KR100870818B1 - Olefin polymerization or copolymerization method - Google Patents

Olefin polymerization or copolymerization method Download PDF

Info

Publication number
KR100870818B1
KR100870818B1 KR1020070030328A KR20070030328A KR100870818B1 KR 100870818 B1 KR100870818 B1 KR 100870818B1 KR 1020070030328 A KR1020070030328 A KR 1020070030328A KR 20070030328 A KR20070030328 A KR 20070030328A KR 100870818 B1 KR100870818 B1 KR 100870818B1
Authority
KR
South Korea
Prior art keywords
compound
catalyst
titanium
halide compound
olefin polymerization
Prior art date
Application number
KR1020070030328A
Other languages
Korean (ko)
Other versions
KR20080088018A (en
Inventor
양춘병
박준려
정회철
Original Assignee
삼성토탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성토탈 주식회사 filed Critical 삼성토탈 주식회사
Priority to KR1020070030328A priority Critical patent/KR100870818B1/en
Publication of KR20080088018A publication Critical patent/KR20080088018A/en
Application granted granted Critical
Publication of KR100870818B1 publication Critical patent/KR100870818B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/656Pretreating with metals or metal-containing compounds with silicon or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 올레핀 중합 또는 공중합 방법에 관한 것으로, (a) 다음의 단계를 포함하여 이루어지는 제조방법에 의해 제조된 고체 착물 티타늄 촉매: (1) 마그네슘 할라이드 화합물을 환상에테르와 1종 이상의 알코올 화합물의 혼합용매인 함산소용매에 용해하여 마그네슘 화합물 용액을 얻는 단계, (2) 상기 마그네슘 화합물 용액을 티타늄 할라이드 화합물과 -10~30℃에서 1차로 반응시킨 후, 온도를 올리거나 숙성시켜 입자를 얻은 후, 2차로 티타늄 할라이드 화합물과 반응시켜 담체를 제조하는 단계, (3) 상기 담체를 티타늄 할라이드 화합물 및 탄소수 9~13의 알킬기를 갖는 프탈릭에시드 디알킬에스테르 전자 공여체와 반응시켜 티타늄 담지 촉매를 제조하는 단계, (4) 상기 제조된 촉매를 40~200℃의 온도에서 탄화수소 용매로 세척하는 단계; (b) 주기율표 제Ⅱ족 또는 제Ⅲ족의 유기금속 화합물; 및 (c) (C6H11)2Si(OR)2(여기에서 R은 탄소수 1~5의 알킬기를 나타낸다)의 일반식을 갖는 유기실리콘화합물인 외부전자공여체의 존재하에서 수행되는 것을 특징으로 한다. 본 발명의 올레핀 중합 또는 공중합 방법에 의하여 제조되는 중합체는, 촉매활성과 수소반응성이 우수하고, 높은 입체규칙성을 가지는 촉매를 사용하므로써, 넓은 분자량분포를 가지므로 중합공정의 생산성을 높이는 효과가 있다.The present invention relates to an olefin polymerization or copolymerization method, comprising: (a) a solid complex titanium catalyst prepared by the production process comprising the following steps: (1) mixing a magnesium halide compound with a cyclic ether and at least one alcohol compound Dissolving in an oxygen-containing solvent as a solvent to obtain a magnesium compound solution, (2) first reacting the magnesium compound solution with a titanium halide compound at -10 to 30 ° C, and then raising or aging to obtain particles. Reacting with a titanium halide compound to prepare a carrier; (3) reacting the carrier with a phthalic acid dialkyl ester electron donor having a titanium halide compound and an alkyl group having 9 to 13 carbon atoms to prepare a supported titanium catalyst. (4) washing the prepared catalyst with a hydrocarbon solvent at a temperature of 40-200 ° C .; (b) organometallic compounds of Groups II or III of the Periodic Table; And (c) an organosilicon compound having the general formula of (C 6 H 11 ) 2 Si (OR) 2 , wherein R represents an alkyl group having 1 to 5 carbon atoms. do. The polymer produced by the olefin polymerization or copolymerization method of the present invention has a wide molecular weight distribution by using a catalyst having excellent catalytic activity and hydrogen reactivity and having high stereoregularity, thereby increasing productivity of the polymerization process. .

올레핀 중합, 환상에테르, 함산소용매, 티타늄 할라이드 화합물, 고체 티타늄 촉매, 프탈릭에시드 디알킬에스테르  Olefin polymerization, cyclic ethers, oxygen-containing solvents, titanium halide compounds, solid titanium catalysts, phthalic acid dialkyl esters

Description

올레핀 중합 또는 공중합 방법{OLEFIN POLYMERIZATION OR COPOLYMERIZATION METHOD}Olefin polymerization or copolymerization method {OLEFIN POLYMERIZATION OR COPOLYMERIZATION METHOD}

본 발명은 올레핀 중합 또는 공중합 방법에 관한 것으로서, 보다 상세하게는 촉매 입자크기와 모양을 보다 용이한 방법으로 조절하고, 촉매활성과 수소반응성이 우수하고, 높은 입체규칙성을 가지는 촉매를 사용하므로써, 넓은 분자량분포를 가지는 올레핀 중합 또는 공중합 방법에 관한 것이다.The present invention relates to an olefin polymerization or copolymerization method, and more particularly, by controlling the catalyst particle size and shape in an easier manner, by using a catalyst having excellent catalytic activity and hydrogen reactivity and having high stereoregularity, The present invention relates to an olefin polymerization or copolymerization method having a wide molecular weight distribution.

지금까지 많은 올레핀 중합 촉매 및 이를 이용한 중합 방법이 보고되어 왔으나, 촉매에 보다 큰 상업적인 의미를 부여하기 위해서 발명된 촉매를 이용하여 얻어진 중합물의 물성을 향상시켜 생산성을 높이거나 제품의 품질을 향상시키려는 노력과, 촉매 자체의 활성과 입체규칙성을 향상시켜야 한다는 요구가 계속되었다.Although many olefin polymerization catalysts and polymerization methods using the same have been reported so far, efforts to improve productivity or product quality by improving physical properties of a polymer obtained using the catalyst invented in order to give the catalyst a greater commercial meaning. There is a continuing need to improve the activity and stereoregularity of the catalyst itself.

마그네슘을 포함하고 티타늄에 기초를 둔 많은 올레핀 중합 촉매 및 촉매의 제조 방법이 보고되어 왔으며, 특히, 촉매의 입자 형상 및 크기 등을 조절하기 위해 마그네슘화합물의 용액을 이용하는 촉매 제조 방법이 많이 알려져 있다. A number of olefin polymerization catalysts and catalysts containing magnesium have been reported, and in particular, many methods for preparing a catalyst using a solution of a magnesium compound to control the particle shape and size of the catalyst and the like are known.

탄화수소 용매 존재 하에서 마그네슘 화합물을 알코올, 아민, 에테르, 에스테르, 카르복실산 등과 같은 전자공여체와 반응시켜 마그네슘 용액을 얻는 방법이 있는데, 알코올을 사용한 경우는 미국특허 제4,330,649호, 제5,106,807호, 일본국 공개 특허 공보 소58-83006호에 언급되어 있다. 또한, 미국특허 제4,315,874호, 제4,399,054호, 제4,071,674호에서는 마그네슘 용액을 제조하는 방법이 보고되어 있다. There is a method of obtaining a magnesium solution by reacting a magnesium compound with an electron donor such as an alcohol, an amine, an ether, an ester, a carboxylic acid, or the like in the presence of a hydrocarbon solvent. Reference is made to published patent publication no. 58-83006. In addition, U.S. Patent Nos. 4,315,874, 4,399,054, and 4,071,674 report a method for preparing magnesium solutions.

환상 에테르인 테트라하이드로퓨란은 염화마그네슘 화합물(예를 들어, 미국 특허 제4,482,687호)로, 조촉매의 첨가제(미국특허 제4,158,642호)로, 그리고 용매(미국특허 제4,477,639호) 등으로 다양하게 이용되어 왔다.Tetrahydrofuran, a cyclic ether, is variously used as a magnesium chloride compound (for example, US Pat. No. 4,482,687), as an additive for a promoter (US Pat. No. 4,158,642), and as a solvent (US Pat. No. 4,477,639). Has been.

미국특허 제4,347,158호, 제4,422,957호, 제4,425,257호, 제4,618,661호, 제4,680,381호에서는 지지체인 마그네슘 클로라이드에 알루미늄 클로라이드와 같은 루이스산 화합물을 첨가하여 분쇄한 다음 촉매를 제조하는 방법을 제안하고 있다.U.S. Patent Nos. 4,347,158, 4,422,957, 4,425,257, 4,618,661, and 4,680,381 propose a method of preparing a catalyst after pulverizing a Lewis acid compound such as aluminum chloride to magnesium chloride as a support.

그러나 상기 특허들에서 촉매활성은 보완이 되었으나, 촉매의 형태, 크기, 크기 분포도와 같은 촉매 형상면에서 불규칙한 면이 있고, 입체 규칙성이 보완되어야하는 단점이 있었다.However, in the above patents, the catalytic activity is complemented, but there are irregularities in the shape of the catalyst such as the shape, size, and size distribution of the catalyst, and there are disadvantages in that stereoregularity must be complemented.

상기한 바와 같이 알파올레핀 중합용 촉매의 상업적 가치를 향상시키기 위한 개선 관점은 높은 중합 활성과 입체 규칙성을 갖는 촉매를 제조하여 제품의 품질을 향상시키려는 노력과, 촉매의 모양과 크기를 제어하여 생산성을 높이려는 노력, 그리고 촉매의 제조시에 촉매의 제조수율과 활성을 향상시켜 제조원가를 낮추려는 노력이 진행되고 있으며, 촉매의 경제성에 중요한 인자로 이의 향상이 요구되고 있는 실정이다.As described above, the improvement aspect for improving the commercial value of the catalyst for alpha olefin polymerization is to produce a catalyst having high polymerization activity and stereoregularity and to improve the quality of the product, and to control the shape and size of the catalyst to improve productivity. Efforts have been made to increase the production cost and to improve the production yield and activity of the catalyst in the production of the catalyst, and efforts are being made to reduce the production cost.

본 발명은 상기와 같은 문제점을 극복하기 위하여 안출된 것으로서, 본 발명의 목적은 촉매활성과 수소반응성이 우수하고, 높은 입체규칙성을 가지는 촉매를 사용하므로써, 넓은 분자량분포를 가지는 올레핀 중합 또는 공중합방법을 제공하는 것이다.The present invention has been made to overcome the above problems, an object of the present invention by using a catalyst having excellent catalytic activity and hydrogen reactivity, high stereoregularity, olefin polymerization or copolymerization method having a wide molecular weight distribution To provide.

본 발명의 올레핀 중합 또는 공중합 방법은,The olefin polymerization or copolymerization method of the present invention,

(a) 다음의 단계를 포함하여 이루어지는 제조방법에 의해 제조된 고체 티타늄 촉매: (a) a solid titanium catalyst prepared by the production process comprising the following steps:

(1) 마그네슘 할라이드 화합물을 환상에테르와 1종 이상의 알코올 화합물의 혼합용매인 함산소용매에 용해하여 마그네슘 화합물 용액을 얻는 단계,(1) dissolving a magnesium halide compound in an oxygen solvent which is a mixed solvent of a cyclic ether and at least one alcohol compound to obtain a magnesium compound solution,

(2) 상기 마그네슘 화합물 용액을 티타늄 할라이드 화합물과 -10~30℃에서 1차로 반응시킨 후, 온도를 올리거나 숙성시켜 입자를 얻은 후, 2차로 티타늄 할라이드 화합물과 반응시켜 담체를 제조하는 단계, (2) preparing a carrier by first reacting the magnesium compound solution with a titanium halide compound at -10 to 30 ° C., then raising the temperature or aging to obtain particles, and then secondly reacting with the titanium halide compound to prepare a carrier,

(3) 상기 담체를 티타늄 할라이드 화합물 및 전자공여체와 반응시켜 티타늄 담지 촉매를 제조하는 단계, 및(3) reacting the carrier with a titanium halide compound and an electron donor to prepare a titanium supported catalyst, and

(4) 상기 제조된 촉매를 40~200℃의 온도에서 탄화수소 용매로 세척하는 단계;(4) washing the prepared catalyst with a hydrocarbon solvent at a temperature of 40 ~ 200 ℃;

(b) 주기율표 제Ⅱ족 또는 제Ⅲ족의 유기금속 화합물; 및 (b) organometallic compounds of Groups II or III of the Periodic Table; And

(c) (C6H11)2Si(OR)2(여기에서 R은 탄소수 1~5의 알킬기를 나타낸다)의 일반식 을 갖는 유기실리콘화합물인 외부전자공여체의 존재하에서 수행되는 것을 특징으로 한다.(c) (C 6 H 11 ) 2 Si (OR) 2 (wherein R represents an alkyl group having 1 to 5 carbon atoms), characterized in that it is carried out in the presence of an external electron donor, an organosilicon compound having a general formula. .

상기 (a) 고체 티타늄 촉매 제조 방법 중 단계 (1)에서 사용되는 상기 마그네슘 할라이드 화합물의 예로는 할로겐화 마그네슘, 알킬마그네슘 할라이드, 알콕시마그네슘 할라이드, 아릴옥시마그네슘 할라이드를 들 수 있다. 상기 마그네슘 할라이드 화합물은 2종 이상의 혼합물로 사용되어도 무방하며, 다른 금속과의 착화합물 형태로 사용되어도 효과적이다.Examples of the magnesium halide compound used in step (1) of the method for preparing (a) solid titanium catalyst include magnesium halide, alkyl magnesium halide, alkoxymagnesium halide, and aryloxymagnesium halide. The magnesium halide compound may be used as a mixture of two or more kinds, and is effective even when used in the form of a complex with another metal.

상기 단계 (1)에서 사용되는 환상에테르는 고리에 포함된 탄소의 수가 3~6개인 환상에테르와 이의 유도체인 것이 바람직하고, 보다 바람직하게는 테트라하이드로푸란, 2-메틸 테트라하이드로푸란이며, 가장 바람직하게는 테트라하이드로푸란이다.The cyclic ether used in the step (1) is preferably a cyclic ether having 3 to 6 carbon atoms and a derivative thereof, more preferably tetrahydrofuran, 2-methyl tetrahydrofuran, and most preferably Preferably tetrahydrofuran.

상기 단계 (1)에서 사용되는 알코올 화합물은 탄소수 1~20개의 1가 또는 다가 알코올이 바람직하며, 2~12개의 탄소원자를 포함하는 알코올이 보다 바람직하다.The alcohol compound used in the step (1) is preferably a monovalent or polyhydric alcohol having 1 to 20 carbon atoms, more preferably an alcohol containing 2 to 12 carbon atoms.

상기 단계 (1)에서 상기 함산소용매의 사용량은 마그네슘 할라이드 화합물의 마그네슘 원자 1몰당 1~15몰, 바람직하게는 약 2~10몰이다. 상기 사용량이 1몰 미만인 경우에는 마그네슘 할라이드 화합물의 용해가 어렵고, 15몰을 초과하는 경우에는 촉매입자를 얻기 위해서 투입되는 마그네슘 할라이드 화합물의 양이 지나치게 많아지고, 입자의 조절도 어렵다.The amount of the oxygen-containing solvent used in the step (1) is 1 to 15 mol, preferably about 2 to 10 mol, per mol of the magnesium atom of the magnesium halide compound. When the amount of use is less than 1 mole, dissolution of the magnesium halide compound is difficult, and when it exceeds 15 moles, the amount of the magnesium halide compound to be added to obtain the catalyst particles is too large, and the particle is also difficult to control.

상기 단계 (1)에서 사용되는 함산소용매인 환상에테르와 알코올의 사용비는, 사용비에 따라 제조된 촉매의 입자 특성 및 크기 등에 따라 달라지므로, 적절하게 조절하여 사용될 수 있으며, 바람직하게는 환상에테르 1몰 당 알코올 0.5~3.5몰이다.Since the use ratio of the cyclic ether and the alcohol, which are the oxygen-containing solvent used in the step (1), depends on the particle characteristics and the size of the catalyst prepared according to the use ratio, it can be used by appropriately adjusting, preferably the cyclic 0.5 to 3.5 moles of alcohol per mole of ether.

상기 단계 (1)에서 용해온도는 환상에테르와 알코올의 종류 및 양에 따라 다르지만, 바람직하게는 20~200℃, 보다 바람직하게는 약 50~150℃이다.The dissolution temperature in step (1) depends on the type and amount of cyclic ether and alcohol, but is preferably 20 to 200 ° C, more preferably about 50 to 150 ° C.

상기 단계 (1)에서는 탄화수소 용매를 희석제로 추가적으로 사용할 수 있다. 상기 탄화수소 용매의 종류로는 펜탄, 헥산, 헵탄, 옥탄, 데칸 및 케로센과 같은 지방족 탄화수소; 시클로헥산 및 메틸시클로헥산과 같은 지환족 탄화수소; 벤젠, 톨루엔, 크실렌 및 에틸벤젠과 같은 방향족 탄화수소; 트리클로로에틸렌, 사염화탄소 및 클로로벤젠과 같은 할로겐화 탄화수소를 예로 들 수 있다.In step (1), a hydrocarbon solvent may be additionally used as a diluent. Examples of the hydrocarbon solvent include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane and kerosene; Alicyclic hydrocarbons such as cyclohexane and methylcyclohexane; Aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; Examples include halogenated hydrocarbons such as trichloroethylene, carbon tetrachloride and chlorobenzene.

상기 (a) 고체 티타늄 촉매 제조 방법 중 단계 (2)는 단계 (1)에서 얻어진 마그네슘 화합물 용액에 다음의 일반식 (I)로 표시되는 티타늄 할라이드 화합물을 -10~30℃에서 입자가 생기지 않도록 상기 함산소용매:티타늄 할라이드 화합물의 몰비가 1:3.0~10이 되도록 1차로 투입하고, 온도를 올리거나 숙성시킴으로써 입자를 석출시킨 후, 다음의 일반식 (I)로 표시되는 티타늄 할라이드 화합물을 상기 함산소용매:티타늄 할라이드 화합물의 몰비가 1:0.3~7.0이 되도록 2차로 투입하여 반응시켜 담체로 사용되는 고체입자를 얻는다.Step (2) of the method for preparing a solid titanium catalyst includes the titanium halide compound represented by the following general formula (I) in the magnesium compound solution obtained in step (1) so that particles do not form at -10 to 30 ° C. Oxygen solvent: The titanium halide compound is first introduced to a molar ratio of 1: 3.0 to 10, and the particles are precipitated by raising or aging the temperature, and then the titanium halide compound represented by the following general formula (I) Oxygen solvent: The titanium halide compound is charged into the secondary so that the molar ratio of 1: 0.3 to 7.0 is reacted to obtain solid particles used as a carrier.

Ti(OR)aX(4-a) ‥‥‥ (I)Ti (OR) a X (4-a) ‥‥‥ (I)

[여기에서 R은 탄소원자 1~10개의 알킬기를 나타내고, X는 할로겐족 원소이 며, a는 일반식의 원자가를 맞추기 위한 것으로 0~3의 정수이다.][Where R represents an alkyl group having 1 to 10 carbon atoms, X is a halogen group element, and a is an integer of 0 to 3 to match the valence of the general formula.]

상기 단계 (2)에서 마그네슘 화합물 용액에 티타늄 할라이드 화합물을 1차로 투입시킬 때 투입온도, 함산소용매와 티타늄 할라이드 화합물의 몰비 등의 조건을 조절하여 1차 투입시 침전이 생성되지 않도록 하는 것이 담체의 모양을 조절하는데 중요하며, 담체 입자 생성후 티타늄 할라이드 화합물을 2차로 투입하여 반응시킴으로써 촉매의 제조수율을 높일 수 있다.When the titanium halide compound is first added to the magnesium compound solution in the step (2), it is necessary to adjust the conditions such as the input temperature, the molar ratio of the oxygenated solvent and the titanium halide compound to prevent precipitation during the first charge. It is important to control the shape, and the production rate of the catalyst can be increased by adding a titanium halide compound and reacting it after the formation of carrier particles.

상기 (a) 고체 티타늄 촉매 제조 방법 중 단계 (3)은 단계 (2)에서 얻어진 담체를 티타늄 할라이드 화합물 및 탄소수 9~13의 알킬기를 갖는 프탈릭에시드 디알킬에스테르와 탄소수 1~8의 알킬기를 갖는 카복시산 알킬 에스테르 혼합 전자공여체와 반응시켜 티타늄을 담지시키는 단계로서, 이 반응은 일회의 반응으로 완성될 수도 있지만, 2회 또는 3회 이상의 반응으로 진행하는 것이 바람직하다.Step (3) in the method for preparing a solid titanium catalyst (a) includes a phthalic acid dialkyl ester having a titanium halide compound and an alkyl group having 9 to 13 carbon atoms and an alkyl group having 1 to 8 carbon atoms. Reaction with the carboxylic acid alkyl ester mixed electron donor to support titanium, which may be completed in one reaction, but is preferably carried out in two or three or more reactions.

바람직하게는, 상기 단계 (3)에서는, 단계 (2)에서 얻어진 담체를 티타늄 할라이드 화합물과 반응시키거나 또는 적절한 전자공여체와 함께 반응시키고, 액상의 혼합물을 분리한 후 남은 슬러리를 티타늄 화합물과 전자공여체와 다시 한번 반응시킨 후 고체성분을 분리하고, 이를 건조시켜 촉매를 얻는다.Preferably, in step (3), the carrier obtained in step (2) is reacted with the titanium halide compound or with an appropriate electron donor, and the remaining slurry after separating the liquid mixture is subjected to the titanium compound and the electron donor After reacting with once again, the solid component is separated and dried to obtain a catalyst.

상기 단계 (3)에서 사용되는 탄소수 9~13의 알킬기를 갖는 프탈릭에시드 디알킬에스테르의 종류로는 디이소노닐프탈레이트, 디이소데실프탈레이트, 디터셔리데실프탈레이트 등과 같은 디알킬프탈레이트 및 이들의 유도체를 들 수 있다.Examples of the phthalic acid dialkyl ester having an alkyl group having 9 to 13 carbon atoms used in step (3) include dialkyl phthalates such as diisononyl phthalate, diisodecyl phthalate, and tertiary decyl phthalate and derivatives thereof. Can be mentioned.

상기 단계 (3)에서 사용되는 프탈릭에시드 디알킬에스테르 전자공여체의 사용량은 상기 단계 (1)의 마그네슘 할라이드 화합물:프탈릭에시드 디알킬에스테르의 몰비가 1:0.08~2.5가 되는 것이 바람직하다.The amount of the phthalic acid dialkyl ester electron donor used in the step (3) is preferably a molar ratio of 1: 0.08 to 2.5 of the magnesium halide compound: phthalic acid dialkyl ester of the step (1).

상기 (a) 고체 티타늄 촉매 제조 방법 중 단계 (4)는 단계 (3)에서 제조된 촉매를 고온에서 탄화수소 용매로 세척하는 단계로서, 이 단계를 통하여 고입체규칙성 촉매가 완성된다.Step (4) of the method for preparing a solid titanium catalyst (a) is a step of washing the catalyst prepared in step (3) with a hydrocarbon solvent at a high temperature, through which a high stereoregular catalyst is completed.

상기 단계 (4)에서 사용되는 탄화수소 용매의 예로는 펜탄, 헥산, 헵탄, 옥탄, 데칸 및 케로센과 같은 지방족 탄화수소, 시클로헥산 및 메틸시클로헥산과 같은 지환족 탄화수소, 벤젠, 톨루엔, 크실렌 및 에틸벤젠과 같은 방향족 탄화수소 및 트리클로로에틸렌, 사염화탄소 및 클로로벤젠과 같은 할로겐화 탄화수소를 들 수 있다.Examples of hydrocarbon solvents used in step (4) include aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane and kerosene, alicyclic hydrocarbons such as cyclohexane and methylcyclohexane, benzene, toluene, xylene and ethylbenzene; And aromatic hydrocarbons such as trichloroethylene, carbon tetrachloride and chlorobenzene.

고체 착물 티타늄 촉매의 입체규칙성을 더욱 높이기 위하여, 상기 단계 (4)의 세척시의 온도는 40~200℃이고, 바람직하게는 50~150℃이다.In order to further enhance the stereoregularity of the solid complex titanium catalyst, the temperature at the time of washing in the step (4) is 40 to 200 ° C, preferably 50 to 150 ° C.

본 발명에 따른 올레핀의 중합 또는 공중합 방법은 상기 제조 과정에 의하여 제조된 (a) 고체 티타늄 촉매, (b) 주기율표 제Ⅱ족 또는 제Ⅲ족의 유기금속 화합물 및 (c) (C6H11)2Si(OR)2(여기에서 R은 탄소수 1~5의 알킬기를 나타낸다)의 일반식을 갖는 유기실리콘화합물인 외부전자공여체의 존재하에서 수행되는 과정이다.The polymerization or copolymerization method of the olefin according to the present invention comprises (a) a solid titanium catalyst, (b) an organometallic compound of group II or group III of the periodic table and (c) (C 6 H 11 ) 2 Si (OR) 2 (wherein R represents an alkyl group having 1 to 5 carbon atoms), a process performed in the presence of an external electron donor which is an organosilicon compound having a general formula.

상기 올레핀 중합 또는 공중합 과정에서 조촉매로서 사용되는, (b) 주기율표 제Ⅱ족 또는 제Ⅲ족의 유기금속 화합물의 예로는 트리에틸알루미늄 및 트리부틸알루미늄과 같은 트리알킬알루미늄, 트리이소프레닐알루미늄과 같은 트리알케닐알루미늄, 부분적으로 알콕시화된 알킬알루미늄, 예를 들어, 디에틸알루미늄에톡시드 및 디부틸알루미늄부톡시드와 같은 디알킬알루미늄알콕시드, 에틸알루미늄세스퀴에톡시드 및 부틸알루미늄세스퀴에톡시드와 같은 알킬알루미늄세스퀴알콕시, 에틸알루미늄디클로라이드, 프로필알루미늄디클로라이드 및 부틸알루미늄디브로마이드와 같은 알킬알루미늄디할라이드, 부분적으로 할로겐화된 알루미늄, 디에틸알루미늄하이드라이드나 디부틸알루미늄하이드라이드와 같은 디알킬알루미늄하이드라이드, 에틸알루미늄에톡시클로라이드, 부틸알루미늄부톡시클로라이드 및 에틸알루미늄에톡시브로마이드와 같은 부분적으로 알콕시화되고 할로겐화된 알킬알루미늄 등을 들 수 있다.Examples of the organometallic compounds of (b) Group II or III of the periodic table, used as cocatalysts in the olefin polymerization or copolymerization process, include trialkylaluminum such as triethylaluminum and tributylaluminum, triisoprenylaluminum and Trialkenyl aluminum, such as partially alkoxylated alkyl aluminum, for example, dialkyl aluminum alkoxide, such as diethyl aluminum ethoxide and dibutyl aluminum butoxide, ethyl aluminum sesquiethoxide and butyl aluminum sesqui Alkylaluminum dihalides such as alkylaluminum sesquialkoxy, ethylaluminum dichloride, propylaluminum dichloride and butylaluminum dibromide, such as ethoxide, partially halogenated aluminum, diethylaluminum hydride or dibutylaluminum hydride; Such as dialkylaluminum hydride, ethylal Partially alkoxylated and halogenated alkylaluminums such as luminium ethoxychloride, butylaluminum butoxychloride and ethylaluminum ethoxybromide and the like.

본 발명에서 사용되는 (a) 고체 티타늄 촉매에 대한 (b) 주기율표 제Ⅱ족 또는 제Ⅲ족의 유기금속 화합물의 사용비는, 사용비에 따라 제조된 촉매의 활성 및 폴리머 크기 등에 따라 달라지므로, 적절하게 조절하여 사용될 수 있으며, 촉매의 티타늄 1몰 당 1.0~1500몰이 바람직하다.The use ratio of the organometallic compound of (b) Periodic Table Group II or Group III to the solid titanium catalyst used in the present invention depends on the activity and the polymer size of the catalyst prepared according to the usage ratio, It can be used by adjusting suitably, 1.0-1500 mol is preferable per mol of titanium of a catalyst.

상기 올레핀 중합 또는 공중합 과정에서 사용되는, (c) (C6H11)2Si(OR)2(여기에서 R은 탄소수 1~5의 알킬기를 나타낸다)의 일반식을 갖는 유기실리콘화합물인 외부전자공여체는 바람직하게는 알콕시기로 메톡시기를 가지는 디시클로헥실디메톡시실란 또는 알콕시기로 에톡시기를 가지는 디시클로헥실디에톡시실란이다.External electrons which are organosilicon compounds having the general formula of (c) (C 6 H 11 ) 2 Si (OR) 2 , wherein R represents an alkyl group having 1 to 5 carbon atoms, used in the olefin polymerization or copolymerization process. The donor is preferably dicyclohexyldimethoxysilane having a methoxy group as the alkoxy group or dicyclohexyl diethoxysilane having an ethoxy group as the alkoxy group.

상기 (c) 유기실리콘화합물의 바람직한 사용량은 촉매활성, 폴리머의 입체규칙성, 폴리머의 분자량분포를 고려하여, 촉매의 티타늄 1몰 당 0.5~300몰로 적절하게 조절하여 사용하는 것이 바람직하다.The preferred amount of the (c) organosilicon compound is preferably adjusted to 0.5 to 300 moles per mole of titanium of the catalyst in consideration of catalytic activity, stereoregularity of the polymer and molecular weight distribution of the polymer.

본 발명에 따른 올레핀 중합 또는 공중합의 예는 프로필렌 중합; 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥실 등의 올레핀 간의 공중합; 및 폴리불포화화합물을 가진 공액 또는 비공액 디엔류의 공중합 등을 들 수 있다.Examples of olefin polymerization or copolymerization according to the present invention include propylene polymerization; Copolymerization between olefins such as ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene and 1-hexyl; And copolymerization of conjugated or nonconjugated dienes having a polyunsaturated compound.

본 발명은 하기의 실시예에 의하여 보다 구체적으로 이해될 수 있으며, 하기의 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 보호 범위를 제한하고자 하는 것은 아니다.The present invention may be understood in more detail by the following examples, which are intended to illustrate the present invention and are not intended to limit the protection scope of the present invention.

[[ 실시예Example ]]

실시예Example 1 One

고체 티타늄 촉매의 제조Preparation of Solid Titanium Catalysts

1 단계: 마그네슘 화합물 용액 제조Step 1: Prepare Magnesium Compound Solution

질소 분위기로 치환된 기계식 교반기가 설치된 10L 반응기에 MgCl2 300g, 톨루엔 4.5kg, 테트라하이드로푸란 350g, 부탄올 600g을 투입하고, 550rpm으로 교반하면서 110℃로 승온 후, 3시간 동안 유지시켜 균일용액을 얻었다.300 g of MgCl 2 , 4.5 kg of toluene, 350 g of tetrahydrofuran, and 600 g of butanol were added to a 10 L reactor equipped with a mechanical stirrer replaced with a nitrogen atmosphere. .

2 단계 : 담체 제조Step 2: prepare the carrier

상기 1 단계에서 얻어진 용액의 온도를 20℃로 냉각하고, TiCl4 700g을 투입한 후, 반응기의 온도를 60℃로 1시간에 걸쳐 승온하고, 반응기가 60℃에 도달하면, 여기에 TiCl4 280g을 40분간 투입하여 30분간 반응시켰다. 반응 후 30분간 정치시켜 담체를 가라앉히고 상부의 용액을 제거하였다. 반응기 안에 남은 슬러리에 2kg의 톨루엔을 투입하고, 교반, 정치, 상등액 제거과정을 3회 반복하여 세척하였 다.After cooling the temperature of the solution obtained in the step 1 in 20 ℃ and turning on the TiCl 4 700g, and the temperature was raised over a period of 1 hour the temperature of the reactor at 60 ℃, exothermic polymerization took place and the reactor reached 60 ℃, where the TiCl 4 280g 40 minutes was added and reacted for 30 minutes. After the reaction, the mixture was allowed to stand for 30 minutes to settle the carrier and remove the upper solution. 2 kg of toluene was added to the slurry remaining in the reactor, and the process of stirring, standing, and removing the supernatant was repeated three times.

3 단계 : 촉매 제조Step 3: prepare the catalyst

상기 2단계에서 제조된 담체에 교반속도 250rpm에서 톨루엔 2kg, TiCl4 2.0kg을 투입한 후, 반응기의 온도를 110℃로 1시간 동안 승온하고, 1시간 동안 숙성한 후, 15분간 정치시켜 침전물을 가라앉힌 뒤 상등액을 분리하였다. 여기에 다시 톨루엔 2kg과 TiCl4 2.0kg, 디이소노닐프탈레이트를 MgCl2 몰당 0.11몰로 투입하였다. 반응기의 온도를 113℃로 올린 다음 1시간 동안 유지 반응시킨다. 반응후 30분간 정치시켜 상등액을 분리하고, 다시 톨루엔 2.0kg과 TiCl4 2.0kg을 주입한 후, 100℃에서 30분 동안 반응시켰다. 반응후 30분간 교반 및 정치시킨 후, 상등액을 분리하였다.2 kg of toluene and 2.0 kg of TiCl 4 were added to the carrier prepared in step 2 at a stirring speed of 250 rpm, and the temperature of the reactor was raised to 110 ° C. for 1 hour, aged for 1 hour, and left to stand for 15 minutes. After sinking, the supernatant was separated. To this, 2 kg of toluene, 2.0 kg of TiCl 4 , and diisononyl phthalate were added at 0.11 mol per 2 mol of MgCl. The temperature of the reactor is raised to 113 ° C., and the reaction is maintained for 1 hour. After the reaction, the mixture was allowed to stand for 30 minutes to separate the supernatant, and 2.0 kg of toluene and 2.0 kg of TiCl 4 were injected again, followed by reaction at 100 ° C. for 30 minutes. After the reaction was stirred and allowed to stand for 30 minutes, the supernatant was separated.

4 단계: 세척Step 4: wash

3 단계에서 분리된 촉매 슬러리에 헥산 2.0kg을 투입한 후 반응기의 온도를 40℃로 30분간 유지하면서 교반하였다. 교반을 정지하고 30분간 정치후 상등액을 분리하였다. 남은 촉매 슬러리층에 다시 헥산을 투입하고 세척하는 과정을 동일하게 6회 시행하여 최종 고체 티타늄 촉매를 제조하였다.2.0 kg of hexane was added to the catalyst slurry separated in step 3, followed by stirring while maintaining the temperature of the reactor at 40 ° C. for 30 minutes. The stirring was stopped and the supernatant was separated after standing for 30 minutes. Hexane was added to the remaining catalyst slurry layer and washed six times in the same manner to prepare a final solid titanium catalyst.

담체 및 촉매의 입자크기 분포도는 레이저 입자 분석기(Mastersizer X, Malvern Instruments)를 사용하여 측정하고, 촉매의 조성은 ICP로 분석하였다.Particle size distribution of the carrier and catalyst was measured using a laser particle analyzer (Mastersizer X, Malvern Instruments), and the composition of the catalyst was analyzed by ICP.

상기와 같이 제조된 촉매는 평균입자크기가 약 25㎛이고, 티타늄의 함량은 1.7중량%로 측정되었다.The catalyst prepared as described above had an average particle size of about 25 μm and a titanium content of 1.7 wt%.

중합polymerization

제조된 촉매의 성능평가를 위해 프로필렌 중합을 실시하였다. 질소분위기 하에서 유지되는 글로브박스 안에서 상기 제조된 촉매 약 7mg을 계량하여 유리 벌브에 넣어 밀봉하고, 이를 교반과 동시에 유리 벌브가 파쇄되어 반응이 시작될 수 있도록 4L 고압 반응기에 장착한 후, 질소로 약 1시간 퍼지하여 반응기의 분위기가 건조한 질소가 되도록 하였다. 여기에, 트리에틸알루미늄(Al/Ti몰비=850)과 외부전자공여체로 디시클로헥실디메톡시실란 0.7mmol을 가하고 반응기를 밀폐시켰다. 수소를 1,000ml 주입한 후 액체 프로필렌을 시린지펌프를 이용하여 2,400ml 투입하고, 교반시켜 유리 벌브를 깨뜨려 중합 반응을 개시함과 동시에 반응기의 온도를 70℃까지 20분에 걸쳐 승온시키고, 1시간 동안 중합을 실시하였다. 1시간 반응 후 미반응 프로필렌을 대기 벤트시키고, 반응기의 온도를 상온으로 낮추었다. 생성된 중합체는 50℃의 진공오븐에서 건조한 후 계량하였다. 제조된 폴리프로필렌 파우더를 당분야에서 통상적인 MI(melt index) 분석과 GPC를 통한 분자량 분포(Mw/Mn)를 분석하였으며, 그 결과를 표 1에 나타내었다.Propylene polymerization was performed to evaluate the performance of the prepared catalyst. In a glove box maintained under a nitrogen atmosphere, about 7 mg of the prepared catalyst was weighed and sealed in a glass bulb, which was mounted in a 4L high pressure reactor so that the glass bulb could be broken and the reaction started at the same time of stirring, followed by nitrogen. It was purged for time so that the atmosphere of the reactor became dry nitrogen. To this, 0.7 mmol of dicyclohexyldimethoxysilane was added as a triethylaluminum (Al / Ti molar ratio = 850) and an external electron donor, and the reactor was sealed. After injection of 1,000 ml of hydrogen, 2,400 ml of liquid propylene was added using a syringe pump, and stirred to break the glass bulb to initiate the polymerization reaction, while simultaneously raising the temperature of the reactor to 70 ° C. over 20 minutes. The polymerization was carried out. After 1 hour of reaction, the unreacted propylene was vented to air, and the temperature of the reactor was lowered to room temperature. The resulting polymer was dried in a vacuum oven at 50 ° C. and then weighed. The prepared polypropylene powder was analyzed by the conventional MI (melt index) analysis and molecular weight distribution (Mw / Mn) through GPC, the results are shown in Table 1.

실시예Example 2 2

실시예 1의 고체 티타늄 촉매의 제조 중 3 단계에서, 디이소데실프탈레이트를 MgCl2 몰당 0.11몰로 사용하여 촉매를 제조한 것을 제외하고는 실시예 1과 동일한 조건으로 수행하고, 분석 결과를 표 1에 나타내었다.In Step 3 of preparing the solid titanium catalyst of Example 1, the catalyst was prepared under the same conditions as in Example 1 except that the catalyst was prepared using diisodecylphthalate at 0.11 mol per 2 mol of MgCl, and the analysis results are shown in Table 1 below. Indicated.

실시예Example 3 3

실시예 1의 고체 티타늄 촉매의 제조 중 3 단계에서, 디터셔리데실프탈레이트를 MgCl2 몰당 0.11몰로 사용하여 촉매를 제조한 것을 제외하고는 실시예 1과 동일한 조건으로 수행하고, 분석 결과를 표 1에 나타내었다.In Step 3 of preparing the solid titanium catalyst of Example 1, the catalyst was prepared under the same conditions as in Example 1 except that the catalyst was prepared using 0.15 mol of tertiary decylphthalate per 2 mol of MgCl, and the analysis results are shown in Table 1 below. Indicated.

실시예Example 4 4

실시예 1의 고체 티타늄 촉매의 제조 중 3 단계에서, 디이소노닐프탈레이트를 MgCl2 몰당 0.15몰로 사용하여 촉매를 제조한 것을 제외하고는 실시예 1과 동일한 조건으로 수행하고, 분석 결과를 표 1에 나타내었다.In Step 3 of preparing the solid titanium catalyst of Example 1, the catalyst was prepared under the same conditions as in Example 1, except that the catalyst was prepared using diisononylphthalate at 0.15 mol per 2 mol of MgCl, and the analysis results are shown in Table 1 below. Indicated.

실시예Example 5 5

실시예 1의 고체 티타늄 촉매의 제조 중 3 단계에서, 디이소노닐프탈레이트를 MgCl2 몰당 0.20몰로 사용하여 촉매를 제조한 것을 제외하고는 실시예 1과 동일한 조건으로 수행하고, 분석 결과를 표 1에 나타내었다.In step 3 of preparing the solid titanium catalyst of Example 1, the catalyst was prepared under the same conditions as in Example 1 except that the catalyst was prepared using diisononylphthalate at 0.20 mol per 2 mol of MgCl, and the analysis results are shown in Table 1 below. Indicated.

실시예Example 6 6

실시예 1의 고체 티타늄 촉매의 제조 중 3 단계에서, 디이소데실프탈레이트를 MgCl2 몰당 0.15몰로 사용하여 촉매를 제조한 것을 제외하고는 실시예 1과 동일한 조건으로 수행하고, 분석 결과를 표 1에 나타내었다.In Step 3 of preparing the solid titanium catalyst of Example 1, the catalyst was prepared under the same conditions as in Example 1, except that the catalyst was prepared using diisodecylphthalate at 0.15 mol per 2 mol of MgCl, and the analysis results are shown in Table 1 below. Indicated.

실시예Example 7 7

실시예 1의 고체 티타늄 촉매의 제조 중 3 단계에서, 디이소노닐프탈레이트를 MgCl2 몰당 0.20몰로 사용하여 촉매를 제조한 것을 제외하고는 실시예 1과 동일 한 조건으로 수행하고, 분석 결과를 표 1에 나타내었다.In the third step of the solid titanium catalyst of Example 1, the catalyst was prepared under the same conditions as in Example 1 except that the catalyst was prepared using diisononylphthalate at 0.20 mol per 2 mol of MgCl, and the analysis results are shown in Table 1 below. Shown in

실시예Example 8 8

실시예 1의 고체 티타늄 촉매의 제조 중 3 단계에서, 디이소데실프탈레이트를 MgCl2 몰당 0.11몰로 사용하고, 제조된 촉매로 중합시 외부전자공여체로 디시클로헥실 디메톡시실란 0.35mmol을 사용한 것을 제외하고는 실시예 1과 동일한 조건으로 수행하고, 분석 결과를 표 1에 나타내었다.In step 3 of preparing the solid titanium catalyst of Example 1, diisodecylphthalate was used at 0.11 mole per 2 moles of MgCl, and 0.35 mmol of dicyclohexyl dimethoxysilane was used as the external electron donor during polymerization with the prepared catalyst. Was carried out under the same conditions as in Example 1, and the analysis results are shown in Table 1.

실시예Example 9 9

실시예 1의 고체 티타늄 촉매의 제조 중 3 단계에서, 디이소데실프탈레이트를 MgCl2 몰당 0.11몰로 사용하고, 제조된 촉매로 중합시 외부전자공여체로 디시클로헥실 디메톡시실란 1.4mmol을 사용한 것을 제외하고는 실시예 1과 동일한 조건으로 수행하고, 분석 결과를 표 1에 나타내었다.In step 3 of preparing the solid titanium catalyst of Example 1, diisodecylphthalate was used at 0.11 mol per 2 mol of MgCl, except that 1.4 mmol of dicyclohexyl dimethoxysilane was used as the external electron donor in the polymerization with the prepared catalyst. Was carried out under the same conditions as in Example 1, and the analysis results are shown in Table 1.

비교예Comparative example 1 One

실시예 1의 고체 티타늄 촉매의 제조 중 3 단계에서, 디이소부틸프탈레이트를 MgCl2 몰당 0.15몰로 사용하여 촉매를 제조한 것을 제외하고는 실시예 1과 동일한 조건으로 수행하고, 분석 결과를 표 1에 나타내었다.In Step 3 of preparing the solid titanium catalyst of Example 1, the catalyst was prepared under the same conditions as in Example 1, except that the catalyst was prepared using diisobutylphthalate at 0.15 mole per 2 moles of MgCl, and the analysis results are shown in Table 1 below. Indicated.

비교예Comparative example 2 2

실시예 1의 고체 티타늄 촉매의 제조 중 3 단계에서, 디이소부틸프탈레이트를 MgCl2 몰당 0.20몰로 사용하여 촉매를 제조한 것을 제외하고는 실시예 1과 동일한 조건으로 수행하고, 분석 결과를 표 1에 나타내었다.In Step 3 of preparing the solid titanium catalyst of Example 1, the catalyst was prepared under the same conditions as in Example 1 except that the catalyst was prepared using diisobutylphthalate at 0.20 mol per 2 mol of MgCl, and the analysis results are shown in Table 1 below. Indicated.

비교예Comparative example 3 3

실시예 1의 고체 티타늄 촉매의 제조 중 3 단계에서, 디에틸프탈레이트를 MgCl2 몰당 0.15몰로 사용하여 촉매를 제조한 것을 제외하고는 실시예 1과 동일한 조건으로 수행하고, 분석 결과를 표 1에 나타내었다.In Step 3 of preparing the solid titanium catalyst of Example 1, the catalyst was prepared under the same conditions as in Example 1 except that the catalyst was prepared using diethylphthalate at 0.15 mol per 2 mol of MgCl, and the analysis results are shown in Table 1. It was.

비교예Comparative example 4 4

실시예 1의 고체 티타늄 촉매의 제조 중 3 단계에서, 에틸 벤조에이트를 MgCl2 몰당 0.15몰로 사용하여 촉매를 제조한 것을 제외하고는 실시예 1과 동일한 조건으로 수행하고, 분석 결과를 표 1에 나타내었다.In the third step of the solid titanium catalyst of Example 1, the catalyst was prepared under the same conditions as in Example 1 except that the catalyst was prepared using 0.15 mol of ethyl benzoate per 2 mol of MgCl, and the analysis results are shown in Table 1. It was.

비교예Comparative example 5 5

실시예 1의 중합 과정에서 외부전자공여체로 시클로헥실메틸디메톡시실란 0.7mmol을 사용한 것을 제외하고는 실시예 1과 동일 조건으로 수행하고, 분석 결과를 표 1에 나타내었다.The polymerization was carried out under the same conditions as in Example 1, except that 0.7 mmol of cyclohexylmethyldimethoxysilane was used as the external electron donor in the polymerization process of Example 1, and the analysis results are shown in Table 1.

비교예Comparative example 6 6

실시예 1의 중합 과정에서 외부전자공여체로 디시클로펜틸디메톡시실란 0.7mmol을 사용한 것을 제외하고는 실시예 1과 동일 조건으로 수행하고, 분석 결과를 표 1에 나타내었다.The polymerization process of Example 1 was carried out under the same conditions as in Example 1 except that 0.7 mmol of dicyclopentyldimethoxysilane was used as the external electron donor, and the analysis results are shown in Table 1.

전자공여체Electron donor 전자공여체/MgCl2 (mol비)Donor / MgCl 2 (mol ratio) DCHDMS (mmol)DCHDMS (mmol) 중합활성 (kgPP/gCat)Polymerization Activity (kgPP / gCat) MI (g/10분)MI (g / 10min) 분자량분포 (Mw/Mn)Molecular Weight Distribution (Mw / Mn) 실시예 1Example 1 DINPDINP 0.110.11 0.70.7 3636 15.615.6 6.36.3 실시예 2Example 2 DIDPDIDP 0.110.11 0.70.7 3737 16.216.2 6.66.6 실시예 3Example 3 DTDPDTDP 0.110.11 0.70.7 3434 14.814.8 6.96.9 실시예 4Example 4 DINPDINP 0.150.15 0.70.7 3434 14.514.5 6.76.7 실시예 5Example 5 DINPDINP 0.200.20 0.70.7 3232 14.714.7 6.26.2 실시예 6Example 6 DIDPDIDP 0.150.15 0.70.7 3535 14.914.9 6.46.4 실시예 7Example 7 DIDPDIDP 0.200.20 0.70.7 3333 15.615.6 6.46.4 실시예 8Example 8 DIDPDIDP 0.110.11 0.350.35 4040 18.518.5 6.86.8 실시예 9Example 9 DIDPDIDP 0.110.11 1.41.4 3434 14.614.6 6.36.3 비교예 1Comparative Example 1 DIBPDIBP 0.150.15 0.70.7 2929 13.513.5 5.15.1 비교예 2Comparative Example 2 DIBPDIBP 0.200.20 0.70.7 2727 10.710.7 5.05.0 비교예 3Comparative Example 3 DEPDEP 0.150.15 0.70.7 2626 12.612.6 5.25.2 비교예 4Comparative Example 4 EBEB 0.150.15 0.70.7 2222 12.812.8 5.35.3 비교예 5Comparative Example 5 DINPDINP 0.110.11 0.7(*)0.7 ( * ) 3737 12.612.6 4.74.7 비교예 6Comparative Example 6 DINPDINP 0.110.11 0.7(**)0.7 ( ** ) 4141 5.85.8 4.94.9

주) (*)는 아래 (8)을 사용하고, (**)는 아래 (9)를 사용함.Note) (8) below (8) and (**) below (9).

(1) DINP: 디이소노닐프탈레이트(1) DINP: diisononyl phthalate

(2) DIDP: 디이소데실프탈레이트(2) DIDP: diisodecyl phthalate

(3) DTDP: 디터셔리데실프탈레이트(3) DTDP: dietary decyl phthalate

(4) DIBP: 디이소부틸프탈레이트(4) DIBP: diisobutyl phthalate

(5) DEP: 디에틸프탈레이트(5) DEP: diethyl phthalate

(6) EB: 에틸 벤조에이트(6) EB: ethyl benzoate

(7) DCHDMS: 디시클로헥실디메톡시실란(7) DCHDMS: dicyclohexyldimethoxysilane

(8) CHMDMS: 시클로헥실메틸디메톡시실란(8) CHMDMS: cyclohexylmethyldimethoxysilane

(9)DCPDMS: 디시클로펜틸디메톡시실란(9) DCPDMS: dicyclopentyldimethoxysilane

본 발명의 올레핀 중합 또는 공중합 방법에 의하여 제조되는 중합체는, 촉매활성과 수소반응성이 우수하고, 높은 입체규칙성을 가지는 촉매를 사용하므로써, 넓은 분자량분포를 가지므로 중합공정의 생산성을 높이는 효과가 있다.The polymer produced by the olefin polymerization or copolymerization method of the present invention has a wide molecular weight distribution by using a catalyst having excellent catalytic activity and hydrogen reactivity and having high stereoregularity, thereby increasing productivity of the polymerization process. .

Claims (5)

다음의 (a), (b) 및 (c)의 존재하에서 올레핀을 중합 또는 공중합하는 것을 특징으로 하는 올레핀 중합 또는 공중합 방법:An olefin polymerization or copolymerization method characterized by polymerizing or copolymerizing an olefin in the presence of the following (a), (b) and (c): (a) 다음의 단계를 포함하여 이루어지는 제조방법에 의해 제조된 고체 티타늄 촉매: (a) a solid titanium catalyst prepared by the production process comprising the following steps: (1) 마그네슘 할라이드 화합물을 고리에 포함된 탄소수가 3~6개인 환상에테르와 1종 이상의 알코올 화합물의 혼합용매인 함산소용매에 용해하여 마그네슘 화합물 용액을 얻는 단계,(1) dissolving a magnesium halide compound in an oxygenated solvent which is a mixed solvent of 3 to 6 carbon atoms contained in the ring and at least one alcohol compound to obtain a magnesium compound solution, (2) 상기 마그네슘 화합물 용액에, 티타늄 할라이드 화합물을 상기 함산소용매:티타늄 할라이드 화합물의 몰비가 1:3.0~10이 되도록 투입하여 -10~30℃에서 1차로 반응시킨 후, 온도를 올리거나 숙성시켜 입자를 얻은 후, 티타늄 할라이드 화합물을 상기 함산소용매:티타늄 할라이드 화합물의 몰비가 1:0.3~7.0이 되도록 투입하여 2차로 반응시켜 담체를 제조하는 단계, (2) The titanium halide compound is added to the magnesium compound solution so that the molar ratio of the oxygenated solvent: titanium halide compound is 1: 3.0 to 10, and the reaction is performed first at -10 to 30 ° C, and then the temperature is increased or aged. To obtain particles, and then adding a titanium halide compound so that the molar ratio of the oxygen solvent: titanium halide compound is 1: 0.3 to 7.0 to prepare a carrier by secondary reaction. (3) 상기 담체를 티타늄 할라이드 화합물 및 전자공여체로서 탄소수 9~13의 알킬기를 갖는 프탈릭에시드 디알킬에스테르와 반응시켜 티타늄 담지 촉매를 제조하는 단계, 및(3) reacting the carrier with a phthalic acid dialkyl ester having an alkyl group having 9 to 13 carbon atoms as a titanium halide compound and an electron donor to prepare a titanium supported catalyst, and (4) 상기 제조된 촉매를 40~200℃의 온도에서 탄화수소 용매로 세척하는 단계;(4) washing the prepared catalyst with a hydrocarbon solvent at a temperature of 40 ~ 200 ℃; (b) 유기알루미늄 화합물; 및(b) an organoaluminum compound; And (c) (C6H11)2Si(OR)2(여기에서 R은 탄소수 1~5의 알킬기를 나타낸다)의 일반식을 갖는 유기실리콘화합물인 외부전자공여체.(c) An external electron donor which is an organosilicon compound having the general formula of (C 6 H 11 ) 2 Si (OR) 2 , wherein R represents an alkyl group having 1 to 5 carbon atoms. 제1항에 있어서, 상기 단계 (1)의 함산소용매의 사용량은 마그네슘 할라이드 화합물의 마그네슘 원자 1몰당 1~15몰인 것을 특징으로 하는 올레핀 중합 또는 공중합 방법. The method for olefin polymerization or copolymerization according to claim 1, wherein the amount of the oxygen-containing solvent in step (1) is 1 to 15 mol per mol of magnesium atom of the magnesium halide compound. 제1항에 있어서, 상기 단계 (2)의 티타늄 할라이드 화합물은 다음의 일반식 (Ⅰ)의 화합물인 것을 특징으로 하는 올레핀 중합 또는 공중합 방법. The method for olefin polymerization or copolymerization according to claim 1, wherein the titanium halide compound of step (2) is a compound of the following general formula (I). Ti(OR)aX(4-a) ‥‥‥ (I)Ti (OR) a X (4-a) ‥‥‥ (I) [여기에서 R은 탄소원자 1~10개의 알킬기를 나타내고, X는 할로겐족 원소이며, a는 일반식의 원자가를 맞추기 위한 것으로 0~3의 정수이다][Where R represents an alkyl group of 1 to 10 carbon atoms, X is a halogen group element, and a is an integer of 0 to 3 to match the valence of the general formula] 제1항에 있어서, 상기 단계 (3)의 탄소수 9~13의 알킬기를 갖는 프탈릭에시드 디알킬에스테르 전자공여체는 디이소노닐프탈레이트, 디이소데실프탈레이트 또는 디터셔리데실프탈레이트인 것을 특징으로 하는 올레핀 중합 또는 공중합 방법.The olefin polymerization according to claim 1, wherein the phthalic acid dialkyl ester electron donor having an alkyl group having 9 to 13 carbon atoms in step (3) is diisononyl phthalate, diisodecyl phthalate or dietary decyl phthalate. Or copolymerization method. 제1항에 있어서, 상기 (c) (C6H11)2Si(OR)2(여기에서 R은 탄소수 1~5의 알킬기를 나타낸다)의 일반식을 갖는 유기실리콘화합물인 외부전자공여체는 디시클로헥실디메톡시실란 또는 디시클로헥실디에톡시실란인 것을 특징으로 하는 올레핀 중합 또는 공중합 방법.The external electron donor according to claim 1, which is an organosilicon compound having the general formula of (c) (C 6 H 11 ) 2 Si (OR) 2 , wherein R represents an alkyl group having 1 to 5 carbon atoms. An olefin polymerization or copolymerization method characterized by being clohexyldimethoxysilane or dicyclohexyl diethoxysilane.
KR1020070030328A 2007-03-28 2007-03-28 Olefin polymerization or copolymerization method KR100870818B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070030328A KR100870818B1 (en) 2007-03-28 2007-03-28 Olefin polymerization or copolymerization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070030328A KR100870818B1 (en) 2007-03-28 2007-03-28 Olefin polymerization or copolymerization method

Publications (2)

Publication Number Publication Date
KR20080088018A KR20080088018A (en) 2008-10-02
KR100870818B1 true KR100870818B1 (en) 2008-11-27

Family

ID=40150378

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070030328A KR100870818B1 (en) 2007-03-28 2007-03-28 Olefin polymerization or copolymerization method

Country Status (1)

Country Link
KR (1) KR100870818B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435980B1 (en) * 1997-01-25 2004-09-08 삼성아토피나주식회사 Olefin polymerization and copolymerization method using solid complex titanium catalyst for producing polymer having high apparent density
KR100451085B1 (en) 2001-10-31 2004-10-02 주식회사 효성 The Manufacturing Method Of Photo Catalyst For Olefine Polymerization
KR100723367B1 (en) 2006-04-19 2007-05-30 삼성토탈 주식회사 Olefin polymerization and copolymerization method
KR20070115001A (en) * 2006-05-30 2007-12-05 삼성토탈 주식회사 Method for producing polyolefin having high stiffness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435980B1 (en) * 1997-01-25 2004-09-08 삼성아토피나주식회사 Olefin polymerization and copolymerization method using solid complex titanium catalyst for producing polymer having high apparent density
KR100451085B1 (en) 2001-10-31 2004-10-02 주식회사 효성 The Manufacturing Method Of Photo Catalyst For Olefine Polymerization
KR100723367B1 (en) 2006-04-19 2007-05-30 삼성토탈 주식회사 Olefin polymerization and copolymerization method
KR20070115001A (en) * 2006-05-30 2007-12-05 삼성토탈 주식회사 Method for producing polyolefin having high stiffness

Also Published As

Publication number Publication date
KR20080088018A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
KR100723367B1 (en) Olefin polymerization and copolymerization method
US10239969B2 (en) Spherical magnesium halide adduct, a catalyst component and a catalyst for olefin polymerization prepared therefrom
KR20150034768A (en) Ziegler-natta catalyst systems comprising a 1,2-phenylenedioate as internal donor and process for preparing the same
KR101114073B1 (en) A method for preparation of a solid catalyst for polymerization of propylene
CN107428995B (en) Oxalic acid diamides as modifiers for polyolefin catalysts
JP2007532717A (en) Olefin polymerization procatalyst (PROCATALYST) composition and preparation method
KR101395471B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
EP2029277B1 (en) Catalyst component for the polymerization of olefins
KR100870818B1 (en) Olefin polymerization or copolymerization method
KR20050087571A (en) Method for the preparation of a solid titanium catalyst for olefin polymerization
EP2374821A1 (en) Solid catalyst component for olefin polymerization, manufacturing method, and catalyst and olefin polymer manufacturing method
KR100869442B1 (en) Olefin polymerization or copolymerization method
KR101928316B1 (en) Solid catalyst component and catalyst for olefin polymerization
KR101171532B1 (en) A method for preparing a solid catalyst for propylene polymerization
KR100723368B1 (en) Olefin polymerization and copolymerization method
KR101454516B1 (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene
KR100827192B1 (en) A preparation method of a solid titanium catalyst for olefin polymerization
KR20110050906A (en) A method for preparation of a solid catalyst for polymerization of propylene
KR100723369B1 (en) Olefin polymerization and copolymerization method
KR100723366B1 (en) Olefin polymerization and copolymerization method
KR100878429B1 (en) A preparation method of a solid titanium catalyst for olefin polymerization
KR100546505B1 (en) Method for the preparation of a solid titanium catalyst for olefin polymerization
KR100546506B1 (en) A method for the preparation of a solid titanium catalyst for olefin polymerization
KR101447346B1 (en) A method for preparing solid catalyst for propylene polymerization, a solid catalyst prepared by the same and a method for preparation of polypropylene using the catalyst
CN115246895A (en) Solid catalyst component for olefin polymerization, process for producing the same, process for producing catalyst for olefin polymerization, and process for producing olefin polymer

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee