KR20070102296A - The admixture for preventing the spalling of concrete and the concrete composition that the admixture is included - Google Patents

The admixture for preventing the spalling of concrete and the concrete composition that the admixture is included Download PDF

Info

Publication number
KR20070102296A
KR20070102296A KR1020060034261A KR20060034261A KR20070102296A KR 20070102296 A KR20070102296 A KR 20070102296A KR 1020060034261 A KR1020060034261 A KR 1020060034261A KR 20060034261 A KR20060034261 A KR 20060034261A KR 20070102296 A KR20070102296 A KR 20070102296A
Authority
KR
South Korea
Prior art keywords
concrete
admixture
fiber
spalling
heat
Prior art date
Application number
KR1020060034261A
Other languages
Korean (ko)
Other versions
KR100821973B1 (en
Inventor
이세현
송태협
김긍환
심종우
진보경
안상욱
박동철
양완희
Original Assignee
한국건설기술연구원
주식회사 인트켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국건설기술연구원, 주식회사 인트켐 filed Critical 한국건설기술연구원
Priority to KR1020060034261A priority Critical patent/KR100821973B1/en
Publication of KR20070102296A publication Critical patent/KR20070102296A/en
Application granted granted Critical
Publication of KR100821973B1 publication Critical patent/KR100821973B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/22Glass ; Devitrified glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0079Rheology influencing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

An admixture for preventing the spalling of concrete is provided to have an excellent spalling-resistant effect and prevent workability deterioration and flowability reduction of concrete. An admixture for preventing the spalling of concrete includes a spalling-resistant fiber which forms a continuous particle size distribution, and glass powder. In a disk type grinder, the spalling-resistant fiber and broken glass are simultaneously ground in a weight ratio of 1:5-1:15 to obtain a continuous particle size distribution and form glass powder. The spalling-resistant fiber is one, two or more selected from polypropylene fiber, nylon fiber, and polyvinylalcohol fiber.

Description

콘크리트 폭열 방지 혼화재 및 그 혼화재가 포함된 콘크리트 조성물 {The admixture for preventing the spalling of concrete and the concrete composition that the admixture is included}The admixture for preventing the spalling of concrete and the concrete composition that the admixture is included}

본 발명은 콘크리트 폭열 방지 혼화재 및 혼화재가 포함된 콘크리트 조성물에 대한 것으로서, 상세하게는 콘크리트의 작업성 저하 및 유동성 감소를 막아 주며 화재시 폭열을 방지할 수 있는 콘크리트 폭열 방지 혼화재 및 그 혼화재가 포함된 콘크리트 조성물에 관한 것이다.The present invention relates to a concrete anti-expandable admixture and a concrete composition containing the admixture, and in detail, prevents deterioration of workability and fluidity of the concrete and includes a concrete anti-expansion admixture and its admixture capable of preventing thermal expansion in a fire. It relates to a concrete composition.

일반적으로 가장 널리 사용되는 콘크리트의 규격은 재령 28일에서의 기준강도가 21~24Mpa의 범위이다. 그런데 근래 초고층 건축물의 등장과 콘크리트 제조 기술의 발전으로 고강도, 고유동의 특성을 갖는 고성능 콘크리트가 등장하게 되었으며, 이러한 고성능 콘크리트는 초고층 건축물의 하층부에 집중적으로 사용되고 있는 실정이다. 이러한 고성능 콘크리트에 대한 분류는 그 기준이나 분류기관에 따라 다르지만 보통 재령 28일의 기준강도가 40~45Mpa 이상인 경우를 말한다. 이러한 고 성능 콘크리트는 전체 레미콘의 사용량에서 차지하는 비율은 적지만 고층 건축물의 하층부의 기둥, 보 등에 구조재로써 매우 중요한 부분에 사용되고 있다. In general, the most widely used concrete is in the range of 21 to 24 Mpa of reference strength at 28 days of age. However, with the advent of ultra high-rise buildings and the development of concrete manufacturing technology, high-performance concrete having high strength and high flow characteristics has emerged. Such high-performance concrete is being used intensively in the lower floors of high-rise buildings. The classification of such high-performance concrete depends on the standard or classification agency, but usually refers to the case where the reference strength of 28 days is over 40 ~ 45Mpa. Such high-performance concrete is used in a very important part as a structural material in the pillars and beams of the lower floor of a high-rise building, although the ratio of the total ready-mixed concrete usage is small.

콘크리트가 고강도의 성능을 나타내기 위해서는 그 밀도가 커야하며 콘크리트의 내부구조가 밀실하여야 한다. 그러나 이러한 경우 화재시 콘크리트 구조물이 직접 고열을 받게 되면 콘크리트 내부에 수증기압이 발생하게 되는데 밀실하고 치밀한 내부구조로 인하여 수증기가 자연적으로 콘크리트 외부로 방출되지 못하여 결국 수증기압이 콘크리트의 응력 한계를 넘게 되어 심한 폭음과 함께 표면이 박리, 탈락하는 폭열 현상이 발생하게 된다. 이러한 현상은 콘크리트의 강도가 고강도로 갈수록 심하게 일어나며, 특히 40~45Mpa 강도 이상의 콘크리트에서 더욱 심각한 문제로 보고되고 있다. In order for concrete to exhibit high strength, its density must be large and its internal structure must be tight. However, in this case, if the concrete structure is directly heated in a fire, water vapor pressure is generated inside the concrete. Due to the dense and dense internal structure, water vapor is not naturally released to the outside of the concrete, and eventually the water vapor pressure exceeds the stress limit of the concrete, resulting in severe binge drinking. In addition, a thermal expansion phenomenon occurs in which the surface peels and falls off. This phenomenon occurs as the strength of concrete increases with high strength, and is reported as a more serious problem, especially in concrete of 40 ~ 45Mpa strength or more.

일단 화재에 의한 고열에 의해 탈락한 부분은 계속하여 콘크리트의 박리와 탈락 가능성에 노출되며 결국 콘크리트 내부의 철근이 외부에 노출되어 그대로 고열을 받게 되는 현상이 일어난다. 알려진 바와 같이 철근은 열에 의한 강성 저하가 심한 소재이므로 열에 의한 철근의 강성 저하 및 콘크리트 단면의 손실은 결국 구조물의 붕괴를 초래하게 된다. Once the part is dropped by the high heat caused by the fire, the part is continuously exposed to the possibility of peeling and dropping of the concrete, and eventually, the reinforcing bar inside the concrete is exposed to the outside, which causes a high temperature. As is known, the reinforcing bar is a material with severe degradation of stiffness due to heat, and thus, the stiffness of the reinforcing bar and the loss of the concrete cross section due to heat eventually lead to the collapse of the structure.

이미 콘크리트는 건축법규상 내화구조로 인정되어 특별한 내화대책이 요구되지 않는 재료이나 이러한 건축법규의 제정시에는 고강도 콘크리트의 수요가 거의 없었으므로 콘크리트 폭열 현상에 대한 충분한 검토가 이루어지지 않았던 것으로 이해된다. 그러나 앞서 설명한 고성능 콘크리트의 폭열 현상은 콘크리트가 고열을 받는 즉시 대부분 30분 이내에 발생하여 콘크리트 구조물 내부의 사용자가 피난할 수 있는 충분한 시간을 확보하지 못할 수도 있다. 따라서 이러한 고성능 콘크리트의 폭열 현상에 대한 대책은 관련 업계의 중요한 해결 과제가 되고 있는 실정이다. It is understood that concrete has already been recognized as a fireproof structure under the building code, so that no special fire-resistance measures are required. However, the thermal explosion phenomenon of the high-performance concrete described above may occur within 30 minutes as soon as the concrete is subjected to high heat, and thus may not have enough time for the user inside the concrete structure to evacuate. Therefore, the countermeasure against the thermal explosion phenomenon of the high-performance concrete has become an important solution for the related industry.

이러한 고성능 콘크리트의 폭열 현상에 대한 대책으로 이미 내열성이 약한 폴리프로필렌 등의 합성섬유를 폭열방지섬유로서 콘크리트 제조시 일정량 혼입하는 방안이 제시되고 있으며, 학계에서는 그 효과를 상당부분 인정하고 있다. 화재시 합성섬유가 폭열이 발생하는 온도 이전 융점에 도달하여 액체 상태로 존재를 하다가 대부분 주위의 매트릭스 조직에 흡수되어 빈공간을 만들며, 이렇게 형성된 빈 공간을 통해 물질 이동이 원활하게 이루어지기 때문에 콘크리트 내부의 압력은 감소하게 되고 그 결과 폭열방지 효과가 나타나게 된다. 즉 혼입된 합성섬유가 녹은 자리가 내부 수증기를 외부로 방출시키는 통로 역할을 하게 되는 것이다.As a countermeasure against the heat-expanding phenomenon of high-performance concrete, a method of mixing a certain amount of synthetic fiber such as polypropylene, which has low heat resistance, as an anti-expanding fiber, has been proposed. In case of fire, the synthetic fiber reaches the melting point before the thermal explosion occurs and exists in the liquid state, but is absorbed by most of the surrounding matrix tissue to create an empty space. The pressure of the pressure decreases, and as a result, an anti-thermal effect is obtained. That is, the site where the mixed synthetic fibers are melted serves as a path for releasing internal water vapor to the outside.

그런데 이러한 방법은 이미 일반적인 대책 방안으로 이를 응용한 방안이 여러 가지로 실용화되어 있으나, 섬유를 콘크리트 내부에 균질하게 분산시키기 어렵고 균질히 분산되어도 콘크리트의 작업성이 저하하게 되며, 유동성 감소가 빠르게 일어나는 단점이 있다. However, this method is a general countermeasure that has already been applied to a number of practical applications, but it is difficult to homogeneously disperse the fibers inside the concrete, the workability of the concrete is deteriorated even if it is dispersed homogeneously, and the fluidity decreases quickly. There is this.

본 발명의 목적은 폭열 방지 효과가 뛰어나며 콘크리트 폭열 방지 혼화재의 배합으로 인해 콘크리트의 작업성 저하 및 유동성 감소를 가져오지 않는 콘크리트 폭열 방지 혼화재 및 그 혼화재를 포함한 콘크리트 조성물을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a concrete anti-expandable admixture and a concrete composition including the admixture having excellent anti-expanding effect and which do not result in reduced workability and reduced fluidity of concrete due to the mixing of the anti-expandable admixture of concrete.

본 발명은 콘크리트 폭열 방지 혼화재 및 그 혼화재가 포함된 콘크리트 조성물에 대한 것으로서, 더욱 자세하게는 연속입도를 형성하는 폭열방지섬유와 유리분말을 포함한 콘크리트 폭열 방지 혼화재 및 이를 콘크리트 배합시 포함한 콘크리트 조성물에 대한 것이다. The present invention relates to a concrete anti-expandable admixture and a concrete composition containing the admixture, and more particularly, to a concrete anti-expandable admixture including a heat-resistant fiber and a glass powder to form a continuous particle size and a concrete composition including the same when mixing concrete. .

폭열방지섬유가 단일입도가 아닌 연속입도를 형성할 경우 슬럼프 저감이 줄어들게 되며, 폭열 방지에도 더욱 우수한 효과를 나타내게 된다. 폭열방지섬유가 단일입도를 형성할 경우 섬유의 길이가 길수록 수증기가 빠져나가는 통로 형성에 유리하나 분산시키는 데 어려움이 있으며 짧을수록 폭열 방지 효과가 미미하게 나타나는 문제점이 있으나 연속입도를 형성할 경우 이를 보완해 더욱 우수한 폭열 방지 효과가 나타나는 것이다. 유리 분말의 경우 콘크리트 내부에 섬유의 분산을 더욱 용이하게 해주는 역할을 하며, 화재시 고온에서의 흡열 효과에 의해 콘크리트의 폭열 방지에 부가적인 역할을 하게 된다.If the anti-expandable fiber forms a continuous particle size rather than a single particle size, the slump reduction is reduced, and the anti-explosion effect is also excellent. If the heat-resistant fiber forms a single particle size, the longer the fiber is, the better the formation of a passage through which water vapor escapes, but it is difficult to disperse. The better anti-explosion effect is shown. In the case of the glass powder serves to facilitate the dispersion of the fiber in the concrete, and plays an additional role in preventing the heat of the concrete due to the endothermic effect at high temperatures in the event of fire.

콘크리트 폭열 방지 혼화재는 폴리프로필렌 섬유나 나일론 섬유, 폴리비닐 알콜 섬유 등의 폭열방지섬유 중 하나 또는 둘 이상을 선택하여 유리 파쇄물과 1:5~1:15의 중량비로 혼합하여 디스크형 분쇄기에 동시에 분쇄함으로써, 섬유가 연속입도를 형성할 수 있도록 하여 제조된다. 1:5 이하의 중량비의 경우 유리 파쇄물로 인한 효과가 저하되며 1:15 이상의 중량비의 경우 유리 파쇄물의 비율이 높아짐에 따라 콘크리트의 강도가 저하되게 된다. 합성섬유를 단독으로 분쇄할 경우 섬유 가 잘 분쇄되지 않으며 연속입도가 형성되지 못하나 유리 파쇄물과 함께 분쇄할 경우 연속입도를 얻는데 유효한 효과를 나타내게 된다. Concrete anti-expandable admixture is selected from polypropylene fiber, nylon fiber, polyvinyl alcohol fiber, etc. and one or more anti-explosion fibers, mixed with glass shreds in a weight ratio of 1: 5 ~ 1: 15 By doing so, the fibers can be formed to form a continuous particle size. In the case of the weight ratio of 1: 5 or less, the effect due to the glass shredding is reduced. In the case of the weight ratio of 1:15 or more, the strength of the concrete decreases as the ratio of the glass shredding increases. When pulverizing synthetic fibers alone, the fibers are not pulverized well and continuous particle size is not formed. However, when the fiber is crushed together with glass crushed particles, it is effective to obtain continuous particle size.

이때 분쇄에 있어 간격, 분쇄시간, 분쇄속도를 조절하여 원하는 정도로 입도를 제어할 수 있는데 5mm와 20mm의 합성섬유를 유리파쇄물과 함께 분쇄하는 경우에는 0.05~20mm의 연속 입도를 얻을 수 있다.At this time, the particle size can be controlled to the desired degree by adjusting the interval, grinding time, and grinding speed in the grinding process. When the 5mm and 20mm synthetic fibers are ground together with the glass crushed material, a continuous particle size of 0.05 ~ 20mm can be obtained.

이렇게 합성섬유와 유리 파쇄물을 동시에 분쇄한 폭열 방지 혼화재는 콘크리트에 5~40kg/m3의 범위로 사용한다. 5kg/m3이하에서는 효과가 저하되며 40kg/m3이상에서는 콘크리트 강도 등 본래의 성능에 영향을 주는 문제가 있다. 이때 바람직하게는 20~30kg/m3의 범위로 사용한다.Thus, the anti-expandable admixture obtained by simultaneously crushing the synthetic fiber and glass shreds is used in the range of 5 ~ 40kg / m 3 in concrete. In 5kg / m 3 or less and effect a reduction in the 40kg / m 3 or more, there is a problem that affects the performance of the original, such as concrete strength. At this time, preferably used in the range of 20 ~ 30kg / m 3 .

이하에서는 본 발명의 실험예를 참조하여 상세히 설명한다.Hereinafter, with reference to the experimental example of the present invention will be described in detail.

1. 폭열 방지 혼화재의 제조1. Preparation of anti-expansion admixture

실험에 사용한 폭열 방지 혼화재의 제조는 다음과 같이 실시하였다. The manufacture of the heat-expandable admixture used for the experiment was performed as follows.

<표 1> 폭열 방지 혼화재의 제조<Table 1> Preparation of anti-heating admixture

원재료 비율(중량%)Raw material ratio (wt%) 분쇄방법  Grinding method 폴리프로필렌 섬유Polypropylene fiber 유리파쇄물Glass shreds 5mm5 mm 10mm10 mm 3mm이하3mm or less 55 55 9090 Disk type GrinderDisk type grinder

폭열 방지 혼화재는 5mm과 10mm의 폴리프로필렌 섬유를 유리파쇄물과 상기 <표 1> 의 비율에 따라 혼합분쇄하여 제조된다.The anti-expansion admixture is prepared by mixing and grinding 5 mm and 10 mm polypropylene fibers according to the ratio of the glass crushed product to the <Table 1>.

이렇게 하여 제조된 폭열 방지 혼화재는 0.05~10mm의 연속입도를 형성하게 된다. The anti-expansion admixture prepared in this way forms a continuous particle size of 0.05 ~ 10mm.

2. 콘크리트의 배합2. Mixing of Concrete

실험을 위한 콘크리트의 배합은 28일 기준강도 40Mpa를 나타낼 수 있는 다음과 같은 배합을 기준으로 하였다. The mix of concrete for the experiment was based on the following mix, which can represent a base strength of 40 Mpa for 28 days.

<표 2> 콘크리트 배합 기준<Table 2> Concrete Mixing Standards

콘크리트 배합(kg/m3)Concrete mix (kg / m 3 ) 시멘트  cement 고로슬래그  Blast furnace slag 플라이애쉬  Fly ash 단위수량  Unit quantity 굵은 골재  Coarse aggregate 잔골재  Fine aggregate 나프탈렌제 AE 감수제Naphthalene AE water reducing agent 262262 140140 6666 185185 819819 753753 2.342.34

실험에서는 결합재로 국내 레미콘사에서 사용 중인 포틀랜드 시멘트, 고로슬래그 미분말, 플라이애쉬를 사용하였으며, 그 특성은 다음과 같다. In the experiment, Portland cement, blast furnace slag powder, and fly ash, which are used in Remicon, Korea, were used as binders.

<표 3> 실험에 사용한 결합재의 특성<Table 3> Properties of the binder used in the experiment

구분   division 물리적 특성Physical properties 화학성분(%)Chemical composition (%) 비중  importance 분말도 (cm2/g)Powder level (cm 2 / g) SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaO  CaO MgO  MgO SO3 SO 3 K2O K 2 O Na2O Na 2 O Ig- lossIg- loss 포틀랜드 시멘트 Portland cement 3.14  3.14 3250  3250 20.48  20.48 4.88  4.88 3.04  3.04 63.47  63.47 3.56  3.56 2.40  2.40 1.13  1.13 0.11  0.11 1.85  1.85 고로슬래그 미분말 Blast furnace slag powder 2.89  2.89 3850  3850 33.81  33.81 15.23  15.23 0.47  0.47 41.25  41.25 8.02  8.02 -  - 0.38  0.38 0.31  0.31 0.42  0.42 플라이애쉬Fly ash 2.232.23 36503650 61.0261.02 19.4119.41 6.326.32 5.085.08 -- -- 2.342.34 -- 0.840.84

3. 폭열방지섬유 및 폭열 방지 혼화재의 혼입량3. The mixing amount of the anti-expandable fiber and the anti-expandable admixture

한편 폭열 방지효과를 확인하기 위한 폭열방지섬유와 폭열 방지 혼화재의 혼입량은 다음과 같이 계획하여 실험하였다. Meanwhile, the mixing amount of the anti-explosion fiber and the anti-explosion admixture to confirm the anti-explosion effect was planned and tested as follows.

<표 3> 배합별 폭열방지섬유 및 폭열 방지 혼화재의 혼입량<Table 3> Mixing amount of anti-expandable fiber and anti-expandable admixture by compound

구분  division 폭열방지섬유 및 폭열 방지 혼화재의 혼입량(kg/m3) Mixing amount of anti-expandable fiber and anti-expandable admixture (kg / m 3 ) PP 섬유(5mm)PP fiber (5mm) PP 섬유(10mm)PP fiber (10 mm) 폭열 방지 혼화재Anti-expansion admixture 비교예    Comparative example 대조군Control A-1A-1 1.01.0 A-2A-2 2.52.5 A-3A-3 4.04.0 B-1B-1 1.01.0 B-2B-2 2.52.5 B-3B-3 4.04.0 실시예 Example C-1C-1 10.010.0 C-2C-2 20.020.0 C-3C-3 30.030.0

이때 비교예는 섬유를 사용하지 않은 경우와, 보통 폭열 방지를 위하여 현재 사용되고 있는 폭열방지섬유 중 폴리프로필렌 섬유 5mm와 10mm를 사용하였으며, 실시예는 상기 <표 1>에 따라 5mm와 10mm의 폴리프로필렌 섬유와 유리파쇄물을 혼합분쇄한 폭열 방지 혼화재를 이용하였다. In this case, the comparative example used 5 mm and 10 mm of polypropylene fiber among the anti-expansion fibers currently being used for the case of not using the fiber and to prevent the thermal expansion. An anti-expanding admixture obtained by mixing and pulverizing fibers and glass shreds was used.

4. 실험결과4. Experimental Results

실험결과는 다음과 같다. The experimental results are as follows.

<표 5> 실험결과<Table 5> Experimental Results

구 분division 슬럼프slump 공기량Air volume 압축강도(MPa)Compressive strength (MPa) 콘크리트 폭열 등급Concrete thermal rating cmcm %% 3일3 days 7일7 days 28일28 days 1One 22 33 44 55 비교예    Comparative example 대조군Control 17.017.0 4.74.7 27.027.0 36.436.4 56.756.7 A-1A-1 16.516.5 4.44.4 25.425.4 29.429.4 48.648.6 A-2A-2 16.016.0 4.24.2 23.823.8 27.727.7 44.544.5 A-3A-3 14.014.0 4.54.5 24.124.1 28.328.3 43.243.2 B-1B-1 15.515.5 4.44.4 25.925.9 28.428.4 46.446.4 B-2B-2 15.515.5 4.64.6 24.424.4 28.128.1 44.344.3 B-3B-3 13.513.5 4.24.2 23.923.9 26.326.3 42.342.3 실시예 Example C-1C-1 16.516.5 4.44.4 26.226.2 28.328.3 45.645.6 C-2C-2 16.516.5 4.74.7 24.824.8 27.827.8 46.246.2 C-3C-3 16.016.0 4.34.3 23.523.5 26.926.9 43.443.4

여기서 콘크리트 폭열 시험은 15cm*30cm의 원형 공시체를 내화시험 가열로에서 표준가열 곡선에 따라 30분간 가열을 실시하였으며, 폭열 방지 효과를 1~5등급까지로 표시하였다. 이때 1등급의 경우 폭열에 의한 시험체의 파손이 거의 없는 매우 양호한 경우를 나타내며, 5등급의 경우 폭열 현상이 매우 심하게 발생하여 시험체의 형상이 거의 유지되지 않은 경우를 기준으로 하여 등급을 선정하였다. Here, the concrete thermal test was conducted for 30 minutes according to the standard heating curve of the circular specimen of 15cm * 30cm in the fireproof test furnace, and the anti-expansion effect was expressed as 1 to 5 grades. In this case, the grade 1 represents a very good case where there is almost no damage of the test specimen due to the explosion. In the case of the grade 5, the grade was selected based on the case where the bursting phenomenon occurred so severely that the shape of the specimen was hardly maintained.

실험 결과에서 보는 바와 같이 대조군의 경우 슬럼프는 17.0cm, 공기량은 4.7%, 압축강도는 재령 28일에서 56.7Mpa를 나타내었으며, 다른 비교예에서는 섬유의 혼입에 따라 공기량, 슬럼프 및 압축강도가 다소 저하하는 경향을 나타내었다. 그러나 폭열 방지 혼화재를 사용한 결과 슬럼프와 공기량에서 대조군의 배합에 비하여 다소 저하하는 경향을 나타내기 하였으나, 섬유를 혼입한 일련의 A나 B의 비교 예들 보다는 슬럼프의 저하 정도가 다소 완화되었다. 이는 폭열 방지 혼화재를 사용한 경우 다른 비교예의 경우와 달리 섬유의 배합으로 인한 콘크리트의 작업성 저하 및 유동성 감소가 완화됨을 나타낸다.As shown in the experimental results, the control group showed a slump of 17.0 cm, an air content of 4.7%, and a compressive strength of 56.7 Mpa at 28 days of age. Showed a tendency to. However, the result of using the anti-expansion admixture showed a tendency to decrease slightly in the slump and the air amount compared to the control formulation, but the decrease in the slump was slightly reduced than the comparative examples of the A or B series containing the fiber. This indicates that when the anti-expansion admixture is used, the workability decreases and the fluidity decrease of the concrete due to the blending of fibers is reduced, unlike in the other comparative examples.

뿐만 아니라 폭열 시험 결과는 가열 후 시험체의 외관과 형상을 관찰한 결과 대조군의 경우 심하게 폭열을 일으키고 형체가 남아있지 않은 경우도 있었으며, 섬유가 혼입된 시험체는 일부 폭열이 발생하여 시험체의 일부가 탈락되었으며, 폭열 방지 혼화재가 혼입된 시험체의 경우 비교적 원래의 형상을 유지하여 섬유를 혼입한 경우보다 우수한 폭열 방지 효과를 나타내었다. In addition, the results of the thermal test showed that after the heating, the appearance and shape of the test body were observed, and in the case of the control group, there was a severe rupture and no shape remained.In the test sample containing the fiber, part of the test sample was dropped due to some explosion. In the case of the test specimen containing the anti-expansion admixture, the anti-expansion effect was superior to that of the fiber in the comparatively maintained original shape.

이상에서 설명한 바와 같이 본 발명에 따르면, 폭열 방지 효과가 뛰어나며 콘크리트 폭열 방지 혼화재의 배합으로 인해 콘크리트의 작업성 저하 및 유동성 감소를 가져오지 않는 콘크리트 폭열 방지 혼화재 및 그 혼화재를 포함한 콘크리트 조성물을 제공할 수 있게 된다.As described above, according to the present invention, it is possible to provide a concrete anti-expandable admixture and a concrete composition including the admixture, which is excellent in anti-expanding effect and does not reduce workability and decrease fluidity of concrete due to the mixing of the anti-expandable admixture of concrete. Will be.

Claims (5)

콘크리트 폭열 방지 혼화재에서,In concrete heat-resistant admixture, 연속입도를 형성하는 폭열방지섬유와 유리분말을 포함하는 것을 특징으로 하는 콘크리트 폭열 방지 혼화재.Concrete anti-expandable admixture comprising a heat-resistant fiber and a glass powder to form a continuous particle size. 제 1항에서,In claim 1, 디스크형 분쇄기에서 폭열방지섬유와 유리 파쇄물을 1:5~1:15의 중량비로 동시에 분쇄하여 연속입도가 형성되고 유리분말이 형성되는 것을 특징으로 하는 콘크리트 폭열 방지 혼화재.In the disk-type grinder crushing the anti-explosion fibers and glass shreds at a weight ratio of 1: 5 to 1:15 at the same time to form a continuous particle size and concrete powder preventing admixture, characterized in that the glass powder is formed. 제 2항에서,In claim 2, 상기 폭열방지섬유는 5mm이상 20mm이하의 길이의 폭열방지섬유들 중에서 하나를 선택하거나 또는 서로 다른 길이의 폭열방지섬유를 둘 이상 선택함으로써 폭열방지섬유 자체의 입도가 0.05mm이상 20mm이하의 범위 내에서 연속입도를 형성하는 것을 특징으로 하는 콘크리트 폭열 방지 혼화재.The heat-resistant fiber is selected from one of the heat-resistant fiber of length 5mm or more and 20mm or by selecting two or more heat-resistant fiber of different length within the particle size of the heat-resistant fiber itself within the range of 0.05mm or more and 20mm or less. Concrete anti-expansion admixture, characterized in that to form a continuous particle size. 제 3항에서,In claim 3, 상기 폭열방지섬유는 폴리프로필렌 섬유, 나일론 섬유, 폴리비닐 알콜 섬유 중 하나 또는 둘 이상을 선택하는 것을 특징으로 하는 콘크리트 폭열 방지 혼화재.The anti-expandable fiber is a concrete anti-expandable admixture, characterized in that at least one selected from polypropylene fiber, nylon fiber, polyvinyl alcohol fiber. 제 1항 내지 제 4항 중 어느 한 항의 콘크리트 폭열 방지 혼화재를 콘크리트 배합시 5~40kg/m3를 사용하여 배합하는 것을 특징으로 하는 콘크리트 폭열 방지 혼화재가 포함된 콘크리트 조성물.A concrete composition comprising the concrete anti-expandable admixture of any one of claims 1 to 4, characterized in that the compound is mixed using 5 to 40kg / m 3 when concrete mixing.
KR1020060034261A 2006-04-14 2006-04-14 The admixture for preventing the spalling of concrete and the concrete composition that the admixture is included KR100821973B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060034261A KR100821973B1 (en) 2006-04-14 2006-04-14 The admixture for preventing the spalling of concrete and the concrete composition that the admixture is included

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060034261A KR100821973B1 (en) 2006-04-14 2006-04-14 The admixture for preventing the spalling of concrete and the concrete composition that the admixture is included

Publications (2)

Publication Number Publication Date
KR20070102296A true KR20070102296A (en) 2007-10-18
KR100821973B1 KR100821973B1 (en) 2008-04-15

Family

ID=38817333

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060034261A KR100821973B1 (en) 2006-04-14 2006-04-14 The admixture for preventing the spalling of concrete and the concrete composition that the admixture is included

Country Status (1)

Country Link
KR (1) KR100821973B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100899838B1 (en) * 2008-12-12 2009-05-27 주식회사 엠코 Concrete composition having high performance and fire-resistant
KR100921406B1 (en) * 2009-02-27 2009-10-14 (주)대우건설 Fire-resistant concrete with high impact property
CN116119997A (en) * 2023-04-04 2023-05-16 山东景明生态园林有限公司 Greening concrete and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914356B1 (en) 2008-01-10 2009-08-28 유진기업 주식회사 The admixture for preventing the spalling for enhancing fire-resistance of concrete and the concrete composition that the admixture is included
KR100914355B1 (en) 2008-01-10 2009-08-28 유진기업 주식회사 Admixture for preventing the spalling of concrete and Concrete including such admixture

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4293343A (en) * 1978-02-03 1981-10-06 Owens-Corning Fiberglas Corporation Mortars and cements having improved freeze-thaw properties and method of achieving same
JP2538459B2 (en) * 1991-09-05 1996-09-25 ニチアス株式会社 Manufacturing method of machinable high strength insulation
KR960041106A (en) * 1995-05-19 1996-12-19 이서형 Manufacturing method of ceramic mortar mainly using kaolin
FR2778654B1 (en) * 1998-05-14 2000-11-17 Bouygues Sa CONCRETE COMPRISING ORGANIC FIBERS DISPERSED IN A CEMENTITIOUS MATRIX, CONCRETE CEMENTITIOUS MATRIX AND PREMIXES
KR100334140B1 (en) * 2001-01-08 2002-04-25 박승범 Manufacturing Methods of Concrete Interlocking Block and Permeable Concrete Interlocking Block for Roadway and Sidewalk Using Crushed Aggregates from Waste Glasses and Blast Furnace Cement.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100899838B1 (en) * 2008-12-12 2009-05-27 주식회사 엠코 Concrete composition having high performance and fire-resistant
KR100921406B1 (en) * 2009-02-27 2009-10-14 (주)대우건설 Fire-resistant concrete with high impact property
CN116119997A (en) * 2023-04-04 2023-05-16 山东景明生态园林有限公司 Greening concrete and preparation method thereof

Also Published As

Publication number Publication date
KR100821973B1 (en) 2008-04-15

Similar Documents

Publication Publication Date Title
Karahan Transport properties of high volume fly ash or slag concrete exposed to high temperature
Olgun et al. Development of ceramic tiles from coal fly ash and tincal ore waste
Frigione et al. Sustainable polymer-based phase change materials for energy efficiency in buildings and their application in aerial lime mortars
KR100893495B1 (en) The manufacturing method and composition of low-heat, high-strength concrete for self compaction
US10315952B2 (en) Geopolymer cement
KR100821973B1 (en) The admixture for preventing the spalling of concrete and the concrete composition that the admixture is included
KR101140561B1 (en) High flowing-low heating concrete composition for carbon dioxide reduction
CA2985958C (en) Concrete composition with very low shrinkage
CN111960782B (en) Environment-friendly lightweight concrete prepared from waste sintered bricks and tiles and preparation method thereof
CN114591048B (en) High-strength concrete with fire resistance and explosion resistance and preparation method thereof
KR101999010B1 (en) Complexed slag fine aggregate comprising ferronickel furnace slag and granulated blast furnace slag
KR100686353B1 (en) High fire resistance and ultra high strength concrete composition
KR101243523B1 (en) High Strength Concrete Composition for High-Rise Building
KR20100009991A (en) Refractory and quake-proof mortar composition and manufacturing method of high-strength refractory and quake-proof panel using the same
KR101008322B1 (en) Spalling prevention material composed of fiber and powder, and high strength refractory concrete using the same
KR101390132B1 (en) high strength concrete composition using rapid hardening type portland cement
CN112079603B (en) Large-fluidity neutron radiation prevention concrete and preparation method thereof
Nasruddin et al. Thermogravimetric analysis on rice husk ashes-based geopolymer paste
CN100365052C (en) Flame-retardant polypropylene composite materials with palygorskite as flame retardant
Abd-ElAziz et al. Influence of silica fume incorporation on the fresh, thermal and mechanical properties of expanded polystyrene (EPS) foamed concrete
CN115716735A (en) Low-heat high-crack-resistance large-volume radiation-proof concrete and preparation method thereof
KR102011335B1 (en) Manufacturing Method of Hybrid Shrinkage Reducing Agent for Dry Mortar
KR100644083B1 (en) The fibres for preventing the spalling of concrete
KR101610188B1 (en) Cement for high strength concrete binder and manufacturing process thereof
KR102158500B1 (en) Low-carbon insulated concrete using bottom ash aggregate and bubbles

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
E90F Notification of reason for final refusal
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20070808

Effective date: 20080328

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130306

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140403

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee