KR20070068760A - Method for managing semiconductor process - Google Patents

Method for managing semiconductor process Download PDF

Info

Publication number
KR20070068760A
KR20070068760A KR1020050130729A KR20050130729A KR20070068760A KR 20070068760 A KR20070068760 A KR 20070068760A KR 1020050130729 A KR1020050130729 A KR 1020050130729A KR 20050130729 A KR20050130729 A KR 20050130729A KR 20070068760 A KR20070068760 A KR 20070068760A
Authority
KR
South Korea
Prior art keywords
predetermined
photo
critical dimension
managing
thickness
Prior art date
Application number
KR1020050130729A
Other languages
Korean (ko)
Inventor
정실근
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020050130729A priority Critical patent/KR20070068760A/en
Publication of KR20070068760A publication Critical patent/KR20070068760A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70533Controlling abnormal operating mode, e.g. taking account of waiting time, decision to rework or rework flow
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70608Monitoring the unpatterned workpiece, e.g. measuring thickness, reflectivity or effects of immersion liquid on resist
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/7065Defects, e.g. optical inspection of patterned layer for defects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

A method for managing a semiconductor process is provided to prevent the generation of accidents in a processing and to improve productivity and yield by applying simultaneously interlock to deposition equipment and photo equipment in case of the generation of an abnormal CD(Critical Dimension) using a merged management for the thickness of a deposited layer and the CD after development. The difference of a skew between an efficient thickness of a predetermined layer and the CD of a predetermined pattern is checked(S600). When failure exists in the skew difference checking process, a first and a second processes are simultaneously applied with interlock, so that the failure of the CD of the predetermined pattern is restrained(S700). The first process includes an oxide depositing process and the second process includes a photo process.

Description

반도체 공정의 관리 방법{METHOD FOR MANAGING SEMICONDUCTOR PROCESS}METHOOD FOR MANAGING SEMICONDUCTOR PROCESS

도 1은 종래 기술에 따른 반도체 공정의 관리 방법을 나타내는 흐름도.1 is a flowchart illustrating a method of managing a semiconductor process according to the prior art.

도 2는 본 발명의 실시예에 따른 반도체 공정의 관리 방법을 나타내는 흐름도.2 is a flowchart illustrating a method of managing a semiconductor process according to an embodiment of the present invention.

도 3은 본 발명의 실시예에 따른 반도체 공정의 관리 방법에 있어서 유효산화막 두께(Tox)와 현상후 임계치수(ADI CD)의 스큐차 비교를 나타내는 그래프.3 is a graph showing a skew difference comparison between an effective oxide thickness (Tox) and a post-development critical dimension (ADI CD) in a method of managing a semiconductor process according to an embodiment of the present invention.

본 발명은 반도체 제조 방법에 관한 것으로, 보다 상세하게는 반도체 공정의 관리 방법에 관한 것이다.The present invention relates to a semiconductor manufacturing method, and more particularly, to a method for managing a semiconductor process.

도 1은 종래의 반도체 공정의 관리 방법을 나타내는 흐름도이다.1 is a flowchart illustrating a method of managing a conventional semiconductor process.

도 1을 참조하면, 반도체 웨이퍼 상에 소정의 막질을 증착하는 과정, 가령 산화막(예; PETEOS)을 증착하는 과정(S10)을 거친후 증착된 유효산화막의 두께(Tox)를 계측한다(S20). 유효산화막 두께(Tox)에 대한 계측 결과 설정된 스펙 대비 이상 발생시 증착설비를 정지(S30)하여 필요한 조치를 취한 후 산화막 증착(S10) 과정을 재실시한다. 이와 다르게, 유효산화막 두께(Tox)에 대한 계측 결과 양호한 것으로 판정되면 웨이퍼 상에 감광막을 코팅하고 노광하고 현상하여 특정의 패턴을 형성시키는 포토 공정(S40)을 진행한다. Referring to FIG. 1, after a process of depositing a predetermined film quality on a semiconductor wafer, for example, depositing an oxide film (eg, PETEOS) (S10), the thickness of the effective oxide film deposited is measured (S20). . When the measurement result of the effective oxide film thickness (Tox), if abnormality occurs compared to the set specification, the deposition facility is stopped (S30), and necessary measures are taken, and the oxide film deposition (S10) process is performed again. Alternatively, if it is determined that the measurement result of the effective oxide film thickness Tox is satisfactory, the photo process S40 is performed to coat, expose, and develop a photosensitive film on the wafer to form a specific pattern.

포토 공정에 의해 웨이퍼에 특정의 패턴이 형성되면 오버레이 계측(S50)을 통해 패턴의 오정렬 여부를 검사한다. 오버레이 계측후 현상후 임계치수(ADI CD)를 계측한다(S60). 현상후 임계치수 계측 결과 양호로 판정되지 아니하고 불량으로 판정되면 포토 설비를 정지(S70)하여 필요한 조치를 취한다.When a specific pattern is formed on the wafer by the photo process, the misalignment of the pattern is inspected through the overlay measurement (S50). After the overlay measurement, the post-development critical dimension (ADI CD) is measured (S60). After the development, if the critical dimension measurement result is not determined to be good or is determined to be poor, the photo equipment is stopped (S70) and necessary measures are taken.

이상과 같이, 종래의 반도체 공정의 관리 방법은 증착막질의 두께와 임계치수에 대하여 각각 별개로 관리하는 이원화된 관리 방식이다. 그런데, 증착막 두께 변화에 의하여 포토 공정 진행후 임계치수에 이상이 발생하는 경우가 종종 있어왔다. 이는 바로 임계치수 품질 사고로 이어지게 된다. 따라서, 임계치수 계측시 앞단 공정인 증착 공정의 증착막 두께와 연동된 품질사고를 감지할 수 있는 개선된 반도체 공정의 관리 방법의 대두가 필요한 것이다.As described above, the conventional management method of the semiconductor process is a dual management method for separately managing the thickness and the critical dimension of the deposited film quality. However, there have been cases where abnormality occurs in the critical dimension after the progress of the photo process due to the deposition film thickness change. This leads to critical quality accidents. Therefore, there is a need for an improved method for managing a semiconductor process capable of detecting a quality incident linked to the thickness of a deposition film of a deposition process, which is an earlier step in measuring a critical dimension.

본 발명은 상술한 종래 기술에서의 요구 내지 필요에 부응하기 위한 것으로, 본 발명의 목적은 증착막 두께와 연동된 임계치수 이상 발생 사고를 미연에 감지하여 방지할 수 있는 반도체 공정의 관리 방법을 제공함에 있다.The present invention is to meet the needs and needs of the prior art described above, an object of the present invention is to provide a method for managing a semiconductor process that can detect and prevent the occurrence of a critical dimension abnormality associated with the thickness of the deposited film in advance. have.

상기 목적을 달성하기 위한 본 발명에 따른 반도체 공정의 관리 방법은 종래 이원화된 증착막질의 두께에 임계치수에 대한 관리를 병합하는 것을 특징으로 한다.The method of managing a semiconductor process according to the present invention for achieving the above object is characterized in that the management of the critical dimension to the thickness of the conventional binary deposition film quality.

상기 특징을 구현할 수 있는 본 발명의 실시예에 따른 반도체 공정의 관리 방법은, 웨이퍼에 소정의 막질을 형성하는 제1 공정과 상기 웨이퍼에 소정의 패턴을 형성하는 제2 공정을 관리하는 방법에 있어서, 상기 소정의 막질의 유효 두께와 상기 소정의 패턴의 임계치수의 스큐차를 비교하여 불량으로 판정된 경우 상기 제1 및 제2 공정들을 동시에 인터록시켜 상기 소정의 막질의 유효 두께와 연동된 상기 소정의 패턴의 임계치수의 불량을 억제하는 것을 특징으로 한다.In the method of managing a semiconductor process according to an embodiment of the present invention capable of implementing the above characteristics, a method of managing a first process of forming a predetermined film quality on a wafer and a second process of forming a predetermined pattern on the wafer are provided. And comparing the effective thickness of the predetermined film quality with a skew difference of the critical dimension of the predetermined pattern and interlocking the first and second processes at the same time when determining that the defect is defective, the predetermined thickness interlocked with the effective thickness of the predetermined film quality. The defect of the critical dimension of the pattern is suppressed.

본 실시예에 있어서, 상기 제1 공정은 상기 웨이퍼에 산화막을 증착하는 증착공정을 포함하고, 상기 제2 공정은 상기 산화막 상에 감광막의 코팅과 노광과 현상을 통해 상기 소정의 패턴을 형성하는 포토공정을 포함한다.In the present embodiment, the first process includes a deposition process for depositing an oxide film on the wafer, and the second process is a photo for forming the predetermined pattern by coating, exposing and developing a photosensitive film on the oxide film. Process.

상기 특징을 구현할 수 있는 본 발명의 변형 실시예에 따른 반도체 공정의 관리 방법은, 웨이퍼에 소정의 막질을 증착시키는 증착공정 단계와, 상기 소정의 막질의 유효 두께를 측정하는 계측 단계와, 상기 소정의 막질 상에 소정의 패턴을 형성하는 포토공정 단계와, 상기 소정의 패턴의 임계치수를 측정하는 계측 단계와, 상기 소정의 막질의 유효 두께와 상기 임계치수의 스큐차를 비교하는 단계와, 상기 증착공정 단계와 상기 포토공정 단계를 정지시키는 인터록 단계를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a method of managing a semiconductor process, comprising: a deposition step of depositing a predetermined film quality on a wafer; a measurement step of measuring an effective thickness of the predetermined film quality; A photo process step of forming a predetermined pattern on the film quality of the film, a measuring step of measuring a critical dimension of the predetermined pattern, comparing an effective thickness of the predetermined film quality and a skew difference of the critical dimension, and And an interlock step of stopping the deposition process step and the photoprocess step.

본 변형 실시예에 있어서, 상기 소정의 패턴의 오정렬 여부를 측정하는 오버레이 계측 단계를 더 포함한다.In this modified embodiment, the method further includes an overlay measurement step of measuring whether the predetermined pattern is misaligned.

본 변형 실시예에 있어서, 상기 증착공정 단계와 상기 포토공정 단계를 정지시키는 인터록 단계는 상기 증착공정에 사용되는 증착설비와 상기 포토공정에 사용 되는 포토설비를 동시에 정지시키는 단계를 포함한다.In this modified embodiment, the interlock step of stopping the deposition process step and the photoprocess step includes simultaneously stopping the deposition equipment used for the deposition process and the photo equipment used for the photoprocess.

본 발명에 의하면, 종래 이원화된 증착막질의 두께와 현상후 임계치수에 대한 관리를 병합함으로써 증착막질의 두께와 연동된 현상후 임계치수의 품질사고가 발생하면 증착설비와 포토설비에 대하여 두 가지 공정을 동시에 인터록을 발생하게 할 수 있다. According to the present invention, when the quality of the critical dimension after development is linked to the thickness of the deposited film quality by combining the control of the thickness of the conventional binary film thickness and the post-development, the two processes for the deposition equipment and the photo equipment are simultaneously performed. Interlock can be generated.

이하, 본 발명에 따른 반도체 공정의 관리 방법을 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, a method of managing a semiconductor process according to the present invention will be described in detail with reference to the accompanying drawings.

본 발명과 종래 기술과 비교한 이점은 첨부된 도면을 참조한 상세한 설명과 특허청구범위를 통하여 명백하게 될 것이다. 특히, 본 발명에 따른 반도체 소자의 제조 장치는 특허청구범위에서 잘 지적되고 명백하게 청구된다. 그러나, 본 발명에 따른 반도체 소자의 제조 장치는 첨부된 도면과 관련해서 다음의 상세한 설명을 참조함으로써 가장 잘 이해될 수 있다.Advantages over the present invention and prior art will become apparent through the description and claims with reference to the accompanying drawings. In particular, a device for manufacturing a semiconductor device according to the present invention is well pointed out and claimed in the claims. However, the apparatus for manufacturing a semiconductor device according to the present invention can be best understood by referring to the following detailed description with reference to the accompanying drawings.

(실시예)(Example)

도 2는 본 발명의 실시예에 따른 반도체 공정의 관리 방법을 나타내는 흐름도이고, 도 3은 본 발명의 실시예에 따른 반도체 공정의 관리 방법에 있어서 유효산화막 두께(Tox)와 현상후 임계치수(ADI CD)의 스큐차 비교를 나타내는 그래프이다. 본 발명의 실시예에 따른 반도체 공정의 관리 방법은 웨이퍼에 산화막을 형성하는 증착공정과 감광막으로써 패턴을 형성하는 포토공정의 예를 들어 설명하도록 한다. 2 is a flowchart illustrating a method of managing a semiconductor process according to an embodiment of the present invention, and FIG. 3 is an effective oxide film thickness Tox and a post-development critical dimension in a method of managing a semiconductor process according to an embodiment of the present invention. It is a graph which shows the skew difference comparison of CD). A method of managing a semiconductor process according to an embodiment of the present invention will be described by taking an example of a deposition process of forming an oxide film on a wafer and a photo process of forming a pattern using a photosensitive film.

도 2를 참조하면, 반도체 웨이퍼 상에 산화막(예; PETEOS)을 증착하는 과정(S100)을 거친후 증착된 유효산화막의 두께(Tox)를 계측한다(S200). 유효산화막 두께(Tox)에 대한 계측 결과 설정된 스펙 대비 이상 발생시 기존과 같이 증착설비를 정지하여 필요한 조치를 취한 후 산화막 증착공정(S100)을 재실시하는 경우 유효산화막의 두께(Tox)가 변화하여 후속하는 포토공정 진행후 현상후 임계치수(ADI CD)에 이상이 발생할 수 있다. 따라서, 기존과 달리 유효산화막의 두께를 계측(S200)한 후 포토공정(S300)을 바로 진행하다.Referring to FIG. 2, after a process of depositing an oxide film (eg, PETEOS) on a semiconductor wafer (S100), a thickness (Tox) of the deposited effective oxide film is measured (S200). As a result of measuring the effective oxide thickness (Tox), if an abnormality occurs compared to the set specification, the thickness of the effective oxide film (Tox) is changed when the oxide deposition process (S100) is repeated after taking necessary measures by stopping the deposition equipment as before. After developing the photo process, abnormality may occur in the post-development critical dimension (ADI CD). Accordingly, unlike the conventional method, the thickness of the effective oxide film is measured (S200), and the photo process (S300) is immediately performed.

포토공정(S300)으로써 웨이퍼 상에 감광막을 코팅하고 노광하고 현상하여 특정의 패턴을 형성한다. 포토공정(S300)에 의해 웨이퍼에 특정의 패턴이 형성되면 오버레이 계측(S400)을 통해 패턴의 오정렬 여부를 검사한다. 이후에, SEM 과 같은 설비를 이용하여 현상후 임계치수(ADI CD)를 계측한다(S500).In the photo process S300, a photosensitive film is coated on the wafer, exposed to light, and developed to form a specific pattern. When a specific pattern is formed on the wafer by the photo process S300, the pattern is inspected for misalignment through the overlay measurement S400. Thereafter, a post-development critical dimension (ADI CD) is measured using a facility such as SEM (S500).

도 3을 참조하면, 유효산화막 두께(Tox)와 현상후 임계치수(ADI CD)의 스큐(skew)차를 비교한다(S600). 유효산화막 두께(Tox)와 현상후 임계치수(ADI CD)의 스큐(skew)차를 비교하여 불량으로 판정되면 증착설비와 포토설비를 동시에 정지(S700)시켜 두개의 공정이 동시에 인터록이 되도록 한다.Referring to FIG. 3, a skew difference between the effective oxide thickness Tox and the post-development critical dimension ADI CD is compared (S600). When it is determined that the difference between the effective oxide thickness Tox and the skew difference between the post-development critical dimensions (ADI CD) is determined to be defective, the deposition apparatus and the photo apparatus are simultaneously stopped (S700) so that the two processes are interlocked at the same time.

이와 같이, 유효산화막 두께(Tox)와 현상후 임계치수(ADI CD)를 병합하여 스큐차를 비교하게 되면 유효산화막 두께(Tox)의 변화에 의해 포토공정 진행후 현상후 임계치수(ADI CD) 이상이 발생하여 임계치수 품질사고가 일어나는 일이 미연에 감지된다. 즉, 유효산화막 두께(Tox)와 연동된 임계치수 품질사고가 억제되는 것이다.As such, when comparing the skew difference by merging the effective oxide thickness (Tox) and the post-development critical dimension (ADI CD), the change in the effective oxide film thickness (Tox) is more than the post-development threshold (ADI CD) after the photo process. The occurrence of this critical quality incident is detected beforehand. That is, the critical dimension quality incident linked with the effective oxide film thickness Tox is suppressed.

이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내고 설명하는 것에 불과하며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 그리고, 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위 내에서 변경 또는 수정이 가능하다. 전술한 실시예들은 본 발명을 실시하는데 있어 최선의 상태를 설명하기 위한 것이며, 본 발명과 같은 다른 발명을 이용하는데 당업계에 알려진 다른 상태로의 실시, 그리고 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서, 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.The foregoing detailed description illustrates the present invention. In addition, the foregoing description merely shows and describes preferred embodiments of the present invention, and the present invention can be used in various other combinations, modifications, and environments. And, it is possible to change or modify within the scope of the concept of the invention disclosed in this specification, the scope equivalent to the written description, and / or the skill or knowledge in the art. The above-described embodiments are for explaining the best state in carrying out the present invention, the use of other inventions such as the present invention in other state known in the art, and the specific fields of application and uses of the present invention. Various changes are also possible. Accordingly, the detailed description of the invention is not intended to limit the invention to the disclosed embodiments. Also, the appended claims should be construed to include other embodiments.

이상에서 상세히 설명한 바와 같이, 본 발명에 의하면, 종래 이원화된 증착막질의 두께와 현상후 임계치수에 대한 관리를 병합함으로써 증착막질의 두께와 연동된 현상후 임계치수의 품질사고가 발생하면 증착설비와 포토설비에 대하여 두 가지 공정을 동시에 인터록을 발생하게 할 수 있다. 이에 따라, 공정 품질사고를 미연에 감지하고 억제시켜 생산성과 수율을 향상시킬 수 있는 효과가 있다.As described above in detail, according to the present invention, if the quality of the critical dimension after development associated with the thickness of the deposited film quality by combining the control of the thickness and the post-development critical dimension of the conventional binary deposition film quality deposition equipment and photo equipment For both processes, the interlock can be generated at the same time. Accordingly, there is an effect that can improve the productivity and yield by detecting and suppressing the process quality accident in advance.

Claims (5)

웨이퍼에 소정의 막질을 형성하는 제1 공정과 상기 웨이퍼에 소정의 패턴을 형성하는 제2 공정을 관리하는 방법에 있어서,1. A method of managing a first step of forming a predetermined film quality on a wafer and a second step of forming a predetermined pattern on the wafer, 상기 소정의 막질의 유효 두께와 상기 소정의 패턴의 임계치수의 스큐차를 비교하여 불량으로 판정된 경우 상기 제1 및 제2 공정들을 동시에 인터록시켜 상기 소정의 막질의 유효 두께와 연동된 상기 소정의 패턴의 임계치수의 불량을 억제하는 것을 특징으로 하는 반도체 공정의 관리 방법.When the effective thickness of the predetermined film quality is compared with the skew difference of the critical dimension of the predetermined pattern, and when it is determined to be defective, the first and second processes are simultaneously interlocked to interlock with the effective thickness of the predetermined film quality. A method for managing a semiconductor process characterized by suppressing a defect in a critical dimension of a pattern. 제1항에 있어서,The method of claim 1, 상기 제1 공정은 상기 웨이퍼에 산화막을 증착하는 증착공정을 포함하고, 상기 제2 공정은 상기 산화막 상에 감광막의 코팅과 노광과 현상을 통해 상기 소정의 패턴을 형성하는 포토공정을 포함하는 것을 특징으로 하는 반도체 공정의 관리 방법.The first process includes a deposition process for depositing an oxide film on the wafer, and the second process includes a photo process for forming the predetermined pattern by coating, exposing and developing a photosensitive film on the oxide film. The management method of the semiconductor process. 웨이퍼에 소정의 막질을 증착시키는 증착공정 단계와;A deposition process step of depositing a predetermined film quality on the wafer; 상기 소정의 막질의 유효 두께를 측정하는 계측 단계와;A measurement step of measuring an effective thickness of the predetermined film quality; 상기 소정의 막질 상에 소정의 패턴을 형성하는 포토공정 단계와;A photo process step of forming a predetermined pattern on the predetermined film quality; 상기 소정의 패턴의 임계치수를 측정하는 계측 단계와;A measurement step of measuring a critical dimension of the predetermined pattern; 상기 소정의 막질의 유효 두께와 상기 임계치수의 스큐차를 비교하는 단계 와;Comparing a skew difference between the effective thickness of the predetermined film quality and the critical dimension; 상기 증착공정 단계와 상기 포토공정 단계를 정지시키는 인터록 단계;An interlock step of stopping the deposition process step and the photoprocess step; 를 포함하는 것을 특징으로 하는 반도체 공정의 관리 방법.Method of managing a semiconductor process comprising a. 제3항에 있어서,The method of claim 3, 상기 소정의 패턴의 오정렬 여부를 측정하는 오버레이 계측 단계를 더 포함하는 것을 특징으로 하는 반도체 공정의 관리 방법.An overlay measurement step of measuring the misalignment of the predetermined pattern further comprises a semiconductor process management method. 제3항에 있어서,The method of claim 3, 상기 증착공정 단계와 상기 포토공정 단계를 정지시키는 인터록 단계는, 상기 증착공정에 사용되는 증착설비와 상기 포토공정에 사용되는 포토설비를 동시에 정지시키는 단계를 포함하는 것을 특징으로 하는 반도체 공정의 관리 방법.The interlocking step of stopping the deposition process step and the photo process step includes the step of simultaneously stopping the deposition equipment used for the deposition process and the photo equipment used for the photo process. .
KR1020050130729A 2005-12-27 2005-12-27 Method for managing semiconductor process KR20070068760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050130729A KR20070068760A (en) 2005-12-27 2005-12-27 Method for managing semiconductor process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050130729A KR20070068760A (en) 2005-12-27 2005-12-27 Method for managing semiconductor process

Publications (1)

Publication Number Publication Date
KR20070068760A true KR20070068760A (en) 2007-07-02

Family

ID=38504630

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050130729A KR20070068760A (en) 2005-12-27 2005-12-27 Method for managing semiconductor process

Country Status (1)

Country Link
KR (1) KR20070068760A (en)

Similar Documents

Publication Publication Date Title
US7072049B2 (en) Model optimization for structures with additional materials
US7571422B2 (en) Method for generating a design rule map having spatially varying overlay budget
US9099353B2 (en) Method and system for determining overlap process windows in semiconductors by inspection techniques
US20080227228A1 (en) Measurement of Overlay Offset in Semiconductor Processing
KR20040084710A (en) Substrate inspection system, substrate inspection method and substrate inspection apparatus
KR20070068760A (en) Method for managing semiconductor process
US7875851B1 (en) Advanced process control framework using two-dimensional image analysis
US6697153B1 (en) Method and apparatus for analyzing line structures
KR20020096975A (en) Method for controlling the quality of a lithographic structuring step
EP1372032A1 (en) Mask manufacturing method
KR20040099928A (en) Method for overlay measurement
US20080144920A1 (en) Method of generating inspection data, inspection method, and computer readable storage medium
JPH09293764A (en) Process defect inspection method of semiconductor device
JPH1090116A (en) Defocus detecting method in photolithographic process and reticle used therefor
KR20080056429A (en) Method of inspecting mask
KR20050111244A (en) Method for controlling overlay out value
KR100280536B1 (en) Overlay inspection method of semiconductor photo process
KR100249007B1 (en) Method for manufacturing monitor pattern of semiconductor device
CN115564729A (en) Photomask and detection method thereof, defect pattern and forming method, device and equipment thereof
Ali et al. Application of integrated scatterometry (iODP) to detect and quantify resist profile changes due to resist batch changes in a production environment
KR20090044563A (en) Standard reticle and method for inspecting defect using the same
KR0127661B1 (en) Automatic exposure method using the reticle for semiconductor fabrication
KR100687398B1 (en) Method for measuring overlay of semiconductor device
KR20110124615A (en) Apparatus for treating substrate and method for treating substrates in the apparatus
KR20100074626A (en) Method to inspect defect of reticle

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid