KR100572616B1 - A solid catalyst for olefin polymerization and a method for preparing the same - Google Patents

A solid catalyst for olefin polymerization and a method for preparing the same Download PDF

Info

Publication number
KR100572616B1
KR100572616B1 KR1020040082650A KR20040082650A KR100572616B1 KR 100572616 B1 KR100572616 B1 KR 100572616B1 KR 1020040082650 A KR1020040082650 A KR 1020040082650A KR 20040082650 A KR20040082650 A KR 20040082650A KR 100572616 B1 KR100572616 B1 KR 100572616B1
Authority
KR
South Korea
Prior art keywords
och
aromatic
catalyst
olefin polymerization
polymerization
Prior art date
Application number
KR1020040082650A
Other languages
Korean (ko)
Inventor
김상열
장호식
박준려
안진규
양춘병
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to KR1020040082650A priority Critical patent/KR100572616B1/en
Application granted granted Critical
Publication of KR100572616B1 publication Critical patent/KR100572616B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6494Catalysts containing a specific non-metal or metal-free compound organic containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 올레핀 중합용 고체 촉매 및 그 제조방법에 관한 것으로서, 보다 상세하게는, 친환경 물질인 비방향족 모노알콕시모노에스테르 화합물을 전자공여체로서 함유하는 고활성의 올레핀 중합용, 특히 프로필렌 중합용 고체 촉매 및 그를 제조하는 방법에 관한 것이다. 본 발명에 따른 촉매를 사용하면, 환경 호르몬에 대한 염려가 전혀 없이, 높은 입체규칙성 및 높은 용융흐름지수를 갖는 중합체를 고수율로 제조할 수 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid catalyst for olefin polymerization and a method for preparing the same, and more particularly, to a highly active olefin polymerization, particularly a propylene polymerization solid, containing an environmentally friendly non-aromatic monoalkoxy monoester compound as an electron donor. And a method for producing the same. Using the catalyst according to the present invention, polymers having high stereoregularity and high melt flow index can be produced in high yield without any concern for environmental hormones.

올레핀, 중합, 촉매, 제조방법, 비방향족, 모노알콕시모노에스테르Olefin, polymerization, catalyst, preparation method, non-aromatic, monoalkoxy monoester

Description

올레핀 중합용 고체촉매 및 그 제조방법{A SOLID CATALYST FOR OLEFIN POLYMERIZATION AND A METHOD FOR PREPARING THE SAME} Solid catalyst for olefin polymerization and its manufacturing method {A SOLID CATALYST FOR OLEFIN POLYMERIZATION AND A METHOD FOR PREPARING THE SAME}

본 발명은 올레핀 중합용 고체 촉매 및 그 제조방법에 관한 것으로서, 보다 상세하게는, 친환경 물질인 비방향족 모노알콕시모노에스테르 화합물을 전자공여체로서 함유하는 고활성의 올레핀 중합용, 특히 프로필렌 중합용 고체 촉매 및 그를 제조하는 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid catalyst for olefin polymerization and a method for preparing the same, and more particularly, to a highly active olefin polymerization, particularly a propylene polymerization solid, containing an environmentally friendly non-aromatic monoalkoxy monoester compound as an electron donor. And a method for producing the same.

지금까지 많은 프로필렌 중합용 촉매 및 이를 이용한 중합 방법이 보고되어 왔다. 특히, 촉매 활성 증가를 통해 원가를 낮추고, 입체 규칙성 등의 촉매 성능을 향상시켜 중합체의 물성을 개선시키기 위하여, 내부 전자공여체로서 방향족 디카르복실산의 디에스테르를 사용하는 것은 보편적으로 널리 알려진 방법이며, 예를 들면, 미국 등록특허 제4,562,173호, 미국 등록특허 제4,981,930호, 한국 등록특허 제0072844호 등과 같이, 이에 관한 다수의 특허들이 출원되어 왔다. 상기 예시적인 특허들은, 방향족 디알킬디에스테르 또는 방향족 모노알킬모노에스테르를 사용하므로써, 고활성이고 또한 고입체규칙성을 발현하는 촉매를 제조하는 방법들을 개시하고 있다. Until now, many catalysts for propylene polymerization and polymerization methods using the same have been reported. In particular, in order to lower the cost by increasing the catalytic activity, and improve the physical properties of the polymer by improving the catalytic performance such as stereoregularity, the use of diesters of aromatic dicarboxylic acid as the internal electron donor is a widely known method For example, a number of patents have been filed, such as US Patent No. 4,562,173, US Patent No. 4,981,930, Korean Patent No. 072844, and the like. The exemplary patents disclose methods for preparing catalysts that are highly active and express high stereoregularity by using aromatic dialkyldiesters or aromatic monoalkylmonoesters.

그러나, 방향족 디카르복실산의 디에스테르 화합물은, 극히 적은 양으로도 생태계 및 인간의 생식기능 저하, 성장장애, 기형, 암 등을 유발하는 중대한 영향을 끼칠 수 있는 환경 호르몬 물질로서 심각한 문제를 야기할 수 있다. 따라서, 음식 포장용기 등의 용도로 사용되는 폴리프로필렌의 제조에는 내부 전자공여체로서 환경 호르몬이 아닌 환경 친화적인 물질을 함유하는 촉매를 사용할 것에 대한 요구가 최근 대두되고 있다. However, diester compounds of aromatic dicarboxylic acids cause serious problems as environmental hormone substances which, even in very small amounts, can have significant effects on reproductive function, growth disorders, malformations, cancer, etc. in ecosystems and humans. can do. Therefore, there has been a recent demand for the use of catalysts containing environmentally friendly substances other than environmental hormones as internal electron donors in the production of polypropylene for use in food packaging containers and the like.

한편, 한국 공개특허 제1999-008107호에는 비방향족인 1,3-디에테르 화합물을 내부 전자공여체로 사용한 촉매 제조 방법이 보고되어 있으나, 이는 중합활성 및 결과 중합체의 입체규칙성의 측면에서 여전히 만족스럽지 못한 문제점이 있는 바, 보다 개선된 비방향족 내부 전자공여체를 사용한 올레핀 중합용 촉매 및 그 제조방법이 요구되고 있는 실정이다.Meanwhile, Korean Patent Laid-Open Publication No. 1999-008107 discloses a method for preparing a catalyst using a non-aromatic 1,3-diether compound as an internal electron donor, but this is still not satisfactory in view of polymerization activity and stereoregularity of the resultant polymer. As a result, there is a need for an improved catalyst for olefin polymerization using a non-aromatic internal electron donor and a method of preparing the same.

본 발명은 상기와 같은 종래기술들의 문제점을 해결하고자 한 것으로서, 본 발명의 목적은 환경 호르몬 물질인 방향족 디카르복실산의 디에스테르 화합물을 함유하지 않으면서도, 높은 중합활성을 나타내는 올레핀, 특히 프로필렌 중합용 고체 촉매 및 그 제조방법을 제공하는 것이고, 본 발명에 따른 촉매를 사용하면, 환경 호르몬에 대한 염려가 전혀 없이, 높은 입체규칙성 및 높은 용융흐름지수를 갖는 중합체를 고수율로 제조할 수 있다.The present invention is to solve the problems of the prior art as described above, an object of the present invention is an olefin, especially propylene polymerization, exhibiting high polymerization activity without containing a diester compound of an aromatic dicarboxylic acid which is an environmental hormone substance It is to provide a solid catalyst and a method for producing the same, and by using the catalyst according to the present invention, a polymer having high stereoregularity and high melt flow index can be produced in high yield without any concern for environmental hormones. .

본 발명에 따르면, 다음의 식(I)로 표시되는 비방향족 모노알콕시모노에스테 르 화합물을 내부 전자공여체로서 함유하는 올레핀 중합용 고체 티타늄 촉매가 제공된다:According to the present invention, there is provided a solid titanium catalyst for olefin polymerization containing a non-aromatic monoalkoxy monoester compound represented by the following formula (I) as an internal electron donor:

Figure 112004046939032-pat00001
Figure 112004046939032-pat00001

상기에서, R1, R2, R3 및 R4는 각각 탄소원자 1 내지 10개의 알킬기이며, 서로 같거나 다를 수 있다.In the above, R 1 , R 2 , R 3 and R 4 are each an alkyl group of 1 to 10 carbon atoms, may be the same or different from each other.

본 발명에 따른 올레핀 중합용 고체 티타늄 촉매에 함유되는 상기 비방향족 모노알콕시모노에스테르 화합물로는, 특히, CH3OC(O)C(CH(CH3)CH2CH3 )2CH2OCH3, C2H5OC(O)C(CH(CH3)CH2CH3)2CH2 OCH3, CH3OC(O)C(CH(CH3)CH2CH3)2CH 2OC2H5, C2H5OC(O)C(CH(CH3)CH2CH3)2CH2 OC2H5, CH3OC(O)C(CH(CH3)CH3)2CH 2OCH3, C2H5OC(O)C(CH(CH3)CH3)2CH2OCH3 , CH3OC(O)C(CH(CH3)CH3)2CH2OC2H 5 및 C2H5OC(O)C(CH(CH3)CH3)2CH2OC2 H5로 이루어진 군으로부터 선택되는 화합물이 사용되는 것이 바람직하다.As the non-aromatic monoalkoxy monoester compound contained in the solid titanium catalyst for olefin polymerization according to the present invention, in particular, CH 3 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 , C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 , CH 3 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OC 2 H 5 , C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OC 2 H 5 , CH 3 OC (O) C (CH (CH 3 ) CH 3 ) 2 CH 2 OCH 3 , C 2 H 5 OC (O) C (CH (CH 3 ) CH 3 ) 2 CH 2 OCH 3 , CH 3 OC (O) C (CH (CH 3 ) CH 3 ) 2 CH 2 OC 2 H 5 and It is preferable to use a compound selected from the group consisting of C 2 H 5 OC (O) C (CH (CH 3 ) CH 3 ) 2 CH 2 OC 2 H 5 .

또한, 본 발명에 따르면, (1) 유기용매의 존재 하에서 디알콕시마그네슘을 전이금속 할라이드 화합물과 0~100℃에서 1차로 반응시키는 단계; (2) 상기 (1)단계의 결과물의 온도를 최고온도 80~130℃까지 서서히 승온시키면서, 여기에 다음의 식(I)로 표시되는 비방향족 모노알콕시모노에스테르 화합물을 적어도 1회 투입하여 반응시키는 단계:In addition, according to the present invention, (1) the first step of reacting dialkoxy magnesium with a transition metal halide compound in the presence of an organic solvent at 0 ~ 100 ℃; (2) While the temperature of the resultant of step (1) is gradually raised to the maximum temperature of 80 to 130 ° C, the non-aromatic monoalkoxy monoester compound represented by the following formula (I) is added thereto at least once for reaction. step:

Figure 112004046939032-pat00002
Figure 112004046939032-pat00002

상기에서, R1, R2, R3 및 R4는 각각 탄소원자 1 내지 10개의 알킬기이며, 서로 같거나 다를 수 있다; 및 (3) 상기 (2)단계의 결과물을 전이금속 할라이드 화합물과 80~130℃에서 2차로 반응시키는 단계를 포함하여 이루어지는 올레핀 중합용 고체 티타늄 촉매의 제조방법이 제공된다. In the above, R 1 , R 2 , R 3 and R 4 are each an alkyl group of 1 to 10 carbon atoms, and may be the same or different from each other; And (3) reacting the resultant of step (2) with the transition metal halide compound at 80 to 130 ° C. in a second manner.

본 발명에 따른 촉매 제조방법에 있어서, 상기 (1)단계에서 사용되는 상기 유기용매로는, 탄소수 6~12, 바람직하게는 탄소수 7~10의 지방족 또는 방향족 탄화수소가 사용될 수 있으며, 그 구체적인 예로는 헵탄, 옥탄, 노난, 데칸, 톨루엔, 크실렌 등을 들 수 있다.In the catalyst preparation method according to the present invention, as the organic solvent used in the step (1), an aliphatic or aromatic hydrocarbon having 6 to 12 carbon atoms, preferably 7 to 10 carbon atoms, may be used. Heptane, octane, nonane, decane, toluene, xylene and the like.

본 발명에 따른 촉매 제조방법에 있어서, 상기 (1)단계에서 사용되는 상기 디알콕시마그네슘은 입자상태(평균입경 50∼200㎛)의 마그네슘 금속을 염화마그네슘의 존재 하에서 무수알코올과 반응시켜 얻어질 수 있다. In the catalyst preparation method according to the present invention, the dialkoxy magnesium used in the step (1) may be obtained by reacting magnesium metal in a particulate state (average particle size of 50 to 200 μm) with anhydrous alcohol in the presence of magnesium chloride. have.

본 발명에 따른 촉매 제조방법에 있어서, 상기 (1)단계에서 사용되는 상기 전이금속 할라이드 화합물로는, 주기율표 IV족 전이금속의 할라이드 화합물이 사용 되는 것이 바람직하며, 보다 바람직하게는 Ti(OR)aX4-a의 일반식으로 표현되는 티타늄 할라이드 화합물이 사용된다. 상기 티타늄 할라이드 화합물의 일반식에서, R은 탄소원자 1 내지 10개의 알킬기이고, X는 할로겐 원소이며, a는 일반식의 원자가를 맞추기 위한 것으로서 0 내지 3의 정수이다.In the catalyst production method according to the present invention, as the transition metal halide compound used in the step (1), halide compounds of the Group IV transition metal of the periodic table are preferably used, and more preferably Ti (OR) a. Titanium halide compounds represented by the general formula of X 4-a are used. In the general formula of the titanium halide compound, R is an alkyl group having 1 to 10 carbon atoms, X is a halogen element, and a is an integer of 0 to 3 to match the valence of the general formula.

본 발명에 따른 촉매 제조방법에 있어서, 상기 (1)단계에서 상기 디알콕시마그네슘과 전이금속 할라이드 화합물의 접촉반응은 0~100℃에서, 바람직하게는 5~50℃의 온도에서 이루어진다. 이 때 접촉반응의 온도가 0℃ 미만이면, 반응이 원활하게 일어나기 어렵고, 100℃를 초과하면, 촉매 입자의 형상 및 크기의 조절이 어려워진다. 또한, 상기 (1)단계에서 사용되는 상기 전이금속 할라이드 화합물의 양은, 디알콕시마그네슘 1몰에 대하여 바람직하게는 0.1~10몰, 보다 바람직하게는 0.3~2몰인 것이 제조되는 촉매의 중합활성 및 물성의 측면에서 바람직하다.In the catalyst preparation method according to the present invention, the contact reaction between the dialkoxy magnesium and the transition metal halide compound in the step (1) is carried out at 0 ~ 100 ℃, preferably at a temperature of 5 ~ 50 ℃. At this time, if the temperature of the contact reaction is less than 0 ° C, the reaction is less likely to occur smoothly, and if it exceeds 100 ° C, it is difficult to control the shape and size of the catalyst particles. In addition, the amount of the transition metal halide compound used in step (1) is preferably 0.1 to 10 moles, more preferably 0.3 to 2 moles per 1 mole of dialkoxymagnesium, and the polymerization activity and physical properties of the catalyst prepared. It is preferable in terms of.

본 발명에 따른 촉매 제조방법에 있어서, 상기 (2)단계에서 사용되는 상기 비방향족 모노알콕시모노에스테르 화합물은, 앞서 설명한 본 발명에 따른 촉매에 함유되는 비방향족 모노알콕시모노에스테르 화합물과 같다. 따라서, 예를 들면, CH3OC(O)C(CH(CH3)CH2CH3)2CH2OCH3 , C2H5OC(O)C(CH(CH3)CH2CH3)2CH 2OCH3, CH3OC(O)C(CH(CH3)CH2CH3)2CH2OC2 H5, C2H5OC(O)C(CH(CH3)CH2CH3) 2CH2OC2H5, CH3OC(O)C(CH(CH3)CH3)2CH2OCH3, C 2H5OC(O)C(CH(CH3)CH3)2CH2OCH3 , CH3OC(O)C(CH(CH3)CH3)2CH2OC2H5 , C2H5OC(O)C(CH(CH3)CH3)2CH2OC 2H5 등과 같이, 상기 식 (I)에서 R1, R2, R3 및 R4가 각각 탄소원자 1 내지 4개의 서로 같거나 다른 알킬기인 화합물이 사용되는 것이 바람직하다.In the catalyst preparation method according to the present invention, the non-aromatic monoalkoxy monoester compound used in step (2) is the same as the non-aromatic monoalkoxy monoester compound contained in the catalyst according to the present invention described above. Thus, for example, CH 3 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 , C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 , CH 3 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OC 2 H 5 , C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OC 2 H 5 , CH 3 OC (O) C (CH (CH 3 ) CH 3 ) 2 CH 2 OCH 3 , C 2 H 5 OC (O) C (CH (CH 3 ) CH 3 ) 2 CH 2 OCH 3 , CH 3 OC (O) C (CH (CH 3 ) CH 3 ) 2 CH 2 OC 2 H 5 , C 2 H 5 OC (O) C (CH (CH 3 ) CH 3 ) 2 CH It is preferable to use compounds in which R 1 , R 2 , R 3 and R 4 are the same as or different alkyl groups having 1 to 4 carbon atoms in formula (I), such as 2 OC 2 H 5 and the like.

본 발명에 따른 촉매 제조방법에 있어서, 상기 (2)단계에서의 상기 비방향족 모노알콕시모노에스테르 화합물의 투입은, 상기 (1)단계의 결과물의 온도를 최고온도 80~130℃까지 서서히 승온시키는 동안에 적어도 1회 이루어진다. 상기 비방향족 모노알콕시모노에스테르 화합물의 투입이 완료되면, 상기 승온된 최고온도의 범위 내에서 일정시간동안 반응을 수행한다. 이 온도가 80℃ 미만이면 반응이 충분한 정도로 완결되기 어렵고, 130℃를 초과하면, 원치않는 부반응이 활성화되므로써 제조되는 촉매의 중합활성이 저하되고, 또한 이를 사용하여 제조되는 결과 중합체의 입체규칙성이 나빠질 수 있다. 또한, 상기 비방향족 모노알콕시모노에스테르 화합물의 투입은 적어도 1회, 바람직하게는 2회 이상 이루어지는 것이 촉매 제조의 효율성 측면에서 바람직하다. 또한, 상기 (2)단계에서 사용되는 상기 비방향족 모노알콕시모노에스테르 화합물의 전체 투입량은, 상기 디알콕시마그네슘 1중량부에 대하여 0.1~1.0중량부인 것이 바람직하다. 상기 비방향족 모노알콕시모노에스테르 화합물의 전체 투입량이 이 범위를 벗어나면, 제조되는 촉매의 중합활성이 저하되고, 또한 이를 사용하여 제조되는 결과 중합체의 입체규칙성이 나빠질 수 있다. In the catalyst production method according to the present invention, the addition of the non-aromatic monoalkoxy monoester compound in the step (2), while gradually raising the temperature of the resultant of the step (1) to the maximum temperature of 80 ~ 130 ℃ At least once. When the addition of the non-aromatic monoalkoxy monoester compound is completed, the reaction is performed for a predetermined time within the range of the elevated temperature. If the temperature is less than 80 ° C., the reaction is difficult to complete to a sufficient degree, and if it exceeds 130 ° C., the polymerization activity of the catalyst prepared by activating an unwanted side reaction decreases, and the resulting stereoregularity of the resulting polymer is produced. Can be bad. In addition, the non-aromatic monoalkoxy monoester compound is preferably at least once, preferably at least twice, in view of the efficiency of catalyst production. The total amount of the non-aromatic monoalkoxy monoester compound used in the step (2) is preferably 0.1 to 1.0 parts by weight based on 1 part by weight of the dialkoxy magnesium. When the total amount of the non-aromatic monoalkoxy monoester compound is out of this range, the polymerization activity of the catalyst to be produced may be lowered, and the stereoregularity of the resulting polymer may be worsened.

본 발명에 따른 촉매 제조방법에 있어서, 상기 (3)단계에서는 상기 (2)단계의 결과물을 전이금속 할라이드 화합물과 80~130℃에서 2차로 반응시키므로써, 촉매의 중합활성을 높일 수 있다. 상기 (3)단계에서 바람직하게 사용가능한 전이금속 할라이드 화합물의 종류는, 상기 (1)단계에서 언급한 바람직한 전이금속 할라이드 화합물의 종류와 동일하다. 본 발명에서와 같이, 촉매 제조 시에 전이금속 할라이드 화합물을 저온과 고온 단계로 나누어 각각 투입하면, 촉매의 제조 수율 및 제조되는 촉매의 중합활성을 높일 수 있고, 촉매의 입자형상 조절에 있어서도 바람직하다.In the catalyst production method according to the present invention, in the step (3), by reacting the resultant of the step (2) with the transition metal halide compound at 80 ~ 130 ℃ secondary, it is possible to increase the polymerization activity of the catalyst. The kind of the transition metal halide compound which can be preferably used in step (3) is the same as the kind of the preferred transition metal halide compound mentioned in step (1). As in the present invention, when the transition metal halide compound is added to the low temperature and high temperature stages at the time of preparation of the catalyst, the production yield of the catalyst and the polymerization activity of the catalyst to be produced can be increased, and also preferable for controlling the particle shape of the catalyst. .

본 발명에 따른 촉매 제조방법에 있어서는, 상기 비방향족 모노알콕시모노에스테르 화합물 이외에도, 올레핀 중합용 고체 촉매의 제조에 통상적으로 사용되는 전자공여체 화합물을 내부 전자공여체로서 추가적으로 사용할 수 있으며, 그 중에서도 비방향족 화합물을 추가적으로 사용하는 것이 바람직하다.In the method for preparing a catalyst according to the present invention, in addition to the non-aromatic monoalkoxy monoester compound, an electron donor compound commonly used in the preparation of a solid catalyst for olefin polymerization can be additionally used as an internal electron donor, and among them, a non-aromatic compound It is preferable to use additionally.

본 발명에 따른 촉매 제조방법에 있어서, 상기 각 단계의 반응들은, 질소 기체 분위기에서, 수분 등을 충분히 제거시킨, 교반기가 장착된 반응기 중에서 행하는 것이 바람직하다.In the catalyst production method according to the present invention, the reactions of the above steps are preferably carried out in a reactor equipped with a stirrer, in which a nitrogen gas atmosphere is sufficiently removed from the water.

상기와 같이 하여 제조된 촉매는 혼합 슬러리 형태로서, 이를 유기용매로 세척하고, 건조하므로써 최종적으로 올레핀 중합용 고체 촉매를 얻을 수 있다.The catalyst prepared as described above is in the form of a mixed slurry, which is finally washed with an organic solvent and dried to obtain a solid catalyst for olefin polymerization.

본 발명에 따라 제공되는 고체 촉매에 포함되는 각 성분의 함유량은, 특별히 규정되지는 않으나, 마그네슘 15~25중량%, 티타늄 1~5중량%, 내부전자공여체 5~15중량%, 할로겐원자 50~70중량%인 것이 바람직하다.The content of each component included in the solid catalyst provided according to the present invention is not specifically defined, but is 15 to 25% by weight of magnesium, 1 to 5% by weight of titanium, 5 to 15% by weight of internal electron donor, and 50 to halogen atoms. It is preferable that it is 70 weight%.

본 발명에 따라 제공되는 고체 촉매성분은, 중합 반응의 촉매로서 사용되기 전에 에틸렌 또는 α-올레핀으로 전중합하여 사용될 수 있다. 전중합 반응은 헥산과 같은 탄화수소 용매, 상기 고체 촉매성분 및 트리에틸알루미늄과 같은 유기알루 미늄 화합물의 존재 하에서, 충분히 낮은 온도와 에틸렌 또는 α-올레핀 압력 조건에서 수행될 수 있다. 상기 전중합은 촉매 입자를 전중합체로 둘러싸서 촉매 형상을 유지시켜 주므로써, 본중합 후의 최종 중합체의 형상을 좋게 하는데에 도움을 준다. 전중합 후의 전중합체/촉매의 바람직한 중량비는 약 0.1:1 내지 20:1이다. The solid catalyst component provided according to the present invention may be used by prepolymerization with ethylene or α-olefin before being used as a catalyst for the polymerization reaction. The prepolymerization reaction can be carried out at sufficiently low temperatures and ethylene or α-olefin pressure conditions in the presence of a hydrocarbon solvent such as hexane, the solid catalyst component and an organoaluminum compound such as triethylaluminum. The prepolymerization helps to improve the shape of the final polymer after the main polymerization by maintaining the catalyst shape by surrounding the catalyst particles with the prepolymer. The preferred weight ratio of prepolymer / catalyst after prepolymerization is about 0.1: 1 to 20: 1.

이하 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나, 이들 실시예들은 예시적인 목적일 뿐, 본 발명이 이들 실시예에 의해 한정되는 것은 아니다.  Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these examples are for illustrative purposes only, and the present invention is not limited by these examples.

실시예 1Example 1

[고체 촉매의 제조] [Production of Solid Catalyst]

질소로 충분히 치환된 1리터 크기의 교반기가 설치된 유리 반응기에, 톨루엔 150ml와 디에톡시마그네슘(평균입경 60㎛인 구형이고, 입도분포지수가 0.86이며, 겉보기밀도가 0.32g/cc인 것) 25g을 투입하고, 온도를 10℃로 유지하였다. 사염화티타늄 25ml를 톨루엔 50ml에 희석하여 1시간에 걸쳐 투입한 후, 반응기의 온도를 30℃까지 분당 0.5℃의 속도로 승온시켰다. 반응 혼합물을 30℃에서 1시간 동안 유지한 다음, C2H5OC(O)C(CH(CH3)CH2CH3)2CH 2OCH3 2.5ml를 주입하고, 다시 분당 0.5℃의 속도로 110℃까지 승온시켰다. 승온과정 중에 C2H5OC(O)C(CH(CH3)CH2 CH3)2CH2OCH3 2.5ml씩을 40℃와 60℃에서 각각 추가적으로 주입하였다. In a glass reactor equipped with a 1 liter stirrer sufficiently substituted with nitrogen, 150 ml of toluene and 25 g of diethoxy magnesium (spherical with an average particle diameter of 60 µm, having a particle size distribution index of 0.86 and an apparent density of 0.32 g / cc) were used. The temperature was kept at 10 ° C. After diluting 25 ml of titanium tetrachloride in 50 ml of toluene and injecting it over 1 hour, the temperature of the reactor was heated up to 30 degreeC at a speed | rate of 0.5 degreeC per minute. The reaction mixture was held at 30 ° C. for 1 hour, then 2.5 ml of C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 was injected and again at a rate of 0.5 ° C. per minute. The temperature was raised to 110 ° C. During the temperature increase, 2.5 ml of C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 was additionally injected at 40 ° C. and 60 ° C., respectively.

반응 혼합물을 110℃에서 1시간 동안 유지시킨 다음, 온도를 90℃로 내린 후 교반을 멈추고, 상등액을 제거하고, 톨루엔 200ml를 사용하여 1회 세척하였다. 여 기에 톨루엔 150ml와 사염화티타늄 50ml를 추가 투입하고, 온도를 110℃까지 올려 1시간 동안 유지하였다. 반응 완료후, 결과 슬러리 혼합물을 매회당 톨루엔 200ml로 2회 세척하고, 40℃에서 매회당 노말헥산 200ml로 5회 세척하여, 연노랑색의 고체 촉매성분을 얻었다. 흐르는 질소에서 18시간동안 건조시켜 얻어진 고체 촉매성분 중의 티타늄 함량은 2.87 중량%이었다.The reaction mixture was kept at 110 ° C. for 1 hour, then the temperature was lowered to 90 ° C., then stirring was stopped, the supernatant was removed and washed once with 200 ml of toluene. 150 ml of toluene and 50 ml of titanium tetrachloride were further added thereto, and the temperature was raised to 110 ° C. and maintained for 1 hour. After the reaction was completed, the resultant slurry mixture was washed twice with 200 ml of toluene each time, and washed five times with 200 ml of normal hexane each time at 40 ° C. to obtain a pale yellow solid catalyst component. The titanium content in the solid catalyst component obtained by drying for 18 hours in flowing nitrogen was 2.87 wt%.

[프로필렌 중합] [Propylene polymerization]

2리터 크기의 고압용 스테인레스 반응기 내에, 상기에서 제조된 촉매 5mg이 채워진 작은 유리관을 장착한 후, 반응기를 질소로 충분히 치환시켰다. 트리에틸알루미늄 3mmol 및 디시클로펜틸디메톡시실란 0.30mmol을 반응기에 투입하였다. 이어서 수소 1000ml와 액체상태의 프로필렌 1.2L를 차례로 투입한 후, 반응기 온도를 70℃까지 올리고 교반기를 작동시켰다. 교반기의 작동에 의해 내부에 장착되었던 유리관이 깨어지므로써 중합이 시작되었다. 중합 개시로부터 1시간 경과 후에, 반응기의 온도를 상온까지 떨어뜨리고, 배출밸브를 열어 반응기 내부의 프로필렌을 완전히 배출시키므로써 중합반응을 종결하였다.After mounting a small glass tube filled with 5 mg of the catalyst prepared above in a 2 liter high pressure stainless reactor, the reactor was sufficiently replaced with nitrogen. 3 mmol of triethylaluminum and 0.30 mmol of dicyclopentyldimethoxysilane were charged to the reactor. Subsequently, 1000 ml of hydrogen and 1.2 L of propylene in the liquid state were sequentially added, and the reactor temperature was raised to 70 ° C. and the stirrer was operated. The polymerization was started by breaking the glass tube mounted therein by the operation of the stirrer. After 1 hour from the start of the polymerization, the temperature of the reactor was lowered to room temperature, and the polymerization reaction was terminated by opening the discharge valve to completely discharge the propylene in the reactor.

얻어진 중합체에 대하여, 다음과 같은 방법으로 촉매활성, 입체규칙성 및 용융흐름지수를 결정하였고, 그 결과를 표 1에 나타내었다.For the obtained polymer, catalytic activity, stereoregularity and melt flow index were determined in the following manner, and the results are shown in Table 1.

① 촉매활성(kg-PP/g-cat) : 중합체의 생성량(kg)/촉매의 양(g)① Catalytic Activity (kg-PP / g-cat): Polymer Production (kg) / Catalyst (g)

② 입체규칙성(X.I.) : 한시간 동안 끓는 크실렌 중에서 방치한 다음, 결정화되어 석출된 불용성분의 중량%② Stereoregularity (X.I.): weight% of insoluble component precipitated after crystallization in boiling xylene for one hour

③ 용융흐름지수(MFR)(g/10분) : ASTM1238에 의해, 230℃, 2.16kg 하중에서 측정③ Melt Flow Index (MFR) (g / 10min): measured at 230 ℃, 2.16kg load by ASTM1238

실시예 2Example 2

실시예 1과 마찬가지 방법으로 고체 촉매를 제조하였으며, 상기 [프로필렌 중합]에서 디시클로펜틸디메톡시실란 0.30mmol 대신에 시클로헥실메틸디메톡시실란 0.30mmol을 사용한 것을 제외하고는, 실시예 1과 마찬가지 방법으로 프로필렌 중합을 실시하였다. A solid catalyst was prepared in the same manner as in Example 1, except that 0.30 mmol of cyclohexylmethyldimethoxysilane was used instead of 0.30 mmol of dicyclopentyldimethoxysilane in the above [propylene polymerization]. Propylene polymerization was carried out.

얻어진 중합체에 대하여, 실시예 1과 같은 방법으로 촉매활성, 입체규칙성 및 용융흐름지수를 결정하였고, 그 결과를 표 1에 나타내었다.For the obtained polymer, catalytic activity, stereoregularity and melt flow index were determined in the same manner as in Example 1, and the results are shown in Table 1.

실시예 3Example 3

상기 [고체 촉매의 제조]에서, C2H5OC(O)C(CH(CH3)CH2CH3 )2CH2OCH3 대신에 CH3OC(O)C(CH(CH3)CH2CH3)2CH2OCH3 를 사용한 것을 제외하고는, 실시예 1과 마찬가지 방법으로 고체 촉매를 제조하였으며, 이를 사용하여 실시예 1과 마찬가지 방법으로 프로필렌 중합을 실시하였다.In [Preparation of solid catalyst], CH 3 OC (O) C (CH (CH 3 ) CH instead of C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3. A solid catalyst was prepared in the same manner as in Example 1, except that 2 CH 3 ) 2 CH 2 OCH 3 was used, and propylene polymerization was performed in the same manner as in Example 1.

얻어진 중합체에 대하여, 실시예 1과 같은 방법으로 촉매활성, 입체규칙성 및 용융흐름지수를 결정하였고, 그 결과를 표 1에 나타내었다.For the obtained polymer, catalytic activity, stereoregularity and melt flow index were determined in the same manner as in Example 1, and the results are shown in Table 1.

실시예 4Example 4

상기 [고체 촉매의 제조]에서, C2H5OC(O)C(CH(CH3)CH2CH3 )2CH2OCH3 대신에 C2H5OC(O)C(CH(CH3)CH2CH3)2CH2 OC2H5를 사용한 것을 제외하고는, 실시예 1과 마찬가지 방법으로 고체 촉매를 제조하였으며, 이를 사용하여 실시예 1과 마찬가지 방법으로 프로필렌 중합을 실시하였다.In [Preparation of solid catalyst], C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 instead of C 2 H 5 OC (O) C (CH (CH 3 A solid catalyst was prepared in the same manner as in Example 1, except that) CH 2 CH 3 ) 2 CH 2 OC 2 H 5 was used, and propylene polymerization was performed in the same manner as in Example 1.

얻어진 중합체에 대하여, 실시예 1과 같은 방법으로 촉매활성, 입체규칙성 및 용융흐름지수를 결정하였고, 그 결과를 표 1에 나타내었다.For the obtained polymer, catalytic activity, stereoregularity and melt flow index were determined in the same manner as in Example 1, and the results are shown in Table 1.

실시예 5Example 5

상기 [고체 촉매의 제조]에서, C2H5OC(O)C(CH(CH3)CH2CH3 )2CH2OCH3 대신에 CH3OC(O)C(CH(CH3)CH2CH3)2CH2OC2 H5를 사용한 것을 제외하고는, 실시예 1과 마찬가지 방법으로 고체 촉매를 제조하였으며, 이를 사용하여 실시예 1과 마찬가지 방법으로 프로필렌 중합을 실시하였다.In [Preparation of solid catalyst], CH 3 OC (O) C (CH (CH 3 ) CH instead of C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3. A solid catalyst was prepared in the same manner as in Example 1, except that 2 CH 3 ) 2 CH 2 OC 2 H 5 was used, and propylene polymerization was performed in the same manner as in Example 1.

얻어진 중합체에 대하여, 실시예 1과 같은 방법으로 촉매활성, 입체규칙성 및 용융흐름지수를 결정하였고, 그 결과를 표 1에 나타내었다.For the obtained polymer, catalytic activity, stereoregularity and melt flow index were determined in the same manner as in Example 1, and the results are shown in Table 1.

실시예 6Example 6

상기 [고체 촉매의 제조]에서, C2H5OC(O)C(CH(CH3)CH2CH3 )2CH2OCH3 대신에 C2H5OC(O)C(CH(CH3)CH3)2CH2OCH3 를 사용한 것을 제외하고는, 실시예 1과 마찬가지 방법으로 고체 촉매를 제조하였으며, 이를 사용하여 실시예 1과 마찬가지 방법으로 프로필렌 중합을 실시하였다.In [Preparation of solid catalyst], C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 instead of C 2 H 5 OC (O) C (CH (CH 3 A solid catalyst was prepared in the same manner as in Example 1, except that) CH 3 ) 2 CH 2 OCH 3 was used, and propylene polymerization was performed in the same manner as in Example 1.

얻어진 중합체에 대하여, 실시예 1과 같은 방법으로 촉매활성, 입체규칙성 및 용융흐름지수를 결정하였고, 그 결과를 표 1에 나타내었다.For the obtained polymer, catalytic activity, stereoregularity and melt flow index were determined in the same manner as in Example 1, and the results are shown in Table 1.

실시예 7Example 7

상기 [고체 촉매의 제조]에서, C2H5OC(O)C(CH(CH3)CH2CH3 )2CH2OCH3를 2.5ml 대신 1.5ml씩 30℃, 40℃ 및 60℃에 각각 주입한 것을 제외하고는, 실시예 1과 마찬가지 방법으로 고체 촉매를 제조하였으며, 이를 사용하여 실시예 1과 마찬가지 방법으로 프로필렌 중합을 실시하였다.In [Preparation of Solid Catalyst], C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 was added at 30 ° C., 40 ° C. and 60 ° C. at 1.5 ° C. instead of 2.5 mL. Except that each was injected, a solid catalyst was prepared in the same manner as in Example 1, and propylene polymerization was carried out in the same manner as in Example 1 using the same.

얻어진 중합체에 대하여, 실시예 1과 같은 방법으로 촉매활성, 입체규칙성 및 용융흐름지수를 결정하였고, 그 결과를 표 1에 나타내었다.For the obtained polymer, catalytic activity, stereoregularity and melt flow index were determined in the same manner as in Example 1, and the results are shown in Table 1.

실시예 8Example 8

상기 [고체 촉매의 제조]에서, C2H5OC(O)C(CH(CH3)CH2CH3 )2CH2OCH3를 2.5ml 대신 3.5ml씩 30℃, 40℃ 및 60℃에 각각 주입한 것을 제외하고는, 실시예 1과 마찬가지 방법으로 고체 촉매를 제조하였으며, 이를 사용하여 실시예 1과 마찬가지 방법으로 프로필렌 중합을 실시하였다.In [Preparation of Solid Catalyst], C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 was added at 30 ° C., 40 ° C. and 60 ° C. in 3.5 ml increments instead of 2.5 ml. Except that each was injected, a solid catalyst was prepared in the same manner as in Example 1, and propylene polymerization was carried out in the same manner as in Example 1 using the same.

얻어진 중합체에 대하여, 실시예 1과 같은 방법으로 촉매활성, 입체규칙성 및 용융흐름지수를 결정하였고, 그 결과를 표 1에 나타내었다.For the obtained polymer, catalytic activity, stereoregularity and melt flow index were determined in the same manner as in Example 1, and the results are shown in Table 1.

비교예 1Comparative Example 1

상기 [고체 촉매의 제조]에서, C2H5OC(O)C(CH(CH3)CH2CH3 )2CH2OCH3 대신에 방향족 화합물인 디이소부틸프탈레이트를 사용한 것을 제외하고는, 실시예 1과 마찬가지 방법으로 고체 촉매를 제조하였으며, 이를 사용하여 실시예 1과 마찬가지 방법으로 프로필렌 중합을 실시하였다.In [Production of solid catalyst], except that diisobutyl phthalate, which is an aromatic compound, was used instead of C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 , A solid catalyst was prepared in the same manner as in Example 1, and propylene polymerization was performed in the same manner as in Example 1.

얻어진 중합체에 대하여, 실시예 1과 같은 방법으로 촉매활성, 입체규칙성 및 용융흐름지수를 결정하였고, 그 결과를 표 1에 나타내었다.For the obtained polymer, catalytic activity, stereoregularity and melt flow index were determined in the same manner as in Example 1, and the results are shown in Table 1.

[표 1]TABLE 1

촉매활성 (kg-PP/g-cat)Catalytic activity (kg-PP / g-cat) 입체규칙성(X.I.) (중량%)Stereoregularity (X.I.) (% by weight) 용융흐름지수(MFR) (g/10분)Melt Flow Index (MFR) (g / 10min) 실시예 1Example 1 3232 96.096.0 13.513.5 실시예 2Example 2 2828 93.493.4 33.333.3 실시예 3Example 3 2929 95.895.8 14.814.8 실시예 4Example 4 3030 96.596.5 11.911.9 실시예 5Example 5 3030 96.096.0 14.214.2 실시예 5Example 5 2828 96.496.4 12.312.3 실시예 7Example 7 3535 95.795.7 15.315.3 실시예 8Example 8 3030 96.996.9 10.910.9 비교예 1Comparative Example 1 2727 98.298.2 4.24.2

상기 표 1에서 알 수 있는 바와 같이, 본 발명에 따른 올레핀 중합용 고체 촉매 성분을 프로필렌의 중합에 사용하면, 환경 호르몬의 함유에 대한 염려가 전혀 없이, 입체규칙성 및 용융흐름지수가 우수한 중합체를 고수율로 얻을 수 있다.As can be seen from Table 1, when the solid catalyst component for olefin polymerization according to the present invention is used for the polymerization of propylene, polymers having excellent stereoregularity and melt flow index without any concern about containing environmental hormones are obtained. It can be obtained in high yield.

이상 살핀 바와 같이, 본 발명에 따르면, 환경 호르몬인 방향족 에스테르 화합물을 전혀 포함하지 않는 올레핀 중합용 고체 촉매 성분을 얻을 수 있으며, 이를 사용하여 제조된 중합체는 입체규칙성 및 용융흐름지수가 우수할 뿐만 아니라, 환경 호르몬을 전혀 함유하고 있지 않으므로, 특히 식품용 포장재료 등의 용도에 적합하게 활용가능하다.As described above, according to the present invention, it is possible to obtain a solid catalyst component for olefin polymerization that does not contain any aromatic ester compound which is an environmental hormone, and the polymer prepared using the polymer has excellent stereoregularity and melt flow index. In addition, since it does not contain any environmental hormones, it can be suitably used for applications such as food packaging materials.

Claims (6)

다음의 식(I)로 표시되는 비방향족 모노알콕시모노에스테르 화합물을 내부 전자공여체로서 함유하는 올레핀 중합용 고체 티타늄 촉매:Solid titanium catalyst for olefin polymerization containing the non-aromatic monoalkoxy monoester compound represented by following formula (I) as an internal electron donor:
Figure 112004046939032-pat00003
Figure 112004046939032-pat00003
상기에서, R1, R2, R3 및 R4는 각각 탄소원자 1 내지 10개의 알킬기이며, 서로 같거나 다를 수 있다.In the above, R 1 , R 2 , R 3 and R 4 are each an alkyl group of 1 to 10 carbon atoms, may be the same or different from each other.
제1항에 있어서, 상기 비방향족 모노알콕시모노에스테르 화합물은, CH3OC(O)C(CH(CH3)CH2CH3)2CH2OCH3 , C2H5OC(O)C(CH(CH3)CH2CH3)2CH 2OCH3, CH3OC(O)C(CH(CH3)CH2CH3)2CH2OC2 H5, C2H5OC(O)C(CH(CH3)CH2CH3) 2CH2OC2H5, CH3OC(O)C(CH(CH3)CH3)2CH2OCH3, C 2H5OC(O)C(CH(CH3)CH3)2CH2OCH3 , CH3OC(O)C(CH(CH3)CH3)2CH2OC2H5 및 C2H5OC(O)C(CH(CH3)CH3)2CH2OC 2H5로 이루어진 군으로부터 선택되는 것을 특징으로 하는 올레핀 중합용 고체 티타늄 촉매.The method of claim 1, wherein the non-aromatic monoalkoxy monoester compound, CH 3 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 , C 2 H 5 OC (O) C ( CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 , CH 3 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OC 2 H 5 , C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OC 2 H 5 , CH 3 OC (O) C (CH (CH 3 ) CH 3 ) 2 CH 2 OCH 3 , C 2 H 5 OC (O) C (CH (CH 3 ) CH 3 ) 2 CH 2 OCH 3 , CH 3 OC (O) C (CH (CH 3 ) CH 3 ) 2 CH 2 OC 2 H 5 and C 2 H 5 OC (O) C ( CH (CH 3 ) CH 3 ) 2 CH 2 OC 2 H 5 Solid titanium catalyst for olefin polymerization, characterized in that selected from the group consisting of. (1) 유기용매의 존재 하에서 디알콕시마그네슘을 전이금속 할라이드 화합물과 0~100℃에서 1차로 반응시키는 단계; (1) firstly reacting dialkoxy magnesium with a transition metal halide compound in the presence of an organic solvent at 0 to 100 ° C .; (2) 상기 (1)단계의 결과물의 온도를 최고온도 80~130℃까지 서서히 승온시키면서, 여기에 다음의 식(I)로 표시되는 비방향족 모노알콕시모노에스테르 화합물을 적어도 1회 투입하여 반응시키는 단계:(2) While the temperature of the resultant of step (1) is gradually raised to the maximum temperature of 80 to 130 ° C, the non-aromatic monoalkoxy monoester compound represented by the following formula (I) is added thereto at least once for reaction. step:
Figure 112004046939032-pat00004
Figure 112004046939032-pat00004
상기에서, R1, R2, R3 및 R4는 각각 탄소원자 1 내지 10개의 알킬기이며, 서로 같거나 다를 수 있다; 및 In the above, R 1 , R 2 , R 3 and R 4 are each an alkyl group of 1 to 10 carbon atoms, and may be the same or different from each other; And (3) 상기 (2)단계의 결과물을 전이금속 할라이드 화합물과 80~130℃에서 2차로 반응시키는 단계를 포함하여 이루어지는 올레핀 중합용 고체 티타늄 촉매의 제조방법.(3) A method of producing a solid titanium catalyst for olefin polymerization comprising the step of reacting the resultant of step (2) with a transition metal halide compound at 80 to 130 ° C. in a second manner.
제3항에 있어서, 상기 전이금속 할라이드 화합물은 Ti(OR)aX4-a의 일반식으로 표시되는 티타늄 할라이드 화합물이고, 상기에서, R은 탄소원자 1 내지 10개의 알킬기이고, X는 할로겐 원소이며, a는 0 내지 3의 정수인 것을 특징으로 하는 올레핀 중합용 고체 티타늄 촉매의 제조방법.The method of claim 3, wherein the transition metal halide compound is a titanium halide compound represented by the general formula of Ti (OR) a X 4-a , wherein R is an alkyl group of 1 to 10 carbon atoms, X is a halogen element And a is an integer from 0 to 3, wherein the solid titanium catalyst for olefin polymerization. 제3항에 있어서, 상기 비방향족 모노알콕시모노에스테르 화합물은, CH3OC(O)C(CH(CH3)CH2CH3)2CH2OCH3 , C2H5OC(O)C(CH(CH3)CH2CH3)2CH 2OCH3, CH3OC(O)C(CH(CH3)CH2CH3)2CH2OC2 H5, C2H5OC(O)C(CH(CH3)CH2CH3) 2CH2OC2H5, CH3OC(O)C(CH(CH3)CH3)2CH2OCH3, C 2H5OC(O)C(CH(CH3)CH3)2CH2OCH3 , CH3OC(O)C(CH(CH3)CH3)2CH2OC2H5 및 C2H5OC(O)C(CH(CH3)CH3)2CH2OC 2H5로 이루어진 군으로부터 선택되는 것을 특징으로 하는 올레핀 중합용 고체 티타늄 촉매의 제조방법.The non-aromatic monoalkoxy monoester compound according to claim 3, wherein the non-aromatic monoalkoxy monoester compound is selected from CH 3 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 , C 2 H 5 OC (O) C ( CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OCH 3 , CH 3 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OC 2 H 5 , C 2 H 5 OC (O) C (CH (CH 3 ) CH 2 CH 3 ) 2 CH 2 OC 2 H 5 , CH 3 OC (O) C (CH (CH 3 ) CH 3 ) 2 CH 2 OCH 3 , C 2 H 5 OC (O) C (CH (CH 3 ) CH 3 ) 2 CH 2 OCH 3 , CH 3 OC (O) C (CH (CH 3 ) CH 3 ) 2 CH 2 OC 2 H 5 and C 2 H 5 OC (O) C ( CH (CH 3 ) CH 3 ) 2 CH 2 OC 2 H 5 A method for producing a solid titanium catalyst for olefin polymerization, characterized in that selected from the group consisting of. 제3항에 있어서, 상기 비방향족 모노알콕시모노에스테르 화합물의 전체 투입량은 상기 디알콕시마그네슘 1중량부에 대하여 0.1~1.0중량부인 것을 특징으로 하는 올레핀 중합용 고체 티타늄 촉매의 제조방법.The method for producing a solid titanium catalyst for olefin polymerization according to claim 3, wherein the total amount of the non-aromatic monoalkoxy monoester compound is 0.1 to 1.0 part by weight based on 1 part by weight of the dialkoxy magnesium.
KR1020040082650A 2004-10-15 2004-10-15 A solid catalyst for olefin polymerization and a method for preparing the same KR100572616B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040082650A KR100572616B1 (en) 2004-10-15 2004-10-15 A solid catalyst for olefin polymerization and a method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040082650A KR100572616B1 (en) 2004-10-15 2004-10-15 A solid catalyst for olefin polymerization and a method for preparing the same

Publications (1)

Publication Number Publication Date
KR100572616B1 true KR100572616B1 (en) 2006-04-24

Family

ID=37180738

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040082650A KR100572616B1 (en) 2004-10-15 2004-10-15 A solid catalyst for olefin polymerization and a method for preparing the same

Country Status (1)

Country Link
KR (1) KR100572616B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087231A2 (en) 2010-01-13 2011-07-21 삼성토탈 주식회사 Preparation method of solid catalyst for propylene polymerization, and catalyst prepared thereby
WO2012070753A2 (en) 2010-11-24 2012-05-31 삼성토탈 주식회사 Solid catalyst for the polymerization of propylene, and method for preparing same
US8394734B2 (en) 2011-04-27 2013-03-12 Samsung Total Petrochemicals Co., Ltd. Solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
KR101795317B1 (en) 2016-12-01 2017-11-07 한화토탈 주식회사 A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101836008B1 (en) * 2016-12-05 2018-03-07 한화토탈 주식회사 Process of manufacture of catalyst and propylene polymer that use this or copolymer for propylene polymerization
KR101988156B1 (en) * 2018-01-22 2019-06-11 한화토탈 주식회사 Polypropylene Resin for Insulating Power Cables
EP3670546A1 (en) 2018-12-20 2020-06-24 Hanwha Total Petrochemical Co., Ltd. Solid catalyst for propylene polymerization and method of producing block copolymer using the same
EP3812403A1 (en) 2019-10-21 2021-04-28 Hanwha Total Petrochemical Co., Ltd. Preparation method of solid catalyst for propylene polymerization
EP4361186A1 (en) 2022-10-24 2024-05-01 Hanwha TotalEnergies Petrochemical Co., Ltd. Solid catalyst for producing polypropylene and method for preparation of propylene-derived polymer

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087231A2 (en) 2010-01-13 2011-07-21 삼성토탈 주식회사 Preparation method of solid catalyst for propylene polymerization, and catalyst prepared thereby
US9045572B2 (en) 2010-01-13 2015-06-02 Samsung Total Petrochemicals Co., Ltd. Preparation method of solid catalyst for propylene polymerization and catalyst prepared thereby
WO2012070753A2 (en) 2010-11-24 2012-05-31 삼성토탈 주식회사 Solid catalyst for the polymerization of propylene, and method for preparing same
EP2644628A2 (en) * 2010-11-24 2013-10-02 Samsung Total Petrochemicals Co. Ltd. Solid catalyst for the polymerization of propylene, and method for preparing same
EP2644628A4 (en) * 2010-11-24 2014-07-23 Samsung Total Petrochemicals Solid catalyst for the polymerization of propylene, and method for preparing same
US8394734B2 (en) 2011-04-27 2013-03-12 Samsung Total Petrochemicals Co., Ltd. Solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
KR101795317B1 (en) 2016-12-01 2017-11-07 한화토탈 주식회사 A solid catalyst for propylene polymerization and a method for preparation of polypropylene
EP3330299A1 (en) 2016-12-05 2018-06-06 Hanwha Total Petrochemical Co., Ltd. Process of manufacture of catalyst and propylene polymer that use this or copolymer for propylene polymerization
KR101836008B1 (en) * 2016-12-05 2018-03-07 한화토탈 주식회사 Process of manufacture of catalyst and propylene polymer that use this or copolymer for propylene polymerization
EP3683243A1 (en) 2016-12-05 2020-07-22 Hanwha Total Petrochemical Co., Ltd. Process of manufacture of catalyst and propylene polymer that use this or copolymer for propylene polymerization
US10808048B2 (en) 2016-12-05 2020-10-20 Hanwha Total Petrochemical Co., Ltd. Process of manufacture of catalyst and propylene polymer that use this or copolymer for propylene polymerization
KR101988156B1 (en) * 2018-01-22 2019-06-11 한화토탈 주식회사 Polypropylene Resin for Insulating Power Cables
WO2019143008A1 (en) * 2018-01-22 2019-07-25 한화토탈 주식회사 Polypropylene resin for electric wire insulation
US11866540B2 (en) 2018-01-22 2024-01-09 Hanwha Totalenergies Petrochemical Co., Ltd. Polypropylene resin for insulating electric cables
EP3670546A1 (en) 2018-12-20 2020-06-24 Hanwha Total Petrochemical Co., Ltd. Solid catalyst for propylene polymerization and method of producing block copolymer using the same
KR20200077232A (en) * 2018-12-20 2020-06-30 한화토탈 주식회사 A solid catalyst for producing polypropylene and a method for preparation of block copolymer
KR102178630B1 (en) 2018-12-20 2020-11-13 한화토탈 주식회사 A solid catalyst for producing polypropylene and a method for preparation of block copolymer
EP3812403A1 (en) 2019-10-21 2021-04-28 Hanwha Total Petrochemical Co., Ltd. Preparation method of solid catalyst for propylene polymerization
EP4361186A1 (en) 2022-10-24 2024-05-01 Hanwha TotalEnergies Petrochemical Co., Ltd. Solid catalyst for producing polypropylene and method for preparation of propylene-derived polymer

Similar Documents

Publication Publication Date Title
EP0586389B1 (en) A large-pore polyolefin, a method for its production and a procatalyst containing a transesterification product of a lower alcohol and a phthalic acid ester
FI88048B (en) POLYOLEFIN GROUND SHEET, DESS FRAMSTAELLNINGSMETOD OCH EN I METHOD ANVAEND CATALYSATOR
FI88047B (en) PAO TVENNE ELECTRIC CONNECTOR BASERAD CATALYST FOR POLYMERIZATION AV OLEFINER
KR101114073B1 (en) A method for preparation of a solid catalyst for polymerization of propylene
KR101207628B1 (en) A solid catalyst for olefin polymerization and a method for preparing the same
JP2014512451A (en) Improved emulsification process for large spherical polypropylene catalysts
KR20110080616A (en) A method for the preparation of a solid catalyst for olefin polymerization
EP2036928B1 (en) Magnesium halide adduct, olefins polymerization catalyst component and catalyst made therefrom
KR100572616B1 (en) A solid catalyst for olefin polymerization and a method for preparing the same
US20100298509A1 (en) Method of producing dialkoxymagnesium support for catalyst for olefin polymerization, method of producing catalyst for olefin polymerization using the same and method of polymerizing olefin using the same
US5710229A (en) Large-pole polyolefin, a method for its production and a procatalyst containing a transesterification product of a lower alcohol and a phthalic acid ester
EP2520593B1 (en) Preparation method of a solid catalyst for polypropylene polymerization, and the solid catalyst obtained therefrom
EP2520591A2 (en) Catalyst for polyolefin polymerisation and a production method for the same
KR101795317B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101395471B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR20110075716A (en) Preparing method of catalyst for polyolefin polymerization, catalyst prepared thereby, and preparing method of polyolefin using the catalyst
KR20120006719A (en) Method of preparation of spherical support and solid catalyst for olefin polymerization, and propylene polymers obtained using the support
JP2002509575A (en) Olefin (co) polymer composition
KR100612107B1 (en) Catalyst for propylene polymerization
EP2578604A1 (en) Production method for a spherical carrier for an olefin polymerization catalyst, and a solid catalyst using the same and propylene polymers
KR102467598B1 (en) Catalyst COMPOSITION for Polymerization of oleFin, METHOD OF PRODUCING THE SAME, AND METHOD OF PRODUCING POLYOLEFIN USING THE SAME METHOD
KR101965982B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101255913B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
KR101454516B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR101207672B1 (en) A method for preparing a solid catalyst for propylene polymerization

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090326

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee