KR20070071156A - Process for preparing high-tenacity polyvinyl alcohol fiber - Google Patents

Process for preparing high-tenacity polyvinyl alcohol fiber Download PDF

Info

Publication number
KR20070071156A
KR20070071156A KR1020050134373A KR20050134373A KR20070071156A KR 20070071156 A KR20070071156 A KR 20070071156A KR 1020050134373 A KR1020050134373 A KR 1020050134373A KR 20050134373 A KR20050134373 A KR 20050134373A KR 20070071156 A KR20070071156 A KR 20070071156A
Authority
KR
South Korea
Prior art keywords
pva
polyvinyl alcohol
fiber
spinning
fibers
Prior art date
Application number
KR1020050134373A
Other languages
Korean (ko)
Inventor
김명우
박성호
이기환
조용태
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020050134373A priority Critical patent/KR20070071156A/en
Publication of KR20070071156A publication Critical patent/KR20070071156A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/50Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyalcohols, polyacetals or polyketals
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/06Feeding liquid to the spinning head
    • D01D1/065Addition and mixing of substances to the spinning solution or to the melt; Homogenising
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/446Yarns or threads for use in automotive applications
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs
    • D10B2505/022Reinforcing materials; Prepregs for tyres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Artificial Filaments (AREA)

Abstract

A method for manufacturing a PVA(Poly Vinyl Alcohol) fiber is provided to produce a PVA fiber having a high crystallization and high tenacity, thereby using the PVA fiber as a concrete reinforcing material and a rubber reinforcing material. A PVA is polymerized, wherein the PVA has a polymerization degree of 1500-7000, and a soponification degree of 99.0-100 mol%. A PVA spinning dope is formed by dissolving the obtained PVA in a mixing solvent consisting of dimethylsufoxide and methanol. An undrawing yarn is formed by wetting or wet-spinning the PVA spinning dope at a low temperature using an alkali precipitation bath. The undrawing yarn is cleansed, dried, and oil-processed, thereby manufacturing a PVA fiber.

Description

고강도 폴리비닐알콜 섬유의 제조방법{Process for preparing high-tenacity polyvinyl alcohol fiber}Process for preparing high-tenacity polyvinyl alcohol fiber

본 발명은 고결정성 및 고강도 폴리비닐알콜(이하 'PVA'라 한다) 섬유의 제조방법 및 이로부터 수득된 PVA 섬유에 관한 것으로, 보다 상세하게는 디메틸설폭사이드(이하 'DMSO'라 한다)와 메탄올을 혼합한 혼합용매에 고중합도/검화도의 PVA을 용해시켜 제조된 PVA 방사 도프를 알카리 응고욕에 방사하여 응고시 PVA 중합물에 잔존하는 아세틸기를 제거하여 섬유의 검화도를 99.9%이상 되게하는 것을 특징으로 하는 고결정성 및 고강도 PVA섬유의 제조방법 및 이로부터 제조된 산업용에 적합한 폴리비닐알콜 섬유에 관한 것이다.The present invention relates to a method for preparing high crystalline and high strength polyvinyl alcohol (hereinafter referred to as 'PVA') fibers and to PVA fibers obtained therefrom, and more particularly to dimethyl sulfoxide (hereinafter referred to as 'DMSO') and methanol. PVA spinning dope prepared by dissolving PVA of high polymerization degree and saponification degree in a mixed solvent mixed with the same, was spun into an alkali coagulation bath to remove acetyl groups remaining in the PVA polymer during coagulation to make the saponification degree of the fiber 99.9% or more. The present invention relates to a method for producing high crystalline and high strength PVA fibers, and to polyvinyl alcohol fibers suitable for industrial production therefrom.

산업용 고강도 PVA 섬유를 제조하기 위한 여러 방법 중 PVA 겔방사법이 활발히 연구 및 개발되고 있다. 일반적으로 PVA 겔방사는 PVA와 유기용매를 혼합하여 균일한 용액을 제조한 후, 방사공정에서 나타나는 상분리와 겔화속도를 적절히 조절하여 고배율 연신이 가능하도록 함으로써 고강도 섬유를 제조하는 방법이다. 이러한 겔방사는 저온에서 응고되어야 고강도 특성을 가지게 되는 단점이 있다. PVA gel spinning has been actively researched and developed among various methods for producing industrial high strength PVA fibers. In general, PVA gel spinning is a method of producing a high strength fiber by mixing PVA and an organic solvent to prepare a uniform solution, and then by controlling the phase separation and the gelation rate in the spinning process to enable high magnification stretching. Such gel spinning has a disadvantage in that it has a high strength characteristic only when solidified at a low temperature.

일본 공개특허공보 특개평1-130799호에서는 유기용매와 물의 혼합용매를 사용하여 저온에서 방사가 가능토록 하여 인장강도가 10g/d 이상인 고강도 PVA 섬유를 제조하였다. 이와 같이 유기용매/물 혼합용매를 사용한 경우, PVA 방사 도프의 응고 온도를 저하시켜 저온에서도 겔방사가 가능하게 되는 반면, 응고 용매로 사용되는 메탄올과 분리 사용이 어려워 공업적 사용이 곤란한 단점이 있다. PVA 겔방사의 공업화를 위하여 최근에는 DMSO 단독으로 겔방사를 하기 위한 방법이 개발되고 있다. 그러나, 이와 같은 용매 건습식방사에서 고강도의 PVA 섬유를 얻기 위해서는 99.9%이상의 고검화도 PVA 중합물을 사용해야 하는데, 이렇게 고검화도의 중합물을 제조하는 것이 쉽지 않으며, 고배율 열연신에 의한 섬유 강도를 향상시키는데 큰 장애가 되고 있다. In Japanese Patent Laid-Open No. H1-130799, a high-strength PVA fiber having a tensile strength of 10 g / d or more was produced by allowing spinning at low temperatures using a mixed solvent of an organic solvent and water. As such, when the organic solvent / water mixed solvent is used, the solidification temperature of the PVA spinning dope is lowered to enable gel spinning even at low temperatures, but it is difficult to separate and use methanol as the coagulation solvent, which makes industrial use difficult. . Recently, a method for gel spinning with DMSO alone has been developed for the industrialization of PVA gel spinning. However, in order to obtain high strength PVA fibers in such solvent wet and dry spinning, a high saponification PVA polymer of 99.9% or more should be used. Thus, it is not easy to prepare a high saponification polymer, and it is large to improve the fiber strength by high magnification thermal stretching. It is an obstacle.

본 발명의 목적은 DMSO와 메탄올을 혼합한 혼합용매에 고중합도의 PVA를 용해시켜 제조된 PVA 방사 도프를 알카리 응고욕에 방사하여 응고시 PVA 중합물에 잔존하는 아세틸기를 제거하여 섬유의 검화도를 99.9%이상 되게 함으로써, 고결정성, 고강도 PVA 섬유를 제조하는 방법 및 이로부터 수득되는 PVA 섬유를 제공하는 데 있다.An object of the present invention is to spin the PVA spinning dope prepared by dissolving PVA of high polymerization degree in a mixed solvent mixed with DMSO and methanol in an alkali coagulation bath to remove the acetyl group remaining in the PVA polymer during coagulation to improve the degree of saponification of the fiber. By at least%, to provide a method for producing high crystalline, high strength PVA fibers and PVA fibers obtained therefrom.

본 발명은 (1) 중합도 1,500 내지 7,000, 검화도 99.0 내지 100mol% PVA를 제조하는 중합단계; (2) 상기 중합단계에서 수득된 PVA를 DMSO와 메탄올로 혼합하여 이루어지는 혼합용매에 용해시켜 PVA 방사 도프를 제조하는 용해단계; (3) 상기 PVA 방사 도프를 저온에서 알카리 응고욕을 사용하여 통상의 건습식 또는 습식방사에 따라 미연신사를 제조하는 단계; 및 (4) 상기 미연신사를 수세, 건조 및 유제 처리하여 연신하는 단계들을 포함하는 산업용에 적합한 고결정성 및 고강도 폴리비닐알콜 섬유의 제조방법을 제공한다.The present invention (1) a polymerization step of producing a polymerization degree of 1,500 to 7,000, saponification degree 99.0 to 100 mol% PVA; (2) a dissolution step of dissolving the PVA obtained in the polymerization step in a mixed solvent formed by mixing DMSO and methanol to prepare a PVA spinning dope; (3) preparing the unstretched yarn according to conventional wet-wet or wet spinning using the PVA spinning dope at low temperature using an alkali coagulation bath; And (4) provides a method for producing a high crystallinity and high strength polyvinyl alcohol fiber suitable for industrial use, including the step of washing, drying and emulsion treatment of the unstretched yarn.

또한, 상기 (2) 단계에서 혼합용매의 혼합 비율은 60 내지 95중량%의 DMSO와 5 내지 40중량%의 메탄올을 혼합하는 것이 바람직하다.In addition, the mixing ratio of the mixed solvent in the step (2) is preferably mixed 60 to 95% by weight of DMSO and 5 to 40% by weight of methanol.

또한, 상기 (3) 단계에서 첨가되는 알카리 첨가제는 수산화나트륨 또는 황산나트륨인 것이 바람직하다.In addition, the alkali additives added in the step (3) is preferably sodium hydroxide or sodium sulfate.

또한, 상기 (3) 단계에서 첨가되는 알카리 첨가제의 농도는 0.5 ~ 20 wt% 인 것이 바람직하다.In addition, the concentration of the alkali additives added in the step (3) is preferably 0.5 to 20 wt%.

또한, 본 발명은 상기방법에 의해 제조되고 인장강도가 16.5d/g 이상, 탄성율이 400g/d 이상인 폴리비닐알콜 섬유를 제공한다.In addition, the present invention provides a polyvinyl alcohol fiber produced by the above method, the tensile strength of 16.5d / g or more, the elastic modulus of 400g / d or more.

이하, 본 발명을 구체적인 실시예를 참조하여 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to specific examples.

본 발명에서 PVA 중합도는 1,500 내지 7,000 정도가 사용되며, 바람직하게는 1,700 내지 3,000의 고중합도 PVA가 효과적이다. 중합도가 1,500 미만인 경우, 섬유형성이 어렵고, 7,000을 초과하는 경우, 점도가 너무 높아서 방사 공정성이 저하되는 문제점이 있을 수 있다. In the present invention, the degree of PVA polymerization is about 1,500 to 7,000, and preferably a high degree of polymerization PVA of 1,700 to 3,000 is effective. When the degree of polymerization is less than 1,500, it is difficult to form fibers, and when the degree of polymerization is greater than 7,000, the viscosity may be too high, thereby causing a problem that the spinning processability is lowered.

산업용 소재 분야에서 대부분 사용되는 고강도용 PVA섬유는 내열수성이 필요하기 때문에 검화도가 99.0 내지 100mol%인 PVA가 바람직하다.High-strength PVA fibers, which are mostly used in the field of industrial materials, need hot water resistance, so PVA having a saponification degree of 99.0 to 100 mol% is preferable.

유기용매로서는 에틸렌글리콜, 글리세린 및 DMSO가 사용 가능하지만, PVA에 대한 용해력이 가장 우수한 DMSO가 적절하다. 이러한 DMSO는 수분함량이 수십ppm 이하로 정제된 것을 사용하는 것이 바람직하다.Ethylene glycol, glycerin, and DMSO can be used as the organic solvent, but DMSO having the best solubility in PVA is suitable. Such DMSO is preferably used to be purified to a moisture content of several tens ppm or less.

DMSO에 혼합되는 메탄올은 5 내지 40 용적% 정도가 사용되며, 바람직하게는 10 내지 20 용적%가 효과적이다. 용매 중 메탄올의 함량이 5 용적% 미만인 경우, 0℃이하에서는 PVA 방사 도프가 응고되어 겔방사가 불가능하며, 40용적%를 초과하는 경우, 방사 도프가 응결은 되지만 전체적인 겔이 백탁을 형성하여 균일한 겔을 형성하지는 못하게 되는 문제점이 있을 수 있다.Methanol mixed in DMSO is used in an amount of about 5 to 40% by volume, preferably 10 to 20% by volume. If the content of methanol in the solvent is less than 5% by volume, the gel spinning is impossible due to coagulation of the PVA spinning dope below 0 ° C. If it exceeds 40% by volume, the spinning dope is condensed, but the entire gel forms a turbidity. There may be a problem of not forming a gel.

PVA 도프는 점도가 50 내지 4,000포아즈(Poise) 범위가 되도록 농도를 조절하는 하는 것이 바람직하지만 우수한 물성을 얻기 위해서는 500 내지 3,000포아즈가 효과적이다. 점도가 50포아즈 미만인 경우, 섬유형성이 어렵고, 4,000포아즈를 초과하는 경우, 섬유방사성이 저하되는 문제점이 있을 수 있다.PVA dope is preferably adjusted in concentration so that the viscosity is in the range of 50 to 4,000 poise (Poise), but 500 to 3,000 poise is effective to obtain excellent physical properties. When the viscosity is less than 50 poise, it is difficult to form fibers, and when the viscosity is more than 4,000 poise, there may be a problem that the fiber radioactivity is lowered.

응고조는 -30 내지 30℃ 온도에서 방사가 가능하지만, 균일한 겔 형성을 위해서는 -10 내지 10℃가 효과적이다. 응고조 온도가 -30℃ 미만인 경우, 용매 중 메탄올 함량이 40용적%가 혼합함유 되어야 하므로, PVA 용해력이 저하되어 균일한 PVA 방사 도프 제조가 불가능하게 되며, 응고조 온도가 30℃이상에서는 상분리가 우세하여 겔 형성이 불가능하여 방사성이 저하되는 문제점이 있을 수 있다.The coagulation bath can spin at a temperature of -30 to 30 ° C, but -10 to 10 ° C is effective for uniform gel formation. If the coagulation bath temperature is less than -30 ° C, since 40% by volume of methanol in the solvent should be mixed, the PVA dissolving power is lowered, making it impossible to prepare a uniform PVA spinning dope. There may be a problem in that the radioactivity is lowered due to the impossibility of gel formation.

PVA 섬유제조 방법은 건식법, 습식법 및 두 방법을 혼합한 건습식법이 있지 만, 고배율 연신공정이 필요한 고강도 PVA 섬유제조법에서는 건습식법이 효과적이다. PVA fiber manufacturing methods include a dry method, a wet method, and a dry and wet method in which the two methods are mixed. However, the wet and dry method is effective in the high strength PVA fiber manufacturing method requiring a high magnification stretching process.

PVA 필라멘트 제조를 위하여 건습식법에서 에어-갭(air-gap)은 10 내지 300㎜가 가능하지만, 고배율의 열연신을 위하여 20 내지 100㎜가 바람직하다. 에어-갭이 10㎜ 미만인 경우, 작업성이 저하되며, 반면에 300㎜를 초과하는 경우, 겔화도에 비하여 결정화도가 더 크기 때문에 고배율 열연신이 불가능하고, 노즐 직후에 섬유간 융착이 발생하므로 생산성이 저하되는 문제점이 있을 수 있다.The air-gap may be 10 to 300 mm in the wet and dry method for preparing the PVA filament, but 20 to 100 mm is preferable for high magnification of thermal stretching. If the air-gap is less than 10 mm, workability deteriorates, whereas if it exceeds 300 mm, high magnification thermal stretching is impossible due to the higher degree of crystallinity than gelation degree, and productivity is improved because fusion between fibers occurs immediately after the nozzle. There may be a problem that is degraded.

본 발명의 가장 큰 특징은 응고욕에 알카리 첨가제를 첨가함으로써 응고시 PVA 중합물에 잔존하는 아세틸기를 제거하여 섬유의 검화도를 99.9%이상 되게함으로써, 고강도 및 고탄성율의 PVA 섬유를 제조하는 것이다. The biggest feature of the present invention is to prepare PVA fibers of high strength and high modulus by adding alkali additives to the coagulation bath to remove acetyl groups remaining in the PVA polymer during coagulation to make the saponification degree of the fibers 99.9% or more.

상기 응고욕에 첨가되는 알카리 첨가제로는 수산화나트륨, 황산나트륨 등이 바람직하다. 이 때 첨가제의 총 중량은 메탄올 응고욕 대비 0.5 내지 20 중량%가 바람직하다. 첨가제의 총 중량이 0.5중량%미만이면 PVA 강도, 탄성률등의 물성 향상에 기여하지 못하고, 총 중량이 20 중량%를 초과하면 탈용매 속도의 불균일을 야기시켜 섬유 물성의 저하를 가져오게 된다.As the alkali additive to be added to the coagulation bath, sodium hydroxide, sodium sulfate and the like are preferable. At this time, the total weight of the additive is preferably 0.5 to 20% by weight relative to the methanol coagulation bath. If the total weight of the additive is less than 0.5% by weight, it does not contribute to the improvement of physical properties such as PVA strength, elastic modulus, etc., and if the total weight exceeds 20% by weight, it causes a non-solvent velocity unevenness, leading to a decrease in fiber properties.

연신공정의 가열방식은 열풍가열식과 롤러가열식이 있지만 롤러가열식에서는 필라멘트가 롤러면과 접촉하여 섬유 표면이 손상되기 쉽기 때문에 고강도 PVA 섬유제조에는 열풍가열식이 더 효과적이다. 180 내지 250℃의 온도에서 가열이 가능하지만 바람직하게는 210 내지 230℃가 적당하다. 가열온도가 180℃ 미만인 경우, 분자사슬이 충분히 거동하지 않기 때문에 고배율 열연신이 불가능하며, 250℃를 초과 하는 경우, PVA가 분해되기 쉽기 때문에 물성 저하를 가져오는 문제점이 있을 수 있다. The heating method of the stretching process includes hot air heating and roller heating, but hot air heating is more effective for producing high strength PVA fibers because the filament is in contact with the roller surface and the fiber surface is easily damaged. Heating at a temperature of 180 to 250 ° C. is possible but preferably 210 to 230 ° C. is suitable. If the heating temperature is less than 180 ° C, high magnification thermal stretching is not possible because the molecular chain is not sufficiently behaved, and if it exceeds 250 ° C, there may be a problem that the physical properties are degraded because PVA is easily decomposed.

이와 같이 제조된 섬유의 결정성을 좀더 높이기 위해서는 연신공정 보다 5 내지 10℃ 높은 온도에서 열처리하는 것이 효과적이다. 이와 같은 연신공정에서 총연신배율이 18배 이상이 되도록 열연신하는 것으로 이루어짐을 특징으로 한다.In order to increase the crystallinity of the fiber thus produced, it is effective to heat-treat at a temperature of 5 to 10 ℃ higher than the stretching process. In this stretching process, it is characterized in that the heat stretching so that the total draw ratio is 18 times or more.

상기한 바와 같은 본 발명에 따른 방법에 의하여 수득된 고결정성 및 고강도 PVA 섬유는 18배 이상 연신이 가능하여 인장강도 16.5g/d 이상, 탄성율 400g/d 이상인 고강도 PVA 섬유를 제공할 수 있다.The high crystalline and high strength PVA fibers obtained by the method according to the present invention as described above can be stretched 18 times or more to provide a high strength PVA fiber having a tensile strength of at least 16.5g / d, elastic modulus of 400g / d or more.

이하에서 본 발명의 바람직한 실시예 및 비교예들이 기술되어질 것이다.Hereinafter, preferred embodiments and comparative examples of the present invention will be described.

이하의 실시예들은 본 발명을 예증하기 위한 것으로서 본 발명의 범위를 국한시키는 것으로 이해되어져서는 안 될 것이다.The following examples are intended to illustrate the invention and should not be understood as limiting the scope of the invention.

인장강도, 탄성률 및 신도는 KS K 0412에 준하여, 시료길이 10㎝, 인장속도 300㎜/min로 측정하였다. 또한 열연신공정은 1단계 200℃, 2단계 220℃, 열처리는 230℃의 열풍온도에서 실시되었다.Tensile strength, elastic modulus and elongation were measured according to KS K 0412 at a sample length of 10 cm and a tensile speed of 300 mm / min. In addition, the hot drawing process was carried out at a hot air temperature of 230 ° C. in the first step 200 ° C., 220 ° C. in the second step.

실시예 1Example 1

PVA는 검화도 및 중합도가 각각 99.5mol%, 3,300인 파우더형태를 사용하였으며, 메탄올과 DMSO는 수분함량이 100ppm 이하의 정제된 용매를 사용하였다. 용매 중 메탄올 함량이 15 용적%되도록 DMSO와 메탄올을 혼합하여 혼합용매를 제조하였으며, PVA 방사 도프에 대하여 18 중량%가 되도록 PVA를 용해하였다. 그 후, 겔방 사를 이용한 건습식방사법에 의해서 PVA섬유를 제조하였다. 이때 노즐 홀수 및 홀 직경은 각각 1000개 및 0.3㎜이며 L/D가 5인 원형 노즐을 사용하였다. 에어-갭은 30㎜이며, 응고조 내 용매는 메탄올을 사용하였으며, 이때 응고조 전체중량에 대하여 염화나트륨을 첨가하여 5wt%가 되게 하였고, 온도 0℃의 조건을 유지하였다. 열연신은 3단계 열풍가열식을 사용하였으며, 열풍가열온도는 1단계 200℃, 2단계 220℃, 3단계는 열처리 단계로서 230℃에서 실시하였다. 각 단계별 연신배율은 4.5 및 1.64배로 총연신배율은 18.5배가 되도록 하였다. 이와 같이 방사용매를 거의 제거된 상태에서 제조된 PVA 섬유는 강도 19.5g/d, 탄성률 400g/d 그리고 신도가 5.0%인 고강도 PVA 섬유임을 확인하였다. PVA used 99.5 mol% and 3,300 respectively in the form of saponification and polymerization degree, and methanol and DMSO used a purified solvent having a water content of 100 ppm or less. A mixed solvent was prepared by mixing DMSO and methanol so that the methanol content of the solvent was 15% by volume, and PVA was dissolved to 18 wt% with respect to the PVA spinning dope. Thereafter, PVA fibers were prepared by wet and dry spinning using gel spinning. At this time, the number of nozzle odds and hole diameters were 1000 and 0.3 mm, respectively, and a circular nozzle having 5 L / D was used. The air gap was 30 mm, and the solvent in the coagulation bath was methanol, and sodium chloride was added to 5 wt% based on the total weight of the coagulation bath, and the temperature was maintained at 0 ° C. The hot drawing was carried out using a three-step hot air heating method, and the hot air heating temperature was performed at 230 ° C. as a first step of 200 ° C., two steps of 220 ° C., and three steps as heat treatment steps. The draw ratios for each stage were 4.5 and 1.64 times, and the total draw ratios were 18.5 times. As such, the PVA fiber prepared in the state of almost removing the spinning solvent was confirmed to be a high-strength PVA fiber having a strength of 19.5 g / d, an elastic modulus of 400 g / d, and an elongation of 5.0%.

실시예 2 및 3Examples 2 and 3

하기 표 1과 같은 비율로 응고조 내에 수산화나트륨 첨가 비율을 조절하여 고온에서 열연신하여 얻은 필라멘트의 강도, 탄성모듈러스, 및 신도 등을 비교하였다. To compare the strength, elastic modulus, elongation, and the like of the filament obtained by hot stretching at a high temperature by adjusting the sodium hydroxide addition ratio in the coagulation bath at the ratio as shown in Table 1.

비교예 1 및 2Comparative Examples 1 and 2

비교예 1 및 2는 응고조 내에 황산암모늄 및 황산나트륨을 첨가하여 열연신한 경우의 섬유 물성을 비교하였으며 결과는 표 1과 같다.Comparative Examples 1 and 2 compared the fiber properties in the case of hot stretching by adding ammonium sulfate and sodium sulfate in the coagulation bath and the results are shown in Table 1.

비교예 3Comparative Example 3

비교예 3은 응고조에 알카리염을 첨가하지 않고 방사하여 열연신한 경우로서 결과는 표 1과 같다.Comparative Example 3 is the case of spinning and hot stretching without adding an alkali salt to the coagulation bath, the results are shown in Table 1.

구 분division 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 PVA 중합도PVA degree of polymerization 33003300 33003300 20002000 33003300 33003300 33003300 PVA 검화도 (mol%)PVA saponification degree (mol%) 99.599.5 99.099.0 99.999.9 99.599.5 99.599.5 99.099.0 응고조 첨가염 종류/농도(중량%)Type of coagulation salt / concentration (% by weight) NaOH/5NaOH / 5 NaOH/20NaOH / 20 NaOH/5NaOH / 5 (NH4)2SO4/10 (NH 4) 2 SO 4/ 10 Na2SO4/40Na 2 SO 4/40 00 총연신배율Total draw ratio 1919 1818 1616 1515 1414 1212 인장강도(g/d)Tensile strength (g / d) 2020 19.519.5 1818 1414 1313 1010 탄성률(g/d)Modulus of elasticity (g / d) 460460 400400 350350 250250 240240 200200 신도(%) Elongation (%) 55 5.55.5 66 66 88 55

상기한 실시예들을 종합한 결과, 본 발명에 따라 PVA 섬유를 제조하면 20g/d의 고강도 PVA 섬유를 수득할 수 있게 됨을 확인할 수 있었다. 또한, 응고욕에 NaOH를 첨가하여 중합물에 잔존하는 아세틸기를 제거함으로써, 고결정성 및 고강도 PVA 섬유를 제조할 수 있었다. 이와 같이 제조된 고강도 PVA섬유는 시멘트 및 콘크리트 보강재 뿐만 아니라 특히 자동차 브레이크 호스 및 타이어 등 고무보강재로서 우수한 성질을 갖는다.As a result of the synthesis of the above embodiments, it was confirmed that when the PVA fiber according to the present invention can be obtained high strength PVA fiber of 20g / d. In addition, by adding NaOH to the coagulation bath to remove the acetyl group remaining in the polymer, high crystallinity and high strength PVA fibers could be produced. The high-strength PVA fibers produced as described above have excellent properties as rubber and rubber reinforcement materials, especially automobile brake hoses and tires, as well as cement and concrete reinforcement materials.

본 발명에 의해 제조된 고결정성 및 고강도 PVA섬유는 시멘트 및 콘크리트 보강재 뿐만 아니라 특히 자동차 브레이크 호스 및 타이어 등 고무보강재로서 우수한 성질을 갖는 고강도 PVA 섬유를 제공할 수 있다.The high crystallinity and high strength PVA fibers produced by the present invention can provide high strength PVA fibers having excellent properties as rubber and rubber reinforcements such as automobile brake hoses and tires, as well as cement and concrete reinforcements.

Claims (6)

(1) 중합도 1,500 내지 7,000, 검화도 99.0 내지 100 몰% 폴리비닐알콜을 제조하는 중합단계; (1) a polymerization step of preparing a polymerization degree of 1,500 to 7,000 and a saponification degree of 99.0 to 100 mol% polyvinyl alcohol; (2) 상기 중합단계에서 수득된 폴리비닐알콜을 디메틸설폭사이드와 메탄올로 이루어지는 혼합용매에 용해시켜 폴리비닐알콜 방사 도프를 제조하는 용해단계; (2) a dissolution step of dissolving the polyvinyl alcohol obtained in the polymerization step in a mixed solvent consisting of dimethyl sulfoxide and methanol to prepare a polyvinyl alcohol spinning dope; (3) 상기 폴리비닐알콜 방사 도프를 저온에서 알카리 응고욕을 사용하여 습식 또는 습식방사에 따라 미연신사를 제조하는 단계; (3) preparing the unstretched yarn by wet or wet spinning the polyvinyl alcohol spinning dope using an alkali coagulation bath at low temperature; (4) 상기 미연신사를 수세, 건조 및 유제 처리하여 연신하는 단계를 포함하는 방법에 의해서 제조되는 것을 특징으로 하는 폴리비닐알콜 섬유의 제조방법. (4) A method for producing polyvinyl alcohol fibers, characterized in that it is produced by a method comprising the step of stretching by washing, drying and emulsion treatment of the unstretched yarn. 제 1 항에 있어서,The method of claim 1, 상기 (2) 단계에서 혼합용매의 혼합 비율은 60 내지 95중량%의 디메틸설폭사이드와 5 내지 40중량%의 메탄올을 혼합하는 것을 특징으로 하는 폴리비닐알콜 섬유의 제조방법.The mixing ratio of the mixed solvent in the step (2) is a method for producing polyvinyl alcohol fibers, characterized in that 60 to 95% by weight of dimethyl sulfoxide and 5 to 40% by weight of methanol is mixed. 제 1 항에 있어서,The method of claim 1, 상기 (3) 단계에서 첨가되는 알카리 첨가제는 수산화나트륨 또는 황산나트륨 인 것을 특징으로 하는 폴리비닐알콜 섬유의 제조방법.The alkali additives added in the step (3) is a method of producing polyvinyl alcohol fibers, characterized in that sodium hydroxide or sodium sulfate. 제 1 항에 있어서, The method of claim 1, 상기 (3) 단계에서 첨가되는 알카리 첨가제의 농도는 0.5 내지 20 wt% 인 것을 특징으로 하는 폴리비닐알콜 섬유의 제조방법.The concentration of the alkali additives added in step (3) is a method for producing polyvinyl alcohol fibers, characterized in that 0.5 to 20 wt%. 제 1 항에 있어서, The method of claim 1, 상기 (4)단계에서 연신은 적어도 두 개의 승온 단계를 포함하는 폴리비닐알콜 섬유의 제조방법.Stretching in the step (4) is a method of producing a polyvinyl alcohol fiber comprising at least two temperature rising step. 제 1 항 내지 제 5 항들 중의 어느 한 항에 따라 제조되고 인장강도가 16.5d/g 이상, 탄성율이 400g/d 이상인 것을 특징으로 하는 고강도 폴리비닐알콜 섬유.A high strength polyvinyl alcohol fiber, according to any one of claims 1 to 5, characterized in that the tensile strength is at least 16.5d / g, the elastic modulus is at least 400g / d.
KR1020050134373A 2005-12-29 2005-12-29 Process for preparing high-tenacity polyvinyl alcohol fiber KR20070071156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050134373A KR20070071156A (en) 2005-12-29 2005-12-29 Process for preparing high-tenacity polyvinyl alcohol fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050134373A KR20070071156A (en) 2005-12-29 2005-12-29 Process for preparing high-tenacity polyvinyl alcohol fiber

Publications (1)

Publication Number Publication Date
KR20070071156A true KR20070071156A (en) 2007-07-04

Family

ID=38506342

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050134373A KR20070071156A (en) 2005-12-29 2005-12-29 Process for preparing high-tenacity polyvinyl alcohol fiber

Country Status (1)

Country Link
KR (1) KR20070071156A (en)

Similar Documents

Publication Publication Date Title
KR100810865B1 (en) Method of Preparing Polyketone Fibers and the Polyketone Fibers Prepared by the Method
KR100949556B1 (en) Method for production of cross-linked composite fiber of cellulose-polyvinylalcohol and the cross-linked composite fiber
CN101161880A (en) Method for preparing polyacrylonitrile-based carbon fiber precursor fiber
JPH0611927B2 (en) High-strength, high-modulus polyvinyl alcohol fiber and method for producing the same
CN113463222B (en) High-orientation-degree alginic acid fiber and preparation method thereof
JP3267781B2 (en) Method for producing regenerated cellulose molded article
KR100713781B1 (en) A process for preparing polyvinylalcohol yarn with high strength, and polyvinylalcohol yarn prepared therefrom
CN115704116B (en) Method for manufacturing aromatic polysulfonamide fiber
KR20070071156A (en) Process for preparing high-tenacity polyvinyl alcohol fiber
JPH0696807B2 (en) High-strength, high-modulus polyvinyl alcohol fiber manufacturing method
JPS61108713A (en) Polyvinyl alcohol fiber having good fiber properties and its production
KR100389659B1 (en) Process for preparing high-tenacity polyvinyl alcohol fiber
KR100587387B1 (en) Method for preparing high-tenacity polyvinyl alchol fiber
KR100587388B1 (en) Manufacturing method of high-tenacity polyvinyl alcohol fiber and the same thereby
KR101432874B1 (en) Aramid Fiber and Method for Manufacturing The Same
JPH10280228A (en) Production of spinning dope and production of fiber
KR100610250B1 (en) A preparing for method polyvinylalcohol fiber
JPS62238812A (en) Production of polyvinyl alcohol fiber having high strength and elastic modulus
KR100588347B1 (en) Process for preparing high-tenacity polyvinyl alcohol fiber with hot water resistance
KR101521234B1 (en) Method of preparing polyketone fibers
KR20100006960A (en) Process for producing polyketone fibers and polyketone fibers thereby
JP2888496B2 (en) Method for producing high modulus polyvinyl alcohol fiber
JP2728737B2 (en) Hot water-resistant polyvinyl alcohol fiber and method for producing the same
JP2865736B2 (en) Manufacturing method of high strength polyvinyl alcohol fiber
JPS636108A (en) Production of poly(p-phenylene terephthalamide) fiber

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination