KR20070053867A - Novel bacillus velezensis a-68 and use of the same - Google Patents

Novel bacillus velezensis a-68 and use of the same Download PDF

Info

Publication number
KR20070053867A
KR20070053867A KR1020050111625A KR20050111625A KR20070053867A KR 20070053867 A KR20070053867 A KR 20070053867A KR 1020050111625 A KR1020050111625 A KR 1020050111625A KR 20050111625 A KR20050111625 A KR 20050111625A KR 20070053867 A KR20070053867 A KR 20070053867A
Authority
KR
South Korea
Prior art keywords
polysaccharides
bacillus
rice
present
rice bran
Prior art date
Application number
KR1020050111625A
Other languages
Korean (ko)
Other versions
KR100738007B1 (en
Inventor
이진우
조강익
조혜영
Original Assignee
부경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부경대학교 산학협력단 filed Critical 부경대학교 산학협력단
Priority to KR1020050111625A priority Critical patent/KR100738007B1/en
Publication of KR20070053867A publication Critical patent/KR20070053867A/en
Application granted granted Critical
Publication of KR100738007B1 publication Critical patent/KR100738007B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/22Processes using, or culture media containing, cellulose or hydrolysates thereof

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 신규 미생물 바실러스 베레첸시스 A-68 및 그의 용도에 관한 것으로, 보다 상세하게는, 해수로부터 동정한 섬유소 분해효소 생성능을 가진 바실러스 베레첸시스 A-68, 이를 미강, 왕겨, 전분 및 CMC로 구성된 그룹으로부터 선택된 어느 하나 이상을 탄소원으로 함유하는 배지에서 배양하는 것을 특징으로 하는 섬유소 분해효소 및 다당류의 제조방법에 관한 것이다.The present invention relates to a novel microbial Bacillus Berethensis A-68 and its use, and more particularly, Bacillus Berethensis A-68 having a fibrinolytic enzyme activity identified from seawater, rice bran, rice husk, starch and CMC The present invention relates to a method for producing fibrinolytic enzymes and polysaccharides, the method comprising culturing in a medium containing at least one selected from the group consisting of carbon sources.

본 발명에 따르면, 미강 또는 왕겨와 같은 농업 부산물을 탄소원으로 사용하여 다당류를 생산할 수 있으므로, 고가의 탄소원을 사용하여 다당류를 생산하는 기존의 방법에 비해 보다 저렴한 비용으로 다당류를 생산할 수 있고, 환경 오염의 원인 중 하나인 미강 및 왕겨를 다당류의 생산에 이용함으로써 환경오염을 감소시키는 친환경적인 다당류 생산 공정을 확립하는데 유용하다.According to the present invention, since polysaccharides can be produced using agricultural by-products such as rice bran or rice hulls as carbon sources, polysaccharides can be produced at a lower cost than conventional methods of producing polysaccharides using expensive carbon sources, and environmental pollution. The use of rice bran and rice hull, one of the causes, in the production of polysaccharides is useful in establishing an environmentally friendly polysaccharide production process that reduces environmental pollution.

바실러스 서브틸리스 서브스페시스 서브틸리스, 해양 미생물, 섬유소 분해효소, 다당류, 생산 Bacillus subtilis subspis subtilis, marine microorganisms, fibrinolytic enzymes, polysaccharides, production

Description

신규 미생물 바실러스 베레첸시스 A-68 및 그의 용도{Novel Bacillus Velezensis A-68 and Use of the Same}Novel Bacillus Velezensis A-68 and Use of the Same

도 1은 해수에서 분리하여 배양한 후, 배양액을 원심분리하여 균체를 제거한 상등액을 페이퍼 디스크(paper disk)에 점적한 후, 점적한 페이퍼 디스크를 이용하여 검정한 섬유소 분해 능력을 비교하여 나타낸 것이다.FIG. 1 shows the comparison of fibrin degradation capacity assayed using a paper disk after the supernatant from which the cells were removed by culturing the culture solution by centrifugation and dropping the supernatant onto a paper disk.

도 2는 16S rDNA 및 자이레이즈 A 유전자의 부분적인 염기서열을 결정한 것을 바탕으로 바실러스 베레첸시스 A-68과 다른 균주들 간의 계통수를 나타낸 것이다.Figure 2 shows the phylogenetic tree between Bacillus berechensis A-68 and other strains based on the partial sequencing of the 16S rDNA and zyrease A gene.

도 3은 탄소원의 종류에 따른 바실러스 베레첸시스 A-68의 성장을 나타낸 것이다.Figure 3 shows the growth of Bacillus Berechesis A-68 according to the type of carbon source.

도 4는 탄소원의 종류에 따른 바실러스 베레첸시스 A-68의 섬유소 분해효소 생산양을 나타낸 것이다.Figure 4 shows the fibrinase production amount of Bacillus Berechens A-68 according to the type of carbon source.

도 5는 탄소원의 종류에 따른 바실러스 베레첸시스 A-68의 다당류 생산양을 나타낸 것이다.Figure 5 shows the polysaccharide production amount of Bacillus Berechesis A-68 according to the type of carbon source.

발명의 분야Field of invention

본 발명은 신규 미생물 바실러스 베레첸시스 A-68 및 그의 용도에 관한 것으로, 보다 상세하게는, 해수로부터 동정한 섬유소 분해효소 생성능을 가진 바실러스 베레첸시스 A-68, 이를 미강, 왕겨, 전분 및 CMC로 구성된 그룹으로부터 선택된 어느 하나 이상을 탄소원으로 함유하는 배지에서 배양하는 것을 특징으로 하는 섬유소 분해효소 및 다당류의 제조방법에 관한 것이다.The present invention relates to a novel microbial Bacillus Berethensis A-68 and its use, and more particularly, Bacillus Berethensis A-68 having a fibrinolytic enzyme activity identified from seawater, rice bran, rice husk, starch and CMC The present invention relates to a method for producing fibrinolytic enzymes and polysaccharides, the method comprising culturing in a medium containing at least one selected from the group consisting of carbon sources.

발명의 배경Background of the Invention

섬유소(cellulose)는 고등식물의 세포벽의 주성분으로 목질부의 대부분을 차지하는 다당류이자, 자연계에서 석탄에 이어 다량으로 존재하는 유기화합물이며, 공업적으로 중요한 자원이다. 고등식물 외에도 세균 ·바닷말 ·해산동물인 멍게류의 외피에도 존재하고, 아세트산균의 균체외 분비물에도 함유되어 있으며, 조개류의 점액 속에도 존재한다. 섬유소는 균류·세균·연체동물 등의 섬유소 분해효소(cellulase)에 의하여 분해된 후, 최종적으로 전분(glucose)이 된다.Cellulose (cellulose) is a major component of the cell wall of higher plants and occupies most of the woody part, cellulose is an organic compound present in large quantities after coal in nature, and is an important industrial resource. In addition to higher plants, they are found in the shells of sea urchins, which are bacteria, sea horses, and marine animals. They are also contained in the extracellular secretions of acetic acid bacteria and in mucus of shellfish. Fibrin is degraded by cellulase, such as fungi, bacteria, or mollusks, and finally becomes starch (glucose).

섬유소 분해효소(cullulase)란 섬유소(cellulose)를 가수분해시키는 효소로서, 섬유소 분해효소에 의해 가수분해된 섬유소는 셀로바이오스(cellobiose)로 변하고, 이는 다시 β-글루코시다아제(β-glucosidase)에 의해 포도당으로 가수분해된다.Cululase is an enzyme that hydrolyzes cellulose, and the fibrin that is hydrolyzed by fibrinase is converted into cellobiose, which in turn is transformed by β-glucosidase. Hydrolyzed to Glucose.

섬유소 분해효소는 주로 T. viride , T. reesei 등과 같은 Tricodema 종, Aspergillus niger, Thermomonospora 등과 같은 곰팡이, Clostridium 종에 의해 생산되는 것으로 알려져 있으며, Aspergillus , Penicillium , Clostrium , Sclerotium 속 균주 등에 의해서도 생산되는 것으로 보고된 바 있다.Cellulase enzymes are known to be mainly produced by fungi, such as the Clostridium species T. viride, T. reesei Tricodema species, Aspergillus niger, such as Thermomonospora, reported to be produced also by Aspergillus, Penicillium, Clostrium, Sclerotium spp etc. It has been.

섬유소 분해효소를 생산하는 종래기술은 Tricoderma 종, Aspergillus 종 등의 곰팡이를 고체배양(solid state fermentation)하는 방법으로, 이는 액체배양에 비하여 비효율적이고, 곰팡이는 세균에 비해 생육속도가 낮기 때문에 생산성이 낮아 섬유소 분해효소의 가격을 높이는 문제점을 가지고 있다. The conventional technique for producing fibrinase is a method of solid state fermentation of Tricoderma species, Aspergillus species, etc., which is inefficient compared to liquid culture, and molds have low productivity because of their low growth rate compared to bacteria. There is a problem that increases the price of cellulose enzymes.

섬유소 분해효소의 생산을 향상시키는 것을 포함하여 종래기술이 가진 문제점들을 해결하기 위하여, 곰팡이의 섬유소 분해효소 유전자를 E. coli와 같은 세균에 도입하고, 섬유소 분해효소 유전자 함유 변이주를 액체배양하여, 섬유소 분해효소를 생산하려는 연구가 진행되고 있으나, 아직 산업화단계까지 적용되지 못하고 있는 실정이다.In order to solve the problems with the prior art, including improving the production of fibrinase, fungal fibrinase genes are introduced into bacteria such as E. coli, and fibrinase gene-containing mutants are liquid cultured, Research is underway to produce degrading enzymes, but it is not yet applied to the industrialization stage.

생산된 섬유소 분해효소는 곡류 가공, 생물자원으로부터의 에탄올 발효, 주류 생산, 폐기물 처리, 세탁 혹은 주방용 세제 등으로 다양하게 사용될 수 있다. 기존의 세탁 혹은 주방용 세제는 대부분이 화학물질로서, 물에 녹은 상태에서 미생물에 의해 분해되기 어렵고, 물 위에 거품이 생기게 되어 산소가 물속으로 녹아들어 갈 수 없게 한다. 이는 수중으로 햇빛이 들어오는 것을 차단하여, 플랑크톤의 정상적인 번식을 방해할 뿐 아니라, 수자원의 오염을 증가시키는 여러 문제점을 유발한다. 또한, 기존의 세탁 혹은 주방용 세제는 세척력을 높이기 위한 인을 함유하 고 있어서 부영양화 현상을 유발한다.The fibrinolytic enzyme produced can be used in various ways such as grain processing, ethanol fermentation from biological resources, liquor production, waste disposal, laundry or kitchen detergents. Existing laundry or kitchen detergents are mostly chemicals, which are difficult to be decomposed by microorganisms in a dissolved state, and bubbles are formed on the water to prevent oxygen from melting into the water. This prevents sunlight from entering the water, preventing the normal reproduction of plankton, as well as causing a number of problems that increase pollution of water resources. In addition, conventional laundry or kitchen detergents contain phosphorus to increase the cleaning power, causing eutrophication.

다당류는 과실에 함유된 펙틴(pectin), 해조류에 함유된 카라기난(karageenan), 종자에 함유된 Locust Bean Gum, 수액(樹液)에서 얻는 Arabia Gum, 동물의 조직이나 뼈에서 분리한 콜라겐(collagen)을 부분적으로 가수분해하여 생산하는 젤란틴 (gellatin), 식물의 탄소동화작용에 의하여 생산되는 포도당의 축합체인 전분(starch)과 섬유소(cellulose), 해조류에서 추출하는 알긴 및 아가(agar), 미생물이 생산하는 잔탄(xanthan), 젤란(gellan) 및 풀루란(pullulan) 등 많은 종류가 있다. 이들 다당류는 물에 용해되면 점도가 높은 용액이 되거나, 젤리상이 되는 성질을 가지고 있다. 이들 다당류는 식품의 점도를 증가시키거나, 겔을 형성하거나, 유화안정성을 좋게 하는 등 식품의 조직을 형성하거나, 식감을 개량하는 여러 가지 기능을 가지고 있기 때문에, 식품의 품질을 향상시키기 위해 폭 넓게 이용되고 있다. Polysaccharides include pectin in fruits, carrageenan in seaweed, Locust Bean Gum in seeds, Arabia Gum in sap, and collagen isolated from animal tissues and bones. It is produced by gellatin, which is partially hydrolyzed, starch and cellulose, which are condensates of glucose produced by plant carbonization, and algin, agar, and microorganisms extracted from algae. There are many kinds such as xanthan, gellan and pullulan. When these polysaccharides are dissolved in water, they are highly viscous or jellyy. These polysaccharides are widely used to improve the quality of foods because they have various functions to increase the viscosity of foods, to form gels, to improve emulsion stability, and to form food tissues and to improve texture. It is used.

미생물의 배양에 의한 껌류의 생산에 대한 연구는 1950년대 말과 1960년 대 초에 시작되었다. 잔탄(zanthan), 커드란(curdlan), 미생물 알진(microbial alginate), 풀루란(pullulan)과 미생물의 섬유소(microbial cellulose)와 같은 다당류를 생산하는 많은 종류의 미생물이 발견되고 산업화하기 위한 연구가 진행되었다. 그 결과, 젤란(gellan), 웰란(wellan) 및 람산(rhamsan) 등이 개발되었으며, 이 중에서 잔탄은 식품 산업의 여러 분야에 쓰이고 있는데, 몇 년 전부터 잔탄의 기능을 보완한 젤란이 미국의 Newtrasweet Co.에서 개발하여 잔탄 시장을 대체하고 있다. 커드란은 미생물의 배양하여 생산하는 다당류로서는 잔탄, 젤란에 이어서 세 계에서 세 번째로 미국의 식품의약품 안전청(US FDA)의 승인을 받아 시판되고 있으며, 또한 월란과 람산도 시장에 진입하고 있다.Research into the production of chewing gum by microbial culture began in the late 1950s and early 1960s. Research is underway to discover and industrialize many types of microorganisms that produce polysaccharides such as xanthan, curdlan, microbial alginate, pullulan and microbial cellulose. It became. As a result, gellan, wellan and rhamsan have been developed, among which xanthan has been used in many areas of the food industry. It is being developed by. To replace the xanthan market. Curdlan is the third polysaccharide produced by cultivating microorganisms, followed by xanthan and gellan, and is commercialized by the US Food and Drug Administration (US FDA), and is also entering the market.

미생물을 이용하여 기능성 다당류를 생산하기 위한 미생물의 배양 배지는 탄소원으로 포도당, 전분 또는 설탕 등을 사용할 수 있으며 질소원으로 유기 질소원인 효모 추출액, 펩톤 및 트립톤 또는 염화 암모니움(NH4Cl)과 질산 암모니움 ((NH4)2NO3)과 같은 무기 질소원을 사용한다. 멸균된 배지에 다당류를 생산하는 균주를 접종하고 적당한 조건으로 일정시간 배양하면 미생물에 의하여 생합성된 다당류가 배양액에 축척된다. The culture medium of microorganisms for producing functional polysaccharides using microorganisms may be glucose, starch or sugar as a carbon source, yeast extract, peptone and tryptone or ammonium chloride (NH 4 Cl) and nitric acid as organic nitrogen sources as nitrogen sources. Inorganic nitrogen sources such as ammonium ((NH 4 ) 2 NO 3 ) are used. After inoculating a strain that produces polysaccharides into a sterile medium and incubating for a predetermined time under appropriate conditions, the polysaccharides biosynthesized by the microorganisms are accumulated in the culture medium.

산업적인 규모로 미생물을 이용하여 다당류를 생산하는 기존의 방법은 배양 배지의 탄소원으로 원가가 높은 포도당 또는 설탕 등을 과량으로 사용하기 때문에 생산비가 상대적으로 높은 편이다. 따라서, 생산된 다당류의 단가도 비싸고, 이를 이용하여 식품 등의 가격을 상승시키게 된다.Existing methods for producing polysaccharides using microorganisms on an industrial scale have relatively high production costs because they use excessive amounts of high cost glucose or sugar as a carbon source of the culture medium. Therefore, the unit price of the produced polysaccharides is also expensive, thereby increasing the price of food and the like.

이에 본 발명자들은 섬유소 분해효소의 생성능을 가지고 있어 다당류의 생성능이 우수한 균주를 개발하고자 예의 노력한 결과, 해수로부터 섬유소 분해효소 및 다당류 생성능을 가진 바실러스 베레첸시스 A-68을 분리·동정하고, 이를 배양하여 섬유소 분해효소를 생성시키면, 생성된 섬유소 분해효소가 배지의 탄소원을 이용하여 다당류를 생산할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made efforts to develop strains having the ability to produce cellulose degrading enzymes and excellent polysaccharides. As a result, the present inventors have isolated and identified Bacillus berechensis A-68 having cellulose degrading enzyme and polysaccharide generating ability from seawater. By generating fibrinase, it was confirmed that the produced fibrinase can produce polysaccharides using the carbon source of the medium, thereby completing the present invention.

결국 본 발명의 목적은 신규 미생물 바실러스 베레첸시스 A-68 및 이를 이용한 섬유소 분해효소 및 다당류의 제조방법을 제공하는데 있다.After all, an object of the present invention is to provide a novel microbial Bacillus Berechens A-68 and a method for producing fibrinase and polysaccharides using the same.

상기 목적을 달성하기 위하여, 본 발명은 섬유소 분해효소 및 다당류 생성능을 가지는 바실러스 베레첸시스(Bacillus velezensis) A-68(기탁번호: KACC 91178P)을 제공한다.Provides: (KACC Accession No. 91178P) In order to achieve the above object, the present invention is Bacillus Debrecen chopping system (B acillus velezensis) A-68 with a cellulolytic enzyme and a polysaccharide producing ability.

본 발명은 또한, (a) 상기 미생물을 배양하여 섬유소 분해효소를 배양액으로 분비·생성하는 단계; 및 (b) 상기 배양액으로부터 섬유소 분해효소를 회수하는 단계를 포함하는 섬유소 분해효소의 제조방법을 제공한다. 본 발명에 있어서, 상기 배양액의 탄소원은 미강, 왕겨, 전분 및 CMC로 이루어진 그룹으로부터 선택된 어느 하나 이상인 것을 특징으로 할 수 있다.The present invention also comprises the steps of (a) culturing the microorganisms to produce and secrete fibrinase into the culture medium; And (b) provides a method for producing cellulose lyase comprising the step of recovering cellulose lyase from the culture. In the present invention, the carbon source of the culture solution may be any one or more selected from the group consisting of rice bran, rice hull, starch and CMC.

본 발명은 또한, (a) 상기 미생물을 배양하여 다당류를 배양액으로 분비·생성하는 단계; 및 (b) 상기 배양액으로부터 다당류를 회수하는 단계를 포함하는 다당류의 제조방법을 제공한다. 본 발명에 있어서, 상기 배양액의 탄소원은 미강, 왕겨, 설탕 및 CMC로 이루어진 그룹으로부터 선택된 어느 하나 이상인 것을 특징으로 할 수 있다.The present invention also comprises the steps of (a) culturing the microorganisms to secrete and produce a polysaccharide as a culture medium; And (b) recovering the polysaccharide from the culture solution. In the present invention, the carbon source of the culture may be any one or more selected from the group consisting of rice bran, rice hull, sugar and CMC.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

해수에서 분리한 미생물들을 액체 배양한 후, 배양액을 원심분리하여 균체를 제거한 상등액을 직경 1.0cm의 페이퍼 디스크(paper disc)에 일정량 점적하여 건조시킨 후, 섬유소의 유도체인 카르복시메틸 섬유소(carboxymethyl cellulose)를 첨가한 고체배지 위에 올려놓고, 일정 온도에서 배양하면서 카르복시메틸 섬유소를 분해하는 균주를 분리하였다. 분리한 균주를 16S rDNA 및 gyrase A의 염기서열을 부분적으로 결정하여 보고된 균주들과 염기서열을 비교하는 방법으로 동정한 결과, 세균의 일종인 바실러스 베레첸시스 (Bacillus velezen) 임을 확인하고, 바실러스 베레첸시스 A-68(Bacillus velezensis A-68)이라 명명하였다.After liquid culture of the microorganisms isolated from seawater, the supernatant from which the cells were removed by centrifugation of the culture was dipped in a predetermined amount onto a paper disc of 1.0 cm in diameter, and then dried. It was placed on the solid medium to which the addition, and was cultured at a constant temperature to isolate a strain that decomposes carboxymethyl fiber. As a result of identifying the isolated strains by partially determining the base sequences of 16S rDNA and gyrase A and comparing the reported sequences with the reported strains, it was confirmed that Bacillus velezen is a bacterium. Berechens A-68 ( Bacillus velezensis A-68).

탄소원을 다르게 하여 바실러스 베레첸시스 A-68을 배양한 결과, 미강 또는 왕겨를 탄소원으로 첨가한 배지에서 상기 균주의 성장, 섬유소 분해효소의 생성능 및 다당류의 생성능이 우수한 것을 확인할 수 있었다.As a result of culturing Bacillus Berechens A-68 with a different carbon source, it was confirmed that the growth of the strain, the ability of fibrinase and the production of polysaccharide were excellent in the medium containing rice bran or rice hull as a carbon source.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.

실시예 1: 해수에서의 미생물 분리 및 배양Example 1 Microbial Isolation and Culture in Seawater

경상도 일대의 동해와 남해에서 채취한 일정한 양의 해수와 멸균된 생리식염수(0.85% NaCl)를 적절하게 희석한 후, marine agar(하기 marine broth의 조성에 1.5%(w/v)의 agar를 첨가) 배지에 깔고(plating), 30℃에 배양하면서 평판 도말법 으로 미생물을 분리하였다. 분리한 미생물을 marine broth(배지조성 기재 요망)에 한 백금니 접종하고, 25~35℃에서 150~200rpm으로 55~85시간 동안 배양한 후, 수득된 배양액을 새 배지(marine broth)에 3~5%(v/v)로 접종하고, 25~35℃에서 150~200rpm으로 3~5일 동안 배양하였다. 배양액 및 배양액을 5000~9000xg의 범위에서 10~30분 동안 원심분리하여 균체를 제외한 상등액만을 수득하였다.After properly diluting a certain amount of seawater and sterile saline solution (0.85% NaCl) collected from the East Sea and the South Sea in Gyeongsang Province, add 1.5% (w / v) agar to the composition of marine broth. ) Microorganisms were isolated by plating on a medium and incubating at 30 ° C. The isolated microorganisms were inoculated with platinum platinum in marine broth (requires substrate composition), and incubated at 25-35 ° C. for 150-200 rpm for 55-85 hours, and then the obtained culture solution was placed in fresh broth (marine broth). Inoculated at 5% (v / v), incubated for 3 to 5 days at 150 ~ 200rpm at 25 ~ 35 ℃. The culture and the culture was centrifuged for 10-30 minutes in the range of 5000 ~ 9000xg to obtain only the supernatant except the cells.

상기 marine broth 1L의 조성은 다음과 같다: 5g 펩톤, 1g 효모추출물, 0.1g Ferric clitrate, 19.45 Sodium chloride, 5.9g Magnisium chloride, 3.24g Sodium sulfate, 1.8g Calcilum chloride, 0.55g Potsssium chloride, 0.16g Sodium bicarbonate, 0.08g Potassium bromide, 0.034g Strontium chloride, 0.022g Boric acid, 0.004g Sodium dilicate, 0.0024g Sodium fluoride, 0.0016g Ammonium nitrate 및 0.008g Disodium phosphate.The composition of the marine broth 1L is as follows: 5g peptone, 1g yeast extract, 0.1g Ferric clitrate, 19.45 Sodium chloride, 5.9g Magnisium chloride, 3.24g Sodium sulfate, 1.8g Calcilum chloride, 0.55g Potsssium chloride, 0.16g Sodium bicarbonate, 0.08g Potassium bromide, 0.034g Strontium chloride, 0.022g Boric acid, 0.004g Sodium dilicate, 0.0024g Sodium fluoride, 0.0016g Ammonium nitrate and 0.008g Disodium phosphate.

실시예 2: 섬유소 분해효소 생성능을 가진 균주의 분리Example 2 Isolation of Strains Having Fibrinase Production Ability

섬유소 분해효소 생성능을 가진 균주를 분리하기 위하여, 상기 실시예 1에서 수득한 상등액 40㎕를 직경 1cm의 페이퍼 디스크(paper disc)에 점적한 후 건조시켰다. 건조시킨 페이퍼 디스크를 CMC(carboxymethyl cellulose) 2%(w/v)를 첨가한 한천배지 위에 올려놓고 37℃에서 3일 동안 배양한 후, 해수에서 분리한 미생물의 섬유소 분해효소 생성능을 관찰하였다 (도 1).In order to isolate the strain having fibrinolytic activity, 40 μl of the supernatant obtained in Example 1 was dropped onto a paper disc having a diameter of 1 cm and dried. The dried paper disc was placed on agar medium containing 2% (w / v) CMC (carboxymethyl cellulose) and incubated at 37 ° C. for 3 days, and the fibrinase production ability of microorganisms isolated from seawater was observed (FIG. One).

그 결과, 도 1에 나타난 바와 같이, 일부 미생물이 섬유소 분해효소를 생산·분비한다는 것을 확인할 수 있었다. 미생물이 섬유소 분해효소를 생산하여 분비 하면, 배지에 포함된 CMC가 분해되어 미생물이 존재하는 부분 주변으로 옅은 붉은색의 원이 생성된다 (도 1). 이 원의 반경 및 흰색을 나타내는 정도는 미생물의 섬유소 분해효소 생성능에 비례한다.As a result, as shown in Figure 1, it was confirmed that some microorganisms produce and secrete fibrinase. When microorganisms produce and secrete fibrinase, CMC in the medium is degraded to produce a pale red circle around the microorganisms present (FIG. 1). The radius of the circle and the degree of whiteness are proportional to the fibrinase generating ability of the microorganism.

실시예 3: 바실러스 베레첸시스 A-68 균주의 동정Example 3 Identification of Bacillus Berechensis A-68 Strains

상기 실시예 2에서 섬유소 분해효소 생성능이 뛰어난 것으로 판별된 균주를 동정하기 위하여, 16S rDNA 및 자이레이즈 A 유전자의 염기서열을 분석하였다.In order to identify strains which were determined to have excellent fibrinolytic ability in Example 2, the nucleotide sequences of 16S rDNA and zyrease A gene were analyzed.

3-1: 16S rDNA 염기서열 분석에 의한 바실러스 베레첸시스 A-68 균주의 동정3-1: Identification of Bacillus Berechesis A-68 Strains by 16S rDNA Sequencing

상기 실시예 2에서 섬유소 분해효소 생성능이 뛰어난 것으로 판별된 균주를 배양한 후, 상기 배양액을 균질기(homogenizer)로 파쇄하여 100μl의 TE buffer(pH 8.0)에 녹이고, 리조자임(lysozyme)을 첨가하여 37℃에서 12시간 반응시킴으로써 세포벽을 분해하였다. 세포벽이 분해된 균체에 500ul의 구아니딘-사코실 용액(guanidine-sarcosyl solution: Guanidine thiocyanate(Sigma) 60g, 0.5mM EDTA 20ml, 및 Deionized water 20ml)을 첨가하여 원심분리하고 상등액을 수득하였다.After culturing the strain determined to be excellent in fibrinolytic enzyme production in Example 2, the culture solution was crushed with a homogenizer and dissolved in 100 μl of TE buffer (pH 8.0), by adding lysozyme (lysozyme) The cell wall was digested by reacting at 37 ° C for 12 hours. 500 ul of guanidine-sarcosyl solution (Guanidine thiocyanate (Sigma) 60 g, 20 ml of 0.5 mM EDTA, and 20 ml of Deionized water) was added to the cell wall-decomposed cells, and the supernatant was obtained.

상기 수득한 상등액에 0.54배 부피의 이소프로파놀(isopropanol)을 첨가하여 염색체 DNA를 침전시켰다. 상등액을 제거하여 침전된 염색체 DNA를 수득하고, 90μl의 TE buffer(pH 8.0)에 녹인 후, 10μl의 RNase A(10 mg/ml, Sigma)를 첨가하여 37℃에서 2시간 반응시킨 다음, 3배 부피의 에탄올을 첨가하여 염색체 DNA를 침전시켰다. 상기 침전된 염색체 DNA를 30μl의 증류수에 녹여 16S rDNA의 증폭을 위한 주형으로 사용하였다.0.54 fold of isopropanol was added to the obtained supernatant to precipitate chromosomal DNA. The supernatant was removed to obtain precipitated chromosomal DNA, dissolved in 90 μl of TE buffer (pH 8.0), 10 μl of RNase A (10 mg / ml, Sigma) was added and reacted at 37 ° C. for 2 hours. A volume of ethanol was added to precipitate chromosomal DNA. The precipitated chromosomal DNA was dissolved in 30 μl of distilled water and used as a template for amplification of 16S rDNA.

서열번호 1로 표시된 27F(5′-AGA GTT TGA TCM TGG CTC AG-3′) 및 서열번호 2로 표시된 1522R(5’-AAG GAG GTG WTC CAR CC-3’)를 프라이머로 사용하고, 다음과 같은 조건하에서 PCR을 수행하여 16S rDNA 유전자를 증폭하였다.27F (5'-AGA GTT TGA TCM TGG CTC AG-3 ') represented by SEQ ID NO: 1 and 1522R (5'-AAG GAG GTG WTC CAR CC-3') represented by SEQ ID NO: 2 were used as primers. PCR was performed under the same conditions to amplify the 16S rDNA gene.

사용기기: GenAmp TM PCR System 9700(Applied Biosystem)Device used: GenAmp TM PCR System 9700 (Applied Biosystem)

PCR을 위한 반응 혼합물(reaction mixture, 총 부피: 50ul)의 구성: 주형 DNA 10ng, 200uM dNTP, 10mM Tris-HCl(pH 9.0), 40mM KCl, 0.15mM MgCl2, 3mM MgSO4, 20ug BSA, 0.005U Vent 중합효소, 1U Taq 중합효소 및 프라이머(27F 및 1522R 각각 0.5uM).Composition of reaction mixture for PCR (total volume: 50ul): template DNA 10ng, 200uM dNTP, 10mM Tris-HCl (pH 9.0), 40mM KCl, 0.15mM MgCl 2 , 3mM MgSO 4 , 20ug BSA, 0.005U Vent polymerase, 1 U Taq polymerase and primer (0.5 uM 27F and 1522R, respectively).

16S rDNA 증폭용 PCR 반응조건: 94℃, 3분 → [94℃, 30초 → 50℃, 30초 → 72℃, 5분] 30회 → post-elongation: 72℃, 10분PCR reaction conditions for 16S rDNA amplification: 94 ° C, 3 minutes → [94 ° C, 30 seconds → 50 ° C, 30 seconds → 72 ° C, 5 minutes] 30 times → post-elongation: 72 ° C, 10 minutes

증폭된 PCR 산물은 Wizard PCR Preps DNA Purification System(Promega)을 이용하여 정제하고, 1% agarose gel에 전기영동하여 16S rDNA의 크기를 확인하였다. 염기서열은 ddNTP에 형광물질을 표지한 BigDye TM Terminator Cycle Sequencing Ready Reaction Kit(Applied Biosystem)를 사용하여,다음과 같은 PCR 반응을 수행한 후, ABI PRISM TM 310 Genetic Analyzer(Applied Biosystem)를 이용하여 분석하였다.The amplified PCR product was purified using Wizard PCR Preps DNA Purification System (Promega), and electrophoresed on 1% agarose gel to confirm the size of 16S rDNA. The nucleotide sequence was analyzed using a BigDye TM Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystem) labeled with fluorescent material on ddNTP, followed by PCR reaction, followed by analysis using ABI PRISM TM 310 Genetic Analyzer (Applied Biosystem). It was.

염기서열 분석용 PCR 반응 조건; [96℃ 10초 → 50℃ 5초 → 60℃ 4분] 25회.PCR reaction conditions for sequencing; 25 times of [96 degreeC 10 second-> 50 degreeC 5 second-> 60 degreeC 4 minutes].

그 결과, 표 1에 나타난 바와 같이, 선별된 A-68 균주의 16S rDNA 염기서열을 부분적으로 결정할 수 있었다.As a result, as shown in Table 1, 16S rDNA nucleotide sequence of the selected A-68 strain could be partially determined.

A-68 균주의 16S rDNA 염기서열(874bp): 서열번호 516S rDNA sequence of the A-68 strain (874 bp): SEQ ID NO: 5 5'- AACGCTGGCGGCGTGCCTAATACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTA ACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTGTCTGAACCGCATGGTTCAGACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTGCCGTTCAAATAGGGCGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTC - 3'5'- AACGCTGGCGGCGTGCCTAATACATGCAAGTCGAGCGGACAGATGGGAGCTTGCTCCCTGATGTTAGCGGCGGACGGGTGAGTA ACACGTGGGTAACCTGCCTGTAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATGGTTGTCTGAACCGCATGGTTCAGACATAAAAGGTGGCTTCGGCTACCACTTACAGATGGACCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAGCTCTGTTGTTAGGGAAGAACAAGTGCCGTTCAAATAGGGCGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGGGCTCGCAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGGAACTTGAGTGCAGAAGAGGAGAGTGGAATTCCACGTGTAGCGGTGAAATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTCTGGTCTGTAACTGACGCTGAGGAGCGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTC - 3 '

3-2: 자이레이즈 A 염기서열 분석에 의한 바실러스 베레첸시스 A-68 균주의 동정3-2: Identification of Bacillus Berechensis A-68 Strains by Xyrease A Sequencing

상기 실시예 3-1에서 수득한 DNA를 주형으로 사용하고, 서열번호 4로 기재된 p-gyrA-f(5′-CAG TCA GGA AAT GCG TAC GTC CTT-3′) 및 서열번호 5로 기재된 p-gyrA-r(5’-CAA GGT AAT GCT CCA GGC ATT GCT-3’)을 프라이머로 사용하고, 다음과 같은 조건하에서 PCR을 수행하여 자이레이즈 A 유전자를 증폭하였다.P-gyrA-f (5′-CAG TCA GGA AAT GCG TAC GTC CTT-3 ′) as set forth in SEQ ID NO: 4, using the DNA obtained in Example 3-1 as a template, and p- Gyrase A gene was amplified by using gyrA-r (5′-CAA GGT AAT GCT CCA GGC ATT GCT-3 ′) as a primer and performing PCR under the following conditions.

사용기기: GenAmp TM PCR System 9700(Applied Biosystem)Device used: GenAmp TM PCR System 9700 (Applied Biosystem)

PCR을 위한 반응 혼합물(reaction mixture, 총 부피: 50ul)의 구성: 주형 DNA 10ng, 200uM dNTP, 10mM Tris-HCl(pH 9.0), 40mM KCl, 0.15mM MgCl2, 3mM MgSO4, 20ug BSA, 0.005U Vent 중합효소, 1U Taq 중합효소 및 프라이머(p-gyrA-f 및 p-gyrA-r각각 0.5uM).Composition of reaction mixture for PCR (total volume: 50ul): template DNA 10ng, 200uM dNTP, 10mM Tris-HCl (pH 9.0), 40mM KCl, 0.15mM MgCl 2 , 3mM MgSO 4 , 20ug BSA, 0.005U Vent polymerase, 1U Taq polymerase and primers (0.5 uM for p-gyrA-f and p-gyrA-r, respectively).

PCR 반응조건: 94℃, 3분 → [94℃, 30초 → 50℃, 30초 → 72℃, 5분] 30회 → post-elongation: 72℃, 10분PCR reaction conditions: 94 ℃, 3 minutes → [94 ℃, 30 seconds → 50 ℃, 30 seconds → 72 ℃, 5 minutes] 30 times → post-elongation: 72 ℃, 10 minutes

증폭된 PCR 산물은 Wizard PCR Preps DNA Purification System(Promega)을 이용하여 정제하고, 1% agarose gel에 전기영동하여 16S rDNA의 크기를 확인하였다. 염기서열은 ddNTP에 형광물질을 표지한 BigDye TM Terminator Cycle Sequencing Ready Reaction Kit(Applied Biosystem)를 사용하여,다음과 같은 PCR 반응을 수행한 후, ABI PRISM TM 310 Genetic Analyzer(Applied Biosystem)를 이용하여 분석하였다.The amplified PCR product was purified using Wizard PCR Preps DNA Purification System (Promega), and electrophoresed on 1% agarose gel to confirm the size of 16S rDNA. The nucleotide sequence was analyzed using a BigDye TM Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystem) labeled with fluorescent material on ddNTP, followed by PCR reaction, followed by analysis using ABI PRISM TM 310 Genetic Analyzer (Applied Biosystem). It was.

염기서열 분석용 PCR 반응 조건; [96℃ 10초 → 50℃ 5초 → 60℃ 4분] 25회.PCR reaction conditions for sequencing; 25 times of [96 degreeC 10 second-> 50 degreeC 5 second-> 60 degreeC 4 minutes].

그 결과, 표 2에 나타난 바와 같이, 선별된 A-68 균주의 자이레이즈 A 염기서열을 부분적으로 결정할 수 있었다.As a result, as shown in Table 2, the zyrease A base sequence of the selected A-68 strain could be partially determined.

A-68 균주의 자이레이즈 A 염기서열(963bp): 서열번호 6Zayase A nucleotide sequence of strain A-68 (963bp): SEQ ID NO: 6 5’- ATGCAATGAGCGTTATCGTATCCCGGGCGCTTCCGGATGTGCGTGACGGTCTGAAGCCGGTTC ACAGACGGATTTTGTACGCAATGAATGATTTAGGCATGACCAGTGACAAACCATATAAAAAATCTGCCCGTATCGTCGGTGAAGTTATCGGTAAGTACCACCCGCACGGTGACTCAGCGGTTTACGAATCAATGGTCAGAATGGCGCAGGATTTTAACTACCGCTACATGCTTGTTGACGGACACGGCAACTTCGGTTCGGTTGACGGCGACTCAGCGGCCGCGATGCGTTACACAGAAGCGAGAATGTCAAAAATCGCAATGGAAATTCTGCGTGACATTACGAAAGACACGATTGACTATCAAGATAACTATGACGGTTCAGAAAGAGAGCCTGCCGTCATGCCTTCGAGATTTCCGAATCTGCTCGTAAACGGGGCTGCCGGTATTGCGGTCGGAATGGCGACAAACATTCCCCCGCATCAGCTTGGGGAAGTCATTGAAGGCGTGCTTGCCGTAAGTGAGAATCCTGAGATTACAAACCAGGAGCTGATGGAATACATCCCGGGCCCGGATTTTCCGACTGCAGGTCAGATTTTGGGCCGGAGCGGCATCCGCAAGGCATATGAATCCGGACGGGGATCAATCACGATCCGGGCTAAGGCTGAAATCGAAGAGACTTCATCGGGAAAAGAAAGAATTATTGTCACGGAACTTCCTTATCAGGTGAACAAAGCGAGATTAATTGAAAAAATCGCGGATCTTGTCCGAGACAAAAAAATCGAAGGAATTACCGATCTGCGAGACGAATCCGACCGTAACGGAATGAGAATCGTCATTGAGATCCGCCGTGACGCCAATGCTCACGTCATTTTGAATAACCTGTACAAACAAACGGCCCTGCAGACGTCTTTCGGAATCAATCTGCTGGCGCTCGTTGACGGACAGCCGAAGGTACTAA-3’5'- ATGCAATGAGCGTTATCGTATCCCGGGCGCTTCCGGATGTGCGTGACGGTCTGAAGCCGGTTC ACAGACGGATTTTGTACGCAATGAATGATTTAGGCATGACCAGTGACAAACCATATAAAAAATCTGCCCGTATCGTCGGTGAAGTTATCGGTAAGTACCACCCGCACGGTGACTCAGCGGTTTACGAATCAATGGTCAGAATGGCGCAGGATTTTAACTACCGCTACATGCTTGTTGACGGACACGGCAACTTCGGTTCGGTTGACGGCGACTCAGCGGCCGCGATGCGTTACACAGAAGCGAGAATGTCAAAAATCGCAATGGAAATTCTGCGTGACATTACGAAAGACACGATTGACTATCAAGATAACTATGACGGTTCAGAAAGAGAGCCTGCCGTCATGCCTTCGAGATTTCCGAATCTGCTCGTAAACGGGGCTGCCGGTATTGCGGTCGGAATGGCGACAAACATTCCCCCGCATCAGCTTGGGGAAGTCATTGAAGGCGTGCTTGCCGTAAGTGAGAATCCTGAGATTACAAACCAGGAGCTGATGGAATACATCCCGGGCCCGGATTTTCCGACTGCAGGTCAGATTTTGGGCCGGAGCGGCATCCGCAAGGCATATGAATCCGGACGGGGATCAATCACGATCCGGGCTAAGGCTGAAATCGAAGAGACTTCATCGGGAAAAGAAAGAATTATTGTCACGGAACTTCCTTATCAGGTGAACAAAGCGAGATTAATTGAAAAAATCGCGGATCTTGTCCGAGACAAAAAAATCGAAGGAATTACCGATCTGCGAGACGAATCCGACCGTAACGGAATGAGAATCGTCATTGAGATCCGCCGTGACGCCAATGCTCACGTCATTTTGAATAACCTGTACAAACAAACGGCCCTGCAGACGTCTTTCGGAATCAATCTGCTGGCGCTCGTTGACGGACAGCCGAAGGTACTAA-3 '

상기 실험을 통해 결정한, 선별된 A-68 균주의 16S rDNA 및 자이레이즈 A의 부분적 염기서열을 바탕으로 다른 종의 균주들과의 유사성을 비교하여 표 3과 같이 나타내고, 이를 도 2의 계통도로 정리하였다. Based on the 16S rDNA of the selected A-68 strain and the partial sequencing of the zyrease A determined through the above experiment, the similarity with other strains is shown as Table 3, which is summarized in the schematic diagram of FIG. 2. It was.

StrainStrain Accession No.Accession No. SimilaritySimilarity nt differences/ comparednt differences / compared Bacillus velezensis LMG 22478T Bacillus velezensis LMG 22478T 98.7798.77 11/89611/896 Bacillus amyloliquefaciens KCTC 1660T Bacillus amyloliquefaciens KCTC 1660T AF272015AF272015 95.9595.95 38/93838/938 Bacillus mojavensis NRRL B-14698T Bacillus mojavensis NRRL B-14698T AF272019AF272019 84.1084.10 124/780124/780 Bacillus subtilis subsp. spizizenii NRRL B-23049T Bacillus subtilis subsp. spizizenii NRRL B-23049T AF272020AF272020 82.8482.84 139/810139/810 Bacillus subtilis subsp. subtilis KCTC 3135T Bacillus subtilis subsp. subtilis KCTC 3135T AF272021AF272021 82.4882.48 133/759133/759 Bacillus atrophaeus KCTC 3701T Bacillus atrophaeus KCTC 3701T AF272016AF272016 82.0782.07 156/870156/870 Bacillus vallismortis NRRL B-14890T Bacillus vallismortis NRRL B-14890T AF272025AF272025 81.4081.40 168/903168/903 Bacillus licheniformis KCTC 1918T Bacillus licheniformis KCTC 1918T AF272017AF272017 78.2578.25 186/855186/855

이 결과를 토대로 선정된 균주를 세균의 일종인 바실러스 베레첸시스(Bacillus velezensis)로 동정하고, 바실러스 베레첸시스 A-68(Bacillus velezensis A-68)이라 명명하였다. 그리고, 이를 2005년 10월 17일자로 농촌진흥청 농업생명공학연구원 한국농용미생물 보존 센터(Korean Agricultural Culture Collection, KACC)에 기탁번호 KACC 91178P로 기탁하였다.Based on this result, the selected strain was identified as Bacillus velezensis , a kind of bacteria, and named Bacillus velezensis A-68. In addition, on October 17, 2005, it was deposited with the Korean Agricultural Culture Collection (KACC) under the deposit number KACC 91178P at the Rural Development Administration.

실시예 4: 탄소원에 따른 바실러스 베레첸시스 A-68의 성장Example 4 Growth of Bacillus Berechens A-68 with Different Carbon Sources

본 발명의 바실러스 베레첸시스 A-68 균주를 Marine broth에 한 백금니 접종하고, 25~35℃에서 150~200rpm으로 55~85시간 동안 배양하였다. 상기 종균 배양액을 다시 배지[0.25%(w/v) 효모추출물, 0.5% K2HPO4, 0.1% NaCl, 0.02% MgSO7H2O(0.02%), 0.06% (NH4)2SO4 및 탄소원 2%]에 3~5%(v/v)로 접종하고, 25~35℃에서 150~200rpm으로 3~5일 동안 배양하였다. 배양액의 OD를 측정하여 탄소원 및 배양시간에 따른 A-68 균주의 성장을 관찰하였다. 본 발명에서 사용한 탄소원은 포도당(glucose), 과당(furctose), 맥아당(maltose), 설탕(sucrose), 전분(starch), CMC, 미강 및 왕겨이다.Bacillus berechensis A-68 strain of the present invention was inoculated with a platinum tooth to marine broth, and incubated at 25-35 ° C. for 150-200 rpm for 55-85 hours. The seed culture was again cultured [0.25% (w / v) yeast extract, 0.5% K 2 HPO 4 , 0.1% NaCl, 0.02% MgSO 4 7H 2 O (0.02%), 0.06% (NH 4 ) 2 SO 4 And 2% carbon source] at 3 to 5% (v / v), and incubated at 25 to 35 ° C. for 150 days to 150 rpm for 3 to 5 days. OD of the culture was measured to observe the growth of the A-68 strain according to the carbon source and incubation time. Carbon sources used in the present invention are glucose (glucose), fructose (furctose), maltose (maltose), sugar (sucrose), starch (starch), CMC, rice bran and rice husk.

그 결과, 도 3에 나타난 바와 같이, 전분, 미강 또는 왕겨를 탄소원으로 첨가한 배지에서 바실러스 베레첸시스 A-68 균주를 배양한 경우, 성장이 뛰어남을 확인할 수 있었다.As a result, as shown in Figure 3, when the Bacillus berechensis A-68 strains were cultured in a medium containing starch, rice bran or chaff as a carbon source, it was confirmed that the growth is excellent.

실시예 5: 바실러스 베레첸시스 A-68에 의한 섬유소 분해효소의 생산Example 5: Production of Fibrinase by Bacillus Berechens A-68

상기 실시예 4의 배양액을 5000~9000xg의 범위에서 10~30분 동안 원심분리하여, 균체를 제거하고 상등액만을 수득하였다.The culture solution of Example 4 was centrifuged for 10 to 30 minutes in the range of 5000 to 9000xg to remove the cells and to obtain only the supernatant.

CMC를 기질로 사용하여 상등액 속의 섬유소 분해효소의 양을 측정하였다. 먼저, 0.5ml의 상등액과 0.5ml의 1.0%(w/v) CMC 용액을 혼합하여 50℃에서 20분동안 둔 다음, DNS 방법을 사용하여 환원당의 생성 정도를 측정하였다. 상등액에 존재하는 섬유소 분해효소의 농도는 브래드포드(Bradford) 방법을 사용하여 측정하였다.The amount of fibrinase in the supernatant was measured using CMC as a substrate. First, 0.5 ml of the supernatant and 0.5 ml of 1.0% (w / v) CMC solution were mixed and placed at 50 ° C. for 20 minutes, and then the production of reducing sugars was measured using the DNS method. The concentration of fibrinase present in the supernatant was measured using the Bradford method.

그 결과, 도 4에 나타난 바와 같이, 전분, 미강 또는 왕겨를 탄소원으로 이용하여 바실러스 베레첸시스 A-68 균주를 배양한 경우, 섬유소 분해효소의 생성량이 증가함을 확인하였다.As a result, as shown in Figure 4, when the starch, rice bran or chaff as a carbon source was cultured Bacillus Berechesis A-68 strains, it was confirmed that the production of fibrinase increased.

실시예 6: 바실러스 베레첸시스 A-68에 의한 다당류의 생산Example 6: Production of Polysaccharides by Bacillus Berechens A-68

상기 실시예 4의 배양액을 5000~9000xg의 범위에서 10~30분 동안 원심분리하여, 균체를 제거하고 상등액만을 수득하였다. 수득한 상등액과 이소프로필알코올 또는 에탈올을 1:2(v/v)로 혼합하고, 약 4℃의 저온에서 24시간 동안 보관한 후, 5000~9000xg의 범위에서 10~30분 동안 원심분리하여 침전물을 수득하였다. 수득한 침전물에 적정량의 증류수를 첨가한 다음, 투석하여 염 성분을 제거함으로써, 최종적으로 다당류를 수득하였다. 페놀-설페이트(phenol-sulfate) 방법을 사용하여 다당류의 양을 측정하였다.The culture solution of Example 4 was centrifuged for 10 to 30 minutes in the range of 5000 to 9000xg to remove the cells and to obtain only the supernatant. The obtained supernatant was mixed with isopropyl alcohol or ethanol at 1: 2 (v / v), stored at a low temperature of about 4 ° C. for 24 hours, and then centrifuged for 10-30 minutes in the range of 5000 to 9000xg. A precipitate was obtained. An appropriate amount of distilled water was added to the obtained precipitate, followed by dialysis to remove the salt component, thereby finally obtaining a polysaccharide. The amount of polysaccharide was measured using the phenol-sulfate method.

그 결과, 도 5에 나타난 바와 같이, 미강을 탄소원으로 사용하여 72시간동안 바실러스 베레첸시스 A-68을 배양한 경우 다당류의 생산량(5.99g/l)이 가장 높은 것으로 나타나, 본 발명의 바실러스 베레첸시스 A-68을 이용한 다당류 생산에 있어 미강이 우수한 탄소원이라는 것을 확인할 수 있었다. 미강을 탄소원으로 사용하여 배양한 경우에 다당류의 생산량은 5.99g/l로 가장 높은 다당류의 생산을 나타내었으며, 왕겨 및 설탕를 탄소원으로 사용하여 배양한 경우, 각각의 다당류 생산량은 4.61g/l 및 4.45g/l로, 왕겨 및 설탕 역시 우수한 탄소원이라는 것을 확인할 수 있었다. 이외에도, 포도당, 과당, 맥아당, 전분 및 CMC는 각각 1.63g/l, 1.67g/l, 1.92g/l, 1.61g/l 및 3.55g/l의 생산량을 나타내었다.As a result, as shown in Figure 5, when Bacillus Berethensis A-68 was incubated for 72 hours using rice bran as the carbon source, the production of polysaccharides (5.99g / l) was the highest, the Bacillus Bacillus of the present invention It was confirmed that rice bran is an excellent carbon source in the production of polysaccharides using Rechensis A-68. The production of polysaccharides was 5.99 g / l for rice cultivation using rice bran as the carbon source, and the highest polysaccharides were produced. For rice cultivation using chaff and sugar as carbon source, the yield of polysaccharides was 4.61 g / l and 4.45, respectively. In g / l, chaff and sugar were also found to be excellent carbon sources. In addition, glucose, fructose, maltose, starch and CMC showed yields of 1.63 g / l, 1.67 g / l, 1.92 g / l, 1.61 g / l and 3.55 g / l, respectively.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is obvious to those skilled in the art that such a specific description is only a preferred embodiment, thereby not limiting the scope of the present invention. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

본 발명은 신규 미생물 바실러스 베레첸시스 A-68 및 이를 이용한 섬유소 분해효소 및 다당류의 제조방법을 제공하는 효과가 있다. 본 발명에 따르면, 미강 또는 왕겨와 같은 농업 부산물을 탄소원으로 사용하여 섬유소 분해효소 및 다당류를 생산할 수 있으므로, 고가의 탄소원을 사용하는 기존의 방법에 비해 보다 저렴한 비용으로 섬유소 분해효소 및 다당류를 생산할 수 있고, 환경 오염의 원인 중 하나인 미강 및 왕겨를 섬유소 분해효소 및 다당류의 생산에 이용함으로써 환경오염을 감소시키는 친환경적인 다당류 생산 공정을 확립하는데 유용하다. The present invention has the effect of providing a novel microbial Bacillus Berechens A-68 and a method for producing fibrinase and polysaccharides using the same. According to the present invention, it is possible to produce fibrinolytic enzymes and polysaccharides by using agricultural by-products such as rice bran or chaff as a carbon source, it is possible to produce fibrinolytic enzymes and polysaccharides at a lower cost than conventional methods using expensive carbon sources. In addition, by using rice bran and rice husk, one of the causes of environmental pollution, in the production of fibrinolytic enzymes and polysaccharides, it is useful to establish an environmentally friendly polysaccharide production process that reduces environmental pollution.

<110> Dong-A University Research Foundation For Industry-Academy Cooperation <120> Novel Bacillus Velezensis A-68 and Use of the Same <130> P05-B318 <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 agagtttgat cmtggctcag 20 <210> 2 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 aaggaggtgw tccarcc 17 <210> 3 <211> 874 <212> DNA <213> Bacillus velezensis <400> 3 aacgctggcg gcgtgcctaa tacatgcaag tcgagcggac agatgggagc ttgctccctg 60 atgttagcgg cggacgggtg agtaacacgt gggtaacctg cctgtaagac tgggataact 120 ccgggaaacc ggggctaata ccggatggtt gtctgaaccg catggttcag acataaaagg 180 tggcttcggc taccacttac agatggaccc gcggcgcatt agctagttgg tgaggtaacg 240 gctcaccaag gcgacgatgc gtagccgacc tgagagggtg atcggccaca ctgggactga 300 gacacggccc agactcctac gggaggcagc agtagggaat cttccgcaat ggacgaaagt 360 ctgacggagc aacgccgcgt gagtgatgaa ggttttcgga tcgtaaagct ctgttgttag 420 ggaagaacaa gtgccgttca aatagggcgg caccttgacg gtacctaacc agaaagccac 480 ggctaactac gtgccagcag ccgcggtaat acgtaggtgg caagcgttgt ccggaattat 540 tgggcgtaaa gggctcgcag gcggtttctt aagtctgatg tgaaagcccc cggctcaacc 600 ggggagggtc attggaaact ggggaacttg agtgcagaag aggagagtgg aattccacgt 660 gtagcggtga aatgcgtaga gatgtggagg aacaccagtg gcgaaggcga ctctctggtc 720 tgtaactgac gctgaggagc gaaagcgtgg ggagcgaaca ggattagata ccctggtagt 780 ccacgccgta aacgatgagt gctaagtgtt agggggtttc cgccccttag tgctgcagct 840 aacgcattaa gcactccgcc tggggagtac ggtc 874 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 cagtcaggaa atgcgtacgt cctt 24 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 caaggtaatg ctccaggcat tgct 24 <210> 6 <211> 963 <212> DNA <213> Bacillus velezensis <400> 6 atgcaatgag cgttatcgta tcccgggcgc ttccggatgt gcgtgacggt ctgaagccgg 60 ttcacagacg gattttgtac gcaatgaatg atttaggcat gaccagtgac aaaccatata 120 aaaaatctgc ccgtatcgtc ggtgaagtta tcggtaagta ccacccgcac ggtgactcag 180 cggtttacga atcaatggtc agaatggcgc aggattttaa ctaccgctac atgcttgttg 240 acggacacgg caacttcggt tcggttgacg gcgactcagc ggccgcgatg cgttacacag 300 aagcgagaat gtcaaaaatc gcaatggaaa ttctgcgtga cattacgaaa gacacgattg 360 actatcaaga taactatgac ggttcagaaa gagagcctgc cgtcatgcct tcgagatttc 420 cgaatctgct cgtaaacggg gctgccggta ttgcggtcgg aatggcgaca aacattcccc 480 cgcatcagct tggggaagtc attgaaggcg tgcttgccgt aagtgagaat cctgagatta 540 caaaccagga gctgatggaa tacatcccgg gcccggattt tccgactgca ggtcagattt 600 tgggccggag cggcatccgc aaggcatatg aatccggacg gggatcaatc acgatccggg 660 ctaaggctga aatcgaagag acttcatcgg gaaaagaaag aattattgtc acggaacttc 720 cttatcaggt gaacaaagcg agattaattg aaaaaatcgc ggatcttgtc cgagacaaaa 780 aaatcgaagg aattaccgat ctgcgagacg aatccgaccg taacggaatg agaatcgtca 840 ttgagatccg ccgtgacgcc aatgctcacg tcattttgaa taacctgtac aaacaaacgg 900 ccctgcagac gtctttcgga atcaatctgc tggcgctcgt tgacggacag ccgaaggtac 960 taa 963 <110> Dong-A University Research Foundation For Industry-Academy Cooperation <120> Novel Bacillus Velezensis A-68 and Use of the Same <130> P05-B318 <160> 6 <170> KopatentIn 1.71 <210> 1 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 agagtttgat cmtggctcag 20 <210> 2 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 aaggaggtgw tccarcc 17 <210> 3 <211> 874 <212> DNA <213> Bacillus velezensis <400> 3 aacgctggcg gcgtgcctaa tacatgcaag tcgagcggac agatgggagc ttgctccctg 60 atgttagcgg cggacgggtg agtaacacgt gggtaacctg cctgtaagac tgggataact 120 ccgggaaacc ggggctaata ccggatggtt gtctgaaccg catggttcag acataaaagg 180 tggcttcggc taccacttac agatggaccc gcggcgcatt agctagttgg tgaggtaacg 240 gctcaccaag gcgacgatgc gtagccgacc tgagagggtg atcggccaca ctgggactga 300 gacacggccc agactcctac gggaggcagc agtagggaat cttccgcaat ggacgaaagt 360 ctgacggagc aacgccgcgt gagtgatgaa ggttttcgga tcgtaaagct ctgttgttag 420 ggaagaacaa gtgccgttca aatagggcgg caccttgacg gtacctaacc agaaagccac 480 ggctaactac gtgccagcag ccgcggtaat acgtaggtgg caagcgttgt ccggaattat 540 tgggcgtaaa gggctcgcag gcggtttctt aagtctgatg tgaaagcccc cggctcaacc 600 ggggagggtc attggaaact ggggaacttg agtgcagaag aggagagtgg aattccacgt 660 gtagcggtga aatgcgtaga gatgtggagg aacaccagtg gcgaaggcga ctctctggtc 720 tgtaactgac gctgaggagc gaaagcgtgg ggagcgaaca ggattagata ccctggtagt 780 ccacgccgta aacgatgagt gctaagtgtt agggggtttc cgccccttag tgctgcagct 840 aacgcattaa gcactccgcc tggggagtac ggtc 874 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 cagtcaggaa atgcgtacgt cctt 24 <210> 5 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 caaggtaatg ctccaggcat tgct 24 <210> 6 <211> 963 <212> DNA <213> Bacillus velezensis <400> 6 atgcaatgag cgttatcgta tcccgggcgc ttccggatgt gcgtgacggt ctgaagccgg 60 ttcacagacg gattttgtac gcaatgaatg atttaggcat gaccagtgac aaaccatata 120 aaaaatctgc ccgtatcgtc ggtgaagtta tcggtaagta ccacccgcac ggtgactcag 180 cggtttacga atcaatggtc agaatggcgc aggattttaa ctaccgctac atgcttgttg 240 acggacacgg caacttcggt tcggttgacg gcgactcagc ggccgcgatg cgttacacag 300 aagcgagaat gtcaaaaatc gcaatggaaa ttctgcgtga cattacgaaa gacacgattg 360 actatcaaga taactatgac ggttcagaaa gagagcctgc cgtcatgcct tcgagatttc 420 cgaatctgct cgtaaacggg gctgccggta ttgcggtcgg aatggcgaca aacattcccc 480 cgcatcagct tggggaagtc attgaaggcg tgcttgccgt aagtgagaat cctgagatta 540 caaaccagga gctgatggaa tacatcccgg gcccggattt tccgactgca ggtcagattt 600 tgggccggag cggcatccgc aaggcatatg aatccggacg gggatcaatc acgatccggg 660 ctaaggctga aatcgaagag acttcatcgg gaaaagaaag aattattgtc acggaacttc 720 cttatcaggt gaacaaagcg agattaattg aaaaaatcgc ggatcttgtc cgagacaaaa 780 aaatcgaagg aattaccgat ctgcgagacg aatccgaccg taacggaatg agaatcgtca 840 ttgagatccg ccgtgacgcc aatgctcacg tcattttgaa taacctgtac aaacaaacgg 900 ccctgcagac gtctttcgga atcaatctgc tggcgctcgt tgacggacag ccgaaggtac 960 taa 963

Claims (5)

섬유소 분해효소 및 다당류 생성능을 가지는 바실러스 베레첸시스(Bacillus velezensis) A-68 (기탁번호: KACC 91178P).B acillus velezensis A-68 (accession number: KACC 91178P) having fibrinolytic enzyme and polysaccharide producing ability . 다음 단계를 포함하는 섬유소 분해효소의 제조방법:Method for preparing fibrinolytic enzyme comprising the following steps: (a) 제1항의 미생물을 배양하여 섬유소 분해효소를 배양액으로 분비·생성하는 단계; 및 (a) culturing the microorganism of claim 1 to secrete and produce fibrinase into the culture medium; And (b) 상기 배양액으로부터 섬유소 분해효소를 회수하는 단계.(b) recovering fibrinase from the culture solution. 제2항에 있어서, 상기 배양액의 탄소원은 미강, 왕겨, 전분 및 CMC로 이루어진 그룹으로부터 선택된 어느 하나 이상인 것을 특징으로 하는 방법.The method of claim 2, wherein the carbon source of the culture medium is any one or more selected from the group consisting of rice bran, rice hull, starch and CMC. 다음 단계를 포함하는 다당류의 제조방법:Method for preparing polysaccharides comprising the following steps: (a) 제1항의 미생물을 배양하여 다당류를 배양액으로 분비·생성하는 단계; 및 (a) culturing the microorganism of claim 1 to secrete and produce a polysaccharide as a culture medium; And (b) 상기 배양액으로부터 다당류를 회수하는 단계.(b) recovering the polysaccharide from the culture. 제4항에 있어서, 상기 배양액의 탄소원은 미강, 왕겨, 설탕 및 CMC로 이루어진 그룹으로부터 선택된 어느 하나 이상인 것을 특징으로 하는 방법.The method of claim 4, wherein the carbon source of the culture medium is any one or more selected from the group consisting of rice bran, rice hull, sugar and CMC.
KR1020050111625A 2005-11-22 2005-11-22 -68 Novel Bacillus Velezensis A-68 and Use of the Same KR100738007B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050111625A KR100738007B1 (en) 2005-11-22 2005-11-22 -68 Novel Bacillus Velezensis A-68 and Use of the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050111625A KR100738007B1 (en) 2005-11-22 2005-11-22 -68 Novel Bacillus Velezensis A-68 and Use of the Same

Publications (2)

Publication Number Publication Date
KR20070053867A true KR20070053867A (en) 2007-05-28
KR100738007B1 KR100738007B1 (en) 2007-07-13

Family

ID=38275885

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050111625A KR100738007B1 (en) 2005-11-22 2005-11-22 -68 Novel Bacillus Velezensis A-68 and Use of the Same

Country Status (1)

Country Link
KR (1) KR100738007B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882021B1 (en) * 2006-12-13 2009-02-04 부경대학교 산학협력단 Method for production of Bacillus velezensis A-68 with rice hull
KR101960355B1 (en) * 2018-01-23 2019-03-20 재단법인 발효미생물산업진흥원 Bacillus velezensis SRCM102755 strain having antimicrobial activity, antioxidant activity, extracellular enzyme secretion activity, phenol production activity and not producing harmful metabolite and harmful enzyme and uses thereof
CN109762760A (en) * 2019-01-07 2019-05-17 国家海洋局第三海洋研究所 A kind of preparation method and application of Bei Laisi bacillus DH82 and its antibacterial protein
CN110438028A (en) * 2019-06-24 2019-11-12 东北农业大学 A kind of people pig source Bei Laisi bacillus GX-1 of degraded cellulose
CN111394273A (en) * 2020-02-19 2020-07-10 广东省微生物研究所(广东省微生物分析检测中心) Bacillus beiLeisi CZ1 capable of producing fulvic acid and application thereof in secondary fermentation of livestock and poultry manure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR810001482B1 (en) * 1980-04-04 1981-10-24 태림농산 주식회사 Method of manufacturing the micro-organic protein feed
KR910004947B1 (en) * 1989-10-04 1991-07-18 해태제과 주식회사 Novel microorganism bacillus sp.haitai no.1
KR100291624B1 (en) * 1999-05-13 2001-05-15 구본탁 Catabolite repression resistant mutants of thermophilic Bacillus thermoglucosidasius using genetic modifying technology
KR20030015943A (en) * 2001-08-18 2003-02-26 한국바이오비료 주식회사 Gene secreting enzyme to disjoint cellulose, that enzyme, microbe including that gene, and organic manure using that microbe
KR100494808B1 (en) * 2003-03-27 2005-06-13 한국생명공학연구원 Bacillus sp. A8 that is produced the polysaccharide, its application or polysaccharide produced from the same strain

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100882021B1 (en) * 2006-12-13 2009-02-04 부경대학교 산학협력단 Method for production of Bacillus velezensis A-68 with rice hull
KR101960355B1 (en) * 2018-01-23 2019-03-20 재단법인 발효미생물산업진흥원 Bacillus velezensis SRCM102755 strain having antimicrobial activity, antioxidant activity, extracellular enzyme secretion activity, phenol production activity and not producing harmful metabolite and harmful enzyme and uses thereof
CN109762760A (en) * 2019-01-07 2019-05-17 国家海洋局第三海洋研究所 A kind of preparation method and application of Bei Laisi bacillus DH82 and its antibacterial protein
CN110438028A (en) * 2019-06-24 2019-11-12 东北农业大学 A kind of people pig source Bei Laisi bacillus GX-1 of degraded cellulose
CN111394273A (en) * 2020-02-19 2020-07-10 广东省微生物研究所(广东省微生物分析检测中心) Bacillus beiLeisi CZ1 capable of producing fulvic acid and application thereof in secondary fermentation of livestock and poultry manure

Also Published As

Publication number Publication date
KR100738007B1 (en) 2007-07-13

Similar Documents

Publication Publication Date Title
Singh et al. Characterization of Rhizobium strain isolated from the roots of Trigonella foenumgraecum (fenugreek)
Chang et al. Chitinimonas taiwanensis gen. nov., sp. nov., a novel chitinolytic bacterium isolated from a freshwater pond for shrimp culture
Oliveira et al. Rhizobia amylase production using various starchy substances as carbon substrates
KR20110119386A (en) Gene coding for cellulase from bacillus velezensis a-68 and production method of cellulase by transformed escherichia coli a-68 thereof
CN101451113B (en) Vibrio natriegens and method for producing agarase by using the same
Al-Johani et al. Optimization of alkaline α-amylase production by thermophilic Bacillus subtilis
CN110257410B (en) Gene for encoding algin lyase
Kumar Identification and optimization of cultural conditions for chitinase production by Bacillus amyloliquefaciens SM3
KR100738007B1 (en) -68 Novel Bacillus Velezensis A-68 and Use of the Same
Nimisha et al. Amylase activity of starch degrading bacteria isolated from soil
CN114480205B (en) Bacillus amyloliquefaciens and application thereof in brewing of solid-state fermentation vinegar
CN103911315B (en) Bacterial strain and the application thereof of algin catenase are produced in one strain
RU2288263C2 (en) Strain bacillus coagulants sim-7 dsm 14043 for preparing l-(+)-lactate and method for preparing l-(+)-lactate
KR100652186B1 (en) -53 Novel Bacillus Subtilis Subsp. Subtilis A-53 and Method for Preparing Cellulase Using the Same
Ghasemi et al. Halotolerant amylase production by a novel bacterial strain, Rheinheimera aquimaris
Shinde et al. Molecular characterization of cellulolytic bacteria derived from termite gut and optimization of cellulase production
KR101746398B1 (en) Streptomyces atrovirens WJ2, a new microbe having great activity degrading xylan
KR100685519B1 (en) Multifunctional oligotrophic bacteria Burkholderia cepacia CR2 strain isolated from ginseng field producing antibiotic enzymes and industrial enzymes containing antibiotic activation
CN114507614A (en) Bacillus for degrading straw and inhibiting plant pathogenic fungi and application thereof
AKINRULI et al. Isolation of microorganisms from cassava peels for the production of bioethanol
KR20090085379A (en) Cellulase protein derived from bacillus amyloliquefaciens dl-3 and transformed escherichia coli dl-3 strain thereof
Rasmey Kinetic Properties of α-amylase Produced by Bacillus megaterium RAS103 under Optimum Conditions in Submerged Fermentation
CN116286557B (en) Salt-tolerant bacillus beijerinckii for producing cellulase and culture method thereof
Talukder et al. Bacteriological and ecfX-gene specific PCR based identification of Pseudomonas aeruginosa isolated from Chittagong industrial area and characterization of its extracellular amylase
CN114395506B (en) High-temperature-resistant cellulase-producing bacillus subtilis and culture method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130612

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150701

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160630

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170703

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 13