KR20070092779A - Polyimide film and metal-clad laminates - Google Patents

Polyimide film and metal-clad laminates Download PDF

Info

Publication number
KR20070092779A
KR20070092779A KR1020060022033A KR20060022033A KR20070092779A KR 20070092779 A KR20070092779 A KR 20070092779A KR 1020060022033 A KR1020060022033 A KR 1020060022033A KR 20060022033 A KR20060022033 A KR 20060022033A KR 20070092779 A KR20070092779 A KR 20070092779A
Authority
KR
South Korea
Prior art keywords
polyimide film
unit represented
polyimide
formula
mol
Prior art date
Application number
KR1020060022033A
Other languages
Korean (ko)
Other versions
KR101231941B1 (en
Inventor
박종민
문정열
송석정
안태환
Original Assignee
주식회사 코오롱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코오롱 filed Critical 주식회사 코오롱
Priority to KR1020060022033A priority Critical patent/KR101231941B1/en
Publication of KR20070092779A publication Critical patent/KR20070092779A/en
Application granted granted Critical
Publication of KR101231941B1 publication Critical patent/KR101231941B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

A polyimide film is provided to have excellent characteristics such as dimensional stability, high elasticity, a low coefficient of linear thermal expansion, heat resistance, and flexing resistance and be useful as a base film for flexible wiring boards and copper clad laminates. A polyimide film is formed of polyimide having a molecular weight of 5,000-10,000,000 and comprising 0.25-90.25mol% of a repeat unit represented by the following formula 1, 0.25-90.25mol% of a repeat unit represented by the following formula 2, 0.25-90.25mol% of a repeat unit represented by the following formula 3, and 0.25-90.25mol% of a repeat unit represented by the following formula 4. In the formulae 3 and 4, Ar represents the following formula (a).

Description

폴리이미드 필름 및 금속 적층체{Polyimide film and metal-Clad Laminates}Polyimide film and metal-clad laminates

본 발명은 폴리이미드 필름 및 금속 적층체에 관한 것으로서, 더욱 상세하게는 2종의 디아민류와 2종의 디안하이드류로부터 얻어지는 폴리아믹산으로부터 제조하여, 치수안정성, 고탄성율, 저선열팽창계수, 내굴곡성 등이 우수한 특성을 가져 가요성 배선판, 동박 적층판 등의 베이스 필름 등으로 유용한 폴리이미드 필름과 이를 포함하는 금속 적층체에 관한 것이다. The present invention relates to a polyimide film and a metal laminate, and more particularly, prepared from polyamic acid obtained from two kinds of diamines and two kinds of dianhydrides to provide dimensional stability, high modulus of elasticity, low linear thermal expansion coefficient, and flex resistance. The present invention relates to a polyimide film having excellent properties and useful as a base film such as a flexible wiring board and a copper foil laminate, and a metal laminate including the same.

폴리이미드 필름은 고내열성, 내한성, 내약품성, 전기절연능력과 기계적 강도와 같은 탁월한 특성이 공지되어 있으며, 전기절연필름, 열절연필름 및 가요성 배선판(FPC)용 베이스 필름, 연성 동박 적층체 등의 베이스 필름으로 널리 이용되고 있다.Polyimide films are known for their excellent properties such as high heat resistance, cold resistance, chemical resistance, electrical insulation ability and mechanical strength, and are widely used in electrical insulation films, thermal insulation films, base films for flexible wiring boards (FPCs), flexible copper foil laminates, etc. It is widely used as a base film.

예를 들어, FPC는 유연하고 얇은 베이스필름 상에 회로패턴을 형성하고 이 회로 표면에 카바레이 필름이라고 부르는 필름을 맞붙인 구조를 기본적인 구조로 하고 있으며, 이 베이스 필름이나 카바레이 필름으로서는 기계특성, 전기특성, 내화학약품성, 내열성, 내환경성 등의 요구특성을 만족시킬 수 있는 재료로서 현재는 폴리이미드 필름이 가장 널리 사용되고 있다. For example, FPC has a basic structure in which a circuit pattern is formed on a flexible and thin base film and a film called a cabaret film is bonded to the surface of the circuit. Currently, polyimide film is most widely used as a material capable of satisfying the required characteristics such as chemical resistance, heat resistance, and environmental resistance.

일반적으로 폴리이미드 필름은 선팽창계수가 작고 탄성율이 높고 흡수팽창계수가 낮은 것이 요망된다. 단지 가요성 배선판이나 연성 동박 적층체(FCCL) 등과 같이 폴리이미드 필름과 동박을 맞붙여 가공하는 경우 필름의 선팽창계수는 동박과의 선팽창계수와 크게 다른 것은 바람직하지 못하다. 즉, 폴리이미드 필름과 동박의 선팽창계수가 크게 다르면, 맞붙인 제품에 휘어짐이 생기고 가공하기 어렵게 되어 그 결과 전체적인 치수정밀도나 생산수율이 저하될 수 있다. 따라서, 폴리이미드 필름은 동박과의 선팽창계수의 차가 작은 것이 바람직하다. In general, polyimide films are desired to have a low coefficient of linear expansion, a high modulus of elasticity, and a low absorption expansion coefficient. When the polyimide film and the copper foil are joined together and processed, such as a flexible wiring board or a flexible copper foil laminate (FCCL), it is not preferable that the coefficient of linear expansion of the film is significantly different from that of the copper foil. That is, if the linear expansion coefficients of the polyimide film and the copper foil are significantly different, warpage may occur in the bonded product and it may be difficult to process, and as a result, the overall dimensional accuracy and production yield may decrease. Therefore, it is preferable that the polyimide film has a small difference in the coefficient of linear expansion with copper foil.

이러한 특성을 갖는 폴리이미드 필름을 얻기 위해서, 여러 가지의 시도가 이루어지고 있다. 우선, 폴리이미드필름의 고탄성율화를 위해서는, 강직한 구조의 모노머 즉, 직선성이 높은 모노머를 사용하면 좋은 것은 널리 알려지고 있다. 그런데, 직선성이 높은 모노머를 다량 사용하면 필름의 선팽창계수는 지나치게 낮게 되어, 동박과의 맞붙임 용도에는 알맞지 않게 된다.In order to obtain the polyimide film which has such a characteristic, various attempts are made | formed. First, in order to increase the modulus of elasticity of polyimide film, it is widely known that a monomer having a rigid structure, that is, a monomer having high linearity may be used. By the way, when a large amount of monomer having high linearity is used, the coefficient of linear expansion of the film becomes too low, which is unsuitable for bonding with copper foil.

비교적 높은 탄성율을 실현하면서도 선팽창계수를 지나치게 내리지 않도록, 비교적 강직한 구조를 갖는 모노머를 사용한 예도 있다. 그러나, 강직하고 직선성이 높은 모노머를 사용하면, 일반적으로는 필름의 유연성은 손상되고, 가요성 배선판 등의 이점 중 하나인 절판(folded plate) 가능이라는 점에, 곤란이 생길 가능성이 있다.There is an example in which a monomer having a relatively rigid structure is used so as to realize a relatively high elastic modulus but not lower the coefficient of linear expansion too much. However, when a rigid, high linearity monomer is used, the flexibility of the film is generally impaired, which may cause difficulty in the fact that a folded plate, which is one of advantages such as a flexible wiring board, is possible.

다시 말해, 베이스 필름의 가요성을 높이기 위해서는 화학구조적으로 굴곡성이 높은 폴리이미드로 이루어지는 필름을 사용할 수 있지만, 일반적으로 굴곡성이 높은 폴리이미드는 선팽창계수가 크기 때문에 이를 절연제로 사용한 가요성 배선판의 경우는 휨이나 꼬임을 발생하기 쉽다는 결점을 갖는다. 반대로, 선팽창계수가 작은 폴리이미드를 선택한 경우에는 필름 자체의 가요성이 없어지고 매우 취약해지므로 얻어지는 가용성 배선판의 굴곡성까지도 저하되어 버린다는 문제가 있다는 것이다.In other words, in order to increase the flexibility of the base film, a film made of a chemically flexible polyimide may be used. However, in general, a flexible wiring board using the polyimide having high flexibility has a large coefficient of linear expansion and thus used as an insulation material. It has the drawback that it is easy to generate warpage or twist. On the contrary, when the polyimide having a small coefficient of linear expansion is selected, the flexibility of the film itself is lost and becomes very fragile, so that the flexibility of the obtained soluble wiring board is also lowered.

한편, 반도체 패키지 용도 등으로서는, 반도체의 신뢰성의 관점에서, 특히 흡수율은 가능한 한 낮은 것이 요청되고, 치수안정성의 관점에서 흡습팽창계수도 낮은 것이 요청된다. 흡수율이나 흡습팽창계수를 내리기 위해서는, 분자구조 중의 이미드기 양을 감하는 것이 유효하다. 이 때문에, 굴곡기를 주쇄 중에 복수 포함하는 긴 사슬의 모노머가 사용되는 것이 많다. 그러나 이 결과, 탄성율의 저하나 선팽창계수가 과도한 증대를 초래하고, 치수안정성이 희생된다. 극단적인 경우는, 예를 들면 200℃ 이하의 저온에서 유리전이온도(Tg)를 갖는 것과 같이 열가소성을 나타내게 되어 베이스 필름으로서 사용하기에는 알맞지 않게 된다. 직선성으로 긴 모노머를 사용하면, 분자사슬의 패킹이 어렵게 되고, 충분한 인성을 발현할 수 없고, 경우에 따라서는 필름화하는 것 자체가 곤란하게 된다. On the other hand, for semiconductor package applications and the like, in particular, the absorption rate is requested to be as low as possible in view of the reliability of the semiconductor, and the absorption coefficient is also low in view of the dimensional stability. In order to lower the water absorption rate and the hygroscopic expansion coefficient, it is effective to reduce the amount of imide groups in the molecular structure. For this reason, the monomer of long chain which contains two or more bending machines in the main chain is used in many cases. As a result, however, the elastic modulus and the linear expansion coefficient are excessively increased, and dimensional stability is sacrificed. In extreme cases, thermoplastics are exhibited, for example, having a glass transition temperature (Tg) at a low temperature of 200 ° C. or lower, which makes them unsuitable for use as a base film. When a linear monomer is used, packing of the molecular chain becomes difficult, sufficient toughness cannot be expressed, and in some cases, filming itself becomes difficult.

이와 같이, 폴리이미드필름의 특성으로서는, 고탄성율, 저선열팽창계수, 흡수성을 저하시키는 것 이외에도 고려해야 할 점은 많다. 그러나, 어느 쪽의 특성을 만족시키고자 하면, 다른 특성이 희생되는 등, 복수의 좋은 특성을 더불어 가지는 폴리이미드필름을 얻는 것은 특히 곤란한 상황이다.Thus, as a characteristic of a polyimide film, there are many points to consider besides reducing high elastic modulus, low coefficient of thermal expansion, and water absorption. However, if one of the characteristics is to be satisfied, it is particularly difficult to obtain a polyimide film having a plurality of good characteristics, such as sacrificing other characteristics.

이에 본 발명자들은 상기와 같은 문제점을 해결하고 치수안정성, 고탄성, 저선열팽창계수, 내열성, 내굴곡성 등이 우수한 특성을 가져 가요성 배선판, 동박 적층판 등의 베이스 필름 등으로 유용한 폴리이미드 필름을 제공하는 데 그 목적이 있다.Accordingly, the present inventors have solved the above problems and have excellent properties such as dimensional stability, high elasticity, low coefficient of thermal expansion, heat resistance, flex resistance, and the like to provide a polyimide film useful as a base film such as a flexible wiring board and a copper foil laminate. Its purpose is.

본 발명자들은 상술한 요구에 비추어, 특정한 조성의 폴리이미드 필름으로서 여러 가지 특성 밸런스를 고도로 실현할 수 있는 폴리이미드 필름을 제공하는 데 그 목적이 있다. MEANS TO SOLVE THE PROBLEM In view of the above-mentioned request | requirement, this inventor aims at providing the polyimide film which can highly implement | achieve various characteristics balance as a polyimide film of a specific composition.

또한, 이와 같은 폴리이미드 필름이 적용된, 동박 적층판과 같은 금속 적층체를 제공하는 데도 그 목적이 있다.Moreover, the objective is also providing the metal laminated body like a copper foil laminated board to which such a polyimide film was applied.

이와 같은 목적을 달성하기 위한 본 발명의 폴리이미드 필름은 다음 화학식 1로 표시되는 반복단위 0.25 ~ 90.25 몰%, 다음 화학식 2로 표시되는 반복단위 0.25 ~ 90.25 몰%, 다음 화학식 3으로 표시되는 반복단위 0.25 ~ 90.25 몰% 및 다음 화학식 4로 표시되는 반복단위 0.25 ~ 90.25 몰%를 포함하는 분자량 5,000 내지 10,000,000의 폴리이미드로 이루어진 것임을 그 특징으로 하다. Polyimide film of the present invention for achieving the above object is a repeating unit represented by the following formula 1 0.25 ~ 90.25 mol%, the repeating unit represented by the following formula 2 0.25 ~ 90.25 mol%, the repeating unit represented by the following formula It is characterized by consisting of polyimide having a molecular weight of 5,000 to 10,000,000 including 0.25 to 90.25 mol% and 0.25 to 90.25 mol% of repeating units represented by the following formula (4).

화학식 1Formula 1

Figure 112006016622131-PAT00007
Figure 112006016622131-PAT00007

화학식 2Formula 2

Figure 112006016622131-PAT00008
Figure 112006016622131-PAT00008

화학식 3Formula 3

Figure 112006016622131-PAT00009
Figure 112006016622131-PAT00009

상기 식에서, Ar은

Figure 112006016622131-PAT00010
로 표시된다.Wherein Ar is
Figure 112006016622131-PAT00010
Is displayed.

화학식 4Formula 4

Figure 112006016622131-PAT00011
Figure 112006016622131-PAT00011

상기 식에서, Ar은

Figure 112006016622131-PAT00012
로 표시된다.Wherein Ar is
Figure 112006016622131-PAT00012
Is displayed.

본 발명의 폴리이미드 필름은 보다 더 내굴곡성 등을 향상시키기 위해 무기입자가 분산된 것일 수 있으며, 이때 무기입자는 입자 크기가 0.1~10㎛인 실리카 또는 석영 분말, 티타늄옥사이드, 알루미늄옥사이드, 지르콘 분말, 오가노 클레이, 마그네슘 옥사이드, 탄산칼슘 및 산화아연 중에서 선택된 1종 이상의 것일 수 있다. In the polyimide film of the present invention, inorganic particles may be dispersed in order to further improve the flex resistance, and the inorganic particles may be silica or quartz powder, titanium oxide, aluminum oxide, zircon powder having a particle size of 0.1 to 10 μm. It may be one or more selected from organo clay, magnesium oxide, calcium carbonate and zinc oxide.

본 발명의 폴리이미드 필름은 50℃, 60% RH 조건 하에서 24시간 정치한 후의 치수변형율이 1.0% 이하인 특성을 만족하며; 파단시 신장율이 20% 이상이며 텐터 내 고정방향의 파단신장율과 이에 수직한 방향에 대한 파단신장율의 차가 30% 이하인 특성을 만족한다. 또한, 100 내지 200℃ 범위의 평균선열팽창계수가 10~30ppm이며 250℃에서 1시간 유지 후 치수변형율이 0.1% 이하이고 유리전이온도가 250℃ 이상인 특성을 만족하고; IPC-TM-650, 2.4.3에 의거 내굴곡성 테스트기를 이용하여 측정한 내굴곡성이 100,000회 이상인 특성을 만족하는 것을 그 특징으로 한다. The polyimide film of the present invention satisfies the property of having a dimensional strain of 1.0% or less after standing for 24 hours at 50 ° C. and 60% RH; Elongation at break is 20% or more, and the difference between the elongation at break in the fixed direction and the elongation at break in the direction perpendicular to the tenter is 30% or less. In addition, the average coefficient of thermal expansion in the range of 100 to 200 ℃ 10 to 30ppm and satisfies the characteristics of the dimensional strain is 0.1% or less and the glass transition temperature of 250 ℃ or more after 1 hour holding at 250 ℃; According to IPC-TM-650, 2.4.3, the characteristic is that it satisfies the characteristic that the bending resistance measured by the bending resistance tester is 100,000 times or more.

이와 같은 폴리이미드 필름은 금속 적층체에 적용될 수 있는데, 바람직하게는 베이스 필름으로 적합하다. Such a polyimide film can be applied to a metal laminate, and is preferably suitable as a base film.

이와같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.

본 발명은 화학식 1로 표시되는 반복단위, 화학식 2로 표시되는 반복단위, 화학식 3으로 표시되는 반복단위 및 화학식 4로 표시되는 반복단위를 포함하여 선형으로 불규칙하게 배열한 폴리이미드로 이루어진 폴리이미드 필름에 관한 것이다. The present invention is a polyimide film comprising a polyimide linearly and irregularly including a repeating unit represented by Formula 1, a repeating unit represented by Formula 2, a repeating unit represented by Formula 3, and a repeating unit represented by Formula 4. It is about.

본 발명에 따른 폴리이미드 필름은 유기용매의 존재 하에서 2종의 디아민류와 2종의 디안하이드류로부터 폴리아믹산을 제조하는 과정으로부터 시작되는 바, 여기서 2종의 디아민류는 4,4'-디아미노 페닐 에테르(이하, ODA라 함)와 4-아미노-N-(4-아미노페닐)벤즈아마이드(이하, DABA라 함)이다. 구체적으로는 총 디아민류 함량 중 ODA를 χ몰%로 사용하고, DABA를 (100-χ)몰%(여기서, χ는 5.0≤χ≤95.0)로 사용할 수 있다. The polyimide film according to the present invention starts from the process of preparing a polyamic acid from two diamines and two dianhydrides in the presence of an organic solvent, wherein the two diamines are 4,4'-dia. Minophenyl ether (hereinafter referred to as ODA) and 4-amino-N- (4-aminophenyl) benzamide (hereinafter referred to as DABA). Specifically, ODA may be used as χ mol% in the total diamine content, and DABA may be used as (100-χ) mol% (where χ is 5.0 ≦ χ ≦ 95.0).

디안하이드라이드류로는 피로멜리트산 이무수물(Pyromellitic dianhydride, 이하 PMDA)과 3,4,3',4'-비페닐 테트라카르복실산 이무수물(3,4,3',4'-biphenyl tetracarboxylic dianhydride, 이하 BPDA) 또는 3,4,3',4'-벤조페논 테트라카복실릭 이무수물(이하, BTDA라 함)을 사용한다. 구체적으로는 전체 디안하이드라이드류 함량 중 PMDA를 ξ몰%로 사용하고, BPDA 또는 BTDA를 (100-ξ)몰%(여기서, ξ는 5.0≤ξ≤95.0)로 사용한다. Dianhydrides include pyromellitic dianhydrides (PMDA) and 3,4,3 ', 4'-biphenyl tetracarboxylic dianhydrides (3,4,3', 4'-biphenyl tetracarboxylic). dianhydride (hereinafter BPDA) or 3,4,3 ', 4'-benzophenone tetracarboxylic dianhydride (hereinafter referred to as BTDA) is used. Specifically, PMDA is used as ξmole% in the total dianhydride contents and (100-ξ) mol% (wherein ξ is 5.0 ≦ ξ ≦ 95.0) in BPDA or BTDA.

이와 같은 2종의 디아민류와 2종의 디안하이드라이드류를 사용한 폴리아믹산의 중합은 통상의 폴리아믹산의 중합방법에 따르는 바, 디아민류와 디안하이드류의 반응비나 반응조건 등이 각별히 한정되는 것은 아니다. The polymerization of the polyamic acid using two kinds of diamines and two kinds of dianhydrides is carried out according to the conventional polymerization method of polyamic acid, and the reaction ratios and reaction conditions of the diamines and dianhydrides are particularly limited. no.

이와 같은 폴리아믹산 중합체로부터 폴리이미드 필름을 제조하는 방법으로서는, 일반적으로 이미드화를 수행하는 방법에 따라서 그 방법이 나뉘는 바, 가열에 의해 탈수하는 열적 방법과; 탈수제 또는 이미드화 촉매를 사용하는 화학적 방법도 있다. 이 중의 어느 방법을 사용하더라도 좋고, 화학적 방법과 열적 방법 양쪽을 병용하는 것도 할 수 있다. 그런데, 탈수제나 촉매를 첨가하여 가열, 건조하는 화학적 방법에 의하면, 열적 방법보다도 효율이 좋고 우수한 특성이 필름에 부여될 수 있다. 탈수제 또는 이미드화 촉매를 사용하지 않는 경우라 하더라도, 본 발명의 모노머들을 사용하면 제조공정에서 연신공정을 넣는 등의 방법에 의해 동등의 특성을 실현하는 것도 가능하지만 생산성의 면에서 화학적 방법이 바람직하다. As a method of manufacturing a polyimide film from such a polyamic acid polymer, the method is generally divided according to the method of performing imidation, The thermal method which dehydrates by heating; There is also a chemical method using a dehydrating agent or an imidization catalyst. Any of these methods may be used, or both chemical and thermal methods may be used in combination. By the way, according to the chemical method which adds a dehydrating agent and a catalyst, and heats and drys, the characteristic which is more efficient and excellent than a thermal method can be provided to a film. Even when a dehydrating agent or an imidization catalyst is not used, the monomers of the present invention can be used to achieve the same characteristics by a drawing process, for example, but a chemical method is preferable in terms of productivity. .

이러한 탈수제는 예컨대, 무수초산 등의 지방족 산무수물, 방향족 산무수물 등을 들 수 있다. 이미드화에 사용되는 촉매는 피리딘, α-피콜린, β-피콜린, 트 리메틸아민, 디메틸아닐린, 트리에틸아민, 이소퀴논 등의 제3급아민 등을 들 수 있다. Such dehydrating agents include aliphatic acid anhydrides such as acetic anhydride, aromatic acid anhydrides, and the like. As a catalyst used for imidation, tertiary amines, such as pyridine, (alpha)-picoline, (beta)-picoline, trimethylamine, dimethylaniline, triethylamine, isoquinone, etc. are mentioned.

이하의 실시예 등에서는 이미드화의 화학적 방법의 예를 들지만, 본 발명이 이에 한정되는 것은 아니다. In the following Examples, although the chemical method of imidation is given, this invention is not limited to this.

구체적인 이미드화의 화학적 방법을 이용한 폴리이미드 필름의 제조의 일예를 살피면, 제조된 폴리아믹산 용액을 탈수제와 반응시켜 폴리아믹산의 적어도 일부가 폴리이소이미드를 갖는 겔 필름을 형성하고, 수득된 겔 필름을 250~400℃에서 이미드화한 후 400℃ 이상에서 2차 열처리하는 방법이다. Looking at one example of the preparation of a polyimide film using a specific chemical method of imidization, the prepared polyamic acid solution is reacted with a dehydrating agent to form a gel film having at least a portion of the polyamic acid having polyisoimide, and the obtained gel film After the imidization at 250 ~ 400 ℃ is a method of secondary heat treatment at 400 ℃ or more.

이와 같이 얻어진 폴리이미드 필름은 상기 화학식 1로 표시되는 반복단위 0.25 ~ 90.25 몰%, 화학식 2로 표시되는 반복단위 0.25 ~ 90.25 몰%, 화학식 3으로 표시되는 반복단위 0.25 ~ 90.25 몰% 및 화학식 4로 표시되는 반복단위 0.25 ~ 90.25 몰%를 포함하여 선상으로 불규칙하게 배열한 분자량 5,000 내지 10,000,000의 폴리이미드로 이루어진 것이다. Thus obtained polyimide film is 0.25 ~ 90.25 mol% of repeating units represented by Formula 1, 0.25 ~ 90.25 mol% of repeating units represented by Formula 2, 0.25 ~ 90.25 mol% of repeating units represented by Formula 3 and Formula 4 It comprises a polyimide having a molecular weight of 5,000 to 10,000,000 irregularly arranged linearly, including 0.25 to 90.25 mol% of the repeating units indicated.

이와 같은 폴리이미드 필름은 두께에 관해서는 어떤 제한이 없으나 바람직하게는 10 내지 300 ㎛의 범위, 바람직하게는 12 내지 225 ㎛ 범위내이다. Such polyimide film is not limited in terms of thickness but is preferably in the range of 10 to 300 mu m, preferably in the range of 12 to 225 mu m.

한편, 본 발명의 폴리이미드 필름은 무기입자가 분산된 것일 수 있는 바, 필름 상에 무기입자의 분산은 폴리아믹산을 제조한 다음 여기에 무기입자를 혼합하여 분산시킨 후, 이로부터 폴리이미드 필름을 제조하는 방법을 통해 수행되어질 수 있다. On the other hand, the polyimide film of the present invention may be a dispersion of the inorganic particles, the dispersion of the inorganic particles on the film to prepare a polyamic acid, and then mixed by dispersing the inorganic particles therein, from which the polyimide film It can be carried out through the manufacturing method.

여기서, 무기입자는 입자크기가 0.1 내지 10㎛인 실리카, 석영분말, 티타늄 옥사이드, 알루미늄옥사이드, 지르콘 분말, 오가노 클레이, 마그네슘 옥사이드, 탄산칼슘 및 산화아연 중에서 선택된 1종 이상의 것을 들 수 있는데, 폴리아믹산 전체 고형분 함량 100중량부에 대해 0.001 내지 10중량부 되도록 혼합되는 것이 바람직하다. Here, the inorganic particles may be one or more selected from silica, quartz powder, titanium oxide, aluminum oxide, zircon powder, organo clay, magnesium oxide, calcium carbonate and zinc oxide having a particle size of 0.1 to 10 μm. It is preferably mixed so as to be 0.001 to 10 parts by weight based on 100 parts by weight of the total acid content of the total acid.

만일, 분산되는 무기입자의 크기가 10㎛ 보다 큰 것이면 무기입자가 폴리이미드 필름에 돌출되어 외관 및 물리적 성질에 영향을 줄 수 있다. 또한 그 함량이 폴리아믹산 전체 고형분 함량 100중량부에 대해 10중량부를 초과하게 되면 분산상의 어려움으로 미분산 입자가 발생하여 폴리이미드 필름에 결함으로 작용할 수 있다.If the size of the inorganic particles to be dispersed is larger than 10 μm, the inorganic particles may protrude on the polyimide film and affect appearance and physical properties. In addition, when the content exceeds 10 parts by weight based on 100 parts by weight of the total solid content of the polyamic acid, finely dispersed particles may be generated due to difficulty in dispersing and may act as a defect in the polyimide film.

이와 같은 적절한 크기의 입자를 분산시키게 되면 폴리이미드 필름의 인장 계수(Tensile Modulus)를 증가시켜 내굴곡성이 우수한 폴리이미드 필름을 제공할 수 있다. Dispersing such a suitable size of particles may increase the tensile modulus of the polyimide film to provide a polyimide film having excellent bending resistance.

이와 같이 얻어진 본 발명의 폴리이미드 필름은 50℃, 60% RH 조건 하에서 24시간 정치한 후의 치수변형율이 1.0% 이하인 특성을 만족한다. The polyimide film of the present invention thus obtained satisfies the property that the dimensional strain after standing for 24 hours at 50 ° C. and 60% RH is 1.0% or less.

그리고, 파단시 신장율이 20% 이상이며 텐터 내 고정방향의 파단신장율과 이에 수직한 방향에 대한 파단신장율의 차가 30% 이하인 특성을 만족한다. 여기서, 텐터 내 고정방향의 파단신장율과, 이에 수직한 방향에 대한 파단신장율의 차이는 필름의 기계적 강도의 균일 특성을 규정할 수 있는 변수로서, 만일 이 값이 30% 초과면 필름내에 기계적 강도가 불균일한 문제가 있음을 보여주는 것이다. In addition, it satisfies the characteristic that the elongation at break is 20% or more and the difference between the elongation at break in the fixed direction and the elongation at break in the direction perpendicular to the tenter is 30% or less. Here, the difference between the elongation at break in the fixed direction and the elongation at break in the tenter is a variable that can define the uniformity of the mechanical strength of the film. If this value is more than 30%, the mechanical strength in the film is increased. It shows that there is an uneven problem.

본 발명의 폴리이미드 필름은 또한 100℃ 이상 200℃ 이하의 평균선열팽창계 수가 10~30ppm이며 250℃에서 1시간 유지 후 치수변형율이 0.1% 이하이고 유리전이온도가 250℃ 이상인 특성을 만족하는 바, 이와 같은 평균선열팽창계수는 동박과의 조합에 있어서 적당한 정도의 값이며, 250℃에서 1시간 유지 후 치수변형율이 0.1% 이하를 만족하고 또한 유리전이온도가 250℃ 이상이라는 것은 필름의 내열성이 우수하다는 점을 뒷받침한다. The polyimide film of the present invention also has an average linear thermal expansion coefficient of 10 to 30ppm at 100 ° C or more and 200 ° C or less, and satisfies the characteristics that the dimensional strain is 0.1% or less and the glass transition temperature is 250 ° C or more after 1 hour of holding at 250 ° C. The average coefficient of thermal expansion is an appropriate value in combination with copper foil, and satisfies the dimensional strain of 0.1% or less after maintaining at 250 ° C. for 1 hour, and the glass transition temperature of 250 ° C. or higher indicates that the film has excellent heat resistance. Support the point.

한편, 본 발명의 폴리이미드 필름은 IPC-TM-650, 2.4.3에 의거 내굴곡성 테스트기를 이용하여 측정한 내굴곡성이 100,000회 이상인 우수한 내굴곡성을 보인다. On the other hand, the polyimide film of this invention shows the outstanding flex resistance with 100,000 times or more of bending resistance measured using the flex resistance test machine based on IPC-TM-650, 2.4.3.

이와 같은 본 발명의 폴리이미드 필름은 금속 적층체의 제조에 사용될 수 있는 데, 바람직하기로는 동박 적층체의 베이스 필름이나 FPC의 베이스 필름 등으로 유용한 특성을 갖는다. Such a polyimide film of the present invention can be used for the production of a metal laminate, and preferably has properties useful as a base film of a copper foil laminate or a base film of an FPC.

이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이 이들 실시예에 의해 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by these Examples.

각 예에서 사용하는 약호는 다음과 같다.The abbreviation used in each example is as follows.

PMDA : Pyromellitic dianhydridePMDA: Pyromellitic dianhydride

BTDA : 3,4,3`,4`-benzophenone tetracarboxylic dianhydrideBTDA: 3,4,3`, 4`-benzophenone tetracarboxylic dianhydride

BPDA : 3,4,3`,4`-biphenyl tetracarboxylic dianhydrideBPDA: 3,4,3`, 4`-biphenyl tetracarboxylic dianhydride

ODA : 4, 4'-diamino phenyl etherODA: 4, 4'-diamino phenyl ether

p-PDA : p-phenylene diaminep-PDA: p-phenylene diamine

DABA : 4-Amino-N-(4-aminophenyl) benzamideDABA : 4-Amino- N- (4-aminophenyl) benzamide

TPER : 1,3-bis(4-aminophenoxy) benzeneTPER: 1,3-bis (4-aminophenoxy) benzene

<합성예>Synthesis Example

다음 표 2에 나타낸 바와 같은 조성 및 함량으로 디아민류로서 p-PDA 또는 ODA, TPER, DABA를, 그리고 디안하이드류로서 PMDA, BTDA 또는 BPDA를 사용하여 통상의 방법에 따라 폴리아믹산을 합성하였다. 표 2 기재에서 함량은 몰%이다.The polyamic acid was synthesized according to a conventional method using p-PDA or ODA, TPER, DABA as diamines, and PMDA, BTDA or BPDA as dianhydrides in compositions and contents as shown in Table 2 below. In Table 2, the content is mole%.

디아민류와 디안하이드류를 1:1몰비 되도록 사용하여 폴리아믹산을 제조하였다. 폴리아믹산을 원소분석을 통해 확인하였는 바, 일예로서 합성예 1, 11, 15, 20을 통해 얻어진 폴리아믹산 생성물 확인결과는 다음 표 1과 같다. 표 1은 원소분석 결과를 나타낸 것이다.A polyamic acid was prepared using diamines and dianhydrides in a 1: 1 molar ratio. Polyamic acid was confirmed through elemental analysis. As an example, polyamic acid product confirmation results obtained through Synthesis Examples 1, 11, 15, and 20 are shown in Table 1 below. Table 1 shows the results of elemental analysis.

CC OO NN HH 합성예 1Synthesis Example 1 65.47 %65.47% 23.69 %23.69% 7.41 %7.41% 3.40 %3.40% 합성예 11Synthesis Example 11 64.96 %64.96% 24.03 %24.03% 7.48 %7.48% 3.49 %3.49% 합성예 15Synthesis Example 15 63.38 %63.38% 26.35 %26.35% 6.87 %6.87% 3.36 %3.36% 합성예 20Synthesis Example 20 58.87 %58.87% 29.46 %29.46% 8.58 %8.58% 3.05 %3.05%

합성예Synthesis Example 디아민류(100몰%)Diamines (100 mol%) 디안하이드라이드(100몰%)Dianhydride (100 mol%) p-PDAp-PDA ODAODA TPERTPER DABADABA PMDAPMDA BTDABTDA BPDABPDA 1One -- 2020 -- 8080 1010 9090 -- 22 -- 2020 -- 8080 5050 5050 -- 33 -- 2020 -- 8080 9090 1010 -- 44 -- 2020 -- 8080 1010 -- 9090 55 -- 2020 -- 8080 5050 -- 5050 66 -- 2020 -- 8080 9090 -- 1010 77 -- 5050 -- 5050 1010 9090 -- 88 -- 5050 -- 5050 5050 5050 -- 99 -- 5050 -- 5050 9090 1010 -- 1010 -- 5050 -- 5050 1010 -- 9090 1111 -- 5050 -- 5050 5050 -- 5050 1212 -- 5050 -- 5050 9090 -- 1010 1313 -- 9090 -- 1010 1010 9090 -- 1414 -- 9090 -- 1010 5050 5050 -- 1515 -- 9090 -- 1010 9090 1010 -- 1616 -- 9090 -- 1010 1010 -- 9090 1717 -- 9090 -- 1010 5050 -- 5050 1818 -- 9090 -- 1010 9090 -- 1010 1919 -- 100100 -- -- 100100 -- -- 2020 100100 -- -- -- 100100 -- -- 2121 -- 5050 5050 -- -- 100100 -- 2222 -- -- -- 100100 -- -- 100100 2323 -- 100100 -- -- -- 100100 -- 2424 -- -- 100100 -- 5050 5050 -- 2525 100100 -- -- -- -- 5050 5050

<실시예 1~18><Examples 1-18>

상기 합성예 1 내지 18에서 얻어진 각각의 폴리아믹산(polyamic acid) 용액에 탈수제로서 피리딘을 화학양론 이상의 양으로 가하고 균일하게 교반하여 이것을 SUS 판상에 소성한 후 소정의 두께로 캐스트하고, 100 내지 150℃에서 30 내지 60분 열풍건조하였다. 그 후 SUS 판상으로부터 필름을 당겨 벗기고, 이것을 4변을 고정한 상태로 250℃ 내지 400℃에서 10 내지 30 분 동안 가열건조하여 두께 25 ㎛인 폴리이미드 필름을 얻었다.To each of the polyamic acid solutions obtained in Synthesis Examples 1 to 18, pyridine was added in an amount more than stoichiometric as a dehydrating agent, stirred uniformly, calcined on a SUS plate, cast to a predetermined thickness, and then cast to a predetermined thickness. Hot air dried at 30 to 60 minutes. Thereafter, the film was pulled off from the SUS plate and heat-dried at 250 ° C to 400 ° C for 10 to 30 minutes in a state where four sides were fixed, thereby obtaining a polyimide film having a thickness of 25 µm.

<비교예 1~7><Comparative Examples 1-7>

상기 합성예 19~25에서 얻어진 폴리아믹산(polyamic acid)을 이용하여 상기 실시예 1과 같은 방법으로 두께 25 ㎛인 폴리이미드 필름을 얻었다.Using a polyamic acid obtained in Synthesis Examples 19 to 25, a polyimide film having a thickness of 25 μm was obtained in the same manner as in Example 1.

<실시예 19~21><Examples 19-21>

상기 합성예 2, 7, 15에서 얻어진 각각의 폴리아믹산(polyamic acid)에 SiO2 입자(Gasil 35M, Crossfield사제)를 폴리아믹산 고형분 함량 100중량부에 대해 5.0중량부 되도록 첨가하고 호모게나이져(T25 basic, IKA LABORTECHNIK사제) 9500rpm으로 5분간 분산시켰다. To each polyamic acid obtained in Synthesis Examples 2, 7, 15, SiO 2 particles (Gasil 35M, manufactured by Crossfield) were added to 5.0 parts by weight with respect to 100 parts by weight of the polyamic acid solids content and homogenizer (T25). basic, manufactured by IKA LABORTECHNIK) at 9500 rpm for 5 minutes.

준비된 조액을 이용하여 상기 실시예 1과 동일한 방법으로 두께 25 ㎛인 폴리이미드 필름을 얻었다.Using the prepared crude liquid, a polyimide film having a thickness of 25 μm was obtained in the same manner as in Example 1.

<실시예 22~24><Examples 22-24>

상기 합성예 2, 7, 15에서 얻어진 폴리아믹산(polyamic acid)에 TiO2 입자 (R700, DuPont사제)를 폴리아믹산 고형분 함량 100중량부에 대해 5.0중량부 되도록 첨가하고 호모게나이져(T25 basic, IKA LABORTECHNIK사제) 9500rpm으로 5분간 분산시켰다. To the polyamic acid obtained in Synthesis Examples 2, 7, 15, TiO 2 particles (R700, manufactured by DuPont) were added to 5.0 parts by weight based on 100 parts by weight of the polyamic acid solids content and homogenizer (T25 basic, IKA). LABORTECHNIK Co., Ltd.) was dispersed at 9500 rpm for 5 minutes.

준비된 조액을 이용하여 상기 실시예 1과 동일한 방법으로 두께 25 ㎛인 폴리이미드 필름을 얻었다.Using the prepared crude liquid, a polyimide film having a thickness of 25 μm was obtained in the same manner as in Example 1.

상기 실시예 및 비교예를 통해 얻어진 필름에 대해, 치수변형율, 파단신장율, 평균선열팽창계수, 내굴곡성 및 유리전이온도를 측정하여 그 결과를 다음 표 3에 나타내었다. For the films obtained through the above Examples and Comparative Examples, the dimensional strain, the elongation at break, the average coefficient of thermal expansion, the flex resistance and the glass transition temperature were measured and the results are shown in Table 3 below.

구체 평가방법은 다음과 같다.Specific evaluation method is as follows.

(1)치수변형율(1) dimensional strain

얻어진 필름에 대하여 삼차원 비접촉식 측정기를 통해 치수를 측정하여 이를 L0로 하고, 이와는 별도로 필름을 50℃, 60%RH에서 24시간 정치시킨 후, 동일한 방법에 의거하여 치수를 측정하여 L1으로 하였다. 다음 식에 의거하여 치수변형율을 측정하였다. 이를 '치수변형율-RH'라 한다.In this L 0 by measuring the dimensions with a three-dimensional non-contact type measuring instrument with respect to the obtained film, and the contrast, to separate after the film was 24 hours at 50 ℃, 60% RH, in accordance with the same method of measuring the dimensions were as L 1. Dimensional strain was measured based on the following equation. This is called 'dimension strain-RH'.

치수변형율-RH(%)=L1-L0/L0 × 100Dimensional Strain-RH (%) = L 1 -L 0 / L 0 × 100

또한, 동일한 방법에 의거, 얻어진 필름을 250℃에서 1시간 유지한 후 치수변형율을 측정하였다. 이를 '치수변형율-HT'라 한다. In addition, based on the same method, after maintaining the obtained film at 250 degreeC for 1 hour, the dimensional strain was measured. This is called 'dimension strain-HT'.

(2)파단신장율: ASTM-D882에 준하여 측정하였다. 이때, 텐터내 고정 방향에서의 파단신장율과, 이의 수직 방향에 대한 파단신장율을 각기 측정하여 그 차이도 측정하였다. (2) Elongation at break: Measured according to ASTM-D882. At this time, the elongation at break in the fixed direction in the tenter and the elongation at break in the vertical direction thereof were respectively measured and the difference was also measured.

(3)평균선열팽창계수: 이학전기주식회사제 TMA8140을 사용하여, 질소 존재 하에서 1분간 10℃의 비율로 온도를 상승시키고, 100~200℃때의 값을 측정하여 구하였다. (3) Average Coefficient of Thermal Expansion: Using TMA8140 manufactured by Hakki Electric Co., Ltd., the temperature was raised at a rate of 10 ° C. for 1 minute in the presence of nitrogen, and the value at 100 to 200 ° C. was measured and determined.

(4)내굴곡성(4) flex resistance

IPC-TM-650, 2.4.3에 의거하여, 내굴곡성 테스트기(경성시험기사 제품)을 이용하여 측정하였다. Based on IPC-TM-650, 2.4.3, it measured using the bending resistance test machine (made by the hard test company).

(5)유리전이온도(5) glass transition temperature

DSC를 사용하여 유리전이온도를 측정하였다.DSC was used to measure the glass transition temperature.

치수변형율(%)Dimensional strain (%) 파단신장 물성Elongation at break 평균 선열팽창계수 (ppm)Average Coefficient of Thermal Expansion (ppm) 유리전이온도 (℃)Glass transition temperature (℃) 내굴곡성(회)Flex resistance (times) RHRH HTHT 파단신장율 (%)Elongation at Break (%) 파단신장율 차(%)Elongation at Break Difference (%) 실 시 예Example 1One 0.50.5 0.020.02 4040 1010 1515 350350 100,000100,000 22 0.30.3 0.030.03 4545 1313 2020 300300 120,000120,000 33 0.60.6 0.050.05 4848 1414 1818 350350 120,000120,000 44 0.50.5 0.050.05 5656 1313 2020 350350 150,000150,000 55 0.70.7 0.030.03 3838 1515 1515 360360 120,000120,000 66 0.50.5 0.060.06 4646 1616 2222 380380 150,000150,000 77 0.30.3 0.020.02 5050 2020 2020 350350 130,000130,000 88 0.30.3 0.020.02 5757 2020 2525 320320 100,000100,000 99 0.40.4 0.030.03 6060 2020 1818 350350 130,000130,000 1010 0.50.5 0.060.06 5555 2323 1919 330330 130,000130,000 1111 0.30.3 0.020.02 4545 1515 1616 380380 140,000140,000 1212 0.30.3 0.030.03 4949 1717 2020 300300 150,000150,000 1313 0.10.1 0.010.01 4040 2020 2525 350350 100,000100,000 1414 0.60.6 0.030.03 4646 2121 2020 355355 130,000130,000 1515 0.40.4 0.020.02 4747 99 1919 350350 120,000120,000 1616 0.60.6 0.050.05 5555 1010 2828 360360 130,000130,000 1717 0.70.7 0.080.08 5454 2121 2020 355355 150,000150,000 1818 0.90.9 0.080.08 5252 2222 2525 360360 130,000130,000 1919 0.30.3 0.040.04 5050 2020 2020 350350 140,000140,000 2020 0.60.6 0.050.05 4545 2323 1818 330330 140,000140,000 2121 0.40.4 0.030.03 3939 1010 1616 350350 130,000130,000 2222 0.60.6 0.060.06 3434 1313 1515 330330 130,000130,000 2323 0.70.7 0.080.08 3232 1616 2020 380380 150,000150,000 2424 0.50.5 0.060.06 4545 1616 2020 350350 140,000140,000 비 교 예Comparative Example 1One 0.90.9 1.01.0 1919 3030 3535 300300 100,000100,000 22 1.21.2 1.61.6 2121 3535 4040 250250 90,00090,000 33 1.51.5 2.02.0 2525 3535 3030 300300 80,00080,000 44 1.51.5 1.71.7 1010 3939 3535 300300 90,00090,000 55 1.21.2 1.41.4 1616 3232 4040 320320 40,00040,000 66 1.41.4 1.61.6 1919 3434 3030 330330 80,00080,000 77 2.02.0 1.71.7 2020 3939 3535 350350 60,00060,000

상기 표 1에서 나타난 바와 같이, 본 발명의 폴리이미드 필름은 비교예의 폴리이미드 필름에 비하여 치수안정성 및 내열성이 뛰어나며, 고탄성이면서 선팽창계수가 동(Copper)의 선팽창계수를 하회하지 않으며, 내굴곡성 등이 우수하다는 것을 확인할 수 있다. 특히, 실시예 19 내지 24에 나타낸 바와 같이 무기입자가 분산된 폴리이미드 필름의 경우는 실시예 2, 7 및 15에 비추어 각각의 내굴곡성 등이 더욱 향상됨을 알 수 있다. As shown in Table 1, the polyimide film of the present invention is excellent in dimensional stability and heat resistance compared to the polyimide film of the comparative example, high elasticity, the coefficient of linear expansion does not lower than the coefficient of copper expansion (Copper), bending resistance and the like It can be confirmed that it is excellent. In particular, in the case of the polyimide film in which the inorganic particles are dispersed as shown in Examples 19 to 24, it can be seen that the flex resistance and the like are further improved in view of Examples 2, 7 and 15.

<실시예 25 내지 29 및 비교예 8 내지 12><Examples 25 to 29 and Comparative Examples 8 to 12>

상기 실시예 1 내지 5 및 비교예 1 내지 5로부터 얻어진 각각의 폴리이미드 필름을 사용하여, 이하의 순서로 스퍼터 유형의 폴리이미드/금속 적층체를 제조하여, 그 평가를 행하였다. 얻어진 폴리이미드/금속 적층체를 각각 실시예 25 내지 29, 비교예 8 내지 12로 하였다. Using each polyimide film obtained from the said Examples 1-5 and Comparative Examples 1-5, the sputter type polyimide / metal laminated body was produced in the following procedure, and the evaluation was performed. The obtained polyimide / metal laminated body was set to Examples 25-29 and Comparative Examples 8-12, respectively.

IONTECH사제 이온건(형식 NPS-3000 FS)을 부설한 스퍼터링기(쇼와 신꾸제 형식 NSP-6)을 사용하여, 상기 실시예 1 내지 5 및 비교예 1 내지 5에서 얻어진 각각의 폴리이미드 필름 상에, 우선 니켈을 100㎛의 두께로 적층하고, 계속해서 구리를 2,000㎛의 두께로 적층하여 금속층 A1이라 하였다. 또한 황산 전기 구리 도금(음극 전류 밀도 2A/dm2, 도금 시간 40분)에 의해, 도금 금속층으로서 구리층(두께 15㎛)을 형성하여 스퍼터 유형의 2층 구리 장적층 기판으로서의 폴리이미드/금속 적층체(총 두께 40㎛)를 제조하였다. Each polyimide film obtained in Examples 1 to 5 and Comparative Examples 1 to 5 was used, using a sputtering machine (Type SHSP manufactured by Showa), equipped with an ion gun (model NPS-3000FS) manufactured by IONTECH. First, nickel was laminated to a thickness of 100 μm, and copper was subsequently laminated to a thickness of 2,000 μm to be referred to as a metal layer A1. Furthermore, a polyimide / metal laminate as a sputter-type two-layer copper clad substrate was formed by forming a copper layer (thickness 15 μm) as the plating metal layer by electrosulfate electroplating (cathode current density 2A / dm 2, plating time 40 minutes). (40 mu m total thickness) was prepared.

얻어진 폴리이미드/금속 적층체에 있어 금속층을 에칭하여 1mm 폭의 배선 패턴을 얻고, 이를 121℃, 100% RH의 환경에 96시간 폭로한 압력솥 시험(PCT) 및 150℃에서 50시간 방치한 후(열 부하 후)의 폴리이미드/금속 사이의 밀착 강도를 JIS C-648에 따라서, 금속층 상에 형성된 배선 패턴의 패턴 폭 1mm를 90° 박리(peel)로 측정하여, 상태에서의 밀착강도와 비교하였다. 그 결과를 다음 표 4에 나타내었다.In the obtained polyimide / metal laminate, a metal layer was etched to obtain a 1 mm wide wiring pattern, which was then exposed to an environment of 121 ° C. and 100% RH for 96 hours and then left at 150 ° C. for 50 hours ( The adhesion strength between the polyimide / metal after the heat load) was measured by 90 ° peel of the pattern width of the wiring pattern formed on the metal layer according to JIS C-648, and compared with the adhesion strength in the state. . The results are shown in Table 4 below.

폴리이미드 필름Polyimide film 밀 착 강 도 Contact strength 상태(常態) (N/cm)State (常態) (N / cm) PCT 후 (N/cm)After PCT (N / cm) 열 폭로 후 (N/cm)After heat exposure (N / cm) 실 시 예Example 2525 실시예 1Example 1 0.80.8 0.80.8 0.70.7 2626 실시예 2Example 2 1.21.2 1.11.1 0.80.8 2727 실시예 3Example 3 1.51.5 1.31.3 1.01.0 2828 실시예 4Example 4 0.70.7 0.650.65 0.60.6 2929 실시예 5Example 5 1.01.0 0.850.85 0.70.7 비 교 예Comparative Example 88 비교예 1Comparative Example 1 0.70.7 0.20.2 < 0.1<0.1 99 비교예 2Comparative Example 2 0.80.8 0.30.3 < 0.1<0.1 1010 비교예 3Comparative Example 3 1.21.2 0.40.4 < 0.1<0.1 1111 비교예 4Comparative Example 4 1.31.3 0.30.3 < 0.1<0.1 1212 비교예 5Comparative Example 5 0.70.7 0.30.3 < 0.1<0.1

이상에서 상세히 설명한 바와 같이, 본 발명에 따라 디아민류로서 ODA와 DABA를 혼용하고, 디안하이드류로서 PMDA와 BPDA 또는 BTDA를 혼용하여 선상으로 불규칙하게 배열된 폴리아믹산을 제조한 다음 이를 필름상으로 성형한 폴리이미드 필름은 치수안정성이 뛰어나고, 고탄성이면서 선팽창계수가 동(Copper)의 선팽창계수를 하회하지 않으며, 내굴곡성 등이 우수하여 동장 적층판 등에 유용하고, 특히 유연성, 내열성도 뛰어나며 베이스 필름 등으로서의 필요한 특성 또한 손상시키지 않으므로 점점 세밀화하는 전자기기에 대응할 수 있다. As described in detail above, according to the present invention, a mixture of ODA and DABA is mixed as diamines, and PMDA and BPDA or BTDA are mixed as dianhydrides to prepare polyamic acid irregularly arranged in a linear shape, and then molded into a film. One polyimide film has excellent dimensional stability, high elasticity and linear expansion coefficient that does not fall below the copper coefficient of copper. It doesn't compromise its properties, so it can respond to increasingly sophisticated electronics.

Claims (10)

다음 화학식 1로 표시되는 반복단위 0.25 ~ 90.25 몰%, 다음 화학식 2로 표시되는 반복단위 0.25 ~ 90.25 몰%, 다음 화학식 3으로 표시되는 반복단위 0.25 ~ 90.25 몰% 및 다음 화학식 4로 표시되는 반복단위 0.25 ~ 90.25 몰%를 포함하는 분자량 5,000 내지 10,000,000의 폴리이미드로 이루어진 폴리이미드 필름.0.25 to 90.25 mol% of the repeating unit represented by the following Chemical Formula 1, 0.25 to 90.25 mol% of the repeating unit represented by the following Chemical Formula 2 0.25 to 90.25 mol% of the repeating unit represented by the following Chemical Formula 3 and the repeating unit represented by the following Chemical Formula 4 Polyimide film consisting of polyimide having a molecular weight of 5,000 to 10,000,000, including 0.25 to 90.25 mol%. 화학식 1Formula 1
Figure 112006016622131-PAT00013
Figure 112006016622131-PAT00013
화학식 2Formula 2
Figure 112006016622131-PAT00014
Figure 112006016622131-PAT00014
화학식 3Formula 3
Figure 112006016622131-PAT00015
Figure 112006016622131-PAT00015
상기 식에서, Ar은
Figure 112006016622131-PAT00016
로 표시된다.
Wherein Ar is
Figure 112006016622131-PAT00016
Is displayed.
화학식 4Formula 4
Figure 112006016622131-PAT00017
Figure 112006016622131-PAT00017
상기 식에서, Ar은
Figure 112006016622131-PAT00018
로 표시된다.
Wherein Ar is
Figure 112006016622131-PAT00018
Is displayed.
제 1 항에 있어서, 상기 폴리이미드 필름은 무기입자가 분산된 것임을 특징으로 하는 폴리이미드 필름.The polyimide film of claim 1, wherein the polyimide film is formed by dispersing inorganic particles. 제 2 항에 있어서, 무기입자는 입자 크기가 0.1~10㎛인 실리카 또는 석영 분말, 티타늄옥사이드, 알루미늄옥사이드, 지르콘 분말, 오가노 클레이, 마그네슘 옥사이드, 탄산칼슘 및 산화아연 중에서 선택된 1종 이상의 것임을 특징으로 하는 폴리이미드 필름.The method of claim 2, wherein the inorganic particles are one or more selected from silica or quartz powder, titanium oxide, aluminum oxide, zircon powder, organo clay, magnesium oxide, calcium carbonate and zinc oxide having a particle size of 0.1 to 10 ㎛. Polyimide film made into. 제 1 항에 있어서, 50℃, 60% RH 조건 하에서 24시간 정치한 후의 치수변형율이 1.0% 이하인 것임을 특징으로 하는 폴리이미드 필름.The polyimide film according to claim 1, wherein the dimensional strain after standing for 24 hours at 50 ° C. and 60% RH is 1.0% or less. 제 1 항에 있어서, 파단시 신장율이 20% 이상이며, 텐터 내 고정방향의 파단신장율과 이에 수직한 방향에 대한 파단신장율의 차가 30% 이하인 것임을 특징으로 하는 폴리이미드 필름.The polyimide film according to claim 1, wherein the elongation at break is 20% or more, and the difference between the elongation at break in the fixed direction and the elongation at break in the direction perpendicular to the tenter is 30% or less. 제 1 항에 있어서, 100 내지 200℃ 범위의 평균선열팽창계수가 10~30ppm이며, 250℃에서 1시간 유지 후 치수변형율이 0.1% 이하이고, 유리전이온도가 250℃ 이상인 것임을 특징으로 하는 폴리이미드 필름.The polyimide film of claim 1, wherein the average coefficient of linear thermal expansion in the range of 100 to 200 ° C is 10 to 30 ppm, the dimensional strain is 0.1% or less, and the glass transition temperature is 250 ° C or more after 1 hour of holding at 250 ° C. . 제 1 항에 있어서, IPC-TM-650, 2.4.3에 의거 내굴곡성 테스트기를 이용하여 측정한 내굴곡성이 100,000회 이상인 것임을 특징으로 하는 폴리이미드 필름.The polyimide film according to claim 1, wherein the bending resistance measured by a bending resistance tester according to IPC-TM-650, 2.4.3 is 100,000 or more times. 제 1 항의 폴리이미드 필름을 포함하는 금속 적층체.A metal laminate comprising the polyimide film of claim 1. 제 8 항에 있어서, 폴리이미드 필름은 베이스 필름으로 포함되는 것임을 특징으로 하는 금속 적층체.9. The metal laminate of claim 8, wherein the polyimide film is included as a base film. 제 8 항 또는 제 9 항에 있어서, 상기 금속층을 에칭하여 얻어진 1mm 폭의 배선 패턴과 폴리이미드 필름과의 밀착강도 측정시, 금속적층체를 121℃, 100%RH의 환경에 96시간 폭로한 후 밀착강도가 이 환경에 폭로하기 전 밀착강도의 50% 이상을 유지하는 것을 특징으로 하는 금속 적층체.10. The method according to claim 8 or 9, wherein the metal laminate is exposed to an environment of 121 DEG C and 100% RH for 96 hours after measuring the adhesion strength between the 1 mm wide wiring pattern and the polyimide film obtained by etching the metal layer. A metal laminate, wherein the adhesive strength is maintained at 50% or more of the adhesive strength before being exposed to this environment.
KR1020060022033A 2006-03-09 2006-03-09 Polyimide film and metal-Clad Laminates KR101231941B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060022033A KR101231941B1 (en) 2006-03-09 2006-03-09 Polyimide film and metal-Clad Laminates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060022033A KR101231941B1 (en) 2006-03-09 2006-03-09 Polyimide film and metal-Clad Laminates

Publications (2)

Publication Number Publication Date
KR20070092779A true KR20070092779A (en) 2007-09-14
KR101231941B1 KR101231941B1 (en) 2013-02-08

Family

ID=38689945

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060022033A KR101231941B1 (en) 2006-03-09 2006-03-09 Polyimide film and metal-Clad Laminates

Country Status (1)

Country Link
KR (1) KR101231941B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023501634A (en) * 2019-11-13 2023-01-18 ピーアイ アドヴァンスド マテリアルズ カンパニー リミテッド Highly elastic and highly heat resistant polyimide film and its manufacturing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102079423B1 (en) 2016-10-31 2020-02-19 주식회사 엘지화학 Composition for forming polyimide film and polyimide film prepared by using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100591068B1 (en) * 2004-09-03 2006-06-19 주식회사 코오롱 Flexible Copper-Clad Laminate and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023501634A (en) * 2019-11-13 2023-01-18 ピーアイ アドヴァンスド マテリアルズ カンパニー リミテッド Highly elastic and highly heat resistant polyimide film and its manufacturing method

Also Published As

Publication number Publication date
KR101231941B1 (en) 2013-02-08

Similar Documents

Publication Publication Date Title
KR101064816B1 (en) Polyamic acid solution, polyimide resin and flexible metal clad laminate using the same
KR101402635B1 (en) Polyimide film for metallizing and metal laminated polyimide film
US8092900B2 (en) Solution, component for plating, insulating sheet, laminate, and printed circuit board
KR20070058812A (en) Polyimide film
JP6515180B2 (en) Multilayer adhesive film and flexible metal-clad laminate
KR100657729B1 (en) Laminate and Process for Producing the Same
EP2325000A1 (en) Highly heat conductive polyimide film, highly heat conductive metal-clad laminate and method for producing same
WO2009110387A1 (en) Laminate for flexible board and heat conductive polyimide film
KR100895848B1 (en) Polyimide, polyimide film and laminated body
JP6403460B2 (en) Metal-clad laminate, circuit board and polyimide
TWI405792B (en) A polyimide film having a high adhesion property and a method for producing the same
CN114651036B (en) Polyimide film with improved dimensional stability and method for preparing same
KR20110042831A (en) Polyamic acid solution, polyimide resin and flexible copper clad laminate using the same
KR100710099B1 (en) Polyimide Film, Manufacturing Method of Same, and Usage of Same
WO2004085146A1 (en) Double-sided metallic laminate and method for manufacturing the same
JPWO2007083526A1 (en) Polyimide film and use thereof
JP2004124091A (en) Polyimide film, its manufacturing method and its use
KR20110035620A (en) Polyimide film
KR100789616B1 (en) Polyimide film and copper clad laminate using the same
KR101231941B1 (en) Polyimide film and metal-Clad Laminates
TW202124555A (en) Resin composition, resin film and metal-clad laminate capable of improving dielectric properties without impairing mechanical properties such as bendability due to addition of inorganic fillers
TW202124280A (en) Silica particle, resin composition, resin film and metal-clad laminate capable of improving dielectric properties without impairing mechanical properties
JPWO2020022129A1 (en) Metal-clad laminate and circuit board
JP2019014062A (en) Laminate, flexible metal-clad laminated sheet, and flexible printed circuit board
KR101166951B1 (en) Polyimide film and metal-clad laminate

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180205

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190201

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200204

Year of fee payment: 8