KR20070092506A - 실리사이데이션 방지하기 위한 산화막 형성 방법 및 이를이용한 이미지 센서의 제조 방법 - Google Patents
실리사이데이션 방지하기 위한 산화막 형성 방법 및 이를이용한 이미지 센서의 제조 방법 Download PDFInfo
- Publication number
- KR20070092506A KR20070092506A KR1020060022736A KR20060022736A KR20070092506A KR 20070092506 A KR20070092506 A KR 20070092506A KR 1020060022736 A KR1020060022736 A KR 1020060022736A KR 20060022736 A KR20060022736 A KR 20060022736A KR 20070092506 A KR20070092506 A KR 20070092506A
- Authority
- KR
- South Korea
- Prior art keywords
- oxide film
- forming
- gas
- semiconductor substrate
- layer
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 230000003647 oxidation Effects 0.000 title description 2
- 238000007254 oxidation reaction Methods 0.000 title description 2
- 230000000903 blocking effect Effects 0.000 title 1
- 239000004065 semiconductor Substances 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 239000007789 gas Substances 0.000 claims abstract description 24
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 19
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000001301 oxygen Substances 0.000 claims abstract description 15
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 15
- 238000000231 atomic layer deposition Methods 0.000 claims abstract description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 9
- 238000000137 annealing Methods 0.000 claims abstract description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910001882 dioxygen Inorganic materials 0.000 claims abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000000151 deposition Methods 0.000 claims abstract description 5
- 229910021332 silicide Inorganic materials 0.000 claims description 13
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 13
- 238000009832 plasma treatment Methods 0.000 claims description 7
- 238000000280 densification Methods 0.000 claims description 4
- 230000006866 deterioration Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 46
- 239000012535 impurity Substances 0.000 description 20
- 238000009792 diffusion process Methods 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 229920002120 photoresistant polymer Polymers 0.000 description 6
- 238000005468 ion implantation Methods 0.000 description 5
- 230000002265 prevention Effects 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 238000010926 purge Methods 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910003902 SiCl 4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- BUMGIEFFCMBQDG-UHFFFAOYSA-N dichlorosilicon Chemical compound Cl[Si]Cl BUMGIEFFCMBQDG-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14685—Process for coatings or optical elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14698—Post-treatment for the devices, e.g. annealing, impurity-gettering, shor-circuit elimination, recrystallisation
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
산화막 형성 방법 및 이를 포함하는 이미자 소자의 제조 방법은 트랜지스터 및 포토다이오드를 포함하는 반도체 기판 상에 원자층 증착을 이용하여 산화막을 증착한다. 수소 가스 또는 산소 가스 분위기에서 어닐링하거나 산소를 이용하여 플라즈마 처리함으로써 산화막을 치밀화한다. 반도체 기판을 선택적으로 노출시키는 산화막 패턴을 형성한 후, 선택적으로 노출된 반도체 기판에 실리사이드막을 형성한다. 포토다이오드와 산화막의 계면에 불순물을 발생을 억제할 수 있다.
Description
도 1 및 도 2는 본 발명의 바람직한 제1 실시예에 따른 산화막 형성 방법을 설명하기 위한 개략적인 단면도이다.
도 3 및 도 4는 본 발명의 바람직한 제2 실시예에 따른 산화막 형성 방법을 설명하기 위한 개략적인 단면도이다.
도 5 내지 도 9는 본 발명의 바람직한 일실시예에 따른 이미지 센서의 제조 방법을 설명하기 위한 개략적인 단면도이다.
* 도면의 주요부분에 대한 부호의 설명 *
110, 210 : 반도체 기판 120, 220 : 산화막
511 : P+ 기판 512 : P 에피층
513 : 필드절연막 515 : 트랜지스터
516 : N 확산층 519 : P0 에피층
520a : 플로팅센싱노드 521 : 산화막
522 : 포토레지스트 패턴 523 : 산화막 패턴
524 : 실리사이드막
본 발명은 산화막 형성 방법 및 이를 이용한 이미지 센서의 제조 방법에 관한 것으로, 보다 상세하게는 포토다이오드의 표면에 실리사이드의 형성을 방지하기 위한 산화막 형성 방법 및 이를 이용한 이미지 센서의 제조 방법에 관한 것이다.
반도체 집적회로의 집적도가 증가함에 따라 크기가 작고 작동속도가 빠르며 전력소모가 낮은 소자 제조의 필요성이 증가되고 있다. 특히, 반도체 소자의 디자인 룰이 작아짐에 따라 기생 직렬 저항이 심화되어 회로의 작동속도를 저하시키게 된다. 이러한 직렬 저항 문제를 개선하여 저항 정전용량 지연시간(RC delay time)을 단축시키기 위한 노력이 여러 방법에서 진행되어지고 있다. 예를 들면, 구리를 이용한 배선방법이나 각 배선층사이에 유전율이 낮은 절연막을 사용하는 방법이 있다. 그 외에 가장 많이 사용하는 방법 중 하나는 활성영역 및 게이트전극에 실리사이드(silicide)를 형성하여 저항을 낮추는 방법이다.
한편, 반도체 제조과정 중에는 상기와 같이 저항이 낮은 자기 정렬 실리사이드(self-aligned silicide ; 이하 살리사이드(salicide)라 한다) 구조를 갖는 활성영역이 필요한 반면, 상기 살리사이드 구조가 필요하지 않은 부분이 필요하게 된다. 즉, CMOS 로직에서의 ESD부분이라든가, 임베디드 메모리 반도체에서의 메모리 부분이라든가, 시모스 이미지 센서(CMOS Image Sensor)반도체에서의 포토다이오드영역과 같은 부분은 누설전류 감소를 위해 실리사이드가 형성되지 않는 활성 영역 이 필요하게 된다.
결국, 상기와 같은 반도체 제조공정에서는 상기 살리사이드 구조가 적용된 활성영역과 상기 살리사이드가 적용되지 않은 활성영역을 동시에 형성하여야 한다. 일반적으로, 이러한 반도체소자를 제조하는 방법은 살리사이드를 형성하기 전에 실리살리사이드 방지막을 적층한후, 살리사이드가 필요하지 않은 부분에만 상기 실리사이드 방지막이 남도록 하여 살리사이드 형성시에 그 부분만 형성되지 않도록 하는 공정을 사용하게 된다.
종래 기술에 따르면, 상기 실리사이드 방지막으로 중온 산화막이 사용된다. 예를 들면, 이미지 소자에서는 포토다이오드 영역의 표면에 상기 실리사이드 방지막인 중온 산화막이 형성된다. 상기 중온 산화막은 산화질소(N2O)를 분해하여 산화막을 성장시키는 방법에 의해 형성된다. 상기 산화질소가 분해되면서 N형 불순물(N+)이 다량으로 발생한다. 상기 불순물은 광에 의한 입력이 없어도 열적으로 전하를 발생시키기 쉬운 상태에 있으므로 상기 N형 불순물에 의한 암전류를 억제하기 어렵다.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 암전류에 의한 화질 저하를 억제할 수 있는 산화막 형성 방법을 제공하는데 있다.
상기와 같은 문제점을 해결하기 위한 본 발명의 다른 목적은 상기 산화막 형성 방법을 이용한 이미지 센서의 제조 방법을 제공하는데 있다.
상기 본 발명의 목적을 달성하기 위한 본 발명의 바람직한 일실시예에 의하면, 산화막 형성 방법은 원자층 증착 방법을 이용하여 반도체 기판 상에 산화막을 증착한다. 이후, 상기 산화막을 치밀화(densification)한다.
상기 산화막의 치밀화는 질소를 포함하지 않는 가스 분위기에서 어닐링함으로써 이루어지거나, 산소를 이용하여 플라즈마 처리함으로써 이루어진다. 상기 어닐링시 사용되는 가스의 예로는 수소 가스 또는 산소 가스를 들 수 있다.
상기 본 발명의 목적을 달성하기 위한 본 발명의 바람직한 일실시예에 의하면, 이미지 소자의 제조 방법은 반도체 기판의 액티브 영역에 트랜지스터 및 포토다이오드를 형성한다. 다음으로, 원자층 증착 방법을 이용하여 상기 트랜지스터 및 포토다이오드를 포함하는 반도체 기판 상에 산화막을 증착한 후, 상기 산화막을 치밀화한다. 상기 반도체 기판을 선택적으로 노출시키는 산화막 패턴을 형성한다. 이후, 선택적으로 노출된 반도체 기판에 실리사이드막을 형성한다.
상기 산화막의 치밀화는 질소를 포함하지 않는 가스 분위기에서 어닐링하거나, 산소를 이용하여 플라즈마 처리함으로써 이루어질 수 있다.
이와 같이 구성된 본 발명의 실시예들에 따르면 상기 산화막에 포함되는 N형 불순물을 최소화할 수 있다. 따라서, 상기 N형 불순물에 의한 암전류를 감소시킬 수 있다.
이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 따른 산화막 형성 방법 및 이를 이용한 이미지 소자의 제조 방법에 대해 상세히 설명한다. 하지 만, 본 발명이 하기의 실시예들에 한정되는 것은 아니며, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 다양한 다른 형태로 구현할 수 있을 것이다. 첨부된 도면에 있어서, 기판, 층(막), 영역, 리세스, 패드, 패턴들 또는 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. 본 발명에 있어서, 각 층(막), 영역, 패드, 리세스, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상에", "상부에" 또는 "하부"에 형성되는 것으로 언급되는 경우에는 각 층(막), 영역, 패드, 리세스, 패턴 또는 구조물들이 직접 기판, 각 층(막), 영역, 패드 또는 패턴들 위에 형성되거나 또는 아래에 위치하는 것을 의미하거나, 다른 층(막), 다른 영역, 다른 패드, 다른 패턴 또는 다른 구조물들이 기판 상에 추가적으로 형성될 수 있다. 또한, 각 층(막), 영역, 패드, 리세스, 패턴 또는 구조물들이 "제1" 및/또는 "제2"로 언급되는 경우, 이러한 부재들을 한정하기 위한 것이 아니라 단지 각 층(막), 영역, 패드, 리세스, 패턴 또는 구조물들을 구분하기 위한 것이다. 따라서, "제1" 및/또는 "제2"는 각 층(막), 영역, 패드, 리세스, 패턴 또는 구조물들에 대하여 각기 선택적으로 또는 교환적으로 사용될 수 있다.
도 1 및 도 2는 본 발명의 바람직한 제1 실시예에 따른 산화막 형성 방법을 설명하기 위한 개략적인 단면도이다.
도 1을 참조하면, 실리콘을 포함하는 실리콘 소스 가스를 챔버(미도시) 내부의 반도체 기판(110) 상으로 제공하여 흡착층을 형성한다. 상기 실리콘 소스 가스 의 예로는 실리콘테트라클로라이드(SiCl4), 실란(SiH4), 디클로로실란(SiH2Cl2), 트리클로로염화실란(SiHCl3) 등을 들 수 있다. 이들은 단독으로 사용하는 것이 바람직하고, 경우에 따라서 둘 이상을 혼합하여 사용할 수도 있다.
다음으로, 상기 챔버로 퍼지 가스를 제공하여 상기 챔버 내부를 퍼지한다. 상기 퍼지 가스로는 불활성 가스가 사용된다. 상기 불활성 가스의 예로는 헬륨 가스, 네온 가스, 아르곤 가스, 질소 가스 등을 들 수 있다.
산소를 포함하는 산소 소스 가스를 상기 챔버 내부의 반도체 기판(110) 상으로 제공한다. 상기 산소 소스 가스는 상기 흡착층과 반응하여 반도체 기판(110) 상에 산화막(120)을 증착한다. 상기 산소 소스 가스의 예로는 산소 가스, 오존 가스, 수증기 등을 들 수 있다. 이후, 상기 반도체 기판(110) 상에 기 설정된 두께의 산화막(120)이 증착될 때까지 상기 공정들을 반복한다.
상기에서와 같이, 상기 반도체 기판(110) 상에 원자층 증착 방법을 이용하여 산화막(120)을 증착한다.
도 2를 참조하면, 질소를 포함하지 않는 가스를 상기 챔버로 공급한다. 상기 가스 분위기에서 상기 산화막(120)이 증착된 반도체 기판(110)을 가열한 후 서서히 냉각하여 상기 산화막(120)을 어닐링한다. 상기 질소를 포함하지 않는 가스의 예로는 산소 가스, 수소 가스 등을 들 수 있다. 따라서, 상기 치밀화된 산화막(120)을 얻을 수 있다. 그리고, 상기 산소 가스나 수소 가스 분위기에서 어닐링을 수행함으로써, 불순물로 작용하는 N형 불순물이 상기 산화막(120)으로 침투하는 것을 방지 할 수 있다.
도 3 및 도 4는 본 발명의 바람직한 제2 실시예에 따른 산화막 형성 방법을 설명하기 위한 개략적인 단면도이다.
도 3을 참조하면, 반도체 기판(210) 상에 원자층 증착 방법을 이용하여 산화막(220)을 증착한다. 상기 산화막(220)을 증착하는 공정은 도 1에 도시된 산화막(120)을 증착하는 방법과 동일하므로 구체적인 설명은 생략한다.
도 4를 참조하면, 산소 가스를 챔버로 공급한 후, 상기 챔버에 고주파를 인가하여 상기 산소를 플라즈마 상태로 여기시키거나, 플라즈마 상태의 산소를 상기 챔버로 공급한다. 상기 플라즈마 상태의 산소로 상기 산화막(220)이 형성된 반도체 기판(210)을 처리한다. 따라서, 상기 산화막(220)을 치밀화할 수 있고, 산소 플라즈마 처리함으로써, N형 불순물이 상기 산화막(120)으로 침투하는 것을 방지할 수 있다.
도 5 내지 도 9는 본 발명의 바람직한 일실시예에 따른 이미지 센서의 제조 방법을 설명하기 위한 개략적인 단면도이다.
도 5를 참조하면, 고농도의 P형 불순물이 도핑된 P+ 기판(511)상에 저농도 P형 불순물이 도핑된 P형 에피층(512)을 성장시킨다. 다음으로, P형 에피층(512)의 소정 부분에 LOCOS(local oxidation of silicon) 공정 또는 STI(shallow trench isolation) 공정을 이용하여 단위화소간 격리를 위한 필드절연막(513)을 형성한다.
다음으로, 후속 열공정에 의한 측면확산을 통해 드라이브게이트(Dx)와 셀렉트게이트(Sx)를 내포할 수 있도록 P형 웰(514)을 P형 에피층(512)의 소정 영역에 형성한다.
이후, P형 웰(514)상에 드라이브트랜지스터(Dx)와 셀렉트트랜지스터(Sx)의 게이트전극(515a, 515b)을 형성하고, P형 에피층(512)상에 트랜스퍼트랜지스터(Tx)와 리셋트랜지스터(Rx)의 게이트전극(515c, 515d)을 형성한다. 상기 트랜스퍼트랜지스터(Tx)는 포토다이오드에서 집속된 광전하를 플로팅노드(Floating node)로 운송하며, 상기 리셋트랜지스터(Rx)는 원하는 값으로 노드의 전위를 세팅하고 전하를 배출하여 플로팅노드를 리셋(Reset)시키며, 상기 드라이브트랜지스터(Dx)는 소오스팔로워 버퍼증폭기(Source Follower Buffer Amplifier) 역할을 하며, 상기 셀렉트트랜지스터(Sx)는 스위칭(Switching) 역할로 어드레싱(Addressing)을 할 수 있다.
다음으로, 게이트전극(515a, 515b, 515c, 515d) 중 트랜스퍼트랜지스터(Tx)의 게이트전극(515c)의 일측 P형 에피층(512)에 고에너지로 저농도 N형 불순물(N-)을 이온주입하여 N- 확산층(516)을 형성한다.
다음으로, 드라이브트랜지스터(Dx)와 셀렉트트랜지스터(Sx)의 LDD(Lightly Doped Drain) 구조(517)를 형성하기 위한 불순물의 이온주입공정을 실시한다. 이후, 전면에 스페이서용 절연막을 증착한 후, 절연막을 전면식각하여 4개 게이트 전극(515a, 515b, 515c, 515d)의 양측벽에 접하는 스페이서(518)를 형성한다.
계속해서, 블랭킷(blanket) 이온주입법으로 저에너지 P형 불순물(P0)을 이온주입하여 P형 에피층(512)의 표면근처와 N- 확산층(516)의 상부에 P0 확산층(519)을 형성한다. 이때, N- 확산층(516) 내에 형성되는 P0 확산층(519)은 스페이서(517)의 두께만큼 격리된다.
상술한 저에너지 P형 불순물의 이온주입을 통해 P0 확산층(519)과 N- 확산층(516)으로 이루어지는 얕은(shallow) PN접합을 형성하고, P형 에피층(512)/N- 확산층(516)/P0 확산층(519)으로 이루어지는 PNP형 포토다이오드가 형성된다.
다음으로, 소스/드레인 영역(520, 520a)을 형성하기 위한 이온주입공정을 실시한다. 즉, N형 불순물(N+)이 도핑된 단위화소 내에 2개의 일반적인 NMOS 트랜지스터인 드라이브트랜지스터(Dx)와 셀렉트트랜지스터(Sx)의 소스/드레인 영역(520)과 2개의 네이티브 NMOS 트랜지스터인 트랜스퍼트랜지스터(Tx)와 리셋트랜지스터(Rx)의 공통접속단인 플로팅센싱노드(520a)와 리셋트랜지스터의 일측 소스/드레인 영역(520)을 형성한다.
도 6을 참조하면, 상기 게이트 전극(515a, 515b, 515c, 515d)과 포토다이오드가 형성된 반도체 기판(511) 전면에 산화막(521)을 형성한다. 상기 산화막(521)은 원자층 증착 방법에 의해 증착된 후, 질소를 포함하지 않는 가스 분위기에서 어닐링하거나, 산소를 이용하여 플라즈마 처리함으로써 형성된다. 상기 산화막(521)을 형성하는 공정은 도 1 내지 도 4에서 설명된 산화막 형성 방법과 동일하므로 구체적인 설명은 생략한다. 따라서, 상기 산화막(521)은 치밀하면서도 N형 불순물이 거의 포함되지 않는다. 그러므로, 상기 N형 불순물의 확산에 의한 암전류 발생을 방지할 수 있다. 즉, 상기 산화막(521)으로부터 상기 N형 불순물의 확산이 이루어지지 않으므로, 상기 N- 확산층(516)에 전자가 저장되어 상기 포토다이오드(PD)로부터 플로팅센싱노드(520a)로 암전류가 흐르는 것을 방지할 수 있다.
도 7을 참조하면, 상기 산화막(521) 상에 포토레지스트막을 도포한다. 포토 리소그래피 공정을 이용하여 상기 포토레지스트막을 노광, 현상 및 식각함으로써 포토레지스트 패턴(522)을 형성한다. 상기 포토레지스트 패턴(522)을 식각 마스크로 하여 상기 산화막(521)을 식각함으로써 산화막 패턴(523)을 형성한다. 상기 산화막 패턴(523)은 상기 포토다이오드 전체, 상기 포토다이오드와 인접한 필드 절연막(513)의 일부 및 상기 트랜스퍼트랜지스터(Tx)의 게이트 전극(515c)의 일부를 제외한 부위를 노출시킨다.
도 8을 참조하면, 상기 포토레지스트 패턴(522)을 제거한 상태에서, 상기 산화막 패턴(523)을 포함하는 반도체 기판(511) 상에 살리사이드막(self aligned silicide layer)을 형성하기 위한 금속막(미도시)을 형성한다. 상기 금속막의 예로는 티타늄 막, 코발트막 등을 들 수 있다. 상기 금속막이 형성된 반도체 기판(511)을 일련의 열처리 공정을 수행하여 상기 4 개의 게이트 전극(515a, 515b, 515c, 515d) 및 상기 소스/드레인 영역(520, 520a)의 표면에 상기 살리사이드막(524)을 형성한다.
도 9를 참조하면, 상기 반도체 기판(511)으로부터 상기 산화막 패턴(523)을 제거한다.
이후, 통상적인 이미지 소자의 제조 공정을 진행하여 본 발명에 따른 이미지 소자를 제조한다.
예를 들면, 상기 4 개의 게이트 전극(515a, 515b, 515c, 515d), 상기 소스/드레인 영역(520, 520a) 및 상기 포토다이오드를 포함하는 상기 반도체 기판(511)의 전면에 주로 산화막계인 층간절연막(Pre-Metal Dielectric; PMD)을 증착한 후 평탄화한다. 이후, 제1 금속배선(M1)을 위한 금속콘택 및 제1 금속배선을 형성하고, 제1 금속배선 상에 금속층간절연막(Inter-Metal-Dielectric; IMD)을 형성한다.
다음으로, 금속층간절연막 상에 제2금속배선(M2)을 형성한 후, 제2 금속배선을 포함한 전면에 보호막을 형성한다. 상기 보호막의 상부에 칼라이미지 구현을 위한 세가지 종류의 칼라필터를 형성한다. 다음으로, 평탄화를 위한 평탄화층으로서 OCL(Over Coating Layer)층을 형성한다. 이후, 광집속도를 향상시키기 위한 마이크로렌즈를 형성하여 이미지 소자를 완성한다.
상술한 바와 같이, 본 발명의 바람직한 실시예들에 따르면, 원자층 증착 방법에 의해 산화막을 증착하고, 증착된 산화막을 질소를 포함하지 않는 가스 분위기에서 어닐링하거나, 산소를 이용하여 플라즈마 처리함으로써 상기 산화막을 치밀화하여 실리사이드 방지막으로 사용되는 산화막을 형성한다. 상기 산화막은 N형 불순물을 거의 포함하지 않으므로, 상기 N형 불순물이 포토다이오드로 확산되어 발생하는 암전류를 방지할 수 있다. 그러므로, 이미지 소자의 품질을 향상시킬 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
Claims (6)
- 원자층 증착 방법을 이용하여 반도체 기판 상에 산화막을 증착하는 단계; 및상기 산화막을 치밀화(densification)하는 단계를 포함하는 것을 특징으로 하는 실리사이데이션(silicidation) 방지를 위한 산화막 형성 방법.
- 제1항에 있어서, 질소를 포함하지 않는 가스 분위기에서 어닐링함으로써 상기 산화막을 치밀화하는 것을 특징으로 하는 실리사이데이션 방지를 위한 산화막 형성 방법.
- 제2항에 있어서, 상기 가스는 수소 가스 또는 산소 가스인 것을 특징으로 하는 실리사이데이션 방지를 위한 산화막 형성 방법.
- 제1항에 있어서, 산소를 이용하여 플라즈마 처리함으로써 상기 산화막을 치밀화하는 것을 특징으로 하는 실리사이데이션 방지를 위한 산화막 형성 방법.
- 반도체 기판의 액티브 영역에 트랜지스터 및 포토다이오드를 형성하는 단계;원자층 증착 방법을 이용하여 상기 트랜지스터 및 포토다이오드를 포함하는 반도체 기판 상에 산화막을 증착하는 단계;상기 산화막을 치밀화(densification)하는 단계;상기 반도체 기판을 선택적으로 노출시키는 산화막 패턴을 형성하는 단계; 및선택적으로 노출된 반도체 기판에 실리사이드막을 형성하는 단계를 포함하는 것을 특징으로 하는 이미지 센서의 제조 방법.
- 제5항에 있어서, 질소를 포함하지 않는 가스 분위기에서 어닐링하거나, 산소를 이용하여 플라즈마 처리함으로써 상기 산화막을 치밀화하는 것을 특징으로 하는 이미지 센서의 제조 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060022736A KR20070092506A (ko) | 2006-03-10 | 2006-03-10 | 실리사이데이션 방지하기 위한 산화막 형성 방법 및 이를이용한 이미지 센서의 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060022736A KR20070092506A (ko) | 2006-03-10 | 2006-03-10 | 실리사이데이션 방지하기 위한 산화막 형성 방법 및 이를이용한 이미지 센서의 제조 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20070092506A true KR20070092506A (ko) | 2007-09-13 |
Family
ID=38689845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060022736A KR20070092506A (ko) | 2006-03-10 | 2006-03-10 | 실리사이데이션 방지하기 위한 산화막 형성 방법 및 이를이용한 이미지 센서의 제조 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20070092506A (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240036822A (ko) | 2022-09-14 | 2024-03-21 | 엘지전자 주식회사 | 공기조화기 및 드레인관 |
-
2006
- 2006-03-10 KR KR1020060022736A patent/KR20070092506A/ko not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240036822A (ko) | 2022-09-14 | 2024-03-21 | 엘지전자 주식회사 | 공기조화기 및 드레인관 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8247262B2 (en) | Method for reducing contact resistance of CMOS image sensor | |
US8268662B2 (en) | Fabricating method of complementary metal-oxide-semiconductor (CMOS) image sensor | |
US8354631B2 (en) | Solid-state image device manufacturing method thereof, and image capturing apparatus with first and second stress liner films | |
JP2015109343A (ja) | 半導体装置の製造方法 | |
KR20030040860A (ko) | 암전류를 감소시키기 위한 이미지센서의 제조 방법 | |
US20180070041A1 (en) | Solid-state image sensor, method of manufacturing the same, and camera | |
US10777596B2 (en) | Imaging apparatus, method of manufacturing the same, and device | |
KR100641993B1 (ko) | 고유전율의 절연막을 갖는 씨모스 이미지 센서의 제조 방법 | |
US20080017900A1 (en) | Cmos image sensor | |
US6541329B1 (en) | Method for making an active pixel sensor | |
KR100913754B1 (ko) | 이미지 센서 및 이미지 센서를 제조하는 방법 | |
JP2016219550A (ja) | 撮像装置、撮像システムおよび撮像装置の製造方法 | |
JP2003264277A (ja) | Cmosイメージセンサおよびその製造方法 | |
KR20070059234A (ko) | 암전류를 감소시키기 위한 이미지 센서의 제조 방법 | |
KR20070092506A (ko) | 실리사이데이션 방지하기 위한 산화막 형성 방법 및 이를이용한 이미지 센서의 제조 방법 | |
US20080286920A1 (en) | Method for manufacturing semiconductor device | |
KR20060077138A (ko) | 저조도 특성을 향상시킬 수 있는 이미지센서 제조 방법 | |
KR101096909B1 (ko) | 반도체 소자의 트랜지스터 및 그 형성방법 | |
US7179675B2 (en) | Method for fabricating image sensor | |
KR100632043B1 (ko) | 반도체 장치의 모스 트랜지스터 제조 방법 | |
US20090023273A1 (en) | Method of fabricating semiconductor device | |
KR20060114399A (ko) | Cmos 이미지센서의 드라이브 트랜지스터 형성 방법 | |
KR100670539B1 (ko) | 단결정 실리콘 성장 방식을 이용한 씨모스 이미지센서제조 방법 | |
CN118588724A (zh) | 一种图像传感器及其制造方法 | |
CN118866921A (zh) | 一种cmos图像传感器及改善cmos图像传感器白色像素性能的工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Withdrawal due to no request for examination |