mixed solvent of a cyclic ether and at least one alcohol compound, (ii) reacting the magnesium compound solution with the metal halide compound first at a relatively low temperature to obtain particles, and then secondly Reacting the titanium compound with a titanium compound to prepare a carrier, (iii) reacting the carrier with the titanium compound and an electron donor to support titanium, and (iv) washing the prepared catalyst under a high temperature hydrocarbon solvent.

상기 전중합 공정이 액상 전중합인 경우에는, 헥산, 헵탄 또는 케로센과 같은 불활성 용제가 반응매로 사용될 수 있으나, 올레핀 자체가 반응매 역할을 할 수도 있고, 전중합 반응계 중에서 고체착물 티타늄 촉매(1)의 바람직한 농도는 용제 1ℓ에 대하여 티타늄 원자가 약 0.01~약 500mmol인 것이 바람직하고, 약 1~약 50mmol인 것이 더욱 바람직하다.When the prepolymerization process is a liquid prepolymerization, an inert solvent such as hexane, heptane or kerosene may be used as the reaction medium, but the olefin itself may serve as a reaction medium, and the solid complex titanium catalyst (1 The concentration of c) is preferably from about 0.01 to about 500 mmol, more preferably from about 1 to about 50 mmol of titanium atoms per 1 L of solvent.

상기 알루미늄화합물(2)은 트리에틸알루미늄 및 트리부틸알루미늄과 같은 트리알킬알루미늄, 트리이소프레닐알루미늄과 같은 트리알케닐알루미늄, 에틸알루미늄세스퀴에톡시드 등의 알킬알루미늄화합물에서 선택되는 1종 이상 및 에틸알루미늄세스퀴클로라이드, 에틸알루미늄디클로라이드, 프로필알루미늄디클로라이드 및 부틸알루미늄디브로마이드와 같은 할로겐화 알루미늄중에서 선택되는 1종 이상의 알루미늄화합물이 바람직하다. 상기 알루미늄화합물의 사용비율은 촉매(1)중 티타늄원자의 몰당 약 1~100mol인 것이 바람직하고, 약 2~20mol인 것이 더욱 바람직한데, 1mol 미만에서는 첨가효과가 미흡하고, 100mol을 초과하는 경우에는 촉매가 지나치게 환원되어 버리는 문제가 생긴다.The aluminum compound (2) is at least one selected from alkylalkyl compounds such as trialkylaluminum such as triethylaluminum and tributylaluminum, trialkenylaluminum such as triisoprenylaluminum and ethylaluminum sesquiethoxide And at least one aluminum compound selected from aluminum halides such as ethylaluminum sesquichloride, ethylaluminum dichloride, propylaluminum dichloride and butylaluminum dibromide. The use ratio of the aluminum compound is preferably about 1 to 100 mol per mole of titanium atoms in the catalyst (1), and more preferably about 2 to 20 mol, and more preferably less than 1 mol, the addition effect is less than 100 mol There is a problem that the catalyst is excessively reduced.

상기 전자공여체(3)는 알콕시기를 가진 유기규소 화합물 즉, 알콕시실란 화합물 중에서 선택된 1종 이상이 바람직하며, 이들의 종류에는 디페닐디메톡시실란, 페닐트리메톡시실란, 페닐에틸디메톡시실란, 페닐메틸디메톡시실란과 같은 방향족 실란, 이소부틸트리메톡시실란, 디이소부틸디메톡시실란, 디이소프로필디메톡시실 란, 디-t-부틸디메톡시실란, t-부틸트리메톡시실란, 시클로헥실메틸디메톡시실란, 디시클로펜틸디메톡시실란, 디시클로헥실디메톡시실란, 2-노보난트리에톡시실란, 2-노보난메틸디메톡시실란, 비닐트리에톡시실란, 옥틸트리에톡시실란, 이소데실트리에톡시실란 등의 지방족 실란, 및 이들의 혼합물이 있으며, 특히 전술한 실란 화합물 중 디이소부틸디메톡시실란과 같은 가지화 알킬디알콕시실란과 디시클로펜틸디메톡시실란과 같은 시클로알킬디알콕시실란이 바람직하다. The electron donor (3) is preferably at least one selected from an organosilicon compound having an alkoxy group, that is, an alkoxysilane compound, and these types include diphenyldimethoxysilane, phenyltrimethoxysilane, phenylethyldimethoxysilane, and phenyl. Aromatic silanes such as methyldimethoxysilane, isobutyltrimethoxysilane, diisobutyldimethoxysilane, diisopropyldimethoxysilane, di-t-butyldimethoxysilane, t-butyltrimethoxysilane, cyclohexyl Methyldimethoxysilane, dicyclopentyldimethoxysilane, dicyclohexyldimethoxysilane, 2-norbornanetriethoxysilane, 2-norbornanemethyldimethoxysilane, vinyltriethoxysilane, octyltriethoxysilane, iso Aliphatic silanes such as decyltriethoxysilane, and mixtures thereof, and especially branched alkyldialkoxysilanes such as diisobutyldimethoxysilane and dicyclopentyldimethoxysil among the aforementioned silane compounds. The cycloalkyl dialkoxysilane is preferred as.

특히, 상기 유기규소 화합물은, 동일 중합조건에서 각각의 유기규소 화합물을 사용하여 중합한 호모폴리머의 용융지수(MFR)가 각각 5 미만, 5~20, 20을 초과하는 유기규소 화합물 3종 이상을 혼합하여 사용하는 것이 바람직하다.In particular, the organosilicon compound, at least three or more organosilicon compounds having a melt index (MFR) of the homopolymer polymerized using the respective organosilicon compounds under the same polymerization conditions are respectively less than 5, more than 5 to 20, 20 It is preferable to mix and use.

전자공여체(3)의 사용 비율은 고체착물 티타늄 촉매(1)중 티타늄원자의 몰당 약 0.001~5mol이 바람직하고, 약 0.1~1.0mol이 더욱 바람직하다.The use ratio of the electron donor (3) is preferably about 0.001 to 5 mol, more preferably about 0.1 to 1.0 mol per mole of titanium atoms in the solid complex titanium catalyst (1).

전중합 촉매의 제조에 사용되는 상기 올레핀 단량체로는 에틸렌, 프로필렌, 1-부텐, 1-헥센, 1-옥텐 중에서 선택되는 1종 이상을 사용하는 것이 바람직하다.It is preferable to use at least one selected from ethylene, propylene, 1-butene, 1-hexene, and 1-octene as the olefin monomer used in the preparation of the prepolymerization catalyst.

상기 전중합 촉매에 있어서, 촉매 표면에 전중합된 중합체의 무게는 촉매 g당 1~100g, 특히 20~70g인 것이 바람직하다.In the prepolymerization catalyst, the weight of the polymer prepolymerized on the catalyst surface is preferably 1 to 100 g, especially 20 to 70 g, per g catalyst.

상기와 같이 제조되는 전중합 촉매는 에틸렌, 프로필렌, 1-부텐, 3-메틸-1-부텐, 4-메틸-1-펜텐, 비닐시클로알칸 또는 시클로알켄과 같은 올레핀의 중합에 바람직하게 사용된다. 특히, 이 전중합 촉매는 3개 이상의 탄소 원자를 가진 α-올레핀의 중합, 이들 상호간의 공중합, 20몰% 미만의 에틸렌을 가진 이들의 공중합, 그리고 공액 또는 비공액 디엔류와 같은 폴리불포화화합물을 가진 이들의 공중합에 유익하게 적용된다.The prepolymerization catalyst prepared as above is preferably used for the polymerization of olefins such as ethylene, propylene, 1-butene, 3-methyl-1-butene, 4-methyl-1-pentene, vinylcycloalkane or cycloalkene. In particular, this prepolymerization catalyst is suitable for the polymerization of α-olefins having three or more carbon atoms, copolymerization of these mutually, copolymerization thereof with less than 20 mol% of ethylene, and polyunsaturated compounds such as conjugated or nonconjugated dienes. Advantageously applied to their copolymerization.

본 발명의 폴리올레핀 제조방법에서 조촉매로서 사용되는 유기금속화합물(b)로는, 유기알루미늄화합물이 바람직하고, 구체적으로 트리에틸알루미늄 및 트리부틸알루미늄과 같은 트리알킬알루미늄, 트리이소프레닐알루미늄과 같은 트리알케닐알루미늄, 부분적으로 알콕시화된 알킬알루미늄, 예를 들어, 디에틸알루미늄에톡시드 및 디부틸알루미늄부톡시드와 같은 디알킬알루미늄알콕시드, 에틸알루미늄세스퀴에톡시드 및 부틸알루미늄세스퀴에톡시드와 같은 알킬알루미늄세스퀴알콕시드 및 에틸알루미늄디클로라이드, 프로필알루미늄디클로라이드 및 부틸알루미늄디브로마이드와 같은 알킬알루미늄디할라이드, 부분적으로 할로겐화된 알루미늄, 디에틸알루미늄하이드라이드나 디부틸알루미늄하이드라이드와 같은 알루미늄하이드라이드 및 디부틸알루미늄하이드라이드와 같은 디알킬알루미늄하이드라이드, 에틸알루미늄에톡시클로라이드, 부틸알루미늄부톡시클로라이드 및 에틸알루미늄에톡시브로마이드와 같은 부분적으로 알콕시화되고 할로겐화된 알킬알루미늄 중에서 선택되는 것이 바람직하다.As the organometallic compound (b) used as a cocatalyst in the polyolefin production method of the present invention, an organoaluminum compound is preferable, and specifically, trialkylaluminum such as triethylaluminum and tributylaluminum, and triisoprenylaluminum Alkenylaluminum, partially alkoxylated alkylaluminum, for example dialkylaluminum alkoxides such as diethylaluminum ethoxide and dibutylaluminum butoxide, ethylaluminum sesquiethoxide and butylaluminum sesquiethock Alkyl aluminum sesquialkoxides such as seeds and alkyl aluminum dihalides such as ethyl aluminum dichloride, propyl aluminum dichloride and butyl aluminum dibromide, partially halogenated aluminum, such as diethyl aluminum hydride or dibutyl aluminum hydride Aluminum hydride and di It is preferred to select among partially alkoxylated and halogenated alkylaluminums such as dialkylaluminum hydrides such as butylaluminum hydride, ethylaluminum ethoxychloride, butylaluminum butoxychloride and ethylaluminum ethoxybromide.

본 발명에서 사용되는 외부전자공여체(c)는 올레핀 중합에 통상적으로 사용되는 외부전자공여체 물질을 사용할 수 있는데, 상기 외부전자공여체는 올레핀의 중합에 있어서 촉매의 활성 및 입체규칙성을 최적화하기 위해서 주로 사용된다. 본 발명에서 사용가능한 외부전자공여체의 예로는 유기산, 유기산 무수물, 유기산 에스테르, 알코올, 에테르, 알데히드, 케톤, 실란, 아민, 아민 옥사이드, 아마이드, 디올, 인산에스테르와 같은 산소, 규소, 질소, 황, 인 원자를 포함하는 유기 화합 물과 이들의 혼합물을 들 수 있다. As the external electron donor (c) used in the present invention, an external electron donor material commonly used for olefin polymerization may be used. The external electron donor is mainly used to optimize the activity and stereoregularity of the catalyst in the polymerization of the olefin. Used. Examples of external electron donors usable in the present invention include organic acids, organic acid anhydrides, organic acid esters, alcohols, ethers, aldehydes, ketones, silanes, amines, amine oxides, amides, diols, oxygen such as phosphate esters, silicon, nitrogen, sulfur, And organic compounds containing phosphorus atoms and mixtures thereof.

특히 바람직한 외부전자공여체는 알콕시기를 가진 유기규소 화합물 즉, 알콕시실란 화합물이며, 이들의 종류에는 디페닐디메톡시실란, 페닐트리메톡시실란, 페닐에틸디메톡시실란, 페닐메틸디메톡시실란과 같은 방향족 실란, 이소부틸트리메톡시실란, 디이소부틸디메톡시실란, 디이소프로필디메톡시실란, 디-t-부틸디메톡시실란, t-부틸트리메톡시실란, 시클로헥실메틸디메톡시실란, 디시클로펜틸디메톡시실란, 디시클로헥실디메톡시실란, 2-노보난트리에톡시실란, 2-노보난메틸디메톡시실란, 비닐트리에톡시실란 등의 지방족 실란, 및 이들의 혼합물이 있으며, 특히 전술한 실란 화합물 중 디이소부틸디메톡시실란과 같은 가지화 알킬디알콕시실란과 디시클로펜틸디메톡시실란과 같은 디시클로알킬디알콕시실란이 효과적이다. 상기 화합물들을 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.Particularly preferred external electron donors are organosilicon compounds having an alkoxy group, i.e., alkoxysilane compounds, and their kinds include aromatic silanes such as diphenyldimethoxysilane, phenyltrimethoxysilane, phenylethyldimethoxysilane and phenylmethyldimethoxysilane. , Isobutyltrimethoxysilane, diisobutyldimethoxysilane, diisopropyldimethoxysilane, di-t-butyldimethoxysilane, t-butyltrimethoxysilane, cyclohexylmethyldimethoxysilane, dicyclopentyldimeth Aliphatic silanes such as methoxysilane, dicyclohexyldimethoxysilane, 2-norbornanetriethoxysilane, 2-norbornanemethyldimethoxysilane, vinyltriethoxysilane, and mixtures thereof, and particularly the silane compounds described above. Among these, branched alkyl dialkoxysilanes such as diisobutyldimethoxysilane and dicycloalkyl dialkoxysilanes such as dicyclopentyldimethoxysilane are effective. The compounds may be used alone or in combination of two or more thereof.

본 발명의 촉매계 존재하에서의 올레핀의 다단 반응기에서 연속 중합 또는 공중합반응은 통상의 지글러식(Ziegler-type) 촉매를 사용하는 올레핀의 중합공정과 동일하게 진행된다. 특히, 실질적으로 산소와 물의 부재하에서 수행된다. 다단 반응기 중 액상 슬러리 반응기의 경우는 바람직하게는 약 20~200℃, 더욱 바람직하기로는 약 50~180℃의 온도 및 대기압~100기압의 압력, 바람직하게는 약 2~50기압의 압력하에서 수행할 수 있다. 그리고 기상 유동층 반응기에서 중합온도는 중합체 소결온도 이하로 운전하는 것이 필수적이다. 덩어리 생성을 방지하기 위하여 본 발명의 촉매는 30℃~110℃에서 사용되는 것이 바람직하고, 75~95℃에서 사용되는 것이 더욱 바람직하다. 유동층 반응기의 운전압력은 1000psi까지 운전되는 것이 바람 직하고, 150~300psi가 더욱 바람직하다. 이 범위에서도 가능하면 높은 압력에서 운전하는 것이 단위 부피당 열용량이 높기 때문에 바람직하다.Continuous polymerization or copolymerization in the multistage reactor of olefins in the presence of the catalyst system of the present invention proceeds in the same manner as the polymerization of olefins using a conventional Ziegler-type catalyst. In particular, it is carried out substantially in the absence of oxygen and water. In the case of a liquid phase slurry reactor in a multi-stage reactor, it is preferably performed at a temperature of about 20 to 200 ° C., more preferably at a temperature of about 50 to 180 ° C. and a pressure of atmospheric pressure to 100 atm, and preferably at a pressure of about 2 to 50 atm. Can be. And it is essential to operate the polymerization temperature below the polymer sintering temperature in the gas phase fluidized bed reactor. In order to prevent mass formation, the catalyst of the present invention is preferably used at 30 ° C to 110 ° C, and more preferably at 75 to 95 ° C. The operating pressure of the fluidized bed reactor is preferably operated to 1000psi, more preferably 150 ~ 300psi. Even in this range, it is preferable to operate at high pressure because the heat capacity per unit volume is high.

본 발명은 하기의 실시예에 의하여 보다 구체적으로 이해될 수 있으며, 하기의 실시예는 본 발명을 예시하기 위한 예에 지나지 않는 것으로 본 발명의 보호범위를 제한하고자 하는 것은 아니다.The present invention can be understood in more detail by the following examples, the following examples are only examples for illustrating the present invention and are not intended to limit the protection scope of the present invention.

[[ 실시예Example  And 비교예Comparative example ]]

실시예Example 1 One

[[ 전중합촉매(a)의Of the prepolymerization catalyst (a) 제조] Produce]

1단계: 마그네슘 화합물 용액 제조Step 1: Prepare Magnesium Compound Solution

질소 분위기로 치환된 기계식 교반기가 설치된 500L 반응기에 MgCl2 15kg, 톨루엔 225kg, 테트라하이드로퓨란 17kg, 부탄올 31kg을 투입하고 70rpm으로 교반하면서 110℃로 승온후 3시간 동안 유지시켜 균일용액을 얻었다.MgCl in 500L reactor with mechanical stirrer replaced by nitrogen atmosphere2 15 kg, toluene 225 kg, tetrahydrofuran 17 kg, butanol 31 kg was added, and stirred at 70 rpm, the temperature was raised to 110 ℃ and maintained for 3 hours to obtain a uniform solution.

2단계: 고체 Step 2: Solid 담지체Carrier 제조 Produce

1단계에서 얻어진 용액의 온도를 17℃로 냉각하고 TiCl4 32kg을 투입한 후 반응기의 온도를 60℃로 1시간에 걸쳐 승온하고 반응기가 60℃에 도달하면, 여기에 TiCl4 13kg을 40분간 투입하여 30분간 반응시켰다. 반응후 30분간 정치시켜 담체를 가라 앉히고, 상부의 용액을 제거하였다. 반응기 안에 남은 슬러리는 90kg의 톨루엔을 투입하고, 교반, 정치, 상등액 제거과정을 3회 반복하여 세척하였다.Cool the temperature of the solution obtained in step 1 to 17 ℃ and TiCl 4 After adding 32 kg, the temperature of the reactor was increased to 60 ° C. over 1 hour, and when the reactor reached 60 ° C., 13 kg of TiCl 4 was added thereto for 40 minutes to react for 30 minutes. After the reaction, the mixture was allowed to stand for 30 minutes to settle the carrier, and the upper solution was removed. 90 kg of toluene was added to the slurry remaining in the reactor, and washed three times by stirring, standing, and removing the supernatant.

3단계: 고체 Step 3: Solid 착물Complex 티타늄 촉매 제조 Titanium catalyst manufacturers

2단계에서 제조된 담체에 교반속도 60rpm에서 톨루엔 80kg, TiCl4 90kg을 투입한 후 반응기의 온도를 110℃로 1시간 동안 승온하고 1시간 동안 숙성한 후, 15분간 정치시켜 침전물을 가라앉힌 뒤 상등액을 분리하였다. 여기에 다시 톨루엔 87kg과 TiCl4 52kg, 디이소부틸프탈레이트 4.2kg을 투입하였다. 반응기의 온도를 120℃로 올린 다음 1시간 동안 유지 반응시켰다. 반응후 30분간 정치시켜 상등액을 분리하고 다시 톨루엔 80kg과 TiCl4 76kg을 주입한 후 100℃에서 30분 동안 반응시켰다. 반응후 30분간 정치시킨 후 상등액을 분리하고, 헥산 65kg을 투입한 후 반응기의 온도를 60℃로 30분간 유지하면서 교반하였다. 교반을 정지하고 30분간 정치후 상등액을 분리하였다. 남은 촉매 슬러리층에 다시 헥산을 투입하고 세척하는 과정을 동일하게 6회 시행하여 최종 고체 착물 티타늄 촉매를 제조하였다. 제조된 촉매의 Ti 함량은 2.8중량%이었다.Toluene 80 kg, TiCl 4 at a stirring speed of 60 rpm to the carrier prepared in step 2 After adding 90 kg, the temperature of the reactor was raised to 110 ° C. for 1 hour and aged for 1 hour. After standing for 15 minutes, the precipitate was settled and the supernatant was separated. Here again 87 kg of toluene and TiCl 4 52 kg and 4.2 kg of diisobutyl phthalate were added thereto. The temperature of the reactor was raised to 120 ° C., and the reaction was maintained for 1 hour. After the reaction, the mixture was allowed to stand for 30 minutes to separate the supernatant, and 80 kg of toluene and 76 kg of TiCl 4 were injected again, followed by reaction at 100 ° C. for 30 minutes. After the reaction was allowed to stand for 30 minutes, the supernatant was separated, and 65 kg of hexane was added thereto, followed by stirring while maintaining the temperature of the reactor at 60 ° C. for 30 minutes. The stirring was stopped and the supernatant was separated after standing for 30 minutes. Hexane was added to the remaining catalyst slurry layer and washed six times in the same manner to prepare a final solid complex titanium catalyst. Ti content of the prepared catalyst was 2.8% by weight.

4단계 : Step 4: 전중합Prepolymerization

용량 150ℓ의 고압반응기를 헥산으로 세정한 다음, 5℃로 유지된 반응기에 상기 3단계에서 얻은 촉매 360g, 헥산 33kg, 트리에틸알루미늄 730mmol, 디에틸알루미늄클로라이드 730mmol, 시클로헥실메틸디메톡시실란 80mmol 순으로 가하고 30분 교반한 다음, 프로필렌으로 0.4kg/h로 흘리면서, 중합 온도는 15℃가 넘지 않도록 조절하면서 6.3시간 동안 중합을 실시하였다. 이렇게 하여 얻어진 전중합 촉매에 있어서, 촉매 주위에 중합된 중합체의 양은 촉매 1g당 7g이었다.     The high-pressure reactor with a capacity of 150 L was washed with hexane, and then, 360 g of the catalyst obtained in step 3, 33 kg of hexane, 730 mmol of diethylaluminum chloride, 730 mmol of diethylaluminum chloride and 80 mmol of cyclohexylmethyldimethoxysilane were added to the reactor maintained at 5 ° C. After the addition and stirring for 30 minutes, the polymerization was carried out for 6.3 hours while controlling the polymerization temperature not to exceed 15 ° C while flowing 0.4 kg / h with propylene. In the prepolymerization catalyst thus obtained, the amount of polymer polymerized around the catalyst was 7 g per 1 g of catalyst.

[연속식 다단 중합 반응][Continuous Multistage Polymerization Reaction]

제조된 전중합 촉매의 성능평가를 위해 연속식 다단 중합 반응기 시스템에서 프로필렌 호모중합을 실시하였다. 사용된 중합 반응시스템은 액상 슬러리 반응기 2개와 기상 유동층 반응기 1개로 이루어져 있다. 각 반응기들은 질소로 퍼지하여 반응기 내에 수분, 산소를 제거한 후, 2개의 액상 반응기들은 36kg의 액상 프로필렌을 주입하고, 1개의 기상반응기에는 40kg 정도의 시드 파우더(seed powder)를 주입하고 프로필렌을 이용하여 4시간 동안 전체 반응기 시스템의 대순환 운전을 실시하였다. 그리고 1단 액상 슬러리 반응기에 트리에틸알루미늄과 외부전자공여체로 시클로헥실메틸디메톡시실란을 계속 주입하고, 1시간 후 상기에서 제조된 전중합 촉매를 고체착물 티타늄 촉매 기준으로 1g/hr의 속도로 계속 주입하여 중합 반응을 실시하였다. 15kg/h 정도의 속도로 생산된 파우더는 플랜트의 건조시스템을 거쳐 매시간 계량되었다. 이 파우더의 자일렌 용해물(Xylene soluble)과 굴곡탄성율(FM), 아이조드 충격강도 등의 분석을 실시하였다. 결과는 표 1에 나타내었다.Propylene homopolymerization was carried out in a continuous multistage polymerization reactor system for performance evaluation of the prepared prepolymerization catalyst. The polymerization reaction system used consists of two liquid phase slurry reactors and one gas phase fluidized bed reactor. Each reactor was purged with nitrogen to remove moisture and oxygen in the reactor, and two liquid phase reactors injected 36 kg of liquid propylene, and one gas phase reactor injected about 40 kg of seed powder. The large cycle operation of the entire reactor system was carried out for 4 hours. Then, the cyclohexyl methyldimethoxysilane was continuously injected into the triethylaluminum and the external electron donor into the first stage liquid slurry reactor, and after 1 hour, the prepolymerized catalyst prepared above was continued at a rate of 1 g / hr based on the solid complex titanium catalyst. Injection was carried out to carry out the polymerization reaction. The powder produced at the rate of 15 kg / h was weighed every hour through the plant's drying system. Xylene solubles, flexural modulus (FM) and Izod impact strength of the powder were analyzed. The results are shown in Table 1.

실시예Example 2 2

실시예 1의 전중합 촉매(a)의 제조중 4단계에서, 트리에틸알루미늄 730mmol 대신에 트리에틸알루미늄 1500mmol을 사용하여 전중합 촉매를 제조하고, 실시예 1과 동일한 조건으로 중합을 실시하였다. 결과는 표 1에 나타내었다.In step 4 of preparing the prepolymerization catalyst (a) of Example 1, a prepolymerization catalyst was prepared using 1500 mmol of triethylaluminum instead of 730 mmol of triethylaluminum, and polymerization was carried out under the same conditions as in Example 1. The results are shown in Table 1.

실시예Example 3 3

실시예 1의 전중합 촉매(a)의 제조중 4단계에서, 트리에틸알루미늄 1500mmol, 디에틸알루미늄클로라이드 1500mmol을 사용하여 전중합 촉매를 제조하고, 실시예 1과 동일한 조건으로 중합을 실시하였다. 결과는 표 1에 나타내었다.In step 4 of preparing the prepolymerization catalyst (a) of Example 1, a prepolymerization catalyst was prepared using 1500 mmol of triethylaluminum and 1500 mmol of diethylaluminum chloride, and polymerization was carried out under the same conditions as in Example 1. The results are shown in Table 1.

실시예Example 4 4

실시예 1의 연속식 다단 중합 반응 단계에서, 4번째 반응기로 기상 유동층 반응기를 추가하고, 여기서 임팩트 코폴리머를 만드는 공중합 반응을 실시하였다. 결과는 표 1에 나타내었다.In the continuous multistage polymerization reaction step of Example 1, a gas phase fluidized bed reactor was added to the fourth reactor, where a copolymerization reaction was made to produce an impact copolymer. The results are shown in Table 1.

실시예Example 5 5

실시예 2의 연속식 다단 중합 반응 단계에서, 4번째 반응기로 기상 유동층 반응기를 추가하고, 여기서 임팩트 코폴리머를 만드는 공중합 반응을 실시하였다. 결과는 표 1에 나타내었다.In the continuous multi-stage polymerization step of Example 2, a gas phase fluidized bed reactor was added to the fourth reactor, where a copolymerization reaction was made to produce an impact copolymer. The results are shown in Table 1.

실시예Example 6 6

실시예 3의 연속식 다단 중합 반응 단계에서, 4번째 반응기로 기상 유동층 반응기를 추가하고, 여기서 임팩트 코폴리머를 만드는 공중합 반응을 실시하였다. 결과는 표 1에 나타내었다.In the continuous multistage polymerization step of Example 3, a gas phase fluidized bed reactor was added to the fourth reactor, where a copolymerization reaction was made to produce an impact copolymer. The results are shown in Table 1.

비교예Comparative example 1 One

실시예 2의 전중합 촉매(a)의 4단계에서, 실란화합물은 사용하지 않고 알루미늄화합물로서 트리에틸알루미늄 730mmol만을 사용하여 전중합 촉매를 제조하고 실시예 1과 동일한 조건으로 얻어진 촉매에 대해 중합을 실시하였다. 결과는 표 1에 정리하였다.In step 4 of the prepolymerization catalyst (a) of Example 2, a prepolymerization catalyst was prepared using only 730 mmol of triethylaluminum as an aluminum compound without using a silane compound, and polymerization was performed on the catalyst obtained under the same conditions as in Example 1. Was carried out. The results are summarized in Table 1.

비교예Comparative example 2 2

실시예 2의 전중합 촉매(a)의 4단계에서, 실란화합물은 사용하지 않고 알루미늄화합물로서 트리이소부틸알루미늄 730mmol만을 사용하여 전중합 촉매를 제조하 고 실시예 1과 동일한 조건으로 얻어진 촉매에 대해 중합을 실시하였다. 결과는 표 1에 정리하였다.In step 4 of the prepolymerization catalyst (a) of Example 2, a prepolymerization catalyst was prepared using only 730 mmol of triisobutylaluminum as an aluminum compound without using a silane compound, and the catalyst obtained under the same conditions as in Example 1. The polymerization was carried out. The results are summarized in Table 1.

비교예Comparative example 3 3

비교예 1의 연속식 다단 중합 반응 단계에서, 4번째 반응기로 기상 유동층 반응기를 추가하고, 여기서 임팩트 코폴리머를 만드는 공중합 반응을 실시하였다. 결과는 표 1에 나타내었다.In the continuous multistage polymerization reaction step of Comparative Example 1, a gas phase fluidized bed reactor was added to the fourth reactor, where a copolymerization reaction was conducted to produce an impact copolymer. The results are shown in Table 1.

[표 1]TABLE 1

중합 반응 결과Polymerization result

중합활성 (kgPP/gCat)Polymerization Activity (kgPP / gCat) 자일렌 용해물(%)Xylene Melt (%) 굴곡 탄성율 (kg/㎠)Flexural Modulus (kg / ㎠) 아이조드 충격강도 at 23 ℃ (kgㆍcm/cm)Izod impact strength at 23 ℃ (kgcm / cm) 실시예1Example 1 1313 1.81.8 19,20019,200 3.03.0 실시예2Example 2 1212 1.91.9 19,10019,100 2.92.9 실시예3Example 3 1313 1.91.9 19,00019,000 3.13.1 실시예4Example 4 1616 1.71.7 12,50012,500 7.57.5 실시예5Example 5 1717 1.91.9 12,50012,500 7.37.3 실시예6Example 6 1515 1.71.7 12,70012,700 7.47.4 비교예1Comparative Example 1 1111 2.12.1 18,10018,100 2.92.9 비교예2Comparative Example 2 88 2.02.0 18,20018,200 2.82.8 비교예3Comparative Example 3 1414 2.12.1 12,00012,000 77

* 굴곡 탄성율 측정은 ASTM D790* Flexural modulus measurement is ASTM D790

* 아이조드 충격강도 측정은 ASTM D256에 따른다.* Izod impact strength measurement is in accordance with ASTM D256.

실시예Example 7 7

[[ 전중합촉매(a)의Of the prepolymerization catalyst (a) 제조] Produce]

1단계: 마그네슘 화합물 용액 제조Step 1: Prepare Magnesium Compound Solution

질소 분위기로 치환된 기계식 교반기가 설치된 500L 반응기에 MgCl2 15kg, 톨루엔 225kg, 테트라하이드로퓨란 17kg, 부탄올 31kg을 투입하고 70rpm으로 교반하면서 110℃로 승온후 3시간 동안 유지시켜 균일용액을 얻었다.MgCl 2 in a 500L reactor equipped with a mechanical stirrer replaced with a nitrogen atmosphere 15 kg, toluene 225 kg, tetrahydrofuran 17 kg, butanol 31 kg was added, and stirred at 70 rpm, the temperature was raised to 110 ℃ and maintained for 3 hours to obtain a uniform solution.

2단계: 고체 Step 2: Solid 담지체Carrier 제조 Produce

1단계에서 얻어진 용액의 온도를 17℃로 냉각하고 TiCl4 32kg을 투입한 후 반응기의 온도를 60℃로 1시간에 걸쳐 승온하고 반응기가 60℃에 도달하면, 여기에 TiCl4 13kg을 40분간 투입하여 30분간 반응시켰다. 반응후 30분간 정치시켜 담체를 가라 앉히고, 상부의 용액을 제거하였다. 반응기 안에 남은 슬러리는 90kg의 톨루엔을 투입하고, 교반, 정치, 상등액 제거과정을 3회 반복하여 세척하였다.Cool the temperature of the solution obtained in step 1 to 17 ℃ and TiCl 4 After adding 32 kg, the temperature of the reactor was increased to 60 ° C. over 1 hour, and when the reactor reached 60 ° C., 13 kg of TiCl 4 was added thereto for 40 minutes to react for 30 minutes. After the reaction, the mixture was allowed to stand for 30 minutes to settle the carrier, and the upper solution was removed. 90 kg of toluene was added to the slurry remaining in the reactor, and washed three times by stirring, standing, and removing the supernatant.

3단계: 고체 Step 3: Solid 착물Complex 티타늄 촉매 제조 Titanium catalyst manufacturers

2단계에서 제조된 담체에 교반속도 60rpm에서 톨루엔 80kg, TiCl4 90kg을 투입한 후 반응기의 온도를 110℃로 1시간 동안 승온하고 1시간 동안 숙성한 후, 15분간 정치시켜 침전물을 가라앉힌 뒤 상등액을 분리하였다. 여기에 다시 톨루엔 87kg과 TiCl4 52kg, 디이소부틸프탈레이트 4.2kg을 투입하였다. 반응기의 온도를 120℃로 올린 다음 1시간 동안 유지 반응시켰다. 반응후 30분간 정치시켜 상등액을 분리하고 다시 톨루엔 80kg과 TiCl4 76kg을 주입한 후 100℃에서 30분 동안 반응시켰다. 반응후 30분간 정치시킨 후 상등액을 분리하고, 헥산 65Kg을 투입한 후 반응 기의 온도를 60℃로 30분간 유지하면서 교반하였다. 교반을 정지하고 30분간 정치후 상등액을 분리하였다. 남은 촉매 슬러리층에 다시 헥산을 투입하고 세척하는 과정을 동일하게 6회 시행하여 최종 고체 착물 티타늄 촉매를 제조하였다. 제조된 촉매의 Ti 함량은 2.8중량%이었다.Toluene 80 kg, TiCl 4 at a stirring speed of 60 rpm to the carrier prepared in step 2 After adding 90 kg, the temperature of the reactor was raised to 110 ° C. for 1 hour and aged for 1 hour. After standing for 15 minutes, the precipitate was settled and the supernatant was separated. Here again 87 kg of toluene and TiCl 4 52 kg and 4.2 kg of diisobutyl phthalate were added thereto. The temperature of the reactor was raised to 120 ° C., and the reaction was maintained for 1 hour. After the reaction, the mixture was allowed to stand for 30 minutes to separate the supernatant, and 80 kg of toluene and 76 kg of TiCl 4 were injected again, followed by reaction at 100 ° C. for 30 minutes. After the reaction was allowed to stand for 30 minutes, the supernatant was separated, and 65 Kg of hexane was added thereto, followed by stirring while maintaining the temperature of the reactor at 60 ° C. for 30 minutes. The stirring was stopped and the supernatant was separated after standing for 30 minutes. Hexane was added to the remaining catalyst slurry layer and washed six times in the same manner to prepare a final solid complex titanium catalyst. Ti content of the prepared catalyst was 2.8% by weight.

4단계 : Step 4: 전중합Prepolymerization

용량 150ℓ의 고압반응기를 헥산으로 세정한 다음, 5℃로 유지된 반응기에 상기 3단계에서 얻은 촉매 360g, 헥산 33kg, 트리에틸알루미늄 730mmol, 디에틸알루미늄클로라이드 730mmol, 디시클로펜틸디메톡시실란, 시클로헥실메틸디메톡시실란, 비닐트리에톡시실란을 각각 30mmol 순으로 가하고 30분 교반한 다음, 프로필렌으로 0.4kg/h로 흘리면서, 중합 온도는 15℃가 넘지 않도록 조절하면서 6.3시간 동안 중합을 실시하였다. 이렇게 하여 얻어진 전중합 촉매에 있어서, 촉매 주위에 중합된 중합체의 양은 촉매 1g당 7g이었다.     The high-pressure reactor with a capacity of 150 L was washed with hexane, and then 360 g of the catalyst obtained in step 3, 33 kg of hexane, 730 mmol of diethylaluminum chloride, 730 mmol of diethylaluminum chloride, dicyclopentyldimethoxysilane and cyclohexyl were added to the reactor maintained at 5 ° C. Methyldimethoxysilane and vinyltriethoxysilane were added in the order of 30 mmol, respectively, stirred for 30 minutes, and then polymerized for 6.3 hours while controlling the polymerization temperature not to exceed 15 ° C while flowing 0.4 kg / h with propylene. In the prepolymerization catalyst thus obtained, the amount of polymer polymerized around the catalyst was 7 g per 1 g of catalyst.

[연속식 다단 중합 반응][Continuous Multistage Polymerization Reaction]

제조된 전중합 촉매의 성능평가를 위해 연속식 다단 중합 반응기 시스템에서 프로필렌 호모중합을 실시하였다. 사용된 중합 반응시스템은 액상 슬러리 반응기 2개와 기상 유동층 반응기 2개로 이루어져 있다. 각 반응기들은 질소로 퍼지하여 반응기 내에 수분, 산소를 제거한 후, 2개의 액상 반응기들은 36kg의 액상 프로필렌을 주입하고, 1개의 기상반응기에는 40kg 정도의 시드 파우더(seed powder)를 주입하고 프로필렌을 이용하여 4시간 동안 전체 반응기 시스템의 대순환 운전을 실시하였다. 그리고 1단 액상 슬러리 반응기에 트리에틸알루미늄과 외부전자공여체로 앞 의 전중합 단계에서 사용된 것과 동일한 전자공여체를 계속 주입하고, 1시간 후 상기에서 제조된 전중합 촉매를 고체착물 티타늄 촉매 기준으로 1g/hr의 속도로 계속 주입하여 중합 반응을 실시하였다. 4번째 기상 반응기에서는 임팩트 코폴리머를 만드는 공중합 반응을 실시하였다. 생산된 파우더는 플랜트의 건조시스템을 거쳐 매시간 계량되었다. 이 파우더의 자일렌 용해물(Xylene soluble)과 굴곡탄성율(FM), 아이조드 충격강도 등의 분석을 실시하였다. 결과는 표 2에 나타내었다.Propylene homopolymerization was carried out in a continuous multistage polymerization reactor system for performance evaluation of the prepared prepolymerization catalyst. The polymerization reaction system used consists of two liquid phase slurry reactors and two gas phase fluidized bed reactors. Each reactor was purged with nitrogen to remove moisture and oxygen in the reactor, and two liquid phase reactors injected 36 kg of liquid propylene, and one gas phase reactor injected about 40 kg of seed powder. The large cycle operation of the entire reactor system was carried out for 4 hours. Into the first stage liquid slurry reactor, triethylaluminum and the external electron donor were continuously injected with the same electron donor as used in the previous prepolymerization step, and after 1 hour, the prepolymerized catalyst prepared above was 1 g based on the solid complex titanium catalyst. The polymerization was continued by injecting at a rate of / hr. In the fourth gas phase reactor, a copolymerization reaction was performed to produce an impact copolymer. The powder produced was weighed every hour through the plant's drying system. Xylene solubles, flexural modulus (FM) and Izod impact strength of the powder were analyzed. The results are shown in Table 2.

실시예Example 8 8

실시예 7의 전중합 촉매(a)의 제조중 4단계에서, 디시클로펜틸디메톡시실란, 시클로헥실메틸디메톡시실란, 비닐트리에톡시실란을 각각 50mmol 사용하여 전중합 촉매를 제조하고, 실시예 7과 동일한 조건으로 중합을 실시하였다. 결과는 표 2에 나타내었다.In step 4 of the preparation of the prepolymerization catalyst (a) of Example 7, a prepolymerization catalyst was prepared using 50 mmol of dicyclopentyldimethoxysilane, cyclohexylmethyldimethoxysilane, and vinyltriethoxysilane, respectively. The polymerization was carried out under the same conditions as in 7. The results are shown in Table 2.

실시예Example 9 9

실시예 7의 전중합 촉매(a)의 제조중 4단계에서, 비닐트리에톡시실란 대신 옥틸트리에톡시실란을 30mmol 사용하여 전중합 촉매를 제조하고, 실시예 7과 동일한 조건으로 중합을 실시하였다. 결과는 표 2에 나타내었다.In step 4 of preparing the prepolymerization catalyst (a) of Example 7, a prepolymerization catalyst was prepared using 30 mmol of octyltriethoxysilane instead of vinyltriethoxysilane, and polymerization was carried out under the same conditions as in Example 7. . The results are shown in Table 2.

실시예Example 10 10

실시예 7의 전중합 촉매(a)의 제조중 4단계에서, 비닐트리에톡시실란 대신 이소데실트리에톡시실란을 30mmol 사용하여 전중합 촉매를 제조하고, 실시예 7과 동일한 조건으로 중합을 실시하였다. 결과는 표 2에 나타내었다.In step 4 of preparing the prepolymerization catalyst (a) of Example 7, a prepolymerization catalyst was prepared using 30 mmol of isodecyltriethoxysilane instead of vinyltriethoxysilane, and polymerization was carried out under the same conditions as in Example 7. It was. The results are shown in Table 2.

비교예Comparative example 4 4

실시예 7의 전중합 촉매(a)의 제조중 4단계에서, 실란화합물을 사용하지 않고 전중합 촉매를 제조하고, 실시예 7과 동일한 조건으로 중합을 실시하였다. 결과는 표 2에 나타내었다.In step 4 of preparing the prepolymerization catalyst (a) of Example 7, a prepolymerization catalyst was prepared without using a silane compound, and polymerization was carried out under the same conditions as in Example 7. The results are shown in Table 2.

비교예Comparative example 5 5

실시예 7의 전중합 촉매(a)의 제조중 4단계에서, 3종의 실란화합물들 대신에 시클로헥실메틸디메톡시실란 80mmol만을 사용하여 전중합 촉매를 제조하고, 실시예 7과 동일한 조건으로 중합을 실시하였다. 결과는 표 2에 나타내었다.In step 4 of preparing the prepolymerization catalyst (a) of Example 7, a prepolymerization catalyst was prepared using only 80 mmol of cyclohexylmethyldimethoxysilane instead of the three silane compounds, and polymerization was performed under the same conditions as in Example 7. Was carried out. The results are shown in Table 2.

비교예Comparative example 6 6

실시예 7의 전중합 촉매(a)의 제조중 4단계에서, 3종의 실란화합물들 대신에 시클로헥실메틸디메톡시실란 150mmol만을 사용하여 전중합 촉매를 제조하고, 실시예 7과 동일한 조건으로 중합을 실시하였다. 결과는 표 2에 나타내었다.In step 4 during the preparation of the prepolymerization catalyst (a) of Example 7, a prepolymerization catalyst was prepared using only 150 mmol of cyclohexylmethyldimethoxysilane instead of the three silane compounds, and polymerized under the same conditions as in Example 7. Was carried out. The results are shown in Table 2.

[표 2] TABLE 2

중합 반응 결과Polymerization result

중합활성 (kgPP/gCat)Polymerization Activity (kgPP / gCat) 자일렌 용해물(%)Xylene Melt (%) 굴곡 탄성율 (kg/㎠)Flexural Modulus (kg / ㎠) 아이조드 충격강도 at 23 ℃(kgㆍcm/cm)Izod impact strength at 23 ℃ (kgcm / cm) 실시예 7Example 7 1616 1.71.7 12,80012,800 7.57.5 실시예 8Example 8 1414 1.51.5 13,00013,000 7.27.2 실시예 9Example 9 1717 1.71.7 12,70012,700 7.57.5 실시예10Example 10 1515 1.61.6 12,80012,800 7.57.5 비교예4Comparative Example 4 1414 2.42.4 11,80011,800 77 비교예5Comparative Example 5 1616 1.71.7 12,50012,500 7.57.5 비교예6Comparative Example 6 1212 1.51.5 12,70012,700 7.57.5

* 굴곡 탄성율 측정은 ASTM D790에 따른다.* Flexural modulus measurement is in accordance with ASTM D790.

* 아이조드 충격강도의 측정은 ASTM D256에 따른다.* Izod impact strength is measured according to ASTM D256.

본 발명의 올레핀 제조방법에 따르면, 자일렌 용해물의 함량이 낮고, 강성과 중합 활성이 보다 높아지며, 이에 따라 다단 연속중합공정의 생산성을 높일 수 있다.According to the olefin production method of the present invention, the content of xylene melt is low, the rigidity and polymerization activity is higher, thereby increasing the productivity of the multi-stage continuous polymerization process.

Claims (7)

지글러-나타 계열의 고체착물 티타늄 촉매와, 알킬알루미늄과 할로겐화 알루미늄을 포함하는 2종 이상의 알루미늄화합물 및 전자공여체의 존재하에서 올레핀 단량체를 반응시켜, 촉매 표면에 고분자량 단량체를 중합시켜 얻어진 전중합촉매(a), 주기율표의 제I족 또는 제Ⅲ족 금속의 유기금속 화합물(b) 및 외부전자공여체(c)로 이루어진 촉매계의 존재하에서, 다단연속 중합반응기에서 올레핀을 중합 또는 공중합시키는 폴리올레핀 제조방법.Prepolymerization catalyst obtained by polymerizing a high molecular weight monomer on the surface of a catalyst by reacting a Ziegler-Natta-based solid complex titanium catalyst with an olefin monomer in the presence of at least two aluminum compounds containing alkylaluminum and aluminum halides and electron donors ( a), a polyolefin production method for polymerizing or copolymerizing olefins in a multistage continuous polymerization reactor in the presence of a catalyst system consisting of an organometallic compound (b) and an external electron donor (c) of a Group I or Group III metal of the periodic table. 제1항에 있어서, 상기 알루미늄화합물은 트리에틸알루미늄, 트리부틸알루미 늄, 트리이소프레닐알루미늄 및 에틸알루미늄세스퀴에톡시드 중에서 선택되는 1종 이상 및 에틸알루미늄세스퀴클로라이드, 에틸알루미늄디클로라이드, 프로필알루미늄디클로라이드 및 부틸알루미늄디브로마이드 중에서 선택되는 1종 이상의 알루미늄화합물인 것을 특징으로 하는 폴리올레핀 제조방법.The method of claim 1, wherein the aluminum compound is at least one selected from triethylaluminum, tributylaluminium, triisoprenyl aluminum and ethyl aluminum sesquiethoxide and ethyl aluminum sesquichloride, ethyl aluminum dichloride, A method for producing a polyolefin, characterized in that at least one aluminum compound selected from propyl aluminum dichloride and butyl aluminum dibromide. 제1항 또는 제2항에 있어서, 상기 알루미늄화합물은 상기 고체착물 티타늄 촉매중의 티타늄 원자의 몰당 1~100mol로 사용되는 것을 특징으로 하는 폴리올레핀 제조방법.The polyolefin production method according to claim 1 or 2, wherein the aluminum compound is used in an amount of 1 to 100 mol per mol of titanium atoms in the solid complex titanium catalyst. 제1항 또는 제2항에 있어서, 상기 전자공여체는 1종 이상의, 알콕시기를 가 진 유기규소 화합물인 것을 특징으로 하는 폴리올레핀 제조방법.The method of claim 1 or 2, wherein the electron donor is at least one organosilicon compound having an alkoxy group. 제 4항에 있어서, 상기 유기규소 화합물은 동일 중합조건에서 각각의 유기규소 화합물을 사용하여 중합한 호모폴리머의 용융지수(MFR)가 각각 5 미만, 5~20, 20을 초과하는 유기규소 화합물 3종 이상을 혼합하여 사용하는 것을 특징으로 하는 폴리올레핀 제조방법.5. The organosilicon compound of claim 4, wherein the organosilicon compound has a melt index (MFR) of less than 5, more than 5 to 20, and more than 20 of the homopolymer polymerized using each organosilicon compound under the same polymerization conditions. A method for producing a polyolefin, characterized by using a mixture of more than one species. 제1항 또는 제2항에 있어서, 상기 유기금속화합물(b)은 유기알루미늄화합물인 것을 특징으로 하는 폴리올레핀 제조방법.The polyolefin production method according to claim 1 or 2, wherein the organometallic compound (b) is an organoaluminum compound. 제1항 또는 제2항에 있어서, 상기 외부전자공여체(c)는 알콕시실란 화합물인 것을 특징으로 하는 폴리올레핀 제조방법.The polyolefin production method according to claim 1 or 2, wherein the external electron donor (c) is an alkoxysilane compound.
KR1020060048743A 2006-05-30 2006-05-30 Method for producing polyolefin having high stiffness KR20070115001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060048743A KR20070115001A (en) 2006-05-30 2006-05-30 Method for producing polyolefin having high stiffness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060048743A KR20070115001A (en) 2006-05-30 2006-05-30 Method for producing polyolefin having high stiffness

Publications (1)

Publication Number Publication Date
KR20070115001A true KR20070115001A (en) 2007-12-05

Family

ID=39141523

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060048743A KR20070115001A (en) 2006-05-30 2006-05-30 Method for producing polyolefin having high stiffness

Country Status (1)

Country Link
KR (1) KR20070115001A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870818B1 (en) * 2007-03-28 2008-11-27 삼성토탈 주식회사 Olefin polymerization or copolymerization method
CN105153341A (en) * 2015-07-10 2015-12-16 常州市宏硕电子有限公司 Process and system for producing polybutene alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870818B1 (en) * 2007-03-28 2008-11-27 삼성토탈 주식회사 Olefin polymerization or copolymerization method
CN105153341A (en) * 2015-07-10 2015-12-16 常州市宏硕电子有限公司 Process and system for producing polybutene alloy

Similar Documents

Publication Publication Date Title
KR100723367B1 (en) Olefin polymerization and copolymerization method
KR101114073B1 (en) A method for preparation of a solid catalyst for polymerization of propylene
JP2010168545A (en) CATALYST FOR POLYMERIZATION OF alpha-OLEFIN AND MANUFACTURING METHOD FOR alpha-OLEFIN POLYMER
KR101235445B1 (en) A method for the preparation of a solid catalyst for olefin polymerization
KR101990665B1 (en) Heterogeneous ziegler-natta catalyst system and a process for olefin polymerization using the same
KR20070091444A (en) Polymerization method of propylene comprising olefin pre-polymerization step
KR101044589B1 (en) Process for producing catalyst for ?-olefin polymerization, and process for producing ?-olefin polymer
JP2013501129A (en) Mixed donation system for high melt flow and high activity
CN108148153B (en) Solid catalyst and method for preparing propylene polymer or copolymer using the same
KR101795317B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101395471B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
JP2013082812A (en) Production process for solid catalyst component for olefin polymerization
EP1587845B1 (en) Method of polymerization and copolymerization of ethylene
KR20070115001A (en) Method for producing polyolefin having high stiffness
CN112004836A (en) Olefin polymer and process for producing olefin polymer
EP1358221B1 (en) Method for producing ethylene home-and co-polymer
KR100723369B1 (en) Olefin polymerization and copolymerization method
KR101255913B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
KR100723368B1 (en) Olefin polymerization and copolymerization method
KR100723366B1 (en) Olefin polymerization and copolymerization method
KR101207672B1 (en) A method for preparing a solid catalyst for propylene polymerization
KR20110050906A (en) A method for preparation of a solid catalyst for polymerization of propylene
JP3873449B2 (en) Olefin (co) polymer composition and method for producing the same
JPH07157511A (en) Production of olefin polymer and catalyst for polymerization of olefin
KR20240076546A (en) A method for preparation of propylene copolymer improved in coplymerization

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20071026

Effective date: 20080909