KR101795317B1 - A solid catalyst for propylene polymerization and a method for preparation of polypropylene - Google Patents

A solid catalyst for propylene polymerization and a method for preparation of polypropylene Download PDF

Info

Publication number
KR101795317B1
KR101795317B1 KR1020160162580A KR20160162580A KR101795317B1 KR 101795317 B1 KR101795317 B1 KR 101795317B1 KR 1020160162580 A KR1020160162580 A KR 1020160162580A KR 20160162580 A KR20160162580 A KR 20160162580A KR 101795317 B1 KR101795317 B1 KR 101795317B1
Authority
KR
South Korea
Prior art keywords
carbon atoms
solid catalyst
group
polymerization
alkyl group
Prior art date
Application number
KR1020160162580A
Other languages
Korean (ko)
Inventor
이영주
박준려
김은일
고수민
Original Assignee
한화토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화토탈 주식회사 filed Critical 한화토탈 주식회사
Priority to KR1020160162580A priority Critical patent/KR101795317B1/en
Application granted granted Critical
Publication of KR101795317B1 publication Critical patent/KR101795317B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/06Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen
    • C08F4/16Metallic compounds other than hydrides and other than metallo-organic compounds; Boron halide or aluminium halide complexes with organic compounds containing oxygen of silicon, germanium, tin, lead, titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/022Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/04Dual catalyst, i.e. use of two different catalysts, where none of the catalysts is a metallocene

Abstract

The present invention relates to a solid catalyst for propylene polymerization and to a method for manufacturing polypropylene using the same, and provides a solid catalyst composed of a carrier, titanium halide, an organic electron donor, and the like generated through reaction of dialkoxy magnesium with metal halide, and a method for manufacturing polypropylene using the same. Especially, by using an internal electron donor containing a carbonyl group and an alkoxy group among two types of organic electron donors used in the present invention, a solid catalyst system proposed in the present invention can be applied to various types of propylene polymerization processes such as slurry polymerization, bulk polymerization or gas phase polymerization, and the like, and can manufacture polypropylene excellent in high activity and stereoregularity.

Description

프로필렌 중합용 고체촉매 및 이를 이용한 폴리프로필렌 제조 방법{A SOLID CATALYST FOR PROPYLENE POLYMERIZATION AND A METHOD FOR PREPARATION OF POLYPROPYLENE}TECHNICAL FIELD [0001] The present invention relates to a solid catalyst for the polymerization of propylene, and a process for producing the same. BACKGROUND ART < RTI ID = 0.0 >

본 발명은, 디알콕시마그네슘을 금속할라이드와의 반응을 통해서 생성된 담체와 티타늄할라이드, 유기전자공여체 등으로 이루어진 고체촉매 및 이를 이용한 폴리프로필렌 제조방법으로써, 이러한 고체 촉매계로 이루어진 지글러-나타 촉매를 사용하여 프로필렌 중합체를 제조할 경우, 높은 입체규칙성을 갖는 폴리프로필렌 수지를 높은 수율로 제조할 수 있는 것이다.The present invention relates to a solid catalyst comprising a carrier formed by the reaction of a dialkoxy magnesium with a metal halide, a titanium halide, an organic electron donor and the like, and a method for producing a polypropylene using the solid catalyst, wherein a Ziegler- To produce a propylene polymer, a polypropylene resin having high stereoregularity can be produced with a high yield.

폴리프로필렌은 실생활에서나 상업적으로 매우 유용하게 소재물질로써 특히 식품용기등의 생활용품에서부터 자동차 및 전자제품 등에 널리 사용되고 있다. 이러한 폴리프로필렌의 다양한 제품성능을 위해서는 높은 결정화도를 통한 강성을 개선하는 것이 중요하며, 이를 위해서는 중합촉매의 역할이 무엇보다도 절실히 요구된다. 즉 생성되는 고분자의 입체규칙성을 향상시키도록 촉매시스템의 디자인이 수반되어야 한다. 이와 아울러 고분자 제조에 있어서의 경제성을 위해서는 촉매의 중합활성 높을수록 더욱 유리하다. BACKGROUND ART Polypropylene is widely used as a material material, particularly in daily life goods such as food containers, and in automobiles and electronic products, in real life and commercially. For the performance of various polypropylene products, it is important to improve the rigidity through high crystallinity, and for this purpose, the role of polymerization catalyst is desperately required. That is, the design of the catalyst system must be accompanied to improve the stereoregularity of the resulting polymer. In addition, the higher the polymerization activity of the catalyst is, the more advantageous for economical efficiency in the production of the polymer.

한편 프로필렌의 기상중합, 슬러리 중합 및 벌크 중합에 사용되는 촉매계는 지글러-나타계 촉매 성분, 알킬알루미늄 및 외부전자공여체로 구성되어 있는 것이 일반적이다. 특히 이러한 촉매성분은 마그네슘, 티타늄, 및 내부전자공여체 및 할로겐을 필수성분으로서 함유하는 고체촉매로 알려져 있으며, 특히 내부 전자공여체는 분자구조에 따라 촉매의 활성 및 입체규칙성 등에 상당한 영향을 미치는 것으로 알려져 있다. 촉매 활성 증가를 통해 원가를 낮추고, 입체규칙성 등의 촉매 성능을 향상시켜 중합체의 물성을 개선시키기 위하여, 내부전자공여체로서 방향족 디카르복실산의 디에스테르를 사용하는 것은 보편적으로 널리 알려진 방법이며, 이에 관한 특허들이 출원되었다. 미국 특허 제4,562,173호, 미국 특허 제4,981,930호, 한국 특허 제0072844호 등은 그 예라고 할 수 있으며, 상기 특허들은 방향족 디알킬디에스테르 또는 방향족 모노알킬모노에스테르를 사용하여 고활성, 고입체규칙성을 발현하는 촉매 제조 방법을 소개하고 있다.On the other hand, the catalyst system used for gas phase polymerization, slurry polymerization and bulk polymerization of propylene is generally composed of a Ziegler-Natta catalyst component, alkyl aluminum and an external electron donor. Particularly, such a catalyst component is known as a solid catalyst containing magnesium, titanium, an internal electron donor and halogen as essential components, and it is known that the internal electron donor has a considerable influence on the activity and stereoregularity of the catalyst depending on the molecular structure have. It is a widely known method to use a diester of an aromatic dicarboxylic acid as an internal electron donor in order to lower the cost through the increase of the catalyst activity and to improve the property of the polymer by improving the catalytic performance such as stereoregularity, Patents related thereto were filed. U.S. Patent No. 4,562,173, U.S. Patent No. 4,981,930, and Korean Patent No. 0072844, for example, disclose the use of an aromatic dialkyl diester or an aromatic monoalkyl monoester to produce high activity, In the presence of a catalyst.

상기 특허들의 방법은 고입체규칙성 중합체를 높은 수율로 얻기에는 충분히 만족스러운 것이 아니며 개선이 요구된다. The methods of these patents are not sufficiently satisfactory to obtain a high stereoregular polymer in high yield and require improvement.

한국 특허 제0491387호에는 비방향족인 디에테르 물질을, 한국 특허 제0572616호에는 비방향족이면서 케톤과 에테르 작용기를 동시에 가지는 물질을 내부전자공여체로 사용한 촉매 제조 방법이 되어 있다. 그러나, 이 두 방법 모두 활성과 입체규칙성 측면 모두에서 크게 개선되어야할 여지가 있다. Korean Patent No. 0491387 discloses a non-aromatic diether material and Korean Patent No. 0572616 discloses a method of producing a catalyst using a nonaromatic but simultaneously having a ketone and an ether functional group as an internal electron donor. However, both of these methods need to be greatly improved in terms of both activity and stereoregularity.

또한 미국 특허 제2011/0040051호에는 디에틸 2,3-디이소프로필-2-시아노숙시네이트와 9,9-비스메톡시플로렌의 혼합물을 내부전자공여체로 사용하여 촉매를 제조하는 방법을 제안하고 있으나, 활성과 입체규칙성 측면 모두에서 매우 열세하여 개선이 요구되고 있다.U.S. Patent No. 2011/0040051 also discloses a method for preparing a catalyst by using a mixture of diethyl 2,3-diisopropyl-2-cyanosuccinate and 9,9-bismethoxyflorene as an internal electron donor However, it is very difficult to improve both in terms of activity and stereoregularity.

본 발명의 목적은 상기와 같은 종래기술들의 문제점을 해결하고자 하는 것으로써, 높은 입체규칙성을 갖고 활성이 우수한 폴리프로필렌을 제조할 수 있는 고체촉매 및 이를 이용한 폴리프로필렌 제조방법을 제공하는 것이다. It is an object of the present invention to provide a solid catalyst capable of producing polypropylene having high stereoregularity and high activity and solving the problems of the prior art as described above and a process for producing polypropylene using the solid catalyst.

본 발명의 프로필렌 중합용 고체촉매의 제조방법은, 다음의 단계를 포함하여 이루어지는 것을 특징으로 한다.The method for producing a solid catalyst for propylene polymerization according to the present invention is characterized by comprising the following steps.

(1) 디에톡시마그네슘을 유기용매 존재하에서 금속할라이드 화합물과 비교적 낮은 온도에서 반응시키는 단계; (1) reacting diethoxy magnesium with a metal halide compound in the presence of an organic solvent at a relatively low temperature;

(2) 디에톡시마그네슘 반응 후 온도를 승온하면서 2종의 내부전자공여체를 반응시키는 단계;(2) reacting two internal electron donors while raising the temperature after diethoxy magnesium reaction;

(3) 높은온도에서 일정시간동안 반응시키는 단계;(3) reacting at a high temperature for a predetermined time;

(4) 금속 할라이드 화합물과 높은 온도에서 2차로 반응시키고 이를 세척하는 단계.(4) reacting with the metal halide compound at a high temperature in a second step and washing it.

상기에 명시된 고체촉매의 제조공정에 있어서, (1)단계에서 사용된 디에톡시마그네슘은 금속마그네슘을 염화마그네슘의 존재하에서 무수알콜과 반응시켜 얻어지는 평균입경이 10~200㎛ 이고, 표면이 매끄러운 구형입자로서, 상기 구형의 입자형상은 프로필렌의 중합시에도 그대로 유지되는 것이 바람직한데, 상기 평균입경이 10 ㎛미만이면 제조된 촉매의 미세입자가 증가하여 바람직하지 않고, 200㎛를 초과하면 곁보기 밀도가 작아지고 촉매제조시 균일한 입자형상을 갖기 어려워 바람직하지 않다. In the process for producing a solid catalyst as described above, diethoxy magnesium used in the step (1) is a product obtained by reacting metallic magnesium with anhydrous alcohol in the presence of magnesium chloride and having an average particle size of 10 to 200 탆, If the average particle size is less than 10 탆, the fine particles of the prepared catalyst are undesirably increased. When the average particle size is more than 200 탆, the side view density And it is difficult to have a uniform particle shape in the production of the catalyst, which is not preferable.

상기 (1)단계에서 사용되는 유기용매로서는, 그 종류에 특별한 제한이 없으며, 탄소수 6~12개의 지방족 탄화수소 및 방향족 탄화수소, 할로겐화 탄화수소 등이 사용될 수 있으며, 보다 바람직하게는 탄소수 7~10개의 포화 지방족 탄화수소 또는 방향족 탄화수소, 할로겐화 탄화수소가 사용될 수 있으며, 그 구체적인 예로는 헵탄, 옥탄, 노난, 데칸,톨루엔, 자일렌, 클로로헥산, 클로로 헵탄 등으로부터 선택되는 1종이상을 혼합하여 사용할 수 있다.The organic solvent used in the step (1) is not particularly limited and may be an aliphatic hydrocarbon having 6 to 12 carbon atoms, an aromatic hydrocarbon, a halogenated hydrocarbon or the like, more preferably a saturated aliphatic hydrocarbon having 7 to 10 carbon atoms A hydrocarbon, an aromatic hydrocarbon or a halogenated hydrocarbon may be used. Specific examples thereof include a mixture of at least one selected from heptane, octane, nonane, decane, toluene, xylene, chlorohexane and chloroheptane.

또한 상기 디에톡시마그네슘에 대한 상기 유기용매의 사용비는 디에톡시마그네슘 중량: 유기용매 부피로 1:5~1:50인 것이 바람직하며, 1:7 ~ 1:20 인 것이 보다 바람직한데, 상기 사용비가 1:5 미만이면 슬러리의 점도가 급격히 증가하여 균일한 교반이 어렵고, 1:50을 초과하면 생성되는 담체의 겉보기 밀도가 급격히 감소하거나 입자표면이 거칠어지는 문제가 발생하여 바람직하지 않다.Also, the use ratio of the organic solvent to the diethoxy magnesium is preferably 1: 5 to 1:50, more preferably 1: 7 to 1:20 by weight of diethoxy magnesium in terms of organic solvent volume, If the ratio is less than 1: 5, the viscosity of the slurry increases sharply and it is difficult to uniformly stir. When the ratio is more than 1:50, the bulk density of the carrier to be produced sharply decreases or the surface of the particles becomes rough.

상기 고체촉매의 제조과정에서 사용되는 티타늄 할라이드는 하기의 일반식 (I)로 표시할 수 있다:The titanium halide used in the preparation of the solid catalyst can be represented by the following general formula (I)

Ti(OR)nX(4-n) ………… (I)Ti (OR) n X (4-n) ... ... ... ... (I)

여기에서 R은 탄소원자 1~10개의 알킬기이고, X는 할로겐 원소를 나타내며, n 은 일반식의 원자가를 맞추기 위한 것으로 0~3 의 정수이다. 구체적인 예로는TiCl4, Ti(OCH3)Cl3, Ti(OC2H5)Cl3, Ti(OC3H7)Cl3, Ti(O(n-C4H9))Cl3, Ti(OCH3)2Cl2,Ti(OC2H5)2Cl2, Ti(OC3H7)2Cl2, Ti(O(n-C4H9))2Cl2, Ti(OCH3)3Cl, Ti(OC2H5)3Cl, Ti(OC3H7)3Cl, Ti(O(n-C4H9))3Cl등이며, 이들 중TiCl4가 바람직하게 사용된다. 또한 이들 4가 티타늄할라이드 화합물은 1종 단독 또는 2종 이상 조합하여 사용할 수도 있다. 상기 (1)단계의 반응 온도는 -10 ~ 60℃이다.Wherein R is an alkyl group having 1 to 10 carbon atoms, X is a halogen element, and n is an integer of 0 to 3 for matching the valency of the general formula. Ti (OCH3) 2Cl2, Ti (OC2H5) 2Cl2, Ti (OC3H7) Cl3, Ti (OCH3) TiCl 4, TiCl 4, TiCl 4, TiCl 4, TiCl 4, TiCl 4, TiCl 2, Is used. These tetravalent titanium halide compounds may be used singly or in combination of two or more. The reaction temperature in step (1) is -10 to 60 ° C.

상기의 (2)단계에서 나타내는 2종의 내부전자공여체 중 제1내부전자공여체는 다음과 같은 일반식 (Ⅱ)로 표현되는 화합물이다. Among the two internal electron donors represented by the above step (2), the first internal electron donor is a compound represented by the following general formula (II).

Figure 112016117968610-pat00001
………… (Ⅱ)
Figure 112016117968610-pat00001
... ... ... ... (II)

즉, B는 탄소수가 1~20개까지의 지방족 포화탄화수소 및 환형의 포화탄화수소로 구성된 모노 에스테르 구조를 갖는 화합물이거나, B가 아미노기, 또는 직쇄형 또는 환형아미노기로 이루어진 카바메이트 구조를 갖는 화합물을 나타낸다. R1, R2, R3, R4, R5는 각각 독립적으로 탄소수 1~12의 직쇄상 알킬기, 탄소수 3~12의 분기 알킬기, 비닐기, 탄소수3~12의 직쇄상 알케닐기 또는 분기 알케닐기, 탄소수 1~12의 직쇄상 할로겐 치환 알킬기, 탄소수 3~12의 분기 할로겐 치환 알킬기, 탄소수 3~12의 직쇄상 할로겐 치환 알케닐기 또는 분기 할로겐 치환 알케닐기, 탄소수3~12의 시클로알킬기, 탄소수 3~12의 시클로알케닐기, 탄소수 3~12의 할로겐 치환 시클로알킬기, 탄소수 3~12의 할로겐 치환 시클로알케닐기, 또는 탄소수 6~12의 방향족 탄화수소기이며, 더욱 바람직한 기는, 탄소수 1∼12의 직쇄상 알킬기, 탄소수 3~12의 분기 알킬기, 비닐기, 탄소수 3~12의 직쇄상 알케닐기 또는 분기 알케닐기, 탄소수 1~12의 직쇄상 할로겐 치환 알킬기, 탄소수 3~12의 분기 할로겐 치환 알킬기, 탄소수 3~12의 시클로알킬기, 탄소수 3~12의 시클로알케닐기, 또는 탄소수 6~12의 방향족 탄화수소기이며, 특히 바람직한 기는, 탄소수 1~12의 직쇄상 알킬기, 탄소수 3~12의 분기 알킬기, 및 탄소수 6~12의 환형 탄화수소기이다.That is, B is a compound having a monoester structure composed of aliphatic saturated hydrocarbons and cyclic saturated hydrocarbons having 1 to 20 carbon atoms, or B is a compound having a carbamate structure composed of an amino group or a linear or cyclic amino group . Each of R 1 , R 2 , R 3 , R 4 and R 5 independently represents a linear alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 3 to 12 carbon atoms, a vinyl group, a straight chain alkenyl group having 3 to 12 carbon atoms, A straight chain halogenated alkyl group having 1 to 12 carbon atoms, a branched halogenated alkyl group having 3 to 12 carbon atoms, a straight chain halogenated alkenyl group having 3 to 12 carbon atoms or a branched halogenated alkenyl group having 3 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, A halogen-substituted cycloalkyl group having 3 to 12 carbon atoms, a halogen-substituted cycloalkenyl group having 3 to 12 carbon atoms, or an aromatic hydrocarbon group having 6 to 12 carbon atoms, more preferably a group having 1 to 12 carbon atoms A branched alkyl group having 3 to 12 carbon atoms, a vinyl group, a straight chain alkenyl group or a branched alkenyl group having 3 to 12 carbon atoms, a straight chain halogenated alkyl group having 1 to 12 carbon atoms, a branched halogenated alkyl group having 3 to 12 carbon atoms, 3 to 12 cycloalkyl groups , A cycloalkenyl group having 3 to 12 carbon atoms or an aromatic hydrocarbon group having 6 to 12 carbon atoms. Particularly preferred groups are straight chain alkyl groups having 1 to 12 carbon atoms, branched alkyl groups having 3 to 12 carbon atoms, and cyclic hydrocarbons having 6 to 12 carbon atoms .

그 구체적인 예로는, 2-메톡시에틸 아세테이트, 2-메톡시에틸프로피오네이트, 2-메톡시에틸 부틸레이트, 2-메톡시에틸 이소부틸레이트, 2-메톡시에틸 피발레이트, 2-메톡시에틸 펜타노에이트, 2-메톡시에틸 3-메틸부타노에이트, 2-메톡시에틸 2,3-디메틸부타노에이트, 2-메톡시에틸 3,3-디메틸부타노에이트, 2-메톡시에틸 2,3,3-트리메틸부타노에이트, 2-메톡시에틸 2,2,3,3,-테트라메틸부타노에이트, 2-메톡시에틸 3-에틸부타노에이트, 2-메톡시에틸 2,3-디에틸부타노에이트, 2-메톡시에틸 3,3-디에틸부타노에이트, 2-메톡시에틸 2,3,3-트리에틸부타노에이트, 2-메톡시에틸 2,2,3,3,-테트라에틸부타노에이트, 2-메톡시에틸 2-에틸-3-메틸부타노에이트, 2-메톡시에틸 3-에틸-3-메틸부타노에이트, 2-메톡시에틸 2-에틸-3,3-디메틸부타노에이트, 2-메톡시에틸 2,2,3,3,-테트라메틸부타노에이트, 2-메톡시에틸 2-메틸펜타노에이트, 2-메톡시에틸 3-메틸펜타노에이트, 2-메톡시에틸 4-메틸펜타노에이트, 2-메톡시에틸 2,3-디메틸펜타노에이트, 2-메톡시에틸 2,2-디메틸펜타노에이트, 2-메톡시에틸 3,3-디메틸펜타노에이트, 2-메톡시에틸 4,4-디메틸펜타노에이트, 2-메톡시에틸 2,4-디메틸펜타노에이트, 2-메톡시에틸 3,4-디메틸펜타노에이트, 2-메톡시에틸 3,3,4-트리메틸펜타노에이트, 2-메톡시에틸 2,3,3-트리메틸펜타노에이트, 2-메톡시에틸 2,2,3-트리메틸펜타노에이트, 2-메톡시에틸 2,3,4-트리메틸펜타노에이트, 2-메톡시에틸 2,3,3-트리메틸펜타노에이트, 2-메톡시에틸 2,2,3,3,-테트라메틸페나노에이트, 2-메톡시에틸 3-에틸펜타노에이트, 2-메톡시에틸 2,3-디에틸펜타노에이트, 2-메톡시에틸 3,3-디에틸펜타노에이트, 2-메톡시에틸 2,3,3-트리에틸펜타노에이트, 2-메톡시에틸 2,2,3,3,-테트라에틸펜타노에이트, 2-메톡시에틸 2-에틸-3-메틸펜타노에이트, 2-메톡시에틸 3-에틸-3-메틸펜타노에이트, 2-메톡시에틸 2-에틸-3,3-디메틸펜타노에이트, 2-메톡시에틸 2,2,3,3,-테트라메틸펜타노에이트,Specific examples thereof include 2-methoxyethyl acetate, 2-methoxyethylpropionate, 2-methoxyethylbutylate, 2-methoxyethylisobutylate, 2-methoxyethylpivalate, 2- Methoxyethyl 3-methylbutanoate, 2-methoxyethyl 3-methylbutanoate, 2-methoxyethyl 3,3-dimethylbutanoate, 2-methoxyethyl 2-methoxyethyl 2,2,3,3-tetramethylbutanoate, 2-methoxyethyl 3-ethyl butanoate, 2-methoxyethyl 2, 3-diethyl butanoate, 2-methoxyethyl 3,3-diethyl butanoate, 2-methoxyethyl 2,3,3-triethyl butanoate, 2-methoxyethyl 2,2,3 Methoxyethyl 2-ethyl-3-methylbutanoate, 2-methoxyethyl 3-ethyl-3-methylbutanoate, 2-methoxyethyl 2-ethyl -3,3-dimethyl butanoate, 2-methoxyethyl 2,2,3,3-tetramethylbutanoate Methoxyethyl 3-methylpentanoate, 2-methoxyethyl 2-methylpentanoate, 2-methoxyethyl 3-methylpentanoate, 2-methoxyethyl 4-methylpentanoate, 2-methoxyethyl 2,3- 2-methoxyethyl 2,2-dimethyl pentanoate, 2-methoxy ethyl 3,3-dimethyl pentanoate, 2-methoxy ethyl 4,4-dimethyl pentanoate, 2-methoxy ethyl 2-methoxyethyl 3,4-dimethylpentanoate, 2-methoxyethyl 3,3,4-trimethylpentanoate, 2-methoxyethyl 2,3,3- Trimethylpentanoate, 2-methoxyethyl 2,2,3-trimethylpentanoate, 2-methoxyethyl 2,3,4-trimethylpentanoate, 2-methoxyethyl 2,3,3-trimethylpenta 2-methoxyethyl 2,2,3,3-tetramethylphenanoate, 2-methoxyethyl 3-ethylpentanoate, 2-methoxyethyl 2,3-diethylpentanoate, 2-methoxyethyl 3,3-diethylpentanoate, 2-methoxyethyl 2,3,3-triethylpentanoate 2-methoxyethyl 2,2,3,3-tetraethylpentanoate, 2-methoxyethyl 2-ethyl-3-methylpentanoate, 2-methoxyethyl 3-ethyl- Pentanoate, 2-methoxyethyl 2-ethyl-3,3-dimethylpentanoate, 2-methoxyethyl 2,2,3,3-tetramethylpentanoate,

2-메톡시에틸 시클로헥산카르복실레이트, 2-메톡시에틸 2-메틸시클로헥산카르복실레이트, 2-메톡시에틸 3-메틸시클로헥산카르복실레이트, 2-메톡시에틸 시클로헥-2-센카르복실레이트, 2-메톡시에틸 시클로헥-2-센카르복실레이트, 2-메톡시에틸 카바메이트, 2-메톡시에틸 메틸카바메이트, 2-메톡시에틸 에틸카바메이트, 2-메톡시에틸 디메틸카바메이트, 2-메톡시에틸 디에틸카바메이트, 2-메톡시에틸 피페리딘-1-카르복실레이트, 2-메톡시에틸 2-메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 3-메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 2,3-디메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 2,4-디메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 2,5-디메틸피페리딘-1-카르복실레이트, 2-메톡시에틸 2,6-디메틸피페리딘-1-카르복실레이트,2-에톡시에틸 아세테이트, 2-에톡시에틸프로피오네이트, 2-에톡시에틸 부틸레이트, 2-에톡시에틸 이소부틸레이트, 2-에톡시에틸 피발레이트, 2-에톡시에틸 펜타노에이트, 2-에톡시에틸 3-메틸부타노에이트, 2-에톡시에틸 2,3-디메틸부타노에이트, 2-에톡시에틸 3,3-디메틸부타노에이트, 2-에톡시에틸 2,3,3-트리메틸부타노에이트, 2-에톡시에틸 2,2,3,3,-테트라메틸부타노에이트, 2-에톡시에틸 3-에틸부타노에이트, 2-에톡시에틸 2,3-디에틸부타노에이트, 2-메톡시에틸 3,3-디에틸부타노에이트, 2-에톡시에틸 2,3,3-트리에틸부타노에이트, 2-에톡시에틸 2,2,3,3,-테트라에틸부타노에이트, 2-에톡시에틸 2-에틸-3-메틸부타노에이트, 2-에톡시에틸 3-에틸-3-메틸부타노에이트, 2-에톡시에틸 2-에틸-3,3-디메틸부타노에이트, 2-에톡시에틸 2,2,3,3,-테트라메틸부타노에이트, 2-에톡시에틸 2-메틸펜타노에이트, 2-에톡시에틸 3-메틸펜타노에이트, 2-에톡시에틸 4-메틸펜타노에이트, 2-에톡시에틸 2,3-디메틸펜타노에이트, 2-에톡시에틸 2,2-디메틸펜타노에이트, 2-에톡시에틸 3,3-디메틸펜타노에이트, 2-에톡시에틸 4,4-디메틸펜타노에이트, 2-에톡시에틸 2,4-디메틸펜타노에이트, 2-에톡시에틸 3,4-디메틸펜타노에이트, 2-에톡시에틸 3,3,4-트리메틸펜타노에이트, 2-에톡시에틸 2,3,3-트리메틸펜타노에이트, 2-에톡시에틸 2,2,3-트리메틸펜타노에이트, 2-에톡시에틸 2,3,4-트리메틸펜타노에이트, 2-에톡시에틸 2,3,3-트리메틸펜타노에이트, 2-에톡시에틸 2,2,3,3,-테트라메틸페나노에이트, 2-에톡시에틸 3-에틸펜타노에이트, 2-에톡시에틸 2,3-디에틸펜타노에이트, 2-에톡시에틸 3,3-디에틸펜타노에이트, 2-에톡시에틸 2,3,3-트리에틸펜타노에이트, 2-에톡시에틸 2,2,3,3,-테트라에틸펜타노에이트, 2-에톡시에틸 2-에틸-3-메틸펜타노에이트, 2-에톡시에틸 3-에틸-3-메틸펜타노에이트, 2-에톡시에틸 2-에틸-3,3-디메틸펜타노에이트, 2-에톡시에틸 2,2,3,3,-테트라메틸펜타노에이트, 2-에톡시에틸 시클로헥산카르복실레이트, 2-에톡시에틸 2-메틸시클로헥산카르복실레이트, 2-에톡시에틸 3-메틸시클로헥산카르복실레이트, 2-에톡시에틸 시클로헥-2-센카르복실레이트, 2-에톡시에틸 시클로헥-2-센카르복실레이트, 2-에톡시에틸 카바메이트, 2-에톡시에틸 메틸카바메이트, 2-에톡시에틸 에틸카바메이트, 2-에톡시에틸 디메틸카바메이트, 2-에톡시에틸 디에틸카바메이트, 2-에톡시에틸 피페리딘-1-카르복실레이트, 2-에톡시에틸 2-에틸피페리딘-1-카르복실레이트, 2-에톡시에틸 3-에틸피페리딘-1-카르복실레이트, 2-에톡시에틸 2,3-디메틸피페리딘-1-카르복실레이트, 2-에톡시에틸 2,4-디메틸피페리딘-1-카르복실레이트, 2-에톡시에틸 2,5-디메틸피페리딘-1-카르복실레이트, 2-에톡시에틸 2,6-디메틸피페리딘-1-카르복실레이트 등이다.2-methoxyethyl cyclohexanecarboxylate, 2-methoxyethyl cyclohexanecarboxylate, 2-methoxyethyl 2-methylcyclohexanecarboxylate, 2-methoxyethyl 3-methylcyclohexanecarboxylate, 2- Carboxylate, 2-methoxyethylcyclohexyl-2-ene carboxylate, 2-methoxyethylcarbamate, 2-methoxyethylmethylcarbamate, 2-methoxyethylethylcarbamate, 2-methoxyethyl 2-methoxyethylpiperidine-1-carboxylate, 2-methoxyethyl 2-methylpiperidine-1-carboxylate, 2-methoxyethylpiperidine-1-carboxylate, 2-methoxyethyl 2,3-dimethylpiperidine-1-carboxylate, 2-methoxyethyl 2,4-dimethylpiperidine-1-carboxylate, -Carboxylate, 2-methoxyethyl 2,5-dimethylpiperidine-1-carboxylate, 2-methoxyethyl 2,6-dimethylpiperidine-1-carboxylate, 2-ethoxyethyl acetate, 2-ethoxyethyl isobutyrate, 2-ethoxyethyl pivalate, 2-ethoxy ethyl pentanoate, 2-ethoxy ethyl 3- Methylbutanoate, 2-ethoxyethyl 2,3-dimethyl butanoate, 2-ethoxyethyl 3,3-dimethyl butanoate, 2-ethoxyethyl 2,3,3-trimethyl butanoate, 2 Ethoxyethyl 2,2,3,3-tetramethylbutanoate, 2-ethoxyethyl 3-ethyl butanoate, 2-ethoxyethyl 2,3-diethyl butanoate, 2-methoxy Ethyl 3,3-diethyl butanoate, 2-ethoxyethyl 2,3,3-triethyl butanoate, 2-ethoxyethyl 2,2,3,3-tetraethyl butanoate, 2- 3-methylbutanoate, 2-ethoxyethyl 3-ethyl-3-methylbutanoate, 2-ethoxyethyl 2-ethyl-3,3-dimethylbutanoate, 2- Ethoxyethyl 2,2,3,3-tetramethyl butanoate, 2-ethoxyethyl 2-methyl pentanoate, 2-ethoxyethyl 3-methylpentanoate, 2-ethoxyethyl 4-methylpentanoate, 2-ethoxyethyl 2,3-dimethylpentanoate, 2-ethoxyethyl 2,2- Ethoxyethyl 3,3-dimethylpentanoate, 2-ethoxyethyl 4,4-dimethylpentanoate, 2-ethoxyethyl 2,4-dimethylpentanoate, 2-ethoxyethyl 3 , 4-dimethylpentanoate, 2-ethoxyethyl 3,3,4-trimethylpentanoate, 2-ethoxyethyl 2,3,3-trimethylpentanoate, 2-ethoxyethyl 2,2,3 -Trimethylpentanoate, 2-ethoxyethyl 2,3,4-trimethylpentanoate, 2-ethoxyethyl 2,3,3-trimethylpentanoate, 2-ethoxyethyl 2,2,3,3 , Tetramethylphenanoate, 2-ethoxyethyl 3-ethylpentanoate, 2-ethoxyethyl 2,3-diethylpentanoate, 2-ethoxyethyl 3,3-diethylpentanoate, 2-ethoxyethyl 2,3,3-triethylpentanoate, 2-ethoxyethyl 2,2,3,3-tetraethylpentanoate 3-methylpentanoate, 2-ethoxyethyl 2-ethyl-3-methylpentanoate, 2-ethoxyethyl 3-ethyl- 2-ethoxyethyl 2,2,3,3-tetramethylpentanoate, 2-ethoxyethylcyclohexanecarboxylate, 2-ethoxyethyl 2-methylcyclohexanecarboxylate, 2- Ethoxyethylcyclohexanecarboxylate, 2-ethoxyethylcyclohex-2-enecarboxylate, 2-ethoxyethylcarbamate, 2-ethoxyethylcyclohexanecarboxylate, 2- -Ethoxyethyl methyl carbamate, 2-ethoxyethyl ethyl carbamate, 2-ethoxy ethyl dimethyl carbamate, 2-ethoxy ethyl diethyl carbamate, 2-ethoxy ethyl piperidine- , 2-ethoxyethyl 2-ethylpiperidine-1-carboxylate, 2-ethoxyethyl 3-ethylpiperidine-1-carboxylate, 2-ethoxyethyl 2,3-dimethylpiperidine -1-carboxylate, 2- Ethoxyethyl 2,4-dimethylpiperidine-1-carboxylate, 2-ethoxyethyl 2,5-dimethylpiperidine-1-carboxylate, 2-ethoxyethyl 2,6- Di-1-carboxylate, and the like.

한편 제2내부전자공여체는 특별한 제한은 없으며, 따라서 알코올류, 에테르류, 케톤류, 카르복실산류 등과 같이 올레핀 중합용 지글러계 촉매의 제조에 내부전자공여체로서 사용가능한 화합물이라면 제한없이 사용가능하지만, 그 중에서도 카르복실산 화합물을 사용하는 것이 바람직하고, 벤젠-1,2-디카르복실살에스테르 화합물로부터 선택된 하나 또는 그 이상을 혼합하여 제2내부전자공여체로서 사용하는 것이 더욱 바람직하다. 상기 벤젠-1,2-디카르복실산에스테르 화합물의 구체적인 예로는, 디메틸프탈레이트, 디에틸프탈레이트, 디노말프로필프탈레이트, 디이소프로필프탈레이트, 디노말부틸프탈레이트, 디이소부틸프탈레이트 디노말펜틸프탈레이트, 디(2-메틸부틸)프탈레이트, 디(3-메틸부틸)프탈레이트, 디(3-메틸펜틸)크탈레이트, 디이소헥실프탈레이트, 디네오헥실프탈레이트, 디(2,3-디메틸부틸)프탈레이트, ㄷ이소헥실프탈레이트, 디네오헥실프탈레이트, 디(2,3-디메틸부틸)프탈레이트, 디노말헵틸프탈레이트, 디(2-메틸헥실)프탈레이트, 디(2-에틸펜틸)프탈레이트, 디이소헵틸프탈레이트, 디네오헵틸프탈레이트, 디노말옥틸프탈레이트, 디(2-메틸헵틸)프탈레이트, 디이소옥틸프탈레이트, 디(3-에틸헥실)프탈레이트, 디네오옥틸프탈레이트, 디노말노닐프탈레이트, 디이소노닐프탈레이트, 디노말데실프탈레이트, 디이소데실프탈레이트 등을 들 수 있다.The second internal electron donor is not particularly limited and can be used without limitation as long as it is a compound that can be used as an internal electron donor in the production of a Ziegler-based catalyst for olefin polymerization such as alcohols, ethers, ketones, and carboxylic acids. Among them, it is preferable to use a carboxylic acid compound, and it is more preferable to use a mixture of one or more selected from benzene-1,2-dicarboxylic ester compounds as a second internal electron donor. Specific examples of the benzene-1,2-dicarboxylic acid ester compound include dimethyl phthalate, diethyl phthalate, dinompropyl phthalate, diisopropyl phthalate, dinomal butyl phthalate, diisobutyl phthalate dinomentyl phthalate, di (2-methylbutyl) phthalate, di (3-methylbutyl) phthalate, di (3-methylpentyl) citalate, diisobutylphthalate, dineohexylphthalate, di (2-methylpentyl) phthalate, diisobutyl phthalate, dineoheptyl phthalate, dinohexyl phthalate, dibutyl phthalate, dibutyl phthalate, dibutyl phthalate, (2-methylheptyl) phthalate, diisooctyl phthalate, di (3-ethylhexyl) phthalate, dineoctyl phthalate, dinononyl phthalate, diisobutyl phthalate, di Carbonyl phthalate, and the like Dino end decyl phthalate, diisodecyl phthalate.

상기 단계 (2)은 상기 단계 (1)의 결과물의 온도를 60~150℃, 바람직하게는 80~130℃까지 서서히 승온시키면서, 승온 과정 중에 내부전자공여체를 투입하여 1~3시간 동안 반응시킴으로써 수행되는 것이 바람직한데, 상기 온도가 60℃ 미만이거나 반응시간이 1시간 미만이면 반응이 완결되기 어렵고, 상기 온도가 150℃를 초과하거나 반응시간이 3시간을 초과하면 부반응에 의해 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있다.In the step (2), the temperature of the resultant product of step (1) is gradually raised to 60 to 150 ° C, preferably 80 to 130 ° C, and the internal electron donor is added during the temperature raising process to perform the reaction for 1 to 3 hours If the temperature is less than 60 ° C or the reaction time is less than 1 hour, the reaction is difficult to be completed. If the temperature exceeds 150 ° C or the reaction time exceeds 3 hours, the polymerization reaction of the resultant catalyst Or the stereoregularity of the polymer may be lowered.

상기 제1, 2 내부전자공여체는, 상기 승온과정 중에 투입되는 한, 그 투입 온도 및 투입 횟수는 크게 제한되지 않으며, 두 내부전자공여체를 동시에 혹은 다른 온도에서 주입하여도 무관하다. 상기 두 내부전자공여체의 전체 사용량에선 제한이 없으나 총내부전자공여체 2.5~30중량%가 바람직하며, 사용하는 두 내부전자공여체 전체의 몰수는 사용된 디알콕시마그네슘 1몰에 대하여 제1내부전자공여체는 0.001~2.0몰을 제2내부전자공여체는 0.001~2.0몰을 사용하는 것이 바람직한데, 상기 범위를 벗어나면, 결과물인 촉매의 중합활성 또는 중합체의 입체규칙성이 낮아질 수 있어 바람직하지 않다.As long as the first and second inner electron donors are charged during the temperature raising process, the charging temperature and the number of times of charging are not limited to a great extent, and two inner electron donors may be injected simultaneously or at different temperatures. Although the total amount of the two internal electron donors is not limited, the total internal electron donor is preferably 2.5 to 30 wt%, and the total number of moles of the internal electron donor used is preferably 1 mol to 1 mol of the dialkoxymagnesium used, The second internal electron donor is preferably used in an amount of 0.001 to 2.0 moles, and the second internal electron donor is preferably used in an amount of 0.001 to 2.0 moles. If it is outside the above range, the polymerization activity of the resultant catalyst or the stereoregularity of the polymer may be lowered.

상기 고체촉매의 제조공정 중 단계 (3)는, 60~150℃, 바람직하게는 80~130℃의 온도에서 단계 (2)의 결과물과 티타늄할라이드를 2차이상 반응시키는 공정이다. 이때 사용되는 티타늄할라이드의 예로는 상기의 일반식(I)의 티타늄할라이드를 들 수 있다.The step (3) of the production of the solid catalyst is a step of reacting the result of step (2) with the titanium halide at a temperature of 60 to 150 ° C, preferably 80 to 130 ° C. An example of the titanium halide to be used at this time is titanium halide of the above-mentioned general formula (I).

고체촉매의 제조공정에 있어서, 각 단계에서의 반응은, 질소 기체 분위기에서, 수분 등을 충분히 제거시킨 교반기가 장착된 반응기 중에서 실시하는 것이 바람직하다.In the production process of the solid catalyst, the reaction in each step is preferably carried out in a reactor equipped with a stirrer in which water and the like are sufficiently removed in a nitrogen gas atmosphere.

상기와 같은 방법으로 제조되는 본 발명의 고체촉매는, 마그네슘, 티타늄, 할로겐 및 내부전자공여체를 포함하여 이루어지며, 촉매 활성의 측면을 고려해 볼 때, 마그네슘 5~40중량%, 티타늄 0.5~10중량%, 할로겐 50~85중량%, 및 제1 내부전자공여체 0.1~20중량%, 제2 내부전자공유체 0.1 ~20중량%를 포함하여 이루어지는 것이 바람직하다. The solid catalyst of the present invention produced by the above process comprises magnesium, titanium, halogen and an internal electron donor. Considering the catalytic activity, the solid catalyst comprises 5 to 40 wt% of magnesium, 0.5 to 10 wt% of titanium , 50 to 85% by weight of halogen, 0.1 to 20% by weight of the first inner electron donor and 0.1 to 20% by weight of the second inner electron donor.

본 발명의 촉매 제조방법에 의하여 제조되는 고체촉매는 프로필렌 중합 또는 공중합 방법에 적합하게 사용될 수 있으며, 본 발명에 의해 제조되는 고체촉매를 이용한 프로필렌 중합 또는 공중합 방법은 상기 고체촉매와 조촉매 및 외부전자공여체의 존재하에 프로필렌을 중합 또는 프로필렌과 다른 알파올레핀을 공중합시키는 것을 포함한다.The solid catalyst prepared by the catalyst preparation method of the present invention can be suitably used for the propylene polymerization or copolymerization method, and the propylene polymerization or copolymerization method using the solid catalyst produced by the present invention is characterized in that the solid catalyst, the cocatalyst, Polymerizing propylene in the presence of a donor or copolymerizing propylene with other alpha olefins.

상기 고체촉매는 중합 반응의 성분으로서 사용되기 전에 에틸렌 또는 알파올레핀으로 전중합하여 사용할 수 있다.The solid catalyst can be used in the prepolymerized state with ethylene or alpha olefin before being used as a component of the polymerization reaction.

전중합 반응은 탄화수소 용매(예를 들어, 헥산), 상기 촉매 성분 및 유기알루미늄 화합물(예를 들어, 트리에틸알루미늄)의 존재 하에서, 충분히 낮은 온도와 에틸렌 또는 알파올레핀 압력 조건에서 수행될 수 있다. 전중합은 촉매 입자를 중합체로 둘러싸서 촉매 형상을 유지시켜 중합 후에 중합체의 형상을 좋게 하는데 도움을 준다. 전중합 후의 중합체/촉매의 중량비는 약 0.1~20:1인 것이 바람직하다. 상기 프로필렌 중합 또는 공중합 방법에서 조촉매 성분으로는 주기율표 제II족 또는 제III족의 유기금속 화합물이 사용될 수 있으며, 그 예로서, 바람직하게는 알킬알루미늄 화합물이 사용된다. 상기 알킬알루미늄 화합물은 일반식 ()로 표시된다.The prepolymerization reaction can be carried out in the presence of a hydrocarbon solvent (e.g. hexane), the catalyst component and an organoaluminum compound (e.g. triethylaluminum) at sufficiently low temperatures and under ethylene or alpha olefin pressure conditions. Pre-polymerization helps encapsulate the catalyst particles in the polymer to maintain the shape of the catalyst to improve the shape of the polymer after polymerization. The weight ratio of polymer / catalyst after pre-polymerization is preferably about 0.1 to 20: 1. As the promoter component in the propylene polymerization or copolymerization method, an organometallic compound of Group II or Group III of the periodic table can be used, and as an example thereof, an alkyl aluminum compound is preferably used. The alkyl aluminum compound is represented by the general formula ( III ).

AlR3 ‥‥‥ (Ⅲ) AlR 3 (III)

여기에서, R은 탄소수 1~6개의 알킬기이다. Here, R is an alkyl group having 1 to 6 carbon atoms.

상기 알킬알루미늄 화합물의 구체예로는, 트리메틸알루미늄, 트리에틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 트리이소부틸알루미늄 및 트리옥틸알루미늄 등을 들 수 있다.Specific examples of the alkylaluminum compound include trimethylaluminum, triethylaluminum, tripropylaluminum, tributylaluminum, triisobutylaluminum and trioctylaluminum.

상기 고체촉매 성분에 대한 상기 조촉매 성분의 비율은, 중합 방법에 따라서 다소 차이는 있으나, 고체 촉매 성분 중의 티타늄 원자에 대한 조촉매 성분 중의 금속 원자의 몰비가 1~1000의 범위인 것이 바람직하며, 보다 바람직하게는 10~300의 범위인 것이 좋다. 만약, 고체촉매 성분 중의 티타늄 원자에 대한 조촉매 성분 중의 금속 원자, 예를 들어 알루미늄 원자의 몰비가 상기 1~1000의 범위를 벗어나게 되면, 중합 활성이 크게 저하되는 문제가 있다. The ratio of the cocatalyst component to the solid catalyst component varies depending on the polymerization method, but it is preferable that the molar ratio of metal atoms in the cocatalyst component to the titanium atom in the solid catalyst component is in the range of 1 to 1000, And more preferably in the range of 10 to 300. If the molar ratio of the metal atom in the cocatalyst component to the titanium atom in the solid catalyst component, for example, the aluminum atom, is out of the above range of 1 to 1000, the polymerization activity is greatly reduced.

상기 프로필렌 중합 또는 공중합 방법에서, 상기 외부전자공여체로는 다음의 일반식 ()로 표시되는 알콕시실란 화합물 중 1종 이상을 사용할 수 있다:In the propylene polymerization or copolymerization method, at least one of the alkoxysilane compounds represented by the following formula ( IV ) may be used as the external electron donor:

R1 mR2 nSi(OR3)(4-m-n) ‥‥‥ (Ⅳ) R 1 m R 2 n Si (OR 3 ) (4-mn) (IV)

여기에서, R1, R2은 동일하거나 다를 수 있으며, 탄소수 1~12개의 선형 또는 분지형 또는 시클릭 알킬기, 또는 아릴기이고, R3는 탄소수 1~6개의 선형 또는 분지형 알킬기이고, m, n은 각각 0 또는 1이고, m+n은 1 또는 2이다. Wherein R 1 and R 2 may be the same or different and are a linear or branched or cyclic alkyl group or an aryl group having 1 to 12 carbon atoms, R 3 is a linear or branched alkyl group having 1 to 6 carbon atoms, and m , n is 0 or 1, respectively, and m + n is 1 or 2.

상기 외부전자공여체의 구체예로는, 노르말프로필트리메톡시실란, 디노르말프로필디메톡시실란,이소프로필트리메톡시실란,디이소프로필디메톡시실란,노르말부틸트리메톡시실란,디노르말부틸디메톡시실란,이소부틸트리메톡시실란, 디이소부틸디메톡시실란,터셔리부틸트리메톡시실란,디터셔리부틸디메톡시실란,노르말펜틸트리메톡시실란,디노르말펜틸디메톡시실란,시클로펜틸트리메톡시실란,디시클로펜틸디메톡시실란,시클로펜틸메틸디메톡시실란,시클로펜틸에틸디메톡시실란,시클로펜틸프로필디메톡시실란,시클로헥실트리메톡시실란,디시클로헥실디메톡시실란,시클로헥실메틸디메톡시실란,시클로헥실에틸디메톡시실란,시클로헥실프로필디메톡시실란,시클로헵틸트리메톡시실란,디시클로헵틸디메톡시실란,시클로헵틸메틸디메톡시실란, 시클로헵틸에틸디메톡시실란, 시클로헵틸프로필디메톡시실란, 페닐트리메톡시실란,디페닐디메톡시실란,페닐메틸디메톡시실란,페닐에틸디메톡시실란,페닐프로필디메톡시실란,노르말프로필트리에톡시실란,디노르말프로필디에톡시실란,이소프로필트리에톡시실란,디이소프로필디에톡시실란,노르말부틸트리에톡시실란,디노르말부틸디에톡시실란,이소부틸트리에톡시실란,디이소부틸디에톡시실란,터셔리부틸트리에톡시실란,디터셔리부틸디에톡시실란,노르말펜틸트리에톡시실란,디노르말펜틸디에톡시실란,시클로펜틸트리에톡시실란,디시클로펜틸디에톡시실란,시클로펜틸메틸디에톡시실란,시클로펜틸에틸디에톡시실란,시클로펜틸프로필디에톡시실란,시클로헥실트리에톡시실란,디시클로헥실디에톡시실란,시클로헥실메틸디에톡시실란, 시클로헥실에틸디에톡시실란, 시클로헥실프로필디에톡시실란, 시클로헵틸트리에톡시실란,디시클로헵틸디에톡시실란,시클로헵틸메틸디에톡시실란,시클로헵틸에틸디에톡시실란,시클로헵틸프로필디에톡시실란,페닐트리에톡시실란, 디페닐디에톡시실란, 페닐메틸디에톡시실란, 페닐에틸디에톡시실란 및 페닐프로필디에톡시실란 등이며, 이 중에서 1종 이상을 단독 또는 혼합하여 사용할 수 있다.Specific examples of the external electron donor include, but are not limited to, n-propyltrimethoxysilane, dinormalpropyldimethoxysilane, isopropyltrimethoxysilane, diisopropyldimethoxysilane, n-butylbutyltrimethoxysilane, dinormal butyldimethoxy Silane, isobutyltrimethoxysilane, diisobutyldimethoxysilane, tertiarybutyltrimethoxysilane, ditertiarybutyldimethoxysilane, n-pentyltrimethoxysilane, dinormalpentyldimethoxysilane, cyclopentyltrimethoxy Silane, dicyclopentyldimethoxysilane, cyclopentylmethyldimethoxysilane, cyclopentylethyldimethoxysilane, cyclopentylpropyldimethoxysilane, cyclohexyltrimethoxysilane, dicyclohexyldimethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylmethyldimethoxysilane, , Cyclohexyl ethyl dimethoxy silane, cyclohexylpropyl dimethoxy silane, cycloheptyl trimethoxy silane, dicycloheptyl dimethoxy silane, cycloheptyl methyl dimethoxy silane , Cycloheptylethyldimethoxysilane, cycloheptyldimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, phenylmethyldimethoxysilane, phenylethyldimethoxysilane, phenylpropyldimethoxysilane, n-propyltriethoxy Silane, dinormalpropyldiethoxysilane, isopropyltriethoxysilane, diisopropyldiethoxysilane, n-butylbutyltriethoxysilane, dinormalbutyldiethoxysilane, isobutyltriethoxysilane, diisobutyldiethoxysilane, Tricyclohexyldiethoxysilane, cyclopentyldiethoxysilane, cyclopentylmethyldiethoxysilane, cyclopentylmethyldiethoxysilane, cyclopentylmethyldiethoxysilane, cyclopentylmethyldiethoxysilane, cyclopentylmethyldiethoxysilane, cyclopentylmethyldiethoxysilane, cyclopentylmethyldiethoxysilane, Cyclopentylethyldiethoxysilane, cyclopentylpropyldiethoxysilane, cyclohexyltriethoxysilane, dicyclohexyldiethoxysilane, cyclohexylmethyldiethoxysilane, cyclohexylmethyldiethoxysilane, cyclohexylmethyldiethoxysilane, Cyclohexylpropyldiethoxysilane, cyclohexylpropyldiethoxysilane, cyclohexylethyldiethoxysilane, cyclohexylpropyldiethoxysilane, cyclohexylpropyldiethoxysilane, cyclohexylpropyldiethoxysilane, cyclohexylpropyldiethoxysilane, cyclohexylpropyldiethoxysilane, cyclohexylpropyldiethoxysilane, cycloheptyltriethoxysilane, Triethoxysilane, diphenyldiethoxysilane, phenylmethyldiethoxysilane, phenylethyldiethoxysilane, and phenylpropyldiethoxysilane. Of these, at least one of them may be used alone or in combination.

상기 고체촉매에 대한 상기 외부전자공여체의 사용량은 중합 방법에 따라서 다소 차이는 있으나, 촉매 성분 중의 티타늄 원자에 대한 외부전자공여체 중의 실리콘 원자의 몰비가 0.1~500의 범위인 것이 바람직하며, 1~100의 범위인 것이 보다 바람직하다. 만일, 상기 고체촉매 성분 중의 티타늄 원자에 대한 외부전자공여체 중의 실리콘 원자의 몰비가 0.1 미만이면 생성되는 프로필렌 중합체의 입체규칙성이 현저히 낮아져 바람직하지 않고, 500을 초과하면 촉매의 중합 활성이 현저히 떨어지는 문제점이 있다. Although the amount of the external electron donor to be used for the solid catalyst varies depending on the polymerization method, the molar ratio of the silicon atoms in the external electron donor to the titanium atom in the catalyst component is preferably in the range of 0.1 to 500, more preferably 1 to 100 Is more preferable. If the molar ratio of the silicon atom in the external electron donor to the titanium atom in the solid catalyst component is less than 0.1, the resulting stereoregularity of the resulting propylene polymer becomes significantly low, and if it exceeds 500, the polymerization activity of the catalyst is significantly reduced .

상기 프로필렌 중합 또는 공중합 방법에 있어서, 중합 반응의 온도는 20~120℃인 것이 바람직한데, 중합 반응의 온도가 20℃ 미만이면 반응이 충분하게 진행되지 못하여 바람직하지 않고, 120℃를 초과하면 활성의 저하가 심하고, 중합체 물성에도 좋지 않은 영향을 주므로 바람직하지 않다.In the above-mentioned propylene polymerization or copolymerization method, the polymerization reaction temperature is preferably 20 to 120 ° C. If the polymerization reaction temperature is less than 20 ° C, the reaction does not proceed sufficiently, which is undesirable. It is undesirable because it causes considerable deterioration and adversely affects the physical properties of the polymer.

본 발명은 폴리프로필렌 제조용 고체촉매의 제조방법에 대한 것으로써 디알콕시마그네슘을 금속할라이드와의 반응을 통해서 생성된 담체와 티타늄할라이드, 유기전자공여체 등으로 이루어진 고체촉매 제조방법 및 이를 이용한 폴리프로필렌 제조방법을 제공하는 것으로써, 특히 본 발명에 사용하는 2종의 유기전자공여체 중 카보닐기와 알콕시기가 포함된 내부전자공여체를 사용하는 것으로써 슬러리 중합법, 벌크중합법 또는 기상중합법 등의 다양한 형태의 프로필렌 중합공정에 적용이 가능하며, 높은 활성과 입체규칙성이 우수한 폴리프로필렌을 제조할 수 있다.The present invention relates to a process for producing a solid catalyst for the production of polypropylene, which comprises a solid catalyst prepared by reacting a dialkoxy magnesium with a metal halide, a titanium halide, an organic electron donor and the like, and a process for producing a polypropylene It is possible to use an internal electron donor containing a carbonyl group and an alkoxy group among the two types of organic electron donors used in the present invention to form various forms such as a slurry polymerization method, a bulk polymerization method and a gas phase polymerization method It is possible to produce a polypropylene which is applicable to the polymerization process of propylene and which has high activity and stereoregularity.

이하 실시예 및 비교예에 의해 본 발명을 상세히 설명하나, 이에 의해 본 발명이 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

실시예Example 1  One

1. 고체촉매의 제조 1. Preparation of solid catalyst

질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 112ml와 디에톡시마그네슘(평균입경 20㎛인 구형이고, 입도분포지수가 0.86이고, 겉보기밀도가 0.35g/cc인 것) 15g을 투입하고 10℃로 유지하면서, 사염화티타늄 20ml를 톨루엔 30ml에 희석하여 1시간에 걸쳐 투입한 후, 반응기의 온도를 100℃까지 올려 주면서 디이소부틸프탈레이트 3.8g, 2-에톡시에틸 부틸레이트 1.5g의 혼합물을 주입하였다. 100℃에서 2시간 동안 유지한 다음, 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 1회 세척하였다. 여기에 톨루엔 120ml와 사염화티타늄 20ml를 투입하여 온도를 100℃까지 올려 2시간 동안 유지하였으며, 이 과정을 1회 반복 수행하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.1중량%였다.
To a glass reactor equipped with a stirrer having a volume of 1 liter sufficiently substituted with nitrogen, 112 ml of toluene and 15 g of diethoxy magnesium (sphere having an average particle size of 20 μm and a particle size distribution index of 0.86 and an apparent density of 0.35 g / cc) , 20 ml of titanium tetrachloride was diluted in 30 ml of toluene and added over 1 hour. While the temperature of the reactor was raised to 100 ° C, 3.8 g of diisobutylphthalate and 1.5 g of 2-ethoxyethylbutylate The mixture was injected. The mixture was maintained at 100 DEG C for 2 hours, then cooled down to 90 DEG C, stirring was stopped, the supernatant was removed, and further washed once with 200 mL of toluene. 120 ml of toluene and 20 ml of titanium tetrachloride were added thereto, and the temperature was raised to 100 ° C and maintained for 2 hours. This procedure was repeated once. The aged slurry mixture thus obtained was washed twice with 200 ml of toluene per one time and washed with n-hexane at 40 ° C for five times with 200 ml each time to obtain a pale yellow solid catalyst component. The titanium content in the solid catalyst component obtained by flowing in flowing nitrogen for 18 hours was 2.1% by weight.

2. 폴리프로필렌 중합2. Polymerization of polypropylene

4리터 크기의 고압용 스테인레스제 반응기내에 상기의 고체촉매 10mg과 트리에틸알루미늄 10mmol, 디시클로펜틸메틸디메톡시실란 1mmol을 투입하였다. 이어서 수소 7000ml와 액체상태의 프로필렌 2.4L를 차례로 투입한 후, 온도를 70℃까지 올려서 중합을 실시하였다. 중합 개시 후 2시간이 경과하면 반응기의 온도를 상온까지 떨어뜨리면서 밸브를 열어 반응기 내부의 프로필렌을 완전히 탈기시켰다.10 mg of the above solid catalyst, 10 mmol of triethylaluminum and 1 mmol of dicyclopentylmethyldimethoxysilane were fed into a 4-liter high-pressure stainless steel reactor. Then, 7000 ml of hydrogen and 2.4 L of liquid propylene were added in turn, and the temperature was raised to 70 ° C to perform polymerization. After 2 hours from the start of the polymerization, the temperature of the reactor was dropped to room temperature, and the valve was opened to completely degas propylene inside the reactor.

그 결과 얻어진 중합체를 분석하여, 표 1에 나타내었다.The resulting polymer was analyzed and is shown in Table 1.

여기서, 촉매활성, 입체규칙성은 다음과 같은 방법으로 결정하였다.Here, the catalytic activity and stereoregularity were determined by the following method.

① 촉매활성(kg-PP/g-cat) = 중합체의 생성량(kg)÷촉매의 양(g)① Catalyst activity (kg-PP / g-cat) = amount of polymer produced (kg) ÷ amount of catalyst (g)

② 입체규칙성(X.I.): 혼합크실렌 중에서 결정화되어 석출된 불용성분의 중량%(2) Stereoregularity (XI): Weight% of insoluble matter crystallized and crystallized in mixed xylene

③ 용융흐름성(g/10 min): ASTM1238에 의해, 230℃, 2.16k g 하중에서 측정한 값
(3) Melt flowability (g / 10 min): Measured by ASTM 1238 at 230 ° C under a load of 2.16 kg

실시예Example 2 2

실시예 1의 1. 고체촉매의 제조에 있어서, 디이소부틸프탈레이트 과 2-에톡시에틸 부틸레이트의 혼합물 대신에 디이소부틸프탈레이트 3.0g을 주입후 승온하면서 40~60도에서 2-메톡시에틸 피발레이트 2.5g을 주입하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.0중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
In the preparation of the solid catalyst of Example 1, 3.0 g of diisobutyl phthalate was poured instead of the mixture of diisobutyl phthalate and 2-ethoxyethyl butyrate, and the mixture was heated to 40 to 60 ° C to obtain 2-methoxyethyl 2.5 g of pivalate was injected to prepare a catalyst. The content of titanium in the solid catalyst component was 2.0% by weight. Next, polypropylene polymerization was carried out in the same manner as in Example 1, and the results are shown in Table 1.

실시예Example 3 3

실시예 1의 1. 고체촉매의 제조에 있어서, 디이소부틸프탈레이트 과 2-에톡시에틸 부틸레이트의 혼합물 대신에 디이소부틸프탈레이트 4.2g, 2-메톡시에틸 시클로헥산 카르복실레이트 0.8g의 혼합물을 사용하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.1중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
Example 1 1. Preparation of the solid catalyst A mixture of 4.2 g of diisobutylphthalate and 0.8 g of 2-methoxyethylcyclohexanecarboxylate in place of the mixture of diisobutylphthalate and 2-ethoxyethylbutylate To prepare a catalyst. The content of titanium in the solid catalyst component was 2.1% by weight. Next, polypropylene polymerization was carried out in the same manner as in Example 1, and the results are shown in Table 1.

실시예Example 4 4

실시예 2의 고체촉매의 제조에 있어서, 디이소부틸프탈레이트과 2-메톡시에틸 피발레이트대신에 디이소부틸프탈레이트 3.5g, 2-에톡시에틸 프로피오네이트 2.1g를 각각 주입하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.0중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
In the preparation of the solid catalyst of Example 2, 3.5 g of diisobutyl phthalate and 2.1 g of 2-ethoxyethyl propionate were charged in place of diisobutyl phthalate and 2-methoxyethyl pivalate to prepare a catalyst. The content of titanium in the solid catalyst component was 2.0% by weight. Next, polypropylene polymerization was carried out in the same manner as in Example 1, and the results are shown in Table 1.

실시예Example 5  5

1. 고체촉매의 제조 1. Preparation of solid catalyst

질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 112ml와 디에톡시마그네슘(평균입경 20㎛인 구형이고, 입도분포지수가 0.86이고, 겉보기밀도가 0.35g/cc인 것) 15g을 투입하고 10℃로 유지하면서, 사염화티타늄 20ml를 톨루엔 30ml에 희석하여 1시간에 걸쳐 투입한 후, 반응기의 온도를 100℃까지 올려 주면서 디이소부틸프탈레이트 3.0g을 주입하였다. 100℃에서 2시간 동안 유지한 다음, 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 1회 세척하였다. 여기에 톨루엔 120ml와 사염화티타늄 20ml를 투입한 다음, 2-에톡시에틸 이소부틸레이트 3.0g을 주입한 다음 온도를 100℃까지 올려 2시간 동안 유지하였으며, 이 과정을 1회 반복 수행하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 노말헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 2.1중량%였다.
Into a glass reactor equipped with a stirrer having a volume of 1 liter sufficiently substituted with nitrogen, 112 ml of toluene and 15 g of diethoxy magnesium (spherical having an average particle diameter of 20 탆, a particle size distribution index of 0.86 and an apparent density of 0.35 g / cc) 20 ml of titanium tetrachloride was diluted with 30 ml of toluene while being kept at 10 ° C and added over 1 hour. Then, 3.0 g of diisobutyl phthalate was added while raising the temperature of the reactor to 100 ° C. The mixture was maintained at 100 DEG C for 2 hours, then cooled down to 90 DEG C, stirring was stopped, the supernatant was removed, and further washed once with 200 mL of toluene. To this was added 120 ml of toluene and 20 ml of titanium tetrachloride, and then 3.0 g of 2-ethoxyethyl isobutyrate was poured therein. Then, the temperature was raised to 100 ° C and maintained for 2 hours. This procedure was repeated once. The aged slurry mixture thus obtained was washed twice with 200 ml of toluene per one time and washed with n-hexane at 40 ° C for five times with 200 ml each time to obtain a pale yellow solid catalyst component. The titanium content in the solid catalyst component obtained by flowing in flowing nitrogen for 18 hours was 2.1% by weight.

실시예Example 6 6

실시예 6의 고체촉매의 제조에 있어서, 디이소부틸프탈레이트 과 2-에톡시에틸 이소부틸레이트대신에 디이소부틸프탈레이트 4.8g, 2-메톡시에틸 펜타노에이트 1.1g를 각각 주입하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.3중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
In the preparation of the solid catalyst of Example 6, instead of diisobutyl phthalate and 2-ethoxyethyl isobutyrate, 4.8 g of diisobutyl phthalate and 1.1 g of 2-methoxyethylpentanoate were introduced respectively to prepare a catalyst Respectively. The titanium content in the solid catalyst component was 2.3% by weight. Next, polypropylene polymerization was carried out in the same manner as in Example 1, and the results are shown in Table 1.

비교예Comparative Example 1 One

실시예 1의 1. 고체촉매의 제조에 있어서, 디이소부틸프탈레이트 및 2-에톡시에틸 부틸레이트의 혼합물 대신에 디이소부틸프탈레이트 4.7g을 사용하여 촉매를 제조하였다. 고체촉매성분 중의 티타늄 함량은 2.2중량%였다. 다음으로, 실시예 1과 동일한 방법으로 폴리프로필렌 중합을 수행하고, 결과를 표 1에 나타내었다.
Example 1, 1. In the preparation of the solid catalyst, a catalyst was prepared using 4.7 g of diisobutyl phthalate instead of a mixture of diisobutyl phthalate and 2-ethoxyethyl butyrate. The titanium content in the solid catalyst component was 2.2% by weight. Next, polypropylene polymerization was carried out in the same manner as in Example 1, and the results are shown in Table 1.

비교예Comparative Example 2 2

1. 고체촉매의 제조1. Preparation of solid catalyst

질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리반응기에 톨루엔 150ml, 테트라하이드로퓨란 12ml, 부탄올 20ml, 마그네슘클로라이드 21g을 투입하고 110℃로 승온 후, 1시간을 유지시켜 균일 용액을 얻었다. 용액의 온도를 15℃로 냉각하고, 사염화티타늄 25ml를 투입한 후 반응기의 온도를 60℃에서 1시간에 걸쳐 승온하고, 10분 동안 숙성 후 15분간 정치시켜 담체를 가라앉히고, 상부의 용액을 제거하였다. 반응기 내에 남은 슬러리는 200ml의 톨루엔을 투입하고, 교반, 정치, 상등액 제거 과정을 2회 반복하여 세척하였다. 150 ml of toluene, 12 ml of tetrahydrofuran, 20 ml of butanol and 21 g of magnesium chloride were added to a glass reactor equipped with a stirrer having a volume of 1 liter sufficiently substituted with nitrogen, and the temperature was raised to 110 ° C and maintained for 1 hour to obtain a homogeneous solution. The temperature of the solution was cooled to 15 ° C and 25 ml of titanium tetrachloride was added. The temperature of the reactor was elevated at 60 ° C over 1 hour, aged for 10 minutes, allowed to stand for 15 minutes to allow the carrier to settle, Respectively. The remaining slurry in the reactor was charged with 200 ml of toluene and washed by repeating stirring, setting, and removal of the supernatant twice.

이렇게 얻어진 슬러리에 톨루엔 150ml를 주입한 후 15℃에서 사염화티타늄 25ml를 톨루엔 50ml에 희석하여 1시간에 걸쳐 투입한 후, 반응기의 온도를 30℃까지 분당 0.5℃의 속도로 올려 주었다. 반응 혼합물을 30℃에서 1시간 동안 유지한 다음, 디이소부틸프탈레이트 7.5ml를 주입하고, 다시 분당 0.5℃의 속도로 110℃까지 승온시켰다. After 150 ml of toluene was poured into the slurry thus obtained, 25 ml of titanium tetrachloride was diluted with 50 ml of toluene at 15 ° C and added over 1 hour. The temperature of the reactor was increased to 30 ° C at a rate of 0.5 ° C per minute. The reaction mixture was maintained at 30 DEG C for 1 hour, then 7.5 mL of diisobutylphthalate was introduced, and the temperature was further raised to 110 DEG C at a rate of 0.5 DEG C per minute.

110℃에서 1시간 동안 유지한 다음, 90℃로 온도를 내려 교반을 멈추고 상등액을 제거하고, 추가로 톨루엔 200ml를 사용하여 동일한 방법으로 1회 세척하였다. 여기에 톨루엔 150ml와 사염화티타늄 50ml를 투입하여 온도를 110℃까지 올려 1시간 동안 유지하였다. 숙성과정이 끝난 상기의 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 헥산으로 매회당 200ml씩 5회 세척하여 연노랑색의 고체촉매성분을 얻었다. 흐르는 질소에서 18시간 건조시켜 얻어진 고체촉매성분 중의 티타늄 함량은 3.3중량%였다.
After maintaining at 110 DEG C for 1 hour, the temperature was lowered to 90 DEG C and stirring was stopped, and the supernatant was removed, and further washed once with 200 mL of toluene in the same manner. 150 ml of toluene and 50 ml of titanium tetrachloride were added thereto, and the temperature was elevated to 110 ° C and maintained for 1 hour. The aged slurry mixture was washed twice with 200 ml of toluene and washed with hexane (200 ml) at 40 캜 for 5 times each time to obtain a pale yellow solid catalyst component. The titanium content in the solid catalyst component obtained by drying in flowing nitrogen for 18 hours was 3.3% by weight.

활성
(g-PP/g cat 2h)
activation
(g-PP / g cat 2h)
X/S
(wt%)
X / S
(wt%)
MI
(g/10min)
MI
(g / 10 min)
MWDMWD
실시예1Example 1 91,00091,000 0.60.6 2323 4.34.3 실시예2Example 2 89,00089,000 0.50.5 2525 4.24.2 실시예3Example 3 86,00086,000 0.60.6 3030 4.14.1 실시예4Example 4 83,00083,000 0.50.5 2727 4.34.3 실시예5Example 5 90,00090,000 0.40.4 2222 4.34.3 실시예6Example 6 87,50087,500 0.60.6 2020 4.24.2 비교예1Comparative Example 1 83,00083,000 1.51.5 2727 4.14.1 비교예2Comparative Example 2 66,00066,000 1.91.9 2828 4.14.1

Claims (5)

티타늄, 마그네슘, 할로겐 및 하기 일반식(Ⅱ)으로 표시되는 내부전자공여체를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매:
Figure 112017094959817-pat00002
………… (Ⅱ)
R1, R2, R3, R4, R5는 각각 독립적으로 탄소수 1~12의 직쇄상 알킬기, 탄소수 3~12의 분기 알킬기, 비닐기, 탄소수3~12의 직쇄상 알케닐기 또는 분기 알케닐기, 탄소수 1~12의 직쇄상 할로겐 치환 알킬기, 탄소수 3~12의 분기 할로겐 치환 알킬기, 탄소수 3~12의 직쇄상 할로겐 치환 알케닐기 또는 분기 할로겐 치환 알케닐기, 탄소수 3~12의 시클로알킬기, 탄소수 3~12의 시클로알케닐기, 탄소수 3~12의 할로겐 치환 시클로알킬기, 탄소수 3~12의 할로겐 치환 시클로알케닐기, 또는 탄소수 6~12의 방향족 탄화수소기이며, 및 탄소수 6~12의 환형 탄화수소기이고,
B는 탄소수가 1~20개까지의 지방족 포화탄화수소 및 환형의 포화탄화수소로 구성된 모노 에스테르 구조를 갖는 화합물이거나, B가 아미노기, 또는 직쇄형 또는 환형아미노기로 이루어진 카바메이트 구조를 갖는 화합물을 나타낸다.
Titanium, magnesium, halogen and an internal electron donor represented by the following general formula (II): < EMI ID =
Figure 112017094959817-pat00002
... ... ... ... (II)
Each of R 1 , R 2 , R 3 , R 4 and R 5 independently represents a linear alkyl group having 1 to 12 carbon atoms, a branched alkyl group having 3 to 12 carbon atoms, a vinyl group, a straight chain alkenyl group having 3 to 12 carbon atoms, A straight chain halogenated alkyl group having 1 to 12 carbon atoms, a branched halogenated alkyl group having 3 to 12 carbon atoms, a straight chain halogenated alkenyl group having 3 to 12 carbon atoms or a branched halogenated alkenyl group having 3 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, A halogen-substituted cycloalkyl group having 3 to 12 carbon atoms, a halogen-substituted cycloalkenyl group having 3 to 12 carbon atoms, an aromatic hydrocarbon group having 6 to 12 carbon atoms, and a cyclic hydrocarbon group having 6 to 12 carbon atoms ,
B is a compound having a monoester structure composed of aliphatic saturated hydrocarbons and cyclic saturated hydrocarbons having 1 to 20 carbon atoms, or B is a compound having a carbamate structure composed of an amino group or a linear or cyclic amino group.
제 1항에 있어서, 상기 고체촉매는 마그네슘 5~40중량%, 티타늄 0.5~10중량%, 할로겐 50~85중량% 및 총내부전자공여체 2.5~30중량%를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매.The process according to claim 1, wherein the solid catalyst comprises 5 to 40 wt% of magnesium, 0.5 to 10 wt% of titanium, 50 to 85 wt% of halogen, and 2.5 to 30 wt% of total internal electron donor Solid catalyst. 제 1항에 있어서, 상기 고체촉매는 알콕시에스테르 내부전자공여체 0.01~20중량%를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매.The solid catalyst for polymerization of propylene according to claim 1, wherein the solid catalyst comprises 0.01 to 20 wt% of an alkoxyester internal electron donor. 제 1항에 있어서, 상기 고체촉매에 사용되는 2종의 내부전자공여체는 알콕시 에스테르와 프탈산 에스테르를 포함하는 것을 특징으로 하는 프로필렌 중합용 고체촉매.The solid catalyst for polymerization of propylene according to claim 1, wherein the two internal electron donors used in the solid catalyst include alkoxy esters and phthalic acid esters. 제 1항 또는 제 2항에 따른 고체촉매와, 조촉매로서 AlR3(여기에서, R은 탄소수 1~6개의 알킬기이다) 및 외부전자공여체로서 R1 mR2 nSi(OR3)(4-m-n)(여기에서, R1과 R2는 동일하거나 다를 수 있으며, 탄소수 1~12개의 선형 또는 분지형 또는 시클릭 알킬기, 또는 아릴기이고, R3는 탄소수 1~6개의 선형 또는 분지형 알킬기이고, m, n은 각각 0 또는 1이고, m+n은 1 또는 2이다)의 존재하에 프로필렌을 중합, 또는 프로필렌과 다른 알파올레핀을 공중합시키는 것을 포함하는 폴리프로필렌 제조 방법.
A process for producing a solid catalyst according to any one of claims 1 to 3 , which comprises reacting AlR 3 (wherein R is an alkyl group having 1 to 6 carbon atoms) as a cocatalyst and R 1 m R 2 n Si (OR 3 ) (4 -mn wherein R 1 and R 2 may be the same or different and each is a linear or branched or cyclic alkyl group having 1 to 12 carbon atoms or an aryl group and R 3 is a linear or branched An alkyl group, m and n are each 0 or 1, and m + n is 1 or 2, or copolymerizing propylene with other alpha olefins.
KR1020160162580A 2016-12-01 2016-12-01 A solid catalyst for propylene polymerization and a method for preparation of polypropylene KR101795317B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160162580A KR101795317B1 (en) 2016-12-01 2016-12-01 A solid catalyst for propylene polymerization and a method for preparation of polypropylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160162580A KR101795317B1 (en) 2016-12-01 2016-12-01 A solid catalyst for propylene polymerization and a method for preparation of polypropylene

Publications (1)

Publication Number Publication Date
KR101795317B1 true KR101795317B1 (en) 2017-11-07

Family

ID=60384716

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160162580A KR101795317B1 (en) 2016-12-01 2016-12-01 A solid catalyst for propylene polymerization and a method for preparation of polypropylene

Country Status (1)

Country Link
KR (1) KR101795317B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3330299A1 (en) * 2016-12-05 2018-06-06 Hanwha Total Petrochemical Co., Ltd. Process of manufacture of catalyst and propylene polymer that use this or copolymer for propylene polymerization
KR101988156B1 (en) * 2018-01-22 2019-06-11 한화토탈 주식회사 Polypropylene Resin for Insulating Power Cables
KR20200077232A (en) * 2018-12-20 2020-06-30 한화토탈 주식회사 A solid catalyst for producing polypropylene and a method for preparation of block copolymer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100572616B1 (en) 2004-10-15 2006-04-24 삼성토탈 주식회사 A solid catalyst for olefin polymerization and a method for preparing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100572616B1 (en) 2004-10-15 2006-04-24 삼성토탈 주식회사 A solid catalyst for olefin polymerization and a method for preparing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3330299A1 (en) * 2016-12-05 2018-06-06 Hanwha Total Petrochemical Co., Ltd. Process of manufacture of catalyst and propylene polymer that use this or copolymer for propylene polymerization
EP3683243A1 (en) * 2016-12-05 2020-07-22 Hanwha Total Petrochemical Co., Ltd. Process of manufacture of catalyst and propylene polymer that use this or copolymer for propylene polymerization
KR101988156B1 (en) * 2018-01-22 2019-06-11 한화토탈 주식회사 Polypropylene Resin for Insulating Power Cables
WO2019143008A1 (en) * 2018-01-22 2019-07-25 한화토탈 주식회사 Polypropylene resin for electric wire insulation
US11866540B2 (en) 2018-01-22 2024-01-09 Hanwha Totalenergies Petrochemical Co., Ltd. Polypropylene resin for insulating electric cables
KR20200077232A (en) * 2018-12-20 2020-06-30 한화토탈 주식회사 A solid catalyst for producing polypropylene and a method for preparation of block copolymer
KR102178630B1 (en) 2018-12-20 2020-11-13 한화토탈 주식회사 A solid catalyst for producing polypropylene and a method for preparation of block copolymer

Similar Documents

Publication Publication Date Title
KR101930165B1 (en) A solid catalyst for producing polypropylene and a method for preparation of block copolymer
KR101235445B1 (en) A method for the preparation of a solid catalyst for olefin polymerization
KR101114073B1 (en) A method for preparation of a solid catalyst for polymerization of propylene
KR20110080616A (en) A method for the preparation of a solid catalyst for olefin polymerization
KR102178630B1 (en) A solid catalyst for producing polypropylene and a method for preparation of block copolymer
KR101795317B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101836008B1 (en) Process of manufacture of catalyst and propylene polymer that use this or copolymer for propylene polymerization
KR101395471B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101338783B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
KR101699590B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the catalyst
KR101908866B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101965982B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101123523B1 (en) A method for preparation of a solid catalyst for polymerization of propylene
KR101171532B1 (en) A method for preparing a solid catalyst for propylene polymerization
KR101255913B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
KR101454516B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101207672B1 (en) A method for preparing a solid catalyst for propylene polymerization
KR101540513B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the catalyst
KR20110050906A (en) A method for preparation of a solid catalyst for polymerization of propylene
KR101447346B1 (en) A method for preparing solid catalyst for propylene polymerization, a solid catalyst prepared by the same and a method for preparation of polypropylene using the catalyst
KR101624036B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the catalyst
KR101139024B1 (en) A method for preparation of a solid catalyst for polymerization of propylene
KR101374480B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101251801B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
KR20130086843A (en) A method for the preparation of a solid catalyst for olefin polymerization and a catalyst prepared by the same

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant