KR100451085B1 - The Manufacturing Method Of Photo Catalyst For Olefine Polymerization - Google Patents

The Manufacturing Method Of Photo Catalyst For Olefine Polymerization Download PDF

Info

Publication number
KR100451085B1
KR100451085B1 KR10-2001-0067492A KR20010067492A KR100451085B1 KR 100451085 B1 KR100451085 B1 KR 100451085B1 KR 20010067492 A KR20010067492 A KR 20010067492A KR 100451085 B1 KR100451085 B1 KR 100451085B1
Authority
KR
South Korea
Prior art keywords
catalyst
preparing
stereoregularity
present
electron donor
Prior art date
Application number
KR10-2001-0067492A
Other languages
Korean (ko)
Other versions
KR20030035413A (en
Inventor
김정호
이용성
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR10-2001-0067492A priority Critical patent/KR100451085B1/en
Publication of KR20030035413A publication Critical patent/KR20030035413A/en
Application granted granted Critical
Publication of KR100451085B1 publication Critical patent/KR100451085B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/642Component covered by group C08F4/64 with an organo-aluminium compound
    • C08F4/6423Component of C08F4/64 containing at least two different metals
    • C08F4/6425Component of C08F4/64 containing at least two different metals containing magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/022Magnesium halide as support anhydrous or hydrated or complexed by means of a Lewis base for Ziegler-type catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/646Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64
    • C08F4/6465Catalysts comprising at least two different metals, in metallic form or as compounds thereof, in addition to the component covered by group C08F4/64 containing silicium

Abstract

본 발명은 올레핀 중합용 촉매의 제조방법 및 이 촉매를 이용한 폴리프로필렌의 제조방법에 관한 것으로, 본 발명의 촉매 제조방법은 유기알콜과 방향족 탄화수소의 혼합용액에 용해된 이염화마그네슘을 비이온성 계면활성제와 미네랄오일과 활성성분이 사염화티탄의 혼합용액으로 현탁시켜 이것을 출발물질로 하여 통상의 방법으로 제조하는 것을 특징으로 하며, 본 발명의 폴리프로필렌의 제조방법은 위의 방법에 의하여 제조된 지글러-나타 촉매와, 조촉매로 유기 알루미늄 화합물을 사용하며, 유기실리콘이나 에테르 또는 에스테르 화합물을 외부전자공여체로 사용하는 것을 특징으로 한다. 본 발명에 의하여 고활성과 고입체규칙성을 유지하며 중합물이 우수한 입도를 나타내는 촉매를 제조할 수 있으며 제조단계에서 사염화티타늄을 과도하게 쓰지 않는 장점이 있다.The present invention relates to a method for preparing an olefin polymerization catalyst and a method for producing polypropylene using the catalyst, wherein the method for preparing a catalyst according to the present invention is a nonionic surfactant containing magnesium dichloride dissolved in a mixed solution of an organic alcohol and an aromatic hydrocarbon. And the mineral oil and the active ingredient are suspended in a mixed solution of titanium tetrachloride and prepared as a starting material by a conventional method. The method for preparing polypropylene of the present invention is the Ziegler-Natta prepared by the above method. An organoaluminum compound is used as a catalyst and a cocatalyst, and an organosilicon, an ether or an ester compound is used as an external electron donor. According to the present invention, it is possible to prepare a catalyst which maintains high activity and high stereoregularity and exhibits an excellent particle size of the polymer, and has an advantage of not excessively using titanium tetrachloride in the preparation step.

Description

올레핀 중합용 촉매의 제조방법{The Manufacturing Method Of Photo Catalyst For Olefine Polymerization}Manufacturing Method Of Photo Catalyst For Olefine Polymerization

본 발명은 올레핀 중합용의 촉매의 제조방법 및 이 촉매를 이용한 폴리프로필렌의 제조방법에 관한 것으로, 좀 더 상세하게는 유기알콜과 방향족 탄화수소의 혼합용액에 용해된 이염화마그네슘을 비이온성 계면활성제와 미네랄오일과 활성성분인 사염화티탄의 혼합용액으로 현탁시켜 이것을 출발물질로 내부전자공여체와 사염화티탄의 담지로 얻어지는 촉매를 바탕으로 고활성과 고입체규칙성 및 입자크기가 고른 폴리프로필렌의 제조방법에 관한 것이다.The present invention relates to a method for preparing a catalyst for olefin polymerization and a method for producing polypropylene using the catalyst. More specifically, magnesium dichloride dissolved in a mixed solution of an organic alcohol and an aromatic hydrocarbon may be used as a nonionic surfactant. Suspended with a mixed solution of mineral oil and titanium tetrachloride as an active ingredient, and based on the catalyst obtained as supporting material of internal electron donor and titanium tetrachloride as a starting material, a method for producing polypropylene having high activity, high stereoregularity and even particle size It is about.

지글러-나타형 촉매라고 일반적으로 불리워지고 있는 올레핀 중합용 촉매는 전이금속 화합물이 주성분인 주촉매와 유기금속 화합물인 조촉매, 그리고 전자공여체의 조합으로 이루어지는 촉매계를 말하며 종래부터 광범위하게 연구되어왔고 관련기술 또한 대단히 많은 것이 존재하고 있다.The catalyst for olefin polymerization, commonly referred to as a Ziegler-Natta type catalyst, refers to a catalyst system composed of a combination of a main catalyst composed mainly of a transition metal compound, an organic metal compound cocatalyst, and an electron donor. There is also a great deal of technology.

이 촉매는 지금까지 중합활성도와 입체규칙성을 향상시키는 방향으로 개발되어 왔으며 그 구성성분과 제조방법 등이 결정되면 생성되는 폴리프로필렌의 성질과 입자분포 등이 결정된다. 따라서 폴리프로필렌의 성질을 변화시키기 위하여는 촉매의 제조시 구성성분의 변화 및 중합방법의 변화 등이 수반되어야 하며 각 촉매의 제조방법, 혹은 구성성분의 차이에 의하여 촉매의 활성과 중합된 고분자의 입자크기, 분자량, 입체특이성 등이 달라지게 된다.This catalyst has been developed in the direction of improving polymerization activity and stereoregularity until now, and the properties and particle distribution of polypropylene produced are determined when its composition and production method are determined. Therefore, in order to change the properties of polypropylene, changes in constituents and polymerization methods should be accompanied during the preparation of catalysts. Size, molecular weight, stereospecificity, etc. will vary.

티타늄, 마그네슘과 할로겐 화합물을 주된 성분으로 하며 유기알루미늄 화합물을 조촉매로 하는 기존의 고활성, 고입체규칙성 촉매에는 많은 개선이 이루어 졌으나 현재까지도 활성, 입체규칙성의 문제, 불완전한 입자크기와 입도 분포의 균일성 부족에 의해 더 많은 연구의 대상이 되고 있다.Many improvements have been made to the existing high activity and high stereoregular catalysts, which are composed mainly of titanium, magnesium, and halogen compounds, and the organoaluminum compound as a promoter. However, the problems of activity, stereoregularity, incomplete particle size and particle size distribution have been achieved. The lack of uniformity has led to further research.

입체규칙성의 문제에 있어서 개선점은 미국특허 4,544,717에 전자공여체의 첨가에 의해 개선이 이루어진 사례가 공지되어 있으며, 아이소택틱인덱스가 94∼95% 이상의 값을 가지는 고입체규칙성 촉매에 관해 미국특허 4,226,741에 공지되어 있다. 또한 고활성, 고입체규칙성의 특징을 가지는 고체 지글러-나타촉매의 기술이 유럽특허 045,977에 알려져 있으며, 특정 카르복실산 에스테르화합물의 유도체들, 바람직하게는 프탈레이트 유도체들이 내부전자공여체로 고체촉매 화합물에 배위되어 티탄 화합물과 함께 지글러-나타 촉매가 제조될 수 있다.The improvement in the problem of stereoregularity is known in the United States Patent 4,544,717 is the case that the improvement is made by the addition of the electron donor, the US Patent 4,226,741 for a high stereoregular catalyst having an isotactic index value of 94-95% or more Known in In addition, the technology of solid Ziegler-Natta catalysts having high activity and high stereoregularity characteristics is known from European Patent 045,977. Derivatives of certain carboxylic ester compounds, preferably phthalate derivatives, are used as internal electron donors to solid catalyst compounds. Coordination can be made with a titanium compound to produce a Ziegler-Natta catalyst.

이들 주촉매는 알루미늄알킬 화합물과 적어도 하나 이상의 실리콘-에테르 결합을 가지는 실리콘 화합물을 외부전자공여체로하는 알파-올레핀 중합에의해 중합활성도와 입체규칙성을 높일 수 있다.These main catalysts can increase the polymerization activity and stereoregularity by alpha-olefin polymerization using an aluminum alkyl compound and a silicon compound having at least one silicon-ether bond as an external electron donor.

이들 카르복실산 에스테르 화합물의 유도체들 이외에 마그네슘 화합물에 배위하는 촉매의 개발로서 새로운 배위화합물들을 직·간접적으로 연구 개발되어져 왔으며 미국특허 4,971,937에서는 에테르 화합물을 내부전자공여체로 사용하여 기존의 이염화마그네슘을 출발물질로하여 지글러-나타촉매를 제조한 예를 보여주고 있다. 이들 에테르 화합물들은 둘 혹은 그 이상의 에테르 관능기를 가지고 있는 탄화수소 화합물 배위체가 이용되고 있으며 마그네슘 화합물 및 티탄화합물에 만족할 만한 배위체를 이루고 있는 것으로 문헌상에 나타나고 있다.In addition to derivatives of these carboxylic acid ester compounds, new coordination compounds have been researched and developed directly or indirectly as a catalyst for coordinating magnesium compounds. In the US Patent 4,971,937, an ether compound is used as an internal electron donor. An example of the preparation of a Ziegler-Natta catalyst is shown as starting material. These ether compounds have been used in the literature as hydrocarbon compound ligands having two or more ether functional groups and forming satisfactory ligands for magnesium and titanium compounds.

하지만 이들 촉매에 대하여 활성과 입체 규칙성 등에 있어서 각기 많은 차이를 보이고 있으며 재현성 또한 뚜렷하지 않고 촉매의 제조과정과 촉매 성분이 복잡하여 촉매의 분석에 어려움이 있다. 더불어 만들어진 고체 담체의 경우 입자의 크기를 마음대로 조절하는 방법에 있어 난점을 보이고 있으며 크기의 분포도 또한 균일하지 못한 경우가 많았다.However, these catalysts show a lot of differences in activity and stereoregularity, respectively, and the reproducibility is not clear, and the catalyst preparation process and the catalyst components are complicated, which makes it difficult to analyze the catalyst. In addition, in the case of the solid carrier made, it showed a difficulty in controlling the size of the particles at will, and the distribution of the size was also uneven.

일본공개특허 소 58-83006에서는 알콜, 알데히드, 아마이드, 카르복시산을 이용하여 마그네슘 화합물을 용해하고, 여기에 무수벤조산과 디카르복시산 에스테르를 첨가하여 촉매를 제조하는 방법을 보여 주고 있다. 이 방법에 의해 제조된 촉매는 높은 활성과 제조된 중합물이 고입체규칙성을 보여주고는 있지만 매우 많은 양의 사염화티탄늄화합물을 사용하는 문제점을 안고 있다.Japanese Laid-Open Patent Publication No. 58-83006 shows a method of preparing a catalyst by dissolving a magnesium compound using alcohol, aldehyde, amide, and carboxylic acid, and adding benzoic anhydride and dicarboxylic acid ester thereto. The catalyst prepared by this method has the problem of using a very large amount of titanium tetrachloride compounds, although the high activity and high polymer regularity of the polymer produced.

본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로, 과도한 사염화티탄늄화합물을 사용하지 아니하면서, 활성이 높고 입체규칙성이 우수한 올레핀 중합용 지글러-나타 계열 촉매조성물을 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems, and an object thereof is to provide a Ziegler-Natta-based catalyst composition for olefin polymerization having high activity and excellent stereoregularity without using excessive titanium tetrachloride compounds.

지글러-나타 촉매계는 [A] 전이금속 화합물, 조촉매인 [B] 유기알루미늄 화합물 및 선택적 부촉매인 [C] 전자공여체로 형성됨을 특징으로 한다. 촉매 성분 [A]는 일반식 MR+ x(여기서, M은 금속이고, R은 할로겐 또는 하이드로카빌옥시이며 x는 금속의 산화수이다. M은 주기율표 제 ⅣB족 또는 ⅤB족 또는 ⅥB족이고, 바람직하기로는 주기율표 ⅣB족, 더욱 바람직하기로는 티타늄이다. R은 크로린, 브로민, 알콕시 또는 페녹시이며 바람직하기로는 크로린 또는 에톡시이며 더욱 바람직하기로는 크로린이다. 전이금속화합물의 혼합물이 쓰일 수도 있으며, 이 경우 전이금속화합물의 수에는 제한이 없다.The Ziegler-Natta catalyst system is characterized in that it is formed of a [A] transition metal compound, an [A] organoaluminum compound as a cocatalyst, and an [C] electron donor as an optional subcatalyst. The catalyst component [A] is of the general formula MR + x , wherein M is a metal, R is halogen or hydrocarbyloxy and x is the oxidation number of the metal. M is periodic table group IVB or VB or VIB group, preferably Is group IVB of the periodic table, more preferably titanium, R is chlorine, bromine, alkoxy or phenoxy, preferably chlorine or ethoxy and more preferably chlorine. In this case, the number of transition metal compounds is not limited.

담지체는 지글러-나타 촉매와 화학적 반응을 일으키지 않는 화학적으로 비활성인 고체이다. 조촉매 성분 [B]는 유기 알루미늄 화합물로서 일반식 RnAlY3-n(여기서, R은 1∼20 탄소원자들을 갖는 탄화수소이고, Y는 할로겐이며, 0 ≤n ≤3임)으로 표시되는 화합물이다. 부촉매 성분 [C]는 전자공여체로서 촉매 내에 존재하는 내부전자공여체와 중합시 조촉매와 함께 투여되는 외부전자공여체로 구분할 수 있다.The support is a chemically inert solid that does not cause a chemical reaction with the Ziegler-Natta catalyst. Cocatalyst component [B] is an organoaluminum compound represented by the general formula R n AlY 3-n , wherein R is a hydrocarbon having 1 to 20 carbon atoms, Y is halogen, and 0 ≦ n3 to be. The subcatalyst component [C] can be classified into an internal electron donor present in the catalyst as an electron donor and an external electron donor administered together with the promoter during polymerization.

내부전자공여체는 촉매의 제조시 첨가되는 것으로 프탈레이트 계통의 화합물, 카르복시산 에스테르화합물이나 에테르 화합물이 적당하다. 구체적으로 프탈레이트 화합물들은 디이소부틸프탈레이트, 디옥틸프탈레이트, 디부틸프탈레이트, 디프로필프탈레이트, 디페닐프탈레이트 등과 또는 이들의 혼합물을 예시할 수 있다. 또한 에테르 화합물들은 1,3-디에테르형태의 2,2-디메틸1,3-디메톡시프로판, 2,2-디이소프로필-1,3-디메톡시프로판, 2,2-디이소부틸-1,3-디메톡시프로판 , 2,2-디이소부틸-1,3-디에톡시프로판 , 2,2-디이소부틸-1,3-엔부톡시프로판 , 2,2-디페닐-1,3-디메톡시프로판 , 2-메틸-2-이소프로필-1,3-디메톡시프로판 , 1,3-디이소부톡시프로판 , 2-이소프로필-2-이소펜틸-1,3-디메톡시프로판등 또는 이들의 혼합물을 예시할 수 있다. 또한 에스테르 화합물은 각종 벤조에이트 화합물을 예시할 수 있다.The internal electron donor is added during the preparation of the catalyst, and phthalate-based compounds, carboxylic acid ester compounds or ether compounds are suitable. Specifically, the phthalate compounds may exemplify diisobutyl phthalate, dioctyl phthalate, dibutyl phthalate, dipropyl phthalate, diphenyl phthalate, or the like or a mixture thereof. Also ether compounds are 2,2-dimethyl 1,3-dimethoxypropane in the form of 1,3-diether, 2,2-diisopropyl-1,3-dimethoxypropane, 2,2-diisobutyl-1 , 3-dimethoxypropane, 2,2-diisobutyl-1,3-diethoxypropane, 2,2-diisobutyl-1,3-enebutoxypropane, 2,2-diphenyl-1,3- Dimethoxypropane, 2-methyl-2-isopropyl-1,3-dimethoxypropane, 1,3-diisobutoxypropane, 2-isopropyl-2-isopentyl-1,3-dimethoxypropane or the like or these Can be exemplified. In addition, the ester compound can illustrate various benzoate compounds.

외부전자공여체는 구체적으로 하기식(Ⅲ) 의 구조를 가진 화합물, 특히 실리콘 화합물이 주로 사용된다.As an external electron donor, specifically, the compound which has a structure of following formula (III), especially a silicon compound is mainly used.

R1 R 1

||

R4― X ― R2 R 4 ― X ― R 2

||

R3 R 3

(Ⅲ)(Ⅲ)

(여기서 R1, R3는 메톡시, 에톡시, 부톡시 등 알콕시기 또는 아릴알킬기이며, R2는 메틸, 에틸, 부틸 등 알킬기 또는 메톡시, 에톡시, 부톡시 등 알콕시기 또는 아릴알킬기이며, R4는 페닐, 안트라세닐, 나프탈레닐 등 아로마틱기 또는 시클로펜틸, 시클로헥실, 시클로옥틸 등 시클로알리파틱기이며, X는 탄소, 실리콘 등이다.)(Wherein R 1 , R 3 is an alkoxy group such as methoxy, ethoxy, butoxy or an arylalkyl group, R 2 is an alkyl group such as methyl, ethyl, butyl or an alkoxy group such as methoxy, ethoxy, butoxy or an arylalkyl group) , R 4 is an aromatic group such as phenyl, anthracenyl, naphthalenyl or a cycloaliphatic group such as cyclopentyl, cyclohexyl, cyclooctyl, and X is carbon, silicon, etc.)

외부전자공여체는 조촉매 몰당 0.001∼50몰%, 바람직하기로는 0.01∼20몰%, 더욱 바람직하기로는 0.02∼10몰%이어야 한다. 0.001몰% 이하이면 입체규칙성의 개선이 이루어지지 않는 문제점이 발생하며, 50몰% 이상이면 더 이상 입체규칙성에 영향을 미치지 않는다.The external electron donor should be 0.001-50 mol%, preferably 0.01-20 mol%, more preferably 0.02-10 mol% per mole of promoter. If it is 0.001 mol% or less, the problem that the improvement of stereoregularity does not occur, and if it is 50 mol% or more, it no longer affects stereoregularity.

촉매를 제조함에 있어 선구물질 성분을 침전시키는데 사용되는 비이온성 계면활성제는 다가알코올 계열이나 폴리알코올 계열이 사용되며 다가알코올 계열을 사용하였을 때가 더 좋고, 이것을 미네랄 오일과 혼합 사용하였을 때가 가장 좋다.In preparing the catalyst, the nonionic surfactants used to precipitate the precursor components are polyhydric alcohols or polyalcohols, which is better when polyhydric alcohols are used, and this is best mixed with mineral oil.

본 발명에서는 상기한 비이온성 계면활성제와 미네랄 오일의 혼합용액으로 제조된 촉매선구 물질에 프탈레이트화합물을 내부전자 공여체로서 사용하여 고활성, 고입체규칙성 그리고 좋은 입도를 보이는 지글러-나타 계열 촉매를 제조하는 것으로 그 제조방법은 아래와 같다.In the present invention, a Ziegler-Natta-based catalyst having high activity, high stereoregularity and good particle size is prepared by using a phthalate compound as an internal electron donor in the catalyst precursor prepared from the mixed solution of the nonionic surfactant and the mineral oil. The manufacturing method is as follows.

마그네슘계 담체원료로 이염화마그네슘을 사용하여 유기알코올과 방향족탄화수소용매의 혼합용액에 용해시킨 후, 다음 단계에서 티타늄 화합물과의 침전을 도와주는 물질인 무수프탈산을 첨가한다. 용해온도로는 0∼110℃ 특히 50∼70℃를 선호하며 이염화마그네슘 1몰에 대해서 0.1∼10몰의 유기알코올을 투입한다. 유기알코올로는 탄소수 5∼20의 지방성 알코올, 지환식 알코올, 방향족 알코올이 사용되며 2-에틸핵산올이 가장 좋다. 방향족탄화수소용매로는 벤젠, 톨루엔, 크실렌, 염화벤젠 등이 사용될 수 있으며 톨루엔이 가장 좋다.Magnesium dichloride is used as a magnesium-based carrier material to dissolve in a mixed solution of an organic alcohol and an aromatic hydrocarbon solvent. In the next step, phthalic anhydride, which is a substance that helps precipitate with a titanium compound, is added. The melting temperature is preferably 0 to 110 ° C, particularly 50 to 70 ° C, and 0.1 to 10 moles of organic alcohol is added to 1 mole of magnesium dichloride. As the organic alcohol, aliphatic alcohols, alicyclic alcohols and aromatic alcohols having 5 to 20 carbon atoms are used, and 2-ethylnucleic acid is best. As the aromatic hydrocarbon solvent, benzene, toluene, xylene, benzene chloride, etc. may be used, and toluene is the best.

상기와 같이 얻어진 마그네슘화합물 용액의 온도를 0℃로 낮추고, 여기에 미네랄 오일 30ml, 비온성 계면활성제인 프로판 디올 3ml, 염화티탄 20ml 의 혼합용액을 천천히 적가하면서 교반을 지속하면 현탁액이 형성된다. 균일한 크기의 침전을 얻기 위해 사염화티타늄 혼합용액을 적가하는 시간은 1∼3시간이다.The temperature of the magnesium compound solution obtained as described above is lowered to 0 ° C., and stirring is continued while slowly dropwise adding a mixed solution of 30 ml of mineral oil, 3 ml of a nonionic surfactant propane diol, and 20 ml of titanium chloride to form a suspension. The time for dropwise addition of the titanium tetrachloride mixed solution is 1 to 3 hours to obtain a uniform size of precipitate.

상기와 같이 얻어진 고체성분을 톨루엔에 넣고 온도를 80℃로 올려 내부전자공여체를 첨가하고 1시간 유지 후, 사염화티타늄과 톨루엔의 혼합용액을 첨가하여 80∼110℃의 온도에서 1∼3시간 유지하고, 고체성분을 걸러서 핵산, 헵탄, 옥탄, 벤젠, 톨루엔 등과 같은 탄화수소용매로 세정하여 고체표면에 과다 존재하는 티타늄성분이나 다른 불순물을 걸러낸다. 좀 더 구체적으로 이염화마그네슘 1몰에 대하여 사염화티타늄 5∼20몰을 투입하며, 세정용매에 티타늄이 검출되지 않을 때까지 탄화수소용매로 세정한 후 디클로로 에탄을 사용하여 같은 과정의 세정작업을 반복한다.The solid component obtained as described above was added to toluene, the temperature was raised to 80 ° C., and an internal electron donor was added. After 1 hour of holding, a mixed solution of titanium tetrachloride and toluene was added and maintained at a temperature of 80 to 110 ° C. for 1 to 3 hours. In addition, the solid component is filtered and washed with a hydrocarbon solvent such as nucleic acid, heptane, octane, benzene, toluene, etc. to filter out excess titanium or other impurities on the solid surface. More specifically, 5-20 mol of titanium tetrachloride is added to 1 mol of magnesium dichloride, followed by washing with a hydrocarbon solvent until no titanium is detected in the washing solvent, and then repeating the same process using dichloroethane. .

본 발명에서 "중합"이란 말은 단독 중합뿐만 아니라 공중합도 포함한 뜻으로 사용되며 또 "중합체"란 말은 단독 중합체 뿐만 아니라 공중합체도 포함한 뜻으로 사용된다.In the present invention, the term "polymerization" is used to include not only homopolymerization but also copolymerization, and the term "polymer" is used to mean not only homopolymer but also copolymer.

본 발명에서 "폴리프로필렌"이라 함은 프로필렌의 단독중합체 또는 2∼18개의 탄소원자를 가진 다른 α-올레핀과의 블록 또는 불규칙 공중합체를 뜻한다. 다른 α-올레핀의 예로는 에틸렌, 1-부텐, 1-펜텐, 1-헥센 그리고 1-옥텐 등이 있다. 프로필렌과 공중합되는 α-올레핀의 양은 프로필렌 몰당 0∼50몰%까지이다.As used herein, the term "polypropylene" refers to a block or irregular copolymer of propylene homopolymers or other α-olefins having 2 to 18 carbon atoms. Examples of other α-olefins include ethylene, 1-butene, 1-pentene, 1-hexene and 1-octene. The amount of α-olefin copolymerized with propylene is from 0 to 50 mol% per mol of propylene.

중합 반응은 기상, 액상, 또는 용액상으로 행하여 질 수 있다. 액상으로 중합 반응을 행할 때는 탄화 수소 용매를 사용하여도 좋으며 올레핀 자체를 용매로 할 수 도 있다. 용매로 사용되는 탄화수소로는 부탄, 이소부탄, 펜탄, 핵산, 헵탄, 옥탄, 노난, 데칸, 도데칸, 핵사데칸, 옥타데칸 등의 지방족계 탄화수소, 시클로펜탄, 메틸시클로펜탄, 시클로헥산, 시클로옥탄 등의 지환족계 탄화수소, 벤젠, 톨루엔, 키실렌 등의 방향족계 탄화수소, 휘발유, 등유, 경유 등의 석유류분 등을 들 수 있으며, 외부전자공여체는 첨가될 수도 되지 않을 수도 있다. 중합 온도는 통상 -50∼350℃, 바람직하기로는 0∼310℃의 범위이다. -50℃ 미만일 경우에는 중합활성이 좋지 않으며, 350℃ 이상에서는 입체규칙성이 떨어지기 때문에 좋지 않다. 중합 압력은 통상 상압∼250 kg중/cm2, 바람직하기로는 상압∼200 kg중/cm2이며 중합 반응은 회분식, 반연속식, 연속식 중의 어느 방법으로도 행할 수 있다. 250 kg중/cm2이상인 경우에는 공업적, 경제적이라는 측면에서 바람직하지 않다.The polymerization reaction can be carried out in gas phase, liquid phase, or solution phase. When performing a polymerization reaction in a liquid phase, a hydrocarbon solvent may be used, and olefin itself may be used as a solvent. Hydrocarbons used as solvents include aliphatic hydrocarbons such as butane, isobutane, pentane, nucleic acid, heptane, octane, nonane, decane, dodecane, nuxadecane and octadecane, cyclopentane, methylcyclopentane, cyclohexane and cyclooctane Alicyclic hydrocarbons, such as alicyclic hydrocarbons, such as benzene, toluene, and xylene, petroleum, such as gasoline, kerosene, and diesel, etc., and an external electron donor may not be added. Polymerization temperature is -50-350 degreeC normally, Preferably it is the range of 0-310 degreeC. If the temperature is less than -50 ° C, the polymerization activity is not good, and at 350 ° C or higher, the stereoregularity is poor, which is not good. The polymerization pressure is usually at atmospheric pressure to 250 kg / cm 2 , preferably at atmospheric pressure to 200 kg / cm 2, and the polymerization reaction can be carried out by any of batch, semi-continuous and continuous methods. In the case of more than 250 kg / cm 2 It is not preferable in terms of industrial and economic.

상기 촉매에 의해 제조되는 폴리프로필렌에는 통상적으로 첨가되는 열안정제, 광안정제, 난연제, 카본블랙, 피그먼트(pigment), 산화방지제 등이 첨가될 수 있다. 더 나아가 본 발명에 의한 성질과 높은 입체규칙성을 나타내는 폴리프로필렌은 저밀도폴리에틸렌(LDPE), 고밀도폴리에틸렌(HDPE), 폴리프로필렌, 폴리부텐, EP(에틸렌/프로필렌)러버 등과 혼합하여 사용할 수 있다.The heat stabilizer, light stabilizer, flame retardant, carbon black, pigment, antioxidant, etc., which are commonly added, may be added to the polypropylene prepared by the catalyst. Furthermore, polypropylene exhibiting properties and high stereoregularity according to the present invention can be mixed with low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene, polybutene, EP (ethylene / propylene) rubber and the like.

이하, 본 발명을 실시예에 의해서 설명하고자 하나 본 발명이 이들 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described by examples, but the present invention is not limited by these examples.

다음의 실시예에서 입체규칙성은 다음의 방법에 의하여 측정하였다.In the following examples, stereoregularity was measured by the following method.

입체규칙성 (I.I. : Isotacticity Index)Stereoregularity (I.I .: Isotacticity Index)

폴리프로필렌의 입체규칙성은 끓는 헵탄에 녹지 않는 양인 이소탁틱 지수 (Isotacticity Index, I. I.)로 행하였다. 중합체는 미리 열안정제로 처리하여 분석 중의 분해를 방지하였다. 일정량의 완전히 건조시킨 중합체를 팀블 필터(timble filter)에 정량하여 넣은 후 소크렛 형태(Soxhlet type) 추출 장치에서 헵탄으로 추출하였다. 추출시간은 5시간으로 고정하였으며 추출 후, 녹지 않고 남은 중합체를 수거하여 80 ℃에서 진공건조시킨 후, 정량하여 무게를 측정하고, 녹지 않고 남은 중합체의 무게와 원래 넣어준 중합체의 무게비로써 I. I.를 구하였다.Stereoregularity of polypropylene was performed with the Isotacticity Index (I. I.), an amount insoluble in boiling heptane. The polymer was previously treated with a heat stabilizer to prevent degradation during analysis. A certain amount of the completely dried polymer was quantitatively placed in a timing filter and extracted with heptane in a Soxhlet type extraction apparatus. The extraction time was fixed at 5 hours, and after extraction, the remaining polymer was collected and dried in vacuo at 80 ° C., quantitatively weighed, and the weight ratio of the remaining polymer to the weight of the original polymer was calculated. It was.

(실시예 1)(Example 1)

- 지글러-나타 촉매 제조-Ziegler-Natta catalyst preparation

교반기가 있는 글라스 반응기에 무수 염화마그네슘 5g과 톨루엔 30ml, 2-에틸핵산올 24.5ml를 투입하여 400RPM의 속도로 교반하면서 60℃로 온도를 올린 상태에서 맑은 용액이 생성될 때까지 교반을 지속하였다. 맑은 용액이 형성된 후, 온도를 0℃로 낮추고 여기에 미네랄 오일 30ml, 비이온성 계면활성제인 프로판 디올3ml, 염화티탄 20ml의 혼합용액을 천천히 적가하면서 교반을 지속하여 현탁액을 얻었다. 이 용액을 상온에서 1시간 유지한 후 필터로 걸러 촉매 선구물질을 얻었다.5 g of anhydrous magnesium chloride, 30 ml of toluene, and 24.5 ml of 2-ethylnucleic acid were added to a glass reactor with a stirrer, and the stirring was continued until a clear solution was produced while raising the temperature to 60 ° C. while stirring at 400 RPM. After the clear solution was formed, the temperature was lowered to 0 ° C., and a mixture of 30 ml of mineral oil, 3 ml of propane diol as a nonionic surfactant, and 20 ml of titanium chloride was slowly added dropwise to maintain a suspension. The solution was kept at room temperature for 1 hour, and then filtered to obtain a catalyst precursor.

필터링한 촉매 선구 물질을 톨루엔 30ml에 넣고 온도를 80℃로 올려 디이소부틸프탈레이트를 첨가한 후 1시간동안 80℃로 유지하였다. 여기에 사염화티타늄 20ml와 톨루엔 20ml의 혼합 용액을 첨가하여 90℃에서 2시간동안 유지시키는 과정을 두 번 반복하였다. 필터로 거른 후 얻어진 촉매를 정제 헵탄 100ml로 4번 세정후, 디클로로에탄 100ml로 4번 세정 후 고체촉매를 얻었다.The filtered catalyst precursor was placed in 30 ml of toluene, and the temperature was raised to 80 ° C., after which diisobutyl phthalate was added, and maintained at 80 ° C. for 1 hour. A mixed solution of 20 ml of titanium tetrachloride and 20 ml of toluene was added thereto and maintained at 90 ° C. for 2 hours. After filtering by a filter, the obtained catalyst was washed four times with 100 ml of purified heptane, and then washed four times with 100 ml of dichloroethane to obtain a solid catalyst.

촉매의 비표면적은 330 m2/g이었고, 세공용적은 0.48 cc/g이었다. 촉매의 조성을 분석한 결과 티탄 함량이 2.0 중량%이었다.The specific surface area of the catalyst was 330 m 2 / g and the pore volume was 0.48 cc / g. The composition of the catalyst was analyzed and the titanium content was 2.0% by weight.

중합 활성 및 입체규칙성과 폴리머의 평균입경은 <표 1>에 나타내었다.Polymerization activity, stereoregularity and average particle diameter of the polymer are shown in Table 1.

(실시예 2)(Example 2)

실시예 1과 같은 조건하에 실험하였다. 단 비이온성 계면활성제를 에틸렌글리콜로 바꾸었다.Experiment was carried out under the same conditions as in Example 1. However, the nonionic surfactant was changed to ethylene glycol.

중합 활성 및 입체규칙성과 폴리머의 평균입경은 <표 1>에 나타내었다.Polymerization activity, stereoregularity and average particle diameter of the polymer are shown in Table 1.

(실시예 3)(Example 3)

실시예 1과 같은 조건하에 실험하였다. 단 비이온성 계면활성제를 1,2-옥탄디올로 바꾸었다.Experiment was carried out under the same conditions as in Example 1. However, the nonionic surfactant was changed to 1,2-octanediol.

중합 활성 및 입체규칙성과 폴리머의 평균입경은 <표 1>에 나타내었다.Polymerization activity, stereoregularity and average particle diameter of the polymer are shown in Table 1.

(실시예 4)(Example 4)

실시예 1과 같은 조건하에 실험하였다. 단 내부전자공여체를 에틸벤조에이트로 바꾸었다.Experiment was carried out under the same conditions as in Example 1. The internal electron donor was changed to ethyl benzoate.

중합 활성 및 입체규칙성과 폴리머의 평균입경은 <표 1>에 나타내었다.Polymerization activity, stereoregularity and average particle diameter of the polymer are shown in Table 1.

(비교예 1)(Comparative Example 1)

비교를 위하여 상기 실시예와 같은 방법으로 제조된 촉매 대신 비온성 계면활성제의 첨가없이 아래와 같은 방법으로 제조하였다.For comparison, instead of the catalyst prepared in the same manner as in Example, it was prepared in the following manner without the addition of a nonionic surfactant.

이염화마그네슘을 무수 염화마그네슘 5g과 톨루엔 30ml, 2-에틸핵산올 24.5ml에 투입하여 400 RPM의 속도로 교반하면서 60℃로 온도를 올린상태에서 맑은 용액이 생성될 때까지 교반을 지속한다. 맑은 용액이 형성 된 후, 온도를 0℃로 낮추고, 사염화티탄 20ml의 혼합용액을 천천히 적가하면서 교반을 지속한다. 이 용액의 온도를 80℃로 올려 디이소부틸프탈레이트를 첨가한 후 1시간동안 80℃로 유지한다. 여기에 사염화티타늄 20ml와 톨루엔 20ml의 혼합 용액을 첨가하여 90℃에서 2시간동안 유지시키는 과정을 두 번 반복한다. 필터로 거른 후 얻어진 촉매를 정제 헵탄 100ml로 4번 세정 후, 디클로로 에탄 100ml로 4번 세정 후 고체촉매를 얻었다.Magnesium dichloride was added to 5 g of anhydrous magnesium chloride, 30 ml of toluene and 24.5 ml of 2-ethylnucleic acid, and the stirring was continued at a rate of 400 RPM while raising the temperature to 60 ° C until a clear solution was produced. After the clear solution was formed, the temperature was lowered to 0 ° C., and the mixed solution of 20 ml of titanium tetrachloride was slowly added dropwise to continue stirring. The temperature of this solution is raised to 80 ° C., after which diisobutyl phthalate is added, it is maintained at 80 ° C. for 1 hour. To this, a mixture of 20 ml of titanium tetrachloride and 20 ml of toluene was added and maintained at 90 ° C. for 2 hours. The catalyst obtained after filtration was washed four times with 100 ml of purified heptane and then washed four times with 100 ml of dichloroethane to obtain a solid catalyst.

촉매의 비표면적은 279 m2/g이었고 세공용적은 0.38 cc/g이었다. 촉매의 조성을 분석한 결과 티탄 함량이 2.4 중량%이었다.The specific surface area of the catalyst was 279 m 2 / g and the pore volume was 0.38 cc / g. The composition of the catalyst was analyzed and the titanium content was 2.4% by weight.

중합 활성 및 입체규칙성과 폴리머의 평균입경은 <표 1>에 나타내었다.Polymerization activity, stereoregularity and average particle diameter of the polymer are shown in Table 1.

(비교예 2)(Comparative Example 2)

비교예 1과 같이 실험하며 내부전자공여체로써 에틸벤조에이트를 사용하였다.The experiment was carried out as in Comparative Example 1 and ethylbenzoate was used as the internal electron donor.

중합 활성 및 입체규칙성과 폴리머의 평균입경은 <표 1>에 나타내었다.Polymerization activity, stereoregularity and average particle diameter of the polymer are shown in Table 1.

촉매성능 평가Catalytic Performance Evaluation

2L 크기의 오토클레이브반응기를 이용하여 프로필렌의 중합을 행하였다. 반응기 내를 3torr 이하의 진공으로 감압시키고 고순도의 질소를 채워 넣는 과정을 5회 반복하였다. 반응기에 프로필렌을 1.5L/min의 속도로 5분간 흘려준 후, 반응기 내 프로필렌 상압 하에서 수소를 0.34L/min의 속도로 0.5L를 채워 넣었다. 반응기에 프로필렌 450g을 넣은 후, 온도를 25℃로 맞춘 상태에서 삼에틸알루미늄 7.5×10-4몰, 시클로헥실디메톡시메틸실란 또는 에톡시에틸벤조에이트 7.5×10-5몰, 상기에서 제조된 촉매 3.0×10-6몰을 순서대로 투입하여 5분동안 교반속도 450rpm을 유지한 후, 반응기 온도를 70℃로 올려 총반응 시간을 1시간으로 고정하였으며, 에탄올 5ml를 투입하여 중합을 종결하였다. 반응생성물은 약 5 wt% HCl-메탄올에서 24시간 교반한 후 다시 깨끗한 메탄올에서 24시간 교반하였다. 이어 거름종이에 거른 후 약 80 ℃에서 24시간 이상 진공건조시켜 최종 중합생성물을 얻었다. 촉매의 활성은 최종 생성물의 무게로부터 g- polymer/g-catalyst의 단위로 구하였다.Propylene was polymerized using a 2 L autoclave reactor. The reactor was decompressed to a vacuum of 3 torr or less and charged with nitrogen of high purity five times. After propylene was flowed into the reactor at a rate of 1.5 L / min for 5 minutes, 0.5 L was charged at a rate of 0.34 L / min under normal pressure of propylene in the reactor. After putting 450 g of propylene into the reactor, 7.5 × 10 −4 mol of triethylaluminum, 7.5 × 10 −5 mol of cyclohexyldimethoxymethylsilane or ethoxyethylbenzoate with the temperature set at 25 ° C., the catalyst prepared above 3.0 × 10 −6 mol was added sequentially to maintain a stirring speed of 450 rpm for 5 minutes, and then the reactor temperature was raised to 70 ° C. to fix the total reaction time at 1 hour, and 5 ml of ethanol was added to terminate the polymerization. The reaction product was stirred for 24 hours in about 5 wt% HCl-methanol and again for 24 hours in clean methanol. Subsequently, the filter paper was filtered and dried in vacuo at about 80 ° C. for at least 24 hours to obtain a final polymerization product. The activity of the catalyst was determined in units of g-polymer / g-catalyst from the weight of the final product.

상기와 같은 방법으로 제조된 프로필렌중합용 촉매의 중합결과를 아래 <표 1>에 나타내었다.The polymerization results of the propylene polymerization catalyst prepared by the above method are shown in Table 1 below.

계면활성제Surfactants 내부전자공여체Internal electron donor 활성(g-catalyst당)Active (per g-catalyst) 입체 규칙성a Stereoregularity a 평균입경b(㎛)Average particle size b (㎛) 실시예 1Example 1 프로판디올Propanediol 디이소부틸프탈레이트Diisobutyl phthalate 33,00033,000 9797 1,1001,100 실시예 2Example 2 에틸렌글리콜Ethylene glycol 디이소부틸프탈레이트Diisobutyl phthalate 30,00030,000 9494 900900 실시예 3Example 3 1,2-옥탄디올1,2-octanediol 디이소부틸프탈레이트Diisobutyl phthalate 31,00031,000 9595 950950 실시예 4Example 4 프로판디올Propanediol 에틸벤조에이트Ethylbenzoate 29,00029,000 9494 880880 비교예 1Comparative Example 1 -- 디이소부틸프탈레이트Diisobutyl phthalate 27,00027,000 9595 850850 비교예 2Comparative Example 2 -- 에틸벤조에이트Ethylbenzoate 26,00026,000 9494 800800

a끓는 헵탄에서 녹지 않고 남은 양 a quantity left undissolved in boiling heptane

b중합된 폴리프로필렌의 평균입경 b Average particle diameter of polymerized polypropylene

발명에 의해 만들어진 폴리프로필렌은 촉매의 우수한 입도가 그대로 반영되어 입자가 크고 크기분포가 고르며, 입체규칙성 또한 뛰어나므로 각종 사출물, 시트, 판, 필름, 섬유 제품으로의 활용성이 뛰어나다.Polypropylene produced by the invention is reflected in the excellent particle size of the catalyst as it is, the particles are large, the size distribution is even, and the stereoregularity is also excellent, it is excellent in various injection moldings, sheets, plates, films, textile products.

Claims (2)

활성, 고입체규칙성 폴리프로필렌 제조용 촉매에 있어서, 이염화마그네슘을 유기알콜과 방향족 탄화수소의 혼합용매에 용해한 후, 미네랄오일과 비이온성 계면활성제와 사염화티탄의 혼합용액을 첨가하여 현탁액을 형성시킴으로 촉매 선구 물질을 제조하고, 상기 선구물질에 유기프탈레이트 화합물을 내부 전자 공여체로 첨가한 후 할로겐 티탄 화합물을 담지시키는 것을 특징으로 하는 올레핀 중합용 지글러-나타 계열 촉매의 제조방법.In the catalyst for preparing active, high-stereoregular polypropylene, magnesium dichloride is dissolved in a mixed solvent of organic alcohol and aromatic hydrocarbon, and then a suspension is formed by adding a mixed solution of mineral oil, nonionic surfactant and titanium tetrachloride. A method for producing a Ziegler-Natta catalyst for olefin polymerization, comprising preparing a precursor, adding an organophthalate compound to the precursor as an internal electron donor, and then carrying a halogen titanium compound. 삭제delete
KR10-2001-0067492A 2001-10-31 2001-10-31 The Manufacturing Method Of Photo Catalyst For Olefine Polymerization KR100451085B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0067492A KR100451085B1 (en) 2001-10-31 2001-10-31 The Manufacturing Method Of Photo Catalyst For Olefine Polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0067492A KR100451085B1 (en) 2001-10-31 2001-10-31 The Manufacturing Method Of Photo Catalyst For Olefine Polymerization

Publications (2)

Publication Number Publication Date
KR20030035413A KR20030035413A (en) 2003-05-09
KR100451085B1 true KR100451085B1 (en) 2004-10-02

Family

ID=29567246

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0067492A KR100451085B1 (en) 2001-10-31 2001-10-31 The Manufacturing Method Of Photo Catalyst For Olefine Polymerization

Country Status (1)

Country Link
KR (1) KR100451085B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870818B1 (en) 2007-03-28 2008-11-27 삼성토탈 주식회사 Olefin polymerization or copolymerization method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100950160B1 (en) 2009-07-15 2010-03-30 이영주 Open and close apparatus of button sliding type for liquid instrument

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173010A (en) * 1988-12-26 1990-07-04 Tosoh Corp Improved production of stereoregular polyolefin
US4978648A (en) * 1988-09-30 1990-12-18 Himont Incorporated Catalysts for the polymerization of olefins
WO1997023518A1 (en) * 1995-12-21 1997-07-03 Montell North America Inc. Components and catalysts for the polymerization of olefins
KR0161262B1 (en) * 1988-05-31 1999-01-15 에이치.피.아플바이 Components and catalysts for the polymerization of olefins
WO1999057160A1 (en) * 1998-05-06 1999-11-11 Montell Technology Company B.V. Catalyst components for the polymerization of olefins

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0161262B1 (en) * 1988-05-31 1999-01-15 에이치.피.아플바이 Components and catalysts for the polymerization of olefins
US4978648A (en) * 1988-09-30 1990-12-18 Himont Incorporated Catalysts for the polymerization of olefins
KR0140221B1 (en) * 1988-09-30 1998-07-01 에이치.피이.애플바이 Catalysis for the polymerization of olefins
JPH02173010A (en) * 1988-12-26 1990-07-04 Tosoh Corp Improved production of stereoregular polyolefin
WO1997023518A1 (en) * 1995-12-21 1997-07-03 Montell North America Inc. Components and catalysts for the polymerization of olefins
WO1999057160A1 (en) * 1998-05-06 1999-11-11 Montell Technology Company B.V. Catalyst components for the polymerization of olefins

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100870818B1 (en) 2007-03-28 2008-11-27 삼성토탈 주식회사 Olefin polymerization or copolymerization method

Also Published As

Publication number Publication date
KR20030035413A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
JP5597283B2 (en) Olefin polymer production catalyst component, olefin polymerization catalyst and olefin polymer production method
RU2443715C1 (en) Solid titanium catalyst component, olefin polymerisation catalyst and olefin polymerisation method
EP0586389B1 (en) A large-pore polyolefin, a method for its production and a procatalyst containing a transesterification product of a lower alcohol and a phthalic acid ester
JPH10501016A (en) Stereospecific catalyst system for olefin polymerization.
US6433119B1 (en) Polymetallic catalysts, method of preparing and polymers produced thereby
US6214949B1 (en) Polymerization of polyolefins having low melt flow and high molecular weight
CN102292358A (en) Procatalyst composition multiple internal donor having silyl ester and method
JP2003518527A (en) Mixed Ziegler / metallocene catalyst for bimodal polyolefin production
US6339136B1 (en) Process for making propylene homo or copolymers
JP5479734B2 (en) Solid titanium catalyst component, olefin polymerization catalyst and olefin polymerization method
KR100451085B1 (en) The Manufacturing Method Of Photo Catalyst For Olefine Polymerization
JP2008024751A (en) Solid titanium catalyst component, olefin polymerization catalyst and olefin polymerization process
KR20120121822A (en) A solid catalyst for propylene polymerization and a method for preparation of polypropylene using the same
KR101087857B1 (en) Process for preparing ziegler-natta catalyst for olefin polymerization
KR100455914B1 (en) The Manufacturing Method Of Ziegler-Natta Photocatalyst For Olefine Polymerization
KR20020046676A (en) Preparation of Olefin Copolymer by use of Ziegler-Natta Catalyst
JP3399067B2 (en) Electron Donor Combined with Ziegler-Natta Catalyst for Controlling Polyolefin Polydispersity
KR20000026517A (en) Process for preparing ziegler-natta catalyst for olefin polymerization and preparation of polypropylene using catalyst
US20240076422A1 (en) Supported metallocene catalyst, method for preparing the same, and use of the same for preparing polyolefin
US7098164B2 (en) Process for the polymerization of olefins
JPH04359904A (en) Catalyst for production of olefin polymer
KR20020041552A (en) Process for preparing Ziegler-Natta catalyst for polymerization of olefin
KR100574740B1 (en) Method of Producing Ziegler-Natta Catalyst for Poymerizing olefine
JP4427102B2 (en) α-Olefin Polymerization Catalyst and Method for Producing α-Olefin Polymer Using the Same
KR20040097624A (en) Z-N catalyst composition for olefine polymerization and preparation of polyolefine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120619

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20130807

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20140805

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20150812

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee