KR20110119386A - Gene coding for cellulase from bacillus velezensis a-68 and production method of cellulase by transformed escherichia coli a-68 thereof - Google Patents

Gene coding for cellulase from bacillus velezensis a-68 and production method of cellulase by transformed escherichia coli a-68 thereof Download PDF

Info

Publication number
KR20110119386A
KR20110119386A KR1020100039068A KR20100039068A KR20110119386A KR 20110119386 A KR20110119386 A KR 20110119386A KR 1020100039068 A KR1020100039068 A KR 1020100039068A KR 20100039068 A KR20100039068 A KR 20100039068A KR 20110119386 A KR20110119386 A KR 20110119386A
Authority
KR
South Korea
Prior art keywords
ala
gly
thr
cys
strain
Prior art date
Application number
KR1020100039068A
Other languages
Korean (ko)
Inventor
이진우
이유정
Original Assignee
주식회사 진상
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 진상, 동아대학교 산학협력단 filed Critical 주식회사 진상
Priority to KR1020100039068A priority Critical patent/KR20110119386A/en
Publication of KR20110119386A publication Critical patent/KR20110119386A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE: A gene of Bacillus velezensis-derived cellulase and a recombinant E.coli A-68 recombinant strain transformed by introducing the same are provided to enhance productivity and efficiency of strains. CONSTITUTION: A Bacillus velezensis A-68(deposit number KACC 91178P)-derived cellulase is encoded by a gene having a sequence of sequence number 1. A recombinant vector for expressing cellulase in E.coli is prepared by linking the gene of sequence number 1 to p-TGEM T-easy vector. The recombinant E.coli A-68(deposit number KACC 91335P) is prepared by transforming through introduction of the recombinant vector pTA-68. A method for producing cellulase comprises a step of culturing the recombinant E.coli A-68 in a medium containing 50g/L of rice bran and 2.5 g/L of yeast extract at pH 7.3 and 35°C.

Description

바실러스 벨렌첸시스 A-68 유래 섬유소 분해효소 유전자 및 이를 도입하여 형질전환된 에셰리키아 콜리 A-68 균주 및 이를 이용한 섬유소 분해효소의 생산 방법{Gene coding for cellulase from Bacillus velezensis A-68 and production method of cellulase by transformed Escherichia coli A-68 thereof}The fibrinolytic enzyme gene derived from Bacillus bellenchensis A-68 and the transformed Escherichia coli A-68 strain by introducing the same, and the production method of fibrinolytic enzyme using the same {Gene coding for cellulase from Bacillus velezensis A-68 and production method of cellulase by transformed Escherichia coli A-68 thereof}

본 발명은 바실러스 벨렌체시스 (Bacillus velezensis A-68, 균주 기탁번호 KACC 91178P) 유래 섬유소 분해효소 단백질의 유전자 및 이를 도입하여 형질 전환된 재조합 균주 에셰리키아 콜리 A-68 (Escherichia coli A-68, 균주 기탁번호 KACC 91335P)에 관한 것으로, 보다 상세하게는 해양에서 분리하여 동정한 바실러스 벨렌체시스 A-68 균주로부터 섬유소 분해효소의 유전자를 분리하고, 이를 발현벡터를 이용하여 에셰리키아 콜리 (E. coli)에 도입하여 형질전환된 재조합 균주 에셰리키아 콜리 A-68를 제조하고 이 균주를 사용하여 섬유소 분해효소의 생산성을 증가시킨 것에 관한 것이다.
The present invention relates to a gene of a fibrinolytic enzyme protein derived from Bacillus velezensis A-68, strain accession number KACC 91178P, and a recombinant strain transformed by introducing the same, Escherichia coli A-68 (Escherichia coli A-68, strain Accession No. KACC 91335P), and more specifically, a fibrinolytic enzyme gene was isolated from the Bacillus belenchesis A-68 strain isolated and identified in the ocean, and the gene of the fibrinolytic enzyme was isolated using an expression vector, and E. coli (E. coli). ) To prepare a transformed recombinant strain Escherichia coli A-68, and use this strain to increase the productivity of fibrinolytic enzyme.

셀룰로오스는 β-1,4-글루코시드 결합으로 연결된 글루코스 단위의 선형 중합체로서 목재 바이오매스의 주성분이다. 셀룰로오스는 섬유소 분해효소(cellulase)에 의하여 최종적으로 글루코오스(glucose)로 분해되므로 이를 이용하여 에탄올을 생산함으로써 바이오에너지를 생산할 수 있다. Cellulose is a linear polymer of glucose units linked by β-1,4-glucosidic bonds and is the main component of wood biomass. Cellulose is finally decomposed into glucose by fibrinolytic enzyme (cellulase), so bioenergy can be produced by producing ethanol using this.

따라서 미국은 에너지부 (Department of Energy, DOE)의 국립재생에너지연구실 (National Renewable Energy Laboratory, NREL)과 효소를 주로 생산하는 회사인 제넨코 인터네셔널 (Genencor International) 및 노보자임 (Novozymes) 등이 주로 트리코데르마 리세이 (Trichoderma reesei)에서 얻은 효소시스템을 이용하여 보다 효율적이며 저렴한 섬유소 분해효소를 생산하려는 연구를 진행하고 있고, 일본은 삼림종합연구소에서 목재로부터 당을 고 효율적으로 생산하기 위하여 초임계수를 이용한 고속당화법의 기술 개발을 위한 연구를 진행 중에 있다. 또한 쿄토대학의 와타나베(Watanabe) 등은 백색부후균을 이용하여 선택적으로 리그닌을 분해시킨 뒤 목재로부터 에탄올과 같은 유용물질로의 변환에 관한 연구를 진행 중에 있다. 국내에서도 목질계 바이오매스로부터 바이오에탄올을 생산하는 기술의 실용화를 위해 많은 연구를 수행 중이나 큰 성과를 거두지 못하고 있다. Therefore, in the United States, the National Renewable Energy Laboratory (NREL) of the Department of Energy (DOE), and Genencor International and Novozymes, which mainly produce enzymes, are mainly trico. Research is being conducted to produce more efficient and inexpensive fibrinolytic enzymes using the enzyme system obtained from Trichoderma reesei. In Japan, the Forest Research Institute uses supercritical water to efficiently produce sugar from wood. Research is in progress for the technology development of the fast saccharification method. In addition, Watanabe and others of Kyoto University are conducting research on the conversion of wood to useful substances such as ethanol after selectively decomposing lignin using white erosion bacteria. In Korea, many studies are being conducted for the practical use of technology for producing bioethanol from lignocellulosic biomass, but no great results have been achieved.

균류에 의한 셀룰로오스 분해에는 일반적으로 3그룹의 가수분해 효소인 엔도글루카나아제 (endoglucanase; EG), 엑소글루카나아제 (exoglucanase; CBH) 및 β-글루코시다제 (β-glucosidase; BGL)이 관여한다고 여겨지고 있다. EG는 셀룰로오스 내부 사슬의 β-1,4 결합을 무작위로 가수분해하고, CBH은 EG에 가수분해되어 생성된 셀룰로오스 중합체의 환원말단 및 비환원말단을 점진적으로 가수분해하여 2분자의 글루코오스가 결합한 셀로비오스를 생산한다. 셀로비오스는 EG와 CBH에 있어서 강력한 억제제로 작용하므로, BGL은 이러한 셀로비오스를 가수분해시켜 각각 EG와 CBH의 강한 억제를 제거시킨다. 일반적으로 EG는 셀룰로오스 분자의 무결정 영역을 가수분해할 수 있고, CBH는 결정 영역에 결합하여 셀룰로오스 사슬의 환원 및 비환원말단으로부터 가용성 환원당을 생산할 수 있다. In general, three groups of hydrolytic enzymes, endoglucanase (EG), exoglucanase (CBH), and β-glucosidase (BGL), are involved in the degradation of cellulose by fungi. Is considered. EG randomly hydrolyzes β-1,4 bonds in the inner chain of cellulose, and CBH gradually hydrolyzes the reduced and non-reduced ends of the cellulose polymer produced by hydrolysis to EG, resulting in a cell with two molecules of glucose bound. Produces bios. Since cellobiose acts as a potent inhibitor for EG and CBH, BGL hydrolyzes these cellobiose to eliminate the strong inhibition of EG and CBH, respectively. In general, EG can hydrolyze the amorphous region of a cellulose molecule, and CBH can bind to the crystalline region to produce soluble reducing sugar from the reducing and non-reducing ends of the cellulose chain.

섬유소 분해효소는 세균과 곰팡이에서 얻어지며, 셀룰로오스 분해효소를 생산하는 곰팡이로는 아스퍼질러스 (Aspergillus), 페니실리움 (Penicillium), 푸사리움 (Fusarium), 스포로트리쿰 (Sporotricum) 등이 있으며, 세균으로는 셀로비브리오 (Cellovibrio), 클로스트리듐 (Clostridium), 아세토비브리오 (Acetovibrio), 박테리오데스 (Bacteriodes), 셀룰로모나스 (Cellulomonas), 슈도모나스 (Pseudomonas) 또한 방선균인 써모액티노미세테스 (Thermoactinomycetes), 써모모노스포라 (Thermomonospora) 및 스트렙토미세스 (Streptomyces) 등에 대한 효소학적 연구가 지속적으로 행하여져 왔다. Cellulase enzyme is obtained from bacteria and fungi, as a mold to produce cellulose-decomposing enzyme and the like, Aspergillus (Aspergillus), Penny room Solarium (Penicillium), Fusarium (Fusarium), Spokane roteuri glutamicum (Sporotricum), bacteria in the cell V. (Cellovibrio), Clostridium (Clostridium), acetonitrile Vibrio (Acetovibrio), bacteriophage des (Bacteriodes), cellulite in Pseudomonas (Cellulomonas), Pseudomonas (Pseudomonas) also actinomycetes the thermopile liquid Martino fine test (Thermoactinomycetes) , Thermomonospora (Thermomonospora) and Streptomyces ( Streptomyces ) enzymatic studies have been continuously conducted.

섬유소 분해효소에 관한 종래 등록된 특허기술을 살펴보면, 셀룰라제를 분비하는 효모 및 그것을 포함하는 사료첨가제 (대한민국 등록특허 제 10-0377954호), 크리소스포리움 섬유소 분해효소 및 사용방법 (대한민국 등록특허 제 10-0641878호), 중성 섬유소 분해효소를 생산하는 신규한 바실러스속 79-23 균주 ((대한민국 등록특허 제 10-0318554호), 섬유소 분해효소와 자일란아제를 생산하는 아스퍼질러스 균주와 이에 의해 제조된 효소 및 고체배양물 (대한민국 등록특허 제 10-0449170호) 등이 있다.Looking at the previously registered patented technology for fibrinolytic enzyme, yeast that secretes cellulase and feed additive containing the same (Korean Patent No. 10-0377954), Chrysosporium fibrinolytic enzyme and method of use (Korean registered patent) No. 10-0641878), a novel Bacillus 79-23 strain producing a neutral fibrinase ((Korea Patent Registration No. 10-0318554), Aspergillus strain producing fibrinase and xylanase, and thereby Prepared enzymes and solid cultures (Republic of Korea Patent No. 10-0449170), and the like.

특히 본 발명자들은 선행연구인 대한민국 등록특허 제10-0738007호 “신규 미생물 바실러스 베레첸시스 A-68 및 그의 용도”에서 해수로부터 섬유소 분해효소 생성능을 가진 바실러스 베레첸시스 A-68를 동정하고, 이를 미강, 왕겨, 전분 및 CMC로 구성된 그룹으로부터 선택된 어느 하나 이상을 탄소원으로 함유하는 배지에서 배양함으로써 고가의 탄소원을 사용하여 다당류를 생산하는 기존의 방법에 비해 보다 저렴한 비용으로 다당류를 생산할 수 있고, 환경 오염의 원인 중 하나인 미강 및 왕겨를 다당류의 생산에 이용하여 환경오염을 감소시키는 친환경적인 다당류 생산 공정을 확립한바 있으며, 대한민국 등록특허 제10-0882021호 “왕겨를 함유한 배지에서 바실러스 베레첸시스 A-68 균주의 생산방법”에서 액상배양방법을 이용하여 섬유소 분해효소를 생산하는 바실러스 베레첸시스 A-68 균주를 생산함으로써 증식속도를 증가시켜 경제적으로 섬유소 분해효소를 대량생산함으로써 섬유소 분해효소의 생산성을 향상시킨 바 있다.In particular, the present inventors identified Bacillus beretensis A-68 having the ability to produce fibrinase from seawater in the Korean Patent Registration No. 10-0738007, "New microorganism Bacillus beretensis A-68 and its use," By culturing in a medium containing one or more selected from the group consisting of rice bran, rice husk, starch and CMC as a carbon source, polysaccharides can be produced at a lower cost compared to the existing method of producing polysaccharides using an expensive carbon source. We have established an eco-friendly polysaccharide production process that reduces environmental pollution by using rice bran and rice husk, which are one of the causes of contamination, to reduce environmental pollution. Korean Patent No. 10-0882021 “Bacillus beretensis in a medium containing rice hull By producing the Bacillus beretensis A-68 strain, which produces fibrinolytic enzyme using a liquid culture method in “Production Method of A-68 Strain”, it increases the growth rate and economically mass-produces fibrinolytic enzyme. It has improved productivity.

한편, 산업적인 규모로 섬유소 분해효소를 생산하는 기존의 방법은 트리코더마 (Tricoderma)종들이나 아스퍼질러스 (Aspergillus)종과 같은 곰팡이를 고체배양 (solid state fermentation)하여 섬유소 분해효소를 생산하고 있으나 고체배양은 액체배양에 비하여 비효율적이며 곰팡이는 세균에 비하여 생육속도가 낮기 때문에 생산성이 낮아 섬유소 분해효소의 가격이 높은 편이다. 섬유소 분해효소의 생산성을 향상시키기 위한 방법으로 곰팡이의 섬유소 분해효소 유전자를 대장균 (E. coli)과 같은 세균에 도입하고 섬유소 분해효소 유전자를 포함하는 변이주를 액체 배양하여 섬유소 분해효소의 생산성을 높이기 위한 연구가 진행되고 있으나 산업화된 것은 아직 없으며, 그 생산효율도 낮은 실정이다.
On the other hand, the existing method of producing fibrinolytic enzymes on an industrial scale is producing fibrinolytic enzymes by solid state fermentation of fungi such as Tricoderma species or Aspergillus species. Silver is inefficient compared to liquid culture, and since the growth rate of mold is lower than that of bacteria, the productivity is low, and the cost of fibrinolytic enzyme is high. In order to improve the productivity of fibrinolytic enzyme, the fibrinolytic enzyme gene of fungi is introduced into bacteria such as E. coli , and the mutant strain containing the fibrinolytic enzyme gene is liquid cultured to increase the productivity of fibrinolytic enzyme. Although research is being conducted, there is no industrialization yet, and the production efficiency is low.

이에 본 발명자들은 섬유소 분해효소의 생산성을 높이기 위한 연구를 꾸준히 계속한 결과, 섬유소 분해 능력이 뛰어난 균주를 토양에서부터 분리, 동정하였으며, 동정한 균주를 사용하여 섬유소 분해효소 유전자를 분리 한 후 대장균 (E. coli)에 도입, 유전자 재조합을 통하여 섬유소 분해효소의 생산능력을 향상시킬 수 있음을 확인하고 본 발명에 이르게 되었다.
Accordingly, as a result of continuing research to increase the productivity of fibrinolytic enzyme, the present inventors have isolated and identified strains with excellent fibrinolytic ability from the soil. After separating the fibrinolytic enzyme gene using the identified strain, E. coli ( E coli ), it was confirmed that the production capacity of fibrinolytic enzyme can be improved through gene recombination, and the present invention was reached.

따라서 본 발명의 목적은 해수에서 분리하여 동정한 바실러스 벨렌체시스 A-68 (Bacillus velezensis A-68, 균주 기탁번호 KACC 91178P) 균주로부터 섬유소 분해효소 단백질의 유전자를 분리하고 상기 섬유소 분해효소 유전자를 외래 숙주에 도입하여 재조합 균주를 제조한 후, 이 균주를 배양하여 섬유소 분해효소 생성을 증가시키는 데 있다.
Therefore, it is an object of the present invention to isolate the fibrinase protein gene from the strain Bacillus velezensis A-68 (Bacillus velezensis A-68, strain accession number KACC 91178P) isolated and identified in seawater, and use the fibrinase gene as a foreign host. It is to increase fibrinolytic enzyme production by culturing this strain after introducing into it to prepare a recombinant strain.

본 발명의 상기 목적은 섬유소 분해효소 생산 균주를 분리하고 동정하여 상기 균주가 생산하는 섬유소 분해효소 유전자를 분리하여 염기서열을 확인함으로써 신규한 염기서열임을 확인하고, 그 섬유소 분해효소 단백질의 최적생산조건을 확인한 후, 이를 외래 숙주에 도입함으로써 기존 균주보다 섬유소 분해효소 생산성이 증가됨을 확인함으로써 달성하였다.
The above object of the present invention is to isolate and identify the fibrinolytic enzyme-producing strain, isolate the fibrinolytic enzyme gene produced by the strain, and confirm the nucleotide sequence to confirm that the fibrinase-producing strain is a novel nucleotide sequence, and the optimal production conditions for the fibrinase protein After confirming, it was achieved by confirming that the fibrinolytic enzyme productivity was increased compared to the existing strain by introducing it into a foreign host.

본 발명은 서열목록 1의 DNA 서열에 의해 코딩되는 바실러스 벨렌체시스 A-68(Bacillus velezensis A-68, 균주 기탁번호 KACC 91178P) 균주 유래 섬유소 분해효소 단백질을 제공함을 특징으로 한다. The present invention is characterized by providing a fibrinolytic enzyme protein derived from Bacillus velezensis A-68 (Bacillus velezensis A-68, strain accession number KACC 91178P), which is encoded by the DNA sequence of SEQ ID NO: 1.

상기 바실러스 벨렌체시스 A-68 균주는 16s rDNA 및 gyrA 염기서열 분석을 통해 동정되었으며, 농업부산물인 왕겨 및 미강, 효모 추출액을 영양원으로 이용하여 생장 가능한 특징이 있다. The Bacillus belenchesis A-68 strain was identified through 16s rDNA and gyr A sequencing analysis, and it is characterized by being able to grow using agricultural byproducts such as rice husk, rice bran, and yeast extract as a nutrient source.

본 발명은 서열목록 1의 유전자를 포함하는 재조합벡터를 제공함을 특징으로 하며, 상기 재조합벡터의 바람직한 일예는 서열목록 1의 유전자를 pGEM T-이지 벡터에 연결한 후 결합시켜 제조된 재조합 벡터 pTA-68일 수 있다. The present invention is characterized in that it provides a recombinant vector containing the gene of SEQ ID NO: 1, and a preferred example of the recombinant vector is a recombinant vector pTA- prepared by linking the gene of SEQ ID NO: 1 to a pGEM T-easy vector and then binding. It could be 68.

본 발명은 상기의 재조합벡터 pTA-68의 도입으로 형질전환되어 섬유소 분해효소 생산능이 증가된 에셰리키아 콜리 A-68 (Escherichia coli A-68, 균주 기탁번호 KACC 91335p) 균주를 제공함을 특징으로 한다.
The present invention is characterized by providing a strain of Escherichia coli A-68 (Escherichia coli A-68, strain accession number KACC 91335p) transformed by the introduction of the recombinant vector pTA-68 to increase fibrinolytic enzyme production capacity. .

본 발명은 바실러스 벨렌체시스 A-68(Bacillus velezensis A-68, 균주 기탁번호 KACC 91178P) 균주 유래 섬유소 분해효소 유전자를 분리하여 재조합 벡터를 제조하고 이를 에셰리키아 콜리 (Escherichia coli) 균주에 도입하여 형질 전환된 재조합 균주 에셰리키아 콜리 A-68 (Escherichia coli A-68, 균주 기탁번호 KACC 91335p)에 관한 것으로, 섬유소 분해 활성이 뛰어난 섬유소 분해효소 유전자를 대장균 (E.coli)에 도입하여 제조된 재조합 균주가 기존 균주보다 생산성 및 효율성을 증대시킬 수 있는 바, 곡류가공, 생물자원으로부터의 에탄올 발효, 주류 생산, 폐기물 처리 및 세탁이나 주방용 세제에 대량 사용되는 섬유소 분해효소를 경제성 있는 생산 비용으로 대량생산이 가능하게 한 뛰어난 효과가 있다.
The present invention is to prepare a recombinant vector by isolating the fibrinolytic enzyme gene derived from Bacillus velezensis A-68 (Bacillus velezensis A-68, strain accession number KACC 91178P) strain, and introducing it into Escherichia coli strain to transform It relates to the converted recombinant strain Escherichia coli A-68 (Escherichia coli A-68, strain accession number KACC 91335p), and a recombinant produced by introducing a fibrinolytic enzyme gene having excellent fibrinolytic activity into E. coli (E.coli). As strains can increase productivity and efficiency compared to existing strains, mass production of fibrinolytic enzymes used in grain processing, ethanol fermentation from biological resources, liquor production, waste treatment and laundry or dishwashing detergent at an economical production cost There is an outstanding effect that has made this possible.

도 1은 해수에서 채취한 여러 종류의 미생물을 분리 한 후 전분, 단백질, 섬유소 분해효소 활성을 확인한 것이다.
도 2은 자이레이즈 A(gyrase A) 유전자의 염기서열을 부분적인 결정한 것을 바탕으로 바실러스 벨렌체시스 A-68 균주와 다른 균주들 간의 계통수를 도식화한 것이다.
도 3는 pGEM T-easy 벡터의 지도를 나타낸 것이다.
FIG. 1 shows starch, protein, and fibrinolytic enzyme activity after separating various types of microorganisms collected from seawater.
Figure 2 is a schematic diagram of the phylogenetic tree between Bacillus belenchesis A-68 strain and other strains based on partial determination of the nucleotide sequence of the gyrase A gene.
3 shows a map of the pGEM T-easy vector.

이하에서 본 발명의 바람직한 실시형태를 실시예를 참고로 보다 구체적으로 설명한다. 하지만 본 발명의 범위가 이러한 실시예에 한정되는 것은 아니다.
Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited to these examples.

본 발명의 실시예는 섬유소 분해효소 생산 균주를 분리하고 동정하는 실시예 1, 상기 균주로부터 섬유소 분해효소 유전자를 분리하고, 염기서열을 분석하는 실시예 2, 상기 섬유소 분해효소를 대장균에 도입하는 실시예 3 및 상기 섬유소 분해효소의 최적조건을 확립하는 실험예 1, 2 및 3으로 구성되어 있다.
Examples of the present invention include Example 1 for isolating and identifying a fibrinolytic enzyme-producing strain, Example 2 for separating and sequencing a fibrinase gene from the strain, and introducing the fibrinolytic enzyme into E. coli It consists of Example 3 and Experimental Examples 1, 2 and 3 for establishing the optimal conditions for the fibrinolytic enzyme.

실시예 1 : 섬유소 분해효소 생산 균주의 분리, 동정 및 배양Example 1: Isolation, identification and culture of fibrinase-producing strain

해수에서의 섬유소 분해효소 생산 균주의 분리Isolation of strains producing fibrinolytic enzymes in seawater

경상도 일대의 동해와 남해에서 채취한 일정한 양의 해수를 멸균된 생리식염수 (0.85% NaCl)에 적당히 희석한 후 마린 아가 (Marine agar)를 사용하여 30℃에 배양하면서 평판 도말법으로 미생물을 분리하였다. 분리한 미생물을 마린 브로쓰(Marine broth)에 한 백금니 접종하고 25 내지 35℃에서 150 내지 200rpm으로 55 내지 85시간 동안 배양한 종균 배양액을 전기 배지에 3 내지 5%(v/v)로 접종하고, 25 내지 35℃에서 150 내지 200rpm으로 3 내지 5일 동안 배양하였다. 배양액을 5000 내지 9000 × g의 범위에서 10 내지 30분 동안 원심분리하여 균체를 제거한 상등액을 섬유소 분해시험에 사용하였다. A certain amount of seawater collected from the East and South Seas of Gyeongsang-do was diluted appropriately in sterilized physiological saline (0.85% NaCl), and then cultured at 30°C using marine agar, the microorganisms were separated by plate smearing. . The isolated microorganism was inoculated with one platinum tooth in Marine broth, and the seed culture solution cultured at 25 to 35°C at 150 to 200 rpm for 55 to 85 hours was inoculated with 3 to 5% (v/v) in the electric medium. And, incubated for 3 to 5 days at 150 to 200 rpm at 25 to 35 ℃. The culture medium was centrifuged in the range of 5000 to 9000 × g for 10 to 30 minutes to remove the cells, and the supernatant was used for the fibrin degradation test.

상기 상등액 40μL를 직경 1.0cm의 페이퍼 디스크에 점적하고, 건조한 후에 카르복시메틸셀룰로오스 (carboxymethyl cellulose; CMC), 전분 (starch) 및 단백질 (skim milk)를 2.0%(w/v) 첨가한 한천배지위에 올려놓고 37℃에서 3일간 배양한 후, 각 분해효소를 저지원의 크기를 통해 확인하고, 생성된 저지원의 크기로 섬유소 분해효소의 생산성을 비교하였다. 도 1과 같이 저지원의 크기를 비교한 결과 섬유소 분해효소의 생산성이 가장 우수한 균주를 선발하였다.
40 μL of the supernatant was dropped on a paper disk of 1.0 cm in diameter, dried, and placed on agar medium to which 2.0% (w/v) of carboxymethyl cellulose (CMC), starch and protein (skim milk) was added. Placed and incubated for 3 days at 37°C, each degrading enzyme was identified through the size of the inhibitory source, and the productivity of the fibrinase was compared with the size of the resulting inhibitory source. As a result of comparing the size of the jersey as shown in FIG. 1, the strain having the best productivity of fibrinolytic enzyme was selected.

섬유소 분해효소 생산 균주의 동정Identification of strains producing fibrinolytic enzyme

상기 선발된 균주의 동정을 위하여 16S rDNA 및 자이레이즈 A (gyrase A)의 염기서열을 부분적으로 결정하였다. 16s rDNA 염기서열 분석에는 5’-AGG AGG AAA AGA TCA GAT ATG AAA CGG TCA ATC-3’과 5’-TCC AGT ATT TCA TCC ACA ACG ACC TCC-3’를 프라이머로 사용하고, 다음과 같은 조건하에서 PCR을 수행하여 16s rDNA 유전자를 증폭하였다. PCR 반응조건은 94℃, 3분 → [94℃, 30초 → 50℃, 30초,→ 72℃, 5분] 30회 → post-elongation : 72℃, 10분이었다. For the identification of the selected strain, the base sequence of 16S rDNA and gyrase A was partially determined. For 16s rDNA sequencing, 5'-AGG AGG AAA AGA TCA GAT ATG AAA CGG TCA ATC-3' and 5'-TCC AGT ATT TCA TCC ACA ACG ACC TCC-3' were used as primers, and under the following conditions PCR was performed to amplify the 16s rDNA gene. PCR reaction conditions were 94 ℃, 3 minutes → [94 ℃, 30 seconds → 50 ℃, 30 seconds, → 72 ℃, 5 minutes] 30 times → post-elongation: 72 ℃, 10 minutes.

자이레이즈 A (gyrase A) 염기서열 분석에는, 5’-CAG TCA GGA AAT GCG TAC GTC CTT-3’ and 5’- CAA GGT AAT GCT CCA GGC ATT GCT-3’을 프라이머로 사용하고 다음과 같은 조건하에서 PCR을 수행하고 자이레이즈 A (gyrase A) 유전자를 증폭하였다. PCR 반응조건은 94℃, 3분 → [94℃,30초 → 50℃,30초,→ 72℃,5분] 30회 → post-elongation : 72℃, 10분이었다For gyrase A sequencing, 5'-CAG TCA GGA AAT GCG TAC GTC CTT-3' and 5'- CAA GGT AAT GCT CCA GGC ATT GCT-3' were used as primers and the following conditions PCR was performed under the following conditions, and a gyrase A gene was amplified. PCR reaction conditions were 94 ℃, 3 minutes → [94 ℃, 30 seconds → 50 ℃, 30 seconds, → 72 ℃, 5 minutes] 30 times → post-elongation: 72 ℃, 10 minutes

Genbank상의 데이터 베이스에 보고된 균주들과 염기서열을 비교하는 방법으로 동정한 결과, 세균의 일종인 바실러스 벨렌체시스 (Bacillus velezensis)임을 확인하고 바실러스 벨렌체시스 A-68 (Bacillus velezensis A-68)으로 명명하였으며, 이를 한국농용미생물보존센터에 균주 기탁번호 KACC 91178P로 기탁하였다 .As a result of identification by comparing the sequence with the strains reported in the database on Genbank, it was identified as Bacillus velezensis , a type of bacteria, and named as Bacillus velezensis A-68. It was deposited with the Korea Agricultural Microbial Conservation Center under the strain deposit number KACC 91178P.

상기 바실러스 벨렌체시스 A-68 (Bacillus velezensis A-68, KACC 91178P)의 16S rDNA 염기서열과 자이레이즈 A 염기서열을 PCR을 통해서 증폭하여 Genbank의 데이터베이스를 통하여 다른 종들과 유전적 연관을 조사하였다. 16S rDNA와 자이레이즈 A (gyrase A) 유전자의 부분적인 염기서열을 바탕으로 분석한 다른 종의 균주들과의 유사성은 표 1 및 2와 같다.The 16S rDNA sequence and the Xyrease A sequence of Bacillus velezensis A-68 (KACC 91178P) were amplified through PCR, and genetic associations with other species were investigated through Genbank's database. Tables 1 and 2 show similarities between 16S rDNA and other strains analyzed based on the partial nucleotide sequence of the gyrase A gene.

바실러스 벨렌체시스 A-68 균주의 유사성(16S rDNA)Similarity of Bacillus belenchesis A-68 strain (16S rDNA) StrainStrain Similarity
(%)
Similarity
(%)
Nucleotide differences/
compared
Nucleotide differences/
compared
Bacillus velezensis LMG 22478T Bacillus velezensis LMG 22478T 99.7799.77 2/8712/871 Bacillus amyloliquefaciens ATCC 23350T Bacillus amyloliquefaciens ATCC 23350T 99.6599.65 3/8653/865 Bacillus atrophaeus JCM 9070T Bacillus atrophaeus JCM 9070T 99.5499.54 4/8744/874 Bacillus vallismortisDSM1103T Bacillus vallismortis DSM1103T 99.4399.43 5/8745/874 Bacillus subtilis subsp.subtilisNCDO 1769T Bacillus subtilis subsp .subtilis NCDO 1769T 99.3199.31 6/8706/870 Bacillus majavensis IFO 15718T Bacillus majavensis IFO 15718T 99.0899.08 8/8748/874 Bacillus subtilis subsp.subtilisDSM 10T Bacillus subtilis subsp .subtilis DSM 10T 99.0899.08 8/8738/873 Bacillus licheniformis DSM 13T Bacillus licheniformis DSM 13T 97.5997.59 21/87321/873 Bacillus pumilus NCDO 1766T Bacillus pumilus NCDO 1766T 96.4796.47 30/85030/850 Bacillus carboniphilus JCM 973T Bacillus carboniphilus JCM 973T 95.0695.06 43/87043/870 Bacillus oleronius DSM 9356T Bacillus oleronius DSM 9356T 94.6894.68 46/86546/865 Bacillus sporothermodurans DSM 10599T Bacillus sporothermodurans DSM 10599T 94.5994.59 47/86847/868 Bacillus indicus Sd/3T Bacillus indicus Sd/3T 94.5494.54 47/86147/861 Bacillus firmus IAM 12464 Bacillus firmus IAM 12464 94.2394.23 50/86650/866 Bacillus methanolicus NCIMB 13114T Bacillus methanolicus NCIMB 13114T 94.1594.15 51/87251/872 Bacillus azotoformans ATCC 29788T Bacillus azotoformans ATCC 29788T 93.9893.98 50/83050/830

바실러스 벨렌체시스 A-68 균주의 유사성(gyrase A)Similarity of Bacillus belenchesis A-68 strain (gyrase A) StrainStrain Similarity
(%)
Similarity
(%)
Nucleotide differences/
compared
Nucleotide differences/
compared
Bacillus vlezensis LMG 22478T Bacillus vlezensis LMG 22478T 99.7799.77 11/89611/896 Bacillus amyloliquefaciens KCTC 1660T Bacillus amyloliquefaciens KCTC 1660T 95.9595.95 38/93838/938 Bacillus mojavensis NRRL B-14698T Bacillus mojavensis NRRL B-14698T 84.1084.10 124/780124/780 Bacillus subtilis subsp. spizizeniiNRRL Bacillus subtilis subsp. spizizenii NRRL 82.8482.84 139/810139/810 Bacillus subtilissubsp.subtilisKCTC3135T Bacillus subtilis subsp. subtilis KCTC3135T 82.4882.48 133/759133/759 Bacillus atrophaeus KCTC 3701T Bacillus atrophaeus KCTC 3701T 82.0782.07 156/870156/870 Bacillus vallismortis NRRL B-14890T Bacillus vallismortis NRRL B-14890T 81.4981.49 167/902167/902 Bacillus licheniformis KCTC 1918T Bacillus licheniformis KCTC 1918T 78.2578.25 186/855186/855

유전자의 부분적인 염기서열을 바탕으로 분석한 다른 종의 균주들과의 유사성을 계통도로 표시하면 도 2와 같다. 염기서열을 통해 분석되어진 이 균주의 균학적 성질으로는 통상적인 바실러스 벨렌체시스와 유사하였으며, 16s rDNA 및 gyrA 염기서열을 통해 바실러스 벨렌체시스 (Bacillus velezensis A-68, 균주 기탁번호 KACC 91178P)으로 동정하였다. 이 균주는 농업부산물인 왕겨 및 미강 그리고 효모추출물 등을 영양원으로 이용하여 생장함을 확인하였다.
Fig. 2 shows the similarity with strains of other species analyzed based on the partial nucleotide sequence of the gene. The mycological properties of this strain analyzed through nucleotide sequence were similar to that of conventional Bacillus belenchesis, and identified as Bacillus velezensis A-68, strain accession number KACC 91178P) through 16s rDNA and gyr A nucleotide sequences. I did. It was confirmed that this strain was grown using agricultural by-products such as rice husk and rice bran and yeast extract as a nutrient source.

실시예 2 : 바실러스 벨렌체시스 A-68균주로부터의 섬유소 분해효소의 분리 및 염기서열 분석Example 2: Isolation and nucleotide sequence analysis of fibrinolytic enzyme from Bacillus belenchesis A-68 strain

상기 실시예 1에서 선별된 균주의 섬유소 분해효소 유전자를 클로닝 하기 위해서 GenBank로부터 알려진 바실러스 유래 유전자를 바탕으로 제작한 프라이머 (p1 5’-AGG AGG AAA AGA TCA GAT ATG AAA CGG TCA ATC-3’, p2 5’-TCC AGT ATT TCA TCC ACA ACG CAA ACC TCC-3’를 이용하여 PCR을 수행하였다. 초기 변성 단계는 94℃ 1분을 시작으로 60℃ 1분, 72℃ 2분으로 35 사이클을 수행하고 최종 72℃ 에 10분간 신장 단계를 수행하였다. In order to clone the fibrinolytic enzyme gene of the strain selected in Example 1, a primer prepared based on a Bacillus-derived gene known from GenBank (p1 5'-AGG AGG AAA AGA TCA GAT ATG AAA CGG TCA ATC-3', p2 PCR was performed using 5'-TCC AGT ATT TCA TCC ACA ACG CAA ACC TCC-3'. The initial denaturation step was performed at 94°C for 1 minute, 60°C for 1 minute, 72°C for 2 minutes, and 35 cycles. The stretching step was performed at 72° C. for 10 minutes.

PCR을 통하여 1.5kb 크기의 유전자를 얻을 수 있었다. 상기 유전자의 염기서열 분석을 위하여 pGEM T-이지 벡터 (pGEM T-easy vector; 프로메가사, USA)에 결합(ligation)시켜 수행하였다. 상기 유전자 클로닝 벡터로 사용한 pGEM T-이지 벡터는 도 3에 나타내었으며, DNA 염기서열의 분석을 위하여 통상적으로 사용되는 벡터이다. 전형적인 벡터가 주로 원형 형태의 플라스미드인데 반해 pGEM T-이지 벡터는 직선형이며, 직선형 DNA의 양 끝에 오버행 (overhang; DNA가 2가닥인데 한 가닥만 튀어나와 있다는 의미)으로 T서열을 가지고 있으며, PCR 결과물을 pGEN T-이지 벡터와 연결하여 원형 형태로 만들어준 후에 대장균에 재조합 하는 원리이다. Through PCR, a gene having a size of 1.5 kb could be obtained. In order to analyze the nucleotide sequence of the gene, it was performed by ligation to a pGEM T-easy vector (Promega, USA). The pGEM T-easy vector used as the gene cloning vector is shown in FIG. 3 and is a vector commonly used for DNA sequence analysis. While typical vectors are mainly circular plasmids, the pGEM T-easy vector is straight, and has a T sequence with overhangs at both ends of the straight DNA. This is the principle of recombination in E. coli after making it into a circular shape by connecting the pGEN T-easy vector.

DNA 서열분석기를 이용하여 상기 섬유소 분해효소 유전자의 염기서열을 분석하였다. 바실러스 벨렌체시스 A-68의 섬유소 분해효소 유전자의 아미노산 서열은 서열목록 1에 첨부하였다. 상기 섬유소 분해효소의 분석 결과 499개의 아미노산을 암호화 하고 있는 1497bp의 뉴클레오타이드로 구성되어 있으며, 그 분자량은 55,059Da 인 것을 확인 할 수 있었다. 아미노산 염기 서열을 GenBank에 등록되어 있는 다른 바실러스 속 계열의 다른 섬유소 분해효소들과 상동성을 조사한 결과, 바실러스 서브틸리스 M28332.1과 98%, 바실러스 WRD-2 AY859492.1과 98%, 바실러스 아밀로리퀘이페이션스 FZB AJ576102.1과 94%의 상동성을 보였다.
The nucleotide sequence of the fibrinolytic enzyme gene was analyzed using a DNA sequencer. The amino acid sequence of the fibrinolytic enzyme gene of Bacillus belenchesis A-68 is attached to SEQ ID NO: 1. As a result of the fibrinolytic enzyme analysis, it was confirmed that it was composed of 1497 bp nucleotides encoding 499 amino acids, and its molecular weight was 55,059 Da. As a result of examining the homology of the amino acid sequence with other fibrinolytic enzymes of the genus Bacillus registered in GenBank, Bacillus subtilis M28332.1 and 98%, Bacillus WRD-2 AY859492.1 and 98%, and Bacillus amyl It showed 94% homology with Lorequacy FZB AJ576102.1.

실시예 3:Example 3: 바실러스 벨렌체시스 A-68Bacillus Belenchesis A-68 유래 섬유소 분해효소의 외래숙주로의 도입Introduction of derived fibrinolytic enzyme into foreign host

재조합 벡터로의 도입Introduction to recombinant vectors

바실러스 벨렌체시스 A-68의 섬유소 분해효소 유전자를 pGEM T-이지 벡터에 연결한 후 리가아제 (ligase)를 이용하여 결합 (ligation)시켰다. 상기 재조합 벡터를 pTA-68라 명명하였다.
The fibrinolytic enzyme gene of Bacillus belenchesis A-68 was ligated to a pGEM T-easy vector and then ligated using a ligase. The recombinant vector was named pTA-68.

이종숙주(에셰리키아 콜리)로의 도입Introduction to heterogeneous host (Esherician coli)

상기 pTA-68 벡터를 에셰리키아 콜리 JM109 (Escherichia coli JM109)로 도입하는 실험을 수행하였다. 상기 대장균 JM109는 널리 이용되고 있는 균주로 생물자원센터에서 분양받아 사용하였다. 상기 pTA-68가 도입되어 형질변환된 균주를 에셰리키아 콜리 A-68 (Escherichia coli A-68)로 명명하고 2007년 11월 26일 농업생명공학연구원에 균주 기탁번호 KACC 91335p로 기탁하였다.
An experiment was performed in which the pTA-68 vector was introduced into Escherichia coli JM109. The E. coli JM109 is a widely used strain and was used after being sold in the Biological Resource Center. The transformed strain into which the pTA-68 was introduced was named Escherichia coli A-68 and was deposited with the Agricultural Biotechnology Research Institute as strain accession number KACC 91335p on November 26, 2007.

실험예 1 : 탄소원과 질소원에 따른 에셰리키아 콜리 A-68 (Experimental Example 1: Escherichia coli A-68 according to a carbon source and a nitrogen source ( Escherichia coliEscherichia coli A-68) 유래 섬유소 분해효소의 활성 측정 A-68)-derived fibrinolytic enzyme activity measurement

재조합 균주 에셰리키아 콜리 A-68을 각종 탄소원(포도당, 과당, 엿당, 설탕, 미강, 왕겨) 질소원(맥아추출물, 효모추출물, 펩톤, 트립톤 등)을 배지로 사용하여 35℃에서 3일간 배양을 하였다. 균체의 생육과 배양액에 생산된 섬유소 분해효소의 활성을 측정하여 최적 탄소원 및 질소원의 종류를 확인하였으며, 각기 다른 농도의 최적 탄소원과 최적 질소원을 조합식으로 구성하여 배지를 조제한 후, 섬유소 분해효소 생산균주를 접종하고, 균체의 생육과 배양액에 생산된 섬유소 분해효소의 활성을 측정하여 각각 최적 탄소원과 최적 질소원의 농도를 최적화하였다.
Recombinant strain Escherichia coli A-68 was cultured at 35°C for 3 days using various carbon sources (glucose, fructose, malt sugar, sugar, rice bran, rice husk) and nitrogen sources (malt extract, yeast extract, peptone, tryptone, etc.) as a medium. I did it. The growth of the cells and the activity of the fibrin degrading enzyme produced in the culture medium were measured to confirm the types of the optimal carbon source and nitrogen source.After preparing a medium by combining the optimal carbon source and the optimal nitrogen source of different concentrations, the fibrin degrading enzyme was produced. The strain was inoculated, and the growth of the cells and the activity of the fibrinolytic enzyme produced in the culture medium were measured to optimize the concentration of the optimal carbon source and the optimal nitrogen source, respectively.

최적 탄소원, 질소원 측정Optimal carbon source and nitrogen source measurement

실시예 3의 섬유소 분해효소의 최적 탄소원, 질소원을 구하기 위하여 20.0 g/L 탄소원 (포도당, 과당, 엿당, 설탕, 미강, 왕겨), 2.5 g/L 질소원 (맥아추출물, 효모추출물, 펩톤, 트립톤 등)과 0.1% 염화나트륨, 0.5% 인산수소칼륨(K2HPO4), 0.02% 황산마그네슘(MgSO4·7H2O) 및 0.06% 황산암모늄((NH4)2SO4)을 조합하여 500 mL 플라스크에 200 mL을 총 양으로 하여 30℃, 3일간 배양하였다. 시간대별 배양액을 채취한 후, 6000 rpm, 10분간 원심분리기를 이용하여 균체를 제거하였다. 제거된 상등액을 이용하여 완충용액(10mM sodium phosphate buffer buffer pH 6.5)에 녹인 섬유소 분해효소 상등액 0.5mL을 취하고 1%(w/v) 카르복시메틸 셀룰로오스 용액 0.5mL을 첨가한 후, 50℃에서 20분간 반응시키고, 반응액에 존재하는 환원당을 DNS 방법으로 측정하여 섬유소 분해효소의 활성을 검토하였다. 20.0 g/L carbon source (glucose, fructose, malt sugar, sugar, rice bran, rice husk), 2.5 g/L nitrogen source (malt extract, yeast extract, peptone, tryptone) in order to obtain the optimal carbon source and nitrogen source of the fibrinolytic enzyme of Example 3 Etc.), 0.1% sodium chloride, 0.5% potassium hydrogen phosphate (K 2 HPO 4 ), 0.02% magnesium sulfate (MgSO 4 7H 2 O), and 0.06% ammonium sulfate ((NH 4 ) 2 SO 4 ) in 500 mL The flask was cultured at 30° C. for 3 days using 200 mL as the total amount. After collecting the culture solution for each time period, the cells were removed using a centrifuge at 6000 rpm for 10 minutes. Using the removed supernatant, take 0.5 mL of the fibrinolytic enzyme supernatant dissolved in a buffer solution (10 mM sodium phosphate buffer pH 6.5), add 0.5 mL of 1% (w/v) carboxymethyl cellulose solution, and then at 50°C for 20 minutes. After reacting, the reducing sugar present in the reaction solution was measured by the DNS method to examine the activity of fibrinolytic enzyme.

하기 표 3에 나타낸 바와 같이, 탄소원으로 왕겨를 사용하고 질소원으로 효모추출물을 사용한 배지에서 465.8 U/mL의 가장 높은 섬유소 분해효소 활성을 확인하였다. 465.8 in a medium using rice husk as a carbon source and yeast extract as a nitrogen source, as shown in Table 3 below. The highest fibrinolytic enzyme activity of U/mL was confirmed.

에셰리키아 콜리 A-68 균주가 생산하는 섬유소 분해효소 활성에 최적 탄소원 및 질소원 종류가 미치는 영향Effects of Optimal Carbon and Nitrogen Sources on Fibrinolytic Enzyme Activity Produced by Escherichia coli A-68 Strains CMCase (U/mL)CMCase (U/mL)
Nitrogen sources

Nitrogen sources
Carbon sourcesCarbon sources
GlucoseGlucose FructoseFructose MaltoseMaltose StarchStarch Rice branRice bran Rice hullsRice hulls Malt extractMalt extract 91.1 ± 9.491.1 ± 9.4 47.4 ± 6.447.4 ± 6.4 88.1 ± 8.688.1 ± 8.6 84.5 ± 7.484.5 ± 7.4 256.1 ± 23.2256.1 ± 23.2 329.6 ± 27.3329.6 ± 27.3 PeptonePeptone 72.2 ± 6.872.2 ± 6.8 55.9 ± 6.355.9 ± 6.3 67.6 ± 7.767.6 ± 7.7 56.7 ± 6.356.7 ± 6.3 222.1 ± 24.4222.1 ± 24.4 245.8 ± 22.6245.8 ± 22.6 TryptoneTryptone 83.2 ± 8.583.2 ± 8.5 43.4 ± 5.243.4 ± 5.2 87.4 ± 6.787.4 ± 6.7 114.4± 7.6114.4± 7.6 249.8 ± 23.1249.8 ± 23.1 326.0 ± 28.2326.0 ± 28.2 Yeast extractYeast extract 106.4± 9.3106.4± 9.3 72.3 ± 9.172.3 ± 9.1 135.1 ± 12.9135.1 ± 12.9 68.5 ± 7.868.5 ± 7.8 343.2 ± 27.7343.2 ± 27.7 465.8 ± 32.3465.8 ± 32.3 Ammonium chlorideAmmonium chloride 93.1 ± 8.593.1 ± 8.5 51.3 ± 6.251.3 ± 6.2 67.2 ± 5.467.2 ± 5.4 77.6 ± 8.177.6 ± 8.1 167.8 ± 14.2167.8 ± 14.2 273.3 ± 26.4273.3 ± 26.4 Ammonium nitrateAmmonium nitrate 78.5 ± 6.878.5 ± 6.8 66.8 ± 7.466.8 ± 7.4 84.1 ± 6.384.1 ± 6.3 245.2 ± 22.1245.2 ± 22.1 254.1 ± 18.7254.1 ± 18.7 224.3 ± 18.6224.3 ± 18.6

최적 탄소원, 질소원의 농도Optimal carbon source and nitrogen source concentration

선행 실험에서 결정된 왕겨와 효모추출물의 최적 농도를 확인하는 실험으로 0~100 g/L 왕겨와 0~100 g/L 효모추출물, 0.1% 염화나트륨, 0.5% 인산수소칼륨(K2HPO4), 0.02% 황산마그네슘(MgSO4·7H2O) 및 0.06% 황산암모늄((NH4)2SO4)을 조합하여 500 mL 플라스크에 200 mL을 총 양으로 하여 30℃, 3일간 배양을 한다. 시간대별 배양액을 채취한 후, 6000 rpm, 10분간 원심분리기를 이용하여 균체를 제거한다. 제거된 상등액을 이용하여 완충용액(10mM sodium phosphate buffer buffer pH 6.5)에 녹인 섬유소 분해효소 상등액 0.5mL을 취하고 1%(w/v) 카르복시메틸 셀룰로오스 용액 0.5 mL을 첨가한 후, 50℃에서 20분간 반응시키고, 반응액에 존재하는 환원당을 DNS 방법으로 측정하여 섬유소 분해효소의 활성을 검토하였다.This is an experiment to confirm the optimal concentration of rice husk and yeast extract determined in the previous experiment. 0-100 g/L rice husk and 0-100 g/L yeast extract, 0.1% sodium chloride, 0.5% potassium hydrogen phosphate (K 2 HPO 4 ), 0.02 Combine% magnesium sulfate (MgSO 4 ·7H 2 O) and 0.06% ammonium sulfate ((NH 4 ) 2 SO 4 ) and incubate at 30°C for 3 days using 200 mL as a total amount in a 500 mL flask. After collecting the culture solution for each time period, the cells are removed using a centrifuge at 6000 rpm for 10 minutes. Using the removed supernatant, take 0.5 mL of the fibrinolytic enzyme supernatant dissolved in a buffer solution (10 mM sodium phosphate buffer pH 6.5), add 0.5 mL of 1% (w/v) carboxymethyl cellulose solution, and then at 50°C for 20 minutes. After reacting, the reducing sugar present in the reaction solution was measured by the DNS method to examine the activity of fibrinolytic enzyme.

하기 표 4에 나타낸 바와 같이 재조합 균주 에셰리키아 콜리 A-68가 생산하는 섬유소 분해효소는 50.0 g/L 의 왕겨와, 2.5 g/L의 효모추출물의 조합에서 531.7 U/mL의 가장 높은 활성을 나타내었다. As shown in Table 4 below, the fibrinolytic enzyme produced by the recombinant strain Escherichia coli A-68 has the highest activity of 531.7 U/mL in the combination of 50.0 g/L of rice husk and 2.5 g/L of yeast extract. Indicated.

에셰리키아 콜리 A-68 균주가 생산하는 섬유소 분해효소 활성에 최적 탄소원 및 질소원 농도가 미치는 영향Effect of Optimal Carbon and Nitrogen Source Concentrations on Fibrinolytic Enzyme Activity Produced by Escherichia coli A-68 Strains CMCase (U/mL)CMCase (U/mL)
Y.E
(g/L)

YE
(g/L)
Rice hulls (g/L)Rice hulls (g/L)
0.00.0 10.010.0 20.020.0 30.030.0 50.050.0 75.075.0 100.0100.0 0.00.0 23.5 ± 5.423.5 ± 5.4 114.8 ± 9.6114.8 ± 9.6 182.4 ± 16.2182.4 ± 16.2 263.6 ± 23.4263.6 ± 23.4 271.5 ± 24.7271.5 ± 24.7 240.5 ± 22.1240.5 ± 22.1 215.8 ± 17.7215.8 ± 17.7 0.50.5 35.6 ± 4.835.6 ± 4.8 167.4 ± 15.7167.4 ± 15.7 287.2 ± 26.2287.2 ± 26.2 325.4 ± 27.5325.4 ± 27.5 365.7 ± 31.3365.7 ± 31.3 317.2 ±27.8317.2 ±27.8 264.5 ± 21.2264.5 ± 21.2 1.01.0 56.2 ± 5.256.2 ± 5.2 186.3 ± 17.4186.3 ± 17.4 315.6 ± 27.7315.6 ± 27.7 421.5 ± 34.8421.5 ± 34.8 485.6 ± 36.0485.6 ± 36.0 387.2 ± 31.4387.2 ± 31.4 357.9 ± 29.3357.9 ± 29.3 2.52.5 76.8 ± 8.876.8 ± 8.8 214.2 ± 23.4214.2 ± 23.4 421.6 ± 32.1421.6 ± 32.1 492.1 ± 34.2492.1 ± 34.2 531.7 ± 32.6531.7 ± 32.6 445.8 ± 37.8445.8 ± 37.8 394.4 ± 38.6394.4 ± 38.6 5.05.0 89.3 ± 9.289.3 ± 9.2 223.1 ± 19.3223.1 ± 19.3 384.5 ± 32.1384.5 ± 32.1 446.1 ± 34.6446.1 ± 34.6 485.6 ± 35.6485.6 ± 35.6 416.7 ± 34.6416.7 ± 34.6 352.1 ± 32.1352.1 ± 32.1 7.57.5 72.4 ± 6.472.4 ± 6.4 185.4 ± 17.3185.4 ± 17.3 322.4 ± 28.9322.4 ± 28.9 405.3 ± 31.4405.3 ± 31.4 442.1 ± 38.4442.1 ± 38.4 375.2 ± 29.0375.2 ± 29.0 315.7 ± 28.9315.7 ± 28.9 10.010.0 63.1 ± 6.363.1 ± 6.3 154.6 ± 15.3154.6 ± 15.3 289.7 ± 24.3289.7 ± 24.3 372.5 ± 27.4372.5 ± 27.4 398.2 ± 35.1398.2 ± 35.1 321.8 ± 31.4321.8 ± 31.4 256.9 ± 27.1256.9 ± 27.1

실험예 2 : 배지의 초기 pH와 배양온도에 따른 에셰리키아 콜리 A-68 (Experimental Example 2: Escherichia coli A-68 according to the initial pH and culture temperature of the medium ( Escherichia coliEscherichia coli A-68) 유래 섬유소 분해효소의 활성 측정 A-68)-derived fibrinolytic enzyme activity measurement

최적화된 탄소원과 질소원을 사용하여 배지를 제조하고 각기 다른 배지의 초기 pH 및 배양온도에서 배양하면서 균체의 생육과 배양액에 생산된 섬유소 분해효소의 활성을 측정하여 재조합 균주 에셰리키아 콜리 A-68의 섬유소 분해효소 생산을 위한 초기 배지의 pH 및 배양온도를 최적화 한다.
A medium was prepared using an optimized carbon source and nitrogen source, and the growth of the cells and the activity of the fibrinolytic enzyme produced in the culture medium were measured while culturing at the initial pH and culture temperature of each different medium. Optimize the pH and culture temperature of the initial medium for fibrinolytic enzyme production.

최적 배지의 초기 pH, 배양온도Initial pH of optimal medium, culture temperature

섬유소 분해효소의 최적 배지의 초기 pH와 배양온도에 따른 최적조건을 확인하기 위하여 50 g/L 의 왕겨와, 2.5 g/L의 효모추출물, 0.1% 염화나트륨, 0.5% 인산수소칼륨 (K2HPO4), 0.02% 황산마그네슘 (MgSO4·7H2O) 및 0.06% 황산암모늄 ((NH4)2SO4)조합하여 초기 pH는 5.8, 6.3, 6.8, 7.3, 7.8 및 8.3 과 온도는 25, 30, 35 및 40℃별로 각각 조합하여 500 mL 플라스크에 200 mL을 총 양으로 하여 3일간 배양을 한다. 시간대별 배양액을 채취한 후, 6000 rpm, 10분간 원심분리기를 이용하여 균체를 제거한다. 제거된 상등액을 이용하여 완충용액 (10mM sodium phosphate buffer buffer pH 6.5)에 녹인 섬유소 분해효소 상등액 0.5mL을 취하고 1%(w/v) 카르복시메틸 셀룰로오스 용액 0.5mL을 첨가한 후, 50℃에서 20분간 반응시키고, 반응액에 존재하는 환원당을 DNS 방법으로 측정하여 섬유소 분해효소의 활성을 검토하였다. 50 g/L of rice husk, 2.5 g/L of yeast extract, 0.1% sodium chloride, 0.5% potassium hydrogen phosphate (K 2 HPO 4 ), 0.02% magnesium sulfate (MgSO 4 7H 2 O) and 0.06% ammonium sulfate ((NH 4 ) 2 SO 4 ) in combination, the initial pH is 5.8, 6.3, 6.8, 7.3, 7.8 and 8.3 and the temperature is 25, 30 , 35 and 40°C, respectively, and incubate for 3 days using 200 mL as a total amount in a 500 mL flask. After collecting the culture solution for each time period, the cells are removed using a centrifuge at 6000 rpm for 10 minutes. Using the removed supernatant, take 0.5 mL of the fibrinolytic enzyme supernatant dissolved in a buffer solution (10 mM sodium phosphate buffer pH 6.5), add 0.5 mL of 1% (w/v) carboxymethyl cellulose solution, and then at 50°C for 20 minutes. After reacting, the reducing sugar present in the reaction solution was measured by the DNS method to examine the activity of fibrinolytic enzyme.

하기 표 5에 나타낸 바와 같이, 재조합 균주 에셰리키아 콜리 A-68가 생산하는 섬유소 분해효소는 배지의 초기 pH 7.3과 배양온도 35℃에서 651.4 U/mL의 가장 높은 활성을 나타냈다.As shown in Table 5 below, the fibrinolytic enzyme produced by the recombinant strain Escherichia coli A-68 exhibited the highest activity of 651.4 U/mL at an initial pH of 7.3 and a culture temperature of 35° C. of the medium.

에셰리키아 콜리 A-68 균주가 생산하는 섬유소 분해효소 활성에 최적 배지의 초기 pH와 최적 배양온도가 미치는 영향Effect of Optimal Medium Initial pH and Optimal Culture Temperature on Fibrinolytic Enzyme Activity Produced by Escherichia coli A-68 Strain CMCase (U/mL)CMCase (U/mL) Temp.
(℃)
Temp.
(℃)
pHpH
5.85.8 6.36.3 6.86.8 7.37.3 7.87.8 8.38.3 2525 354.7 ± 25.6354.7 ± 25.6 443.2 ± 32.3443.2 ± 32.3 462.2 ± 32.1462.2 ± 32.1 502.9 ± 40.8502.9 ± 40.8 423.8 ± 36.7423.8 ± 36.7 276.2 ± 22.4276.2 ± 22.4 3030 386.8 ± 27.4386.8 ± 27.4 468.1 ± 35.7468.1 ± 35.7 528.7 ± 42.8528.7 ± 42.8 574.6 ± 42.5574.6 ± 42.5 517.5 ± 46.3517.5 ± 46.3 382.5 ± 29.1382.5 ± 29.1 3535 436.7 ± 35.7436.7 ± 35.7 553.1 ± 41.6553.1 ± 41.6 614.6 ± 48.5614.6 ± 48.5 651.4 ± 48.3651.4 ± 48.3 581.4 ± 48.1581.4 ± 48.1 432.6 ± 33.5432.6 ± 33.5 4040 311.5 ± 28.4311.5 ± 28.4 385.6 ± 27.2385.6 ± 27.2 483.2 ± 41.4483.2 ± 41.4 513.6 ± 46.2513.6 ± 46.2 453.4 ± 37.9453.4 ± 37.9 223.6 ± 22.6223.6 ± 22.6

실험예 3 : 바실러스 벨렌체시스 A-68 균주와 재조합 균주 에셰리키아 콜리 A-68유래 섬유소 분해효소의 활성 측정Experimental Example 3: Measurement of fibrinolytic enzyme derived from Bacillus belenchesis A-68 strain and recombinant strain Escherichia coli A-68

섬유소 분해효소의 최적 배지의 초기 pH와 배양온도에 따른 최적조건을 확인하기 위하여 50 g/L 의 왕겨와, 2.5 g/L의 효모추출물, 0.1% 염화나트륨, 0.5% 인산수소칼륨 (K2HPO4), 0.02% 황산마그네슘 (MgSO4·7H2O) 및 0.06% 황산암모늄 ((NH4)2SO4)조합하여 초기 pH는 5.8, 6.3, 6.8, 7.3, 7.8 및 8.3 과 온도는 25, 30, 35 및 40℃별로 각각 조합하여 500 mL 플라스크에 200 mL을 총 양으로 하여 3일간 배양을 한다. 시간대별 배양액을 채취한 후, 6000 rpm, 10분간 원심분리기를 이용하여 균체를 제거한다. 제거된 상등액을 이용하여 완충용액 (10mM sodium phosphate buffer buffer pH 6.5)에 녹인 섬유소 분해효소 상등액 0.5mL을 취하고 1%(w/v) 카르복시메틸 셀룰로오스 용액 0.5mL을 첨가한 후, 50℃에서 20분간 반응시키고, 반응액에 존재하는 환원당을 DNS 방법으로 측정하여 섬유소 분해효소의 활성을 검토하였다. 50 g/L of rice husk, 2.5 g/L of yeast extract, 0.1% sodium chloride, 0.5% potassium hydrogen phosphate (K 2 HPO 4 ), 0.02% magnesium sulfate (MgSO 4 7H 2 O) and 0.06% ammonium sulfate ((NH 4 ) 2 SO 4 ) in combination, the initial pH is 5.8, 6.3, 6.8, 7.3, 7.8 and 8.3 and the temperature is 25, 30 , 35 and 40°C, respectively, and incubate for 3 days using 200 mL as a total amount in a 500 mL flask. After collecting the culture solution for each time period, the cells are removed using a centrifuge at 6000 rpm for 10 minutes. Using the removed supernatant, take 0.5 mL of the fibrinolytic enzyme supernatant dissolved in a buffer solution (10 mM sodium phosphate buffer pH 6.5), add 0.5 mL of 1% (w/v) carboxymethyl cellulose solution, and then at 50°C for 20 minutes. After reacting, the reducing sugar present in the reaction solution was measured by the DNS method to examine the activity of fibrinolytic enzyme.

하기 표 6에 나타낸 바와 같이, 바실러스 벨렌체시스 A-68 균주의 섬유소 분해효소 유전자를 도입하여 형질 전환된 재조합 균주 에셰리키아 콜리 A-68의 섬유소 분해효소 생산성은 탄소원으로 포도당, 미강 및 왕겨를 50.0 g/L의 농도로 사용하였을 경우에 각각 144.3 U/mL, 465.2 U/mL 및 668.3 U/mL의 생산성을 나타냈으며, 바실러스 벨렌체시스 A-68 균주의 섬유소 분해효소 생산성에 비하여 각각 3.35배, 5.89배 및 3.44배 높았다. As shown in Table 6 below, the fibrinolytic enzyme productivity of the recombinant strain Escherichia coli A-68 transformed by introducing the fibrinolytic enzyme gene of Bacillus belenchesis A-68 strain was 50.0 as a carbon source: glucose, rice bran and rice husk. When used at the concentration of g/L, the productivity was 144.3 U/mL, 465.2 U/mL, and 668.3 U/mL, respectively, and 3.35 times and 5.89 compared to the fibrinolytic enzyme productivity of Bacillus belenchesis A-68 strain, respectively. And 3.44 times higher.

바실러스 벨렌체시스 A-68 균주와 에셰리키아 콜리 A-68의 섬유소 분해효소 생산성 비교Comparison of Fibrinolytic Enzyme Productivity of Bacillus Bellensis A-68 and Escherichia coli A-68 균주Strain 탄소원Carbon source 균체중량
(g/L)
Cell weight
(g/L)
섬유소 분해효소
(U/mL)
Fibrinolytic enzyme
(U/mL)
바실러스 벨렌체시스 A-68Bacillus Belenchesis A-68 포도당glucose 1.75 ± 0.131.75 ± 0.13 43.0 ± 8.543.0 ± 8.5 미강Rice bran 1.12 ± 0.151.12 ± 0.15 113.4 ± 7.2113.4 ± 7.2 왕겨chaff 1.87 ± 0.181.87 ± 0.18 136.4 ± 12.1136.4 ± 12.1 에셰리키아 콜리 A-68Escherichia coli A-68 포도당glucose 1.02 ± 0.081.02 ± 0.08 144.3 ± 18.6144.3 ± 18.6 미강Rice bran 1.40 ± 0.141.40 ± 0.14 465.2 ± 32.1465.2 ± 32.1 왕겨chaff 1.84 ± 0.191.84 ± 0.19 668.3 ± 24.3 668.3 ± 24.3

농업생명공학연구원Institute of Agricultural Biotechnology KACC91335KACC91335 2007110720071107

<110> Dong-A University Research Foundation for Industry-Academy Cooperation Jinsang Company <120> Gene coding for cellulase from Bacillus valezensis A-68 and production method of cellulase by transformed Escherichia coli A-68 thereof <160> 1 <170> KopatentIn 1.71 <210> 1 <211> 2000 <212> PRT <213> Bacillus velezensis A-68 <400> 1 Ala Thr Gly Ala Ala Ala Cys Gly Gly Thr Cys Ala Ala Thr Thr Thr 1 5 10 15 Cys Thr Ala Thr Thr Thr Thr Thr Ala Thr Thr Ala Cys Gly Thr Gly 20 25 30 Thr Thr Thr Ala Thr Thr Gly Ala Thr Thr Gly Cys Gly Gly Thr Ala 35 40 45 Thr Thr Gly Ala Cys Ala Ala Thr Gly Gly Gly Cys Met Lys Arg Ser 50 55 60 Ile Ser Ile Phe Ile Thr Cys Leu Leu Ile Ala Val Leu Thr Met Gly 65 70 75 80 Gly Gly Cys Thr Thr Gly Cys Thr Gly Cys Cys Thr Thr Cys Gly Cys 85 90 95 Cys Gly Gly Gly Ala Thr Cys Ala Gly Cys Ala Gly Cys Ala Gly Gly 100 105 110 Gly Ala Cys Ala Ala Ala Ala Ala Cys Gly Cys Cys Ala Gly Cys Ala 115 120 125 Gly Cys Cys Ala Ala Gly Ala Ala Thr Gly Gly Gly Gly Leu Leu Pro 130 135 140 Ser Pro Gly Ser Ala Ala Gly Thr Lys Thr Pro Ala Ala Lys Asn Gly 145 150 155 160 Cys Ala Gly Cys Thr Thr Ala Gly Cys Ala Thr Ala Ala Ala Ala Gly 165 170 175 Gly Ala Ala Cys Ala Cys Ala Gly Cys Thr Cys Gly Thr Ala Ala Ala 180 185 190 Cys Cys Gly Gly Gly Ala Cys Gly Gly Cys Ala Ala Ala Gly Cys Gly 195 200 205 Gly Thr Ala Cys Ala Ala Thr Thr Gly Ala Ala Ala Gln Leu Ser Ile 210 215 220 Lys Gly Thr Gln Leu Val Asn Arg Asp Gly Lys Ala Val Gln Leu Lys 225 230 235 240 Gly Gly Gly Ala Thr Cys Ala Gly Thr Thr Cys Ala Cys Ala Thr Gly 245 250 255 Gly Ala Thr Thr Gly Cys Ala Gly Thr Gly Gly Thr Ala Thr Gly Gly 260 265 270 Cys Gly Ala Thr Thr Thr Thr Gly Thr Cys Ala Ala Thr Ala Ala Ala 275 280 285 Gly Ala Cys Ala Gly Cys Thr Thr Ala Ala Ala Ala Gly Ile Ser Ser 290 295 300 His Gly Leu Gln Trp Tyr Gly Asp Phe Val Asn Lys Asp Ser Leu Lys 305 310 315 320 Thr Gly Gly Cys Thr Gly Ala Gly Ala Gly Ala Cys Gly Ala Thr Thr 325 330 335 Gly Gly Gly Gly Cys Ala Thr Ala Ala Cys Cys Gly Thr Thr Thr Thr 340 345 350 Cys Cys Gly Cys Gly Cys Gly Gly Cys Gly Ala Thr Gly Thr Ala Thr 355 360 365 Ala Cys Gly Gly Cys Ala Gly Ala Thr Gly Gly Cys Trp Leu Arg Asp 370 375 380 Asp Trp Gly Ile Thr Val Phe Arg Ala Ala Met Tyr Thr Ala Asp Gly 385 390 395 400 Gly Gly Thr Thr Ala Thr Ala Thr Thr Gly Ala Thr Ala Ala Thr Cys 405 410 415 Cys Gly Thr Cys Cys Gly Thr Gly Ala Ala Ala Ala Ala Thr Ala Ala 420 425 430 Ala Gly Thr Ala Ala Ala Ala Gly Ala Ala Gly Cys Gly Gly Thr Thr 435 440 445 Gly Ala Ala Gly Cys Gly Gly Cys Ala Ala Ala Ala Gly Tyr Ile Asp 450 455 460 Asn Pro Ser Val Lys Asn Lys Val Lys Glu Ala Val Glu Ala Ala Lys 465 470 475 480 Gly Ala Ala Cys Thr Cys Gly Gly Gly Ala Thr Ala Thr Ala Thr Gly 485 490 495 Thr Cys Ala Thr Cys Ala Thr Thr Gly Ala Cys Thr Gly Gly Cys Ala 500 505 510 Thr Ala Thr Cys Thr Thr Ala Ala Ala Thr Gly Ala Cys Gly Gly Cys 515 520 525 Ala Ala Cys Cys Cys Ala Ala Ala Cys Cys Ala Ala Glu Leu Gly Ile 530 535 540 Tyr Val Ile Ile Asp Trp His Ile Leu Asn Asp Gly Asn Pro Asn Gln 545 550 555 560 Cys Ala Thr Ala Ala Ala Gly Ala Gly Ala Ala Gly Gly Cys Ala Ala 565 570 575 Ala Ala Gly Ala Ala Thr Thr Thr Thr Thr Thr Ala Ala Gly Gly Ala 580 585 590 Ala Ala Thr Gly Thr Cys Ala Ala Gly Thr Cys Thr Thr Thr Ala Cys 595 600 605 Gly Gly Ala Ala Ala Cys Ala Cys Gly Cys Cys Ala His Lys Glu Lys 610 615 620 Ala Lys Glu Phe Phe Lys Glu Met Ser Ser Leu Tyr Gly Asn Thr Pro 625 630 635 640 Ala Ala Cys Gly Thr Cys Ala Thr Thr Thr Ala Thr Gly Ala Ala Ala 645 650 655 Thr Thr Gly Cys Ala Ala Ala Cys Gly Ala Ala Cys Cys Ala Ala Ala 660 665 670 Cys Gly Gly Thr Gly Ala Thr Gly Thr Gly Ala Ala Cys Thr Gly Gly 675 680 685 Ala Ala Gly Cys Gly Thr Gly Ala Thr Ala Thr Thr Asn Val Ile Tyr 690 695 700 Glu Ile Ala Asn Glu Pro Asn Gly Asp Val Asn Trp Lys Arg Asp Ile 705 710 715 720 Ala Ala Ala Cys Cys Gly Thr Ala Thr Gly Cys Gly Gly Ala Ala Gly 725 730 735 Ala Ala Gly Thr Gly Ala Thr Thr Thr Cys Cys Gly Thr Thr Ala Thr 740 745 750 Cys Cys Gly Cys Ala Ala Ala Ala Ala Thr Gly Ala Thr Cys Cys Ala 755 760 765 Gly Ala Cys Ala Ala Cys Ala Thr Cys Ala Thr Cys Lys Pro Tyr Ala 770 775 780 Glu Glu Val Ile Ser Val Ile Arg Lys Asn Asp Pro Asp Asn Ile Ile 785 790 795 800 Ala Thr Thr Gly Thr Cys Gly Gly Ala Ala Cys Cys Gly Gly Thr Ala 805 810 815 Cys Ala Thr Gly Gly Ala Gly Cys Cys Ala Ala Gly Ala Thr Gly Thr 820 825 830 Gly Ala Ala Thr Gly Ala Thr Gly Cys Ala Gly Cys Cys Gly Ala Thr 835 840 845 Gly Ala Thr Cys Ala Gly Cys Thr Ala Ala Ala Ala Ile Val Gly Thr 850 855 860 Gly Thr Trp Ser Gln Asp Val Asn Asp Ala Ala Asp Asp Gln Leu Lys 865 870 875 880 Gly Ala Thr Gly Cys Ala Ala Ala Cys Gly Thr Cys Ala Thr Gly Thr 885 890 895 Ala Cys Gly Cys Gly Cys Thr Thr Cys Ala Thr Thr Thr Thr Thr Ala 900 905 910 Thr Gly Cys Cys Gly Gly Cys Ala Cys Ala Cys Ala Cys Gly Gly Cys 915 920 925 Cys Ala Ala Thr Cys Thr Thr Thr Ala Cys Gly Gly Asp Ala Asn Val 930 935 940 Met Tyr Ala Leu His Phe Tyr Ala Gly Thr His Gly Gln Ser Leu Arg 945 950 955 960 Gly Ala Thr Ala Ala Ala Gly Cys Ala Ala Ala Cys Thr Ala Thr Gly 965 970 975 Cys Ala Cys Thr Cys Ala Gly Thr Ala Ala Ala Gly Gly Ala Gly Cys 980 985 990 Gly Cys Cys Thr Ala Thr Thr Thr Thr Cys Gly Thr Gly Ala Cys Gly 995 1000 1005 Gly Ala Ala Thr Gly Gly Gly Gly Ala Ala Cys Ala Asp Lys Ala Asn 1010 1015 1020 Tyr Ala Leu Ser Lys Gly Ala Pro Ile Phe Val Thr Glu Trp Gly Thr 1025 1030 1035 1040 Ala Gly Cys Gly Ala Cys Gly Cys Gly Thr Cys Thr Gly Gly Ala Ala 1045 1050 1055 Ala Thr Gly Gly Cys Gly Gly Thr Gly Thr Ala Thr Thr Cys Cys Thr 1060 1065 1070 Thr Gly Ala Cys Cys Ala Gly Thr Cys Gly Cys Gly Gly Gly Ala Ala 1075 1080 1085 Thr Gly Gly Cys Thr Gly Ala Ala Thr Thr Ala Thr Ser Asp Ala Ser 1090 1095 1100 Gly Asn Gly Gly Val Phe Leu Asp Gln Ser Arg Glu Trp Leu Asn Tyr 1105 1110 1115 1120 Cys Thr Cys Gly Ala Cys Ala Gly Cys Ala Ala Gly Ala Ala Cys Ala 1125 1130 1135 Thr Cys Ala Gly Cys Thr Gly Gly Gly Ala Gly Ala Ala Cys Thr Gly 1140 1145 1150 Gly Ala Ala Thr Cys Thr Thr Thr Cys Thr Gly Ala Thr Ala Ala Gly 1155 1160 1165 Cys Ala Gly Gly Ala Ala Thr Cys Ala Thr Cys Cys Leu Asp Ser Lys 1170 1175 1180 Asn Ile Ser Trp Glu Asn Trp Asn Leu Ser Asp Lys Gln Glu Ser Ser 1185 1190 1195 1200 Thr Cys Ala Gly Cys Gly Thr Thr Ala Ala Ala Gly Cys Cys Gly Gly 1205 1210 1215 Gly Ala Gly Cys Ala Thr Cys Thr Ala Ala Ala Ala Cys Ala Gly Gly 1220 1225 1230 Cys Gly Gly Cys Thr Gly Gly Cys Cys Gly Cys Thr Thr Ala Cys Ala 1235 1240 1245 Gly Ala Thr Thr Thr Ala Ala Cys Thr Gly Cys Thr Ser Ala Leu Lys 1250 1255 1260 Pro Gly Ala Ser Lys Thr Gly Gly Trp Pro Leu Thr Asp Leu Thr Ala 1265 1270 1275 1280 Thr Cys Ala Gly Gly Ala Ala Cys Ala Thr Thr Cys Gly Thr Ala Ala 1285 1290 1295 Gly Ala Gly Ala Ala Ala Ala Cys Ala Thr Thr Cys Thr Cys Gly Gly 1300 1305 1310 Cys Ala Ala Cys Ala Ala Ala Gly Ala Thr Thr Cys Ala Ala Cys Gly 1315 1320 1325 Ala Ala Ala Gly Ala Ala Cys Gly Cys Cys Cys Thr Ser Gly Thr Phe 1330 1335 1340 Val Arg Glu Asn Ile Leu Gly Asn Lys Asp Ser Thr Lys Glu Arg Pro 1345 1350 1355 1360 Gly Ala Ala Ala Cys Gly Cys Cys Ala Gly Cys Ala Cys Ala Ala Gly 1365 1370 1375 Ala Thr Ala Ala Cys Cys Cys Cys Gly Cys Ala Cys Ala Gly Gly Ala 1380 1385 1390 Ala Ala Ala Cys Gly Gly Cys Ala Thr Thr Thr Cys Thr Gly Thr Ala 1395 1400 1405 Cys Ala Ala Thr Ala Cys Ala Ala Ala Gly Cys Ala Glu Thr Pro Ala 1410 1415 1420 Gln Asp Asn Pro Ala Gln Glu Asn Gly Ile Ser Val Gln Tyr Lys Ala 1425 1430 1435 1440 Gly Gly Gly Gly Ala Thr Gly Gly Gly Gly Gly Thr Gly Thr Thr Ala 1445 1450 1455 Ala Cys Ala Gly Cys Ala Ala Cys Cys Ala Ala Ala Thr Cys Cys Gly 1460 1465 1470 Cys Cys Cys Gly Cys Ala Gly Cys Thr Thr Cys Ala Cys Ala Thr Ala 1475 1480 1485 Ala Ala Ala Ala Ala Thr Ala Ala Cys Gly Gly Cys Gly Asp Gly Gly 1490 1495 1500 Val Asn Ser Asn Gln Ile Arg Pro Gln Leu His Ile Lys Asn Asn Gly 1505 1510 1515 1520 Ala Ala Thr Gly Cys Gly Ala Cys Gly Gly Thr Thr Gly Ala Thr Thr 1525 1530 1535 Thr Ala Ala Ala Ala Gly Ala Thr Gly Thr Cys Ala Cys Thr Gly Cys 1540 1545 1550 Cys Cys Gly Thr Thr Ala Cys Thr Gly Gly Thr Ala Thr Ala Ala Cys 1555 1560 1565 Gly Cys Gly Ala Ala Ala Ala Ala Cys Ala Ala Gly Asn Ala Thr Val 1570 1575 1580 Asp Leu Lys Asp Val Thr Ala Arg Tyr Trp Tyr Asn Ala Lys Asn Lys 1585 1590 1595 1600 Gly Gly Cys Cys Ala Ala Ala Ala Cys Thr Thr Thr Gly Ala Cys Thr 1605 1610 1615 Gly Thr Gly Ala Cys Thr Ala Cys Gly Cys Gly Cys Ala Gly Ala Thr 1620 1625 1630 Thr Gly Gly Ala Thr Gly Cys Gly Gly Cys Ala Ala Thr Cys Thr Gly 1635 1640 1645 Ala Cys Cys Cys Ala Cys Ala Ala Ala Thr Thr Thr Gly Gln Asn Phe 1650 1655 1660 Asp Cys Asp Tyr Ala Gln Ile Gly Cys Gly Asn Leu Thr His Lys Phe 1665 1670 1675 1680 Gly Thr Gly Ala Cys Gly Cys Thr Gly Cys Ala Thr Ala Ala Ala Cys 1685 1690 1695 Cys Cys Ala Ala Gly Cys Ala Ala Gly Gly Thr Gly Cys Ala Gly Ala 1700 1705 1710 Thr Ala Cys Cys Thr Ala Thr Cys Thr Gly Gly Ala Ala Cys Thr Gly 1715 1720 1725 Gly Gly Thr Thr Thr Thr Ala Ala Ala Ala Cys Ala Val Thr Leu His 1730 1735 1740 Lys Pro Lys Gln Gly Ala Asp Thr Tyr Leu Glu Leu Gly Phe Lys Thr 1745 1750 1755 1760 Gly Gly Ala Ala Cys Gly Cys Thr Gly Thr Cys Ala Cys Cys Gly Gly 1765 1770 1775 Gly Ala Gly Cys Ala Ala Gly Cys Ala Cys Ala Gly Gly Gly Ala Ala 1780 1785 1790 Thr Ala Thr Thr Cys Ala Gly Cys Thr Thr Cys Gly Thr Cys Thr Thr 1795 1800 1805 Cys Ala Cys Ala Ala Thr Gly Ala Thr Gly Ala Cys Gly Thr Leu Ser 1810 1815 1820 Pro Gly Ala Ser Thr Gly Asn Ile Gln Leu Arg Leu His Asn Asp Asp 1825 1830 1835 1840 Thr Gly Gly Ala Gly Thr Ala Gly Thr Thr Ala Thr Gly Cys Ala Cys 1845 1850 1855 Ala Ala Ala Gly Cys Gly Gly Cys Gly Ala Thr Thr Ala Thr Thr Cys 1860 1865 1870 Cys Thr Thr Thr Thr Thr Thr Cys Ala Ala Thr Cys Ala Ala Ala Thr 1875 1880 1885 Ala Cys Gly Thr Thr Thr Ala Ala Ala Ala Cys Ala Trp Ser Ser Tyr 1890 1895 1900 Ala Gln Ser Gly Asp Tyr Ser Phe Phe Gln Ser Asn Thr Phe Lys Thr 1905 1910 1915 1920 Ala Cys Gly Ala Ala Ala Ala Ala Ala Ala Thr Thr Ala Cys Ala Thr 1925 1930 1935 Thr Ala Thr Ala Thr Cys Ala Thr Cys Ala Ala Gly Gly Ala Ala Ala 1940 1945 1950 Ala Cys Thr Gly Ala Thr Thr Thr Gly Gly Gly Gly Ala Ala Cys Ala 1955 1960 1965 Gly Ala Ala Cys Cys Cys Cys Ala Thr Thr Ala Gly Thr Lys Lys Ile 1970 1975 1980 Thr Leu Tyr His Gln Gly Lys Leu Ile Trp Gly Thr Glu Pro His *** 1985 1990 1995 2000 <110> Dong-A University Research Foundation for Industry-Academy Cooperation Jinsang Company <120> Gene coding for cellulase from Bacillus valezensis A-68 and production method of cellulase by transformed Escherichia coli A-68 thereof <160> 1 <170> KopatentIn 1.71 <210> 1 <211> 2000 <212> PRT <213> Bacillus velezensis A-68 <400> 1 Ala Thr Gly Ala Ala Ala Cys Gly Gly Thr Cys Ala Ala Thr Thr Thr 1 5 10 15 Cys Thr Ala Thr Thr Thr Thr Thr Ala Thr Thr Ala Cys Gly Thr Gly 20 25 30 Thr Thr Thr Ala Thr Thr Gly Ala Thr Thr Gly Cys Gly Gly Thr Ala 35 40 45 Thr Thr Gly Ala Cys Ala Ala Thr Gly Gly Gly Cys Met Lys Arg Ser 50 55 60 Ile Ser Ile Phe Ile Thr Cys Leu Leu Ile Ala Val Leu Thr Met Gly 65 70 75 80 Gly Gly Cys Thr Thr Gly Cys Thr Gly Cys Cys Thr Thr Cys Gly Cys 85 90 95 Cys Gly Gly Gly Ala Thr Cys Ala Gly Cys Ala Gly Cys Ala Gly Gly 100 105 110 Gly Ala Cys Ala Ala Ala Ala Ala Cys Gly Cys Cys Ala Gly Cys Ala 115 120 125 Gly Cys Cys Ala Ala Gly Ala Ala Thr Gly Gly Gly Gly Leu Leu Pro 130 135 140 Ser Pro Gly Ser Ala Ala Gly Thr Lys Thr Pro Ala Ala Lys Asn Gly 145 150 155 160 Cys Ala Gly Cys Thr Thr Ala Gly Cys Ala Thr Ala Ala Ala Ala Gly 165 170 175 Gly Ala Ala Cys Ala Cys Ala Gly Cys Thr Cys Gly Thr Ala Ala Ala 180 185 190 Cys Cys Gly Gly Gly Ala Cys Gly Gly Cys Ala Ala Ala Gly Cys Gly 195 200 205 Gly Thr Ala Cys Ala Ala Thr Thr Gly Ala Ala Ala Gln Leu Ser Ile 210 215 220 Lys Gly Thr Gln Leu Val Asn Arg Asp Gly Lys Ala Val Gln Leu Lys 225 230 235 240 Gly Gly Gly Ala Thr Cys Ala Gly Thr Thr Cys Ala Cys Ala Thr Gly 245 250 255 Gly Ala Thr Thr Gly Cys Ala Gly Thr Gly Gly Thr Ala Thr Gly Gly 260 265 270 Cys Gly Ala Thr Thr Thr Thr Gly Thr Cys Ala Ala Thr Ala Ala Ala 275 280 285 Gly Ala Cys Ala Gly Cys Thr Thr Ala Ala Ala Ala Gly Ile Ser Ser 290 295 300 His Gly Leu Gln Trp Tyr Gly Asp Phe Val Asn Lys Asp Ser Leu Lys 305 310 315 320 Thr Gly Gly Cys Thr Gly Ala Gly Ala Gly Ala Cys Gly Ala Thr Thr 325 330 335 Gly Gly Gly Gly Cys Ala Thr Ala Ala Cys Cys Gly Thr Thr Thr Thr 340 345 350 Cys Cys Gly Cys Gly Cys Gly Gly Cys Gly Ala Thr Gly Thr Ala Thr 355 360 365 Ala Cys Gly Gly Cys Ala Gly Ala Thr Gly Gly Cys Trp Leu Arg Asp 370 375 380 Asp Trp Gly Ile Thr Val Phe Arg Ala Ala Met Tyr Thr Ala Asp Gly 385 390 395 400 Gly Gly Thr Thr Ala Thr Ala Thr Thr Gly Ala Thr Ala Ala Thr Cys 405 410 415 Cys Gly Thr Cys Cys Gly Thr Gly Ala Ala Ala Ala Ala Thr Ala Ala 420 425 430 Ala Gly Thr Ala Ala Ala Ala Gly Ala Ala Gly Cys Gly Gly Thr Thr 435 440 445 Gly Ala Ala Gly Cys Gly Gly Cys Ala Ala Ala Ala Gly Tyr Ile Asp 450 455 460 Asn Pro Ser Val Lys Asn Lys Val Lys Glu Ala Val Glu Ala Ala Lys 465 470 475 480 Gly Ala Ala Cys Thr Cys Gly Gly Gly Ala Thr Ala Thr Ala Thr Gly 485 490 495 Thr Cys Ala Thr Cys Ala Thr Thr Gly Ala Cys Thr Gly Gly Cys Ala 500 505 510 Thr Ala Thr Cys Thr Thr Ala Ala Ala Thr Gly Ala Cys Gly Gly Cys 515 520 525 Ala Ala Cys Cys Cys Ala Ala Ala Cys Cys Ala Ala Glu Leu Gly Ile 530 535 540 Tyr Val Ile Ile Asp Trp His Ile Leu Asn Asp Gly Asn Pro Asn Gln 545 550 555 560 Cys Ala Thr Ala Ala Ala Gly Ala Gly Ala Ala Gly Gly Cys Ala Ala 565 570 575 Ala Ala Gly Ala Ala Thr Thr Thr Thr Thr Thr Ala Ala Gly Gly Ala 580 585 590 Ala Ala Thr Gly Thr Cys Ala Ala Gly Thr Cys Thr Thr Thr Ala Cys 595 600 605 Gly Gly Ala Ala Ala Cys Ala Cys Gly Cys Cys Ala His Lys Glu Lys 610 615 620 Ala Lys Glu Phe Phe Lys Glu Met Ser Ser Leu Tyr Gly Asn Thr Pro 625 630 635 640 Ala Ala Cys Gly Thr Cys Ala Thr Thr Thr Ala Thr Gly Ala Ala Ala 645 650 655 Thr Thr Gly Cys Ala Ala Ala Cys Gly Ala Ala Cys Cys Ala Ala Ala 660 665 670 Cys Gly Gly Thr Gly Ala Thr Gly Thr Gly Ala Ala Cys Thr Gly Gly 675 680 685 Ala Ala Gly Cys Gly Thr Gly Ala Thr Ala Thr Thr Asn Val Ile Tyr 690 695 700 Glu Ile Ala Asn Glu Pro Asn Gly Asp Val Asn Trp Lys Arg Asp Ile 705 710 715 720 Ala Ala Ala Cys Cys Gly Thr Ala Thr Gly Cys Gly Gly Ala Ala Gly 725 730 735 Ala Ala Gly Thr Gly Ala Thr Thr Thr Cys Cys Gly Thr Thr Ala Thr 740 745 750 Cys Cys Gly Cys Ala Ala Ala Ala Ala Thr Gly Ala Thr Cys Cys Ala 755 760 765 Gly Ala Cys Ala Ala Cys Ala Thr Cys Ala Thr Cys Lys Pro Tyr Ala 770 775 780 Glu Glu Val Ile Ser Val Ile Arg Lys Asn Asp Pro Asp Asn Ile Ile 785 790 795 800 Ala Thr Thr Gly Thr Cys Gly Gly Ala Ala Cys Cys Gly Gly Thr Ala 805 810 815 Cys Ala Thr Gly Gly Ala Gly Cys Cys Ala Ala Gly Ala Thr Gly Thr 820 825 830 Gly Ala Ala Thr Gly Ala Thr Gly Cys Ala Gly Cys Cys Gly Ala Thr 835 840 845 Gly Ala Thr Cys Ala Gly Cys Thr Ala Ala Ala Ala Ile Val Gly Thr 850 855 860 Gly Thr Trp Ser Gln Asp Val Asn Asp Ala Ala Asp Asp Gln Leu Lys 865 870 875 880 Gly Ala Thr Gly Cys Ala Ala Ala Cys Gly Thr Cys Ala Thr Gly Thr 885 890 895 Ala Cys Gly Cys Gly Cys Thr Thr Cys Ala Thr Thr Thr Thr Thr Ala 900 905 910 Thr Gly Cys Cys Gly Gly Cys Ala Cys Ala Cys Ala Cys Gly Gly Cys 915 920 925 Cys Ala Ala Thr Cys Thr Thr Thr Ala Cys Gly Gly Asp Ala Asn Val 930 935 940 Met Tyr Ala Leu His Phe Tyr Ala Gly Thr His Gly Gln Ser Leu Arg 945 950 955 960 Gly Ala Thr Ala Ala Ala Gly Cys Ala Ala Ala Cys Thr Ala Thr Gly 965 970 975 Cys Ala Cys Thr Cys Ala Gly Thr Ala Ala Ala Gly Gly Ala Gly Cys 980 985 990 Gly Cys Cys Thr Ala Thr Thr Thr Thr Cys Gly Thr Gly Ala Cys Gly 995 1000 1005 Gly Ala Ala Thr Gly Gly Gly Gly Ala Ala Cys Ala Asp Lys Ala Asn 1010 1015 1020 Tyr Ala Leu Ser Lys Gly Ala Pro Ile Phe Val Thr Glu Trp Gly Thr 1025 1030 1035 1040 Ala Gly Cys Gly Ala Cys Gly Cys Gly Thr Cys Thr Gly Gly Ala Ala 1045 1050 1055 Ala Thr Gly Gly Cys Gly Gly Thr Gly Thr Ala Thr Thr Cys Cys Thr 1060 1065 1070 Thr Gly Ala Cys Cys Ala Gly Thr Cys Gly Cys Gly Gly Gly Ala Ala 1075 1080 1085 Thr Gly Gly Cys Thr Gly Ala Ala Thr Thr Ala Thr Ser Asp Ala Ser 1090 1095 1100 Gly Asn Gly Gly Val Phe Leu Asp Gln Ser Arg Glu Trp Leu Asn Tyr 1105 1110 1115 1120 Cys Thr Cys Gly Ala Cys Ala Gly Cys Ala Ala Gly Ala Ala Cys Ala 1125 1130 1135 Thr Cys Ala Gly Cys Thr Gly Gly Gly Ala Gly Ala Ala Cys Thr Gly 1140 1145 1150 Gly Ala Ala Thr Cys Thr Thr Thr Cys Thr Gly Ala Thr Ala Ala Gly 1155 1160 1165 Cys Ala Gly Gly Ala Ala Thr Cys Ala Thr Cys Cys Leu Asp Ser Lys 1170 1175 1180 Asn Ile Ser Trp Glu Asn Trp Asn Leu Ser Asp Lys Gln Glu Ser Ser 1185 1190 1195 1200 Thr Cys Ala Gly Cys Gly Thr Thr Ala Ala Ala Gly Cys Cys Gly Gly 1205 1210 1215 Gly Ala Gly Cys Ala Thr Cys Thr Ala Ala Ala Ala Cys Ala Gly Gly 1220 1225 1230 Cys Gly Gly Cys Thr Gly Gly Cys Cys Gly Cys Thr Thr Ala Cys Ala 1235 1240 1245 Gly Ala Thr Thr Thr Ala Ala Cys Thr Gly Cys Thr Ser Ala Leu Lys 1250 1255 1260 Pro Gly Ala Ser Lys Thr Gly Gly Trp Pro Leu Thr Asp Leu Thr Ala 1265 1270 1275 1280 Thr Cys Ala Gly Gly Ala Ala Cys Ala Thr Thr Cys Gly Thr Ala Ala 1285 1290 1295 Gly Ala Gly Ala Ala Ala Ala Cys Ala Thr Thr Cys Thr Cys Gly Gly 1300 1305 1310 Cys Ala Ala Cys Ala Ala Ala Gly Ala Thr Thr Cys Ala Ala Cys Gly 1315 1320 1325 Ala Ala Ala Gly Ala Ala Cys Gly Cys Cys Cys Thr Ser Gly Thr Phe 1330 1335 1340 Val Arg Glu Asn Ile Leu Gly Asn Lys Asp Ser Thr Lys Glu Arg Pro 1345 1350 1355 1360 Gly Ala Ala Ala Cys Gly Cys Cys Ala Gly Cys Ala Cys Ala Ala Gly 1365 1370 1375 Ala Thr Ala Ala Cys Cys Cys Cys Gly Cys Ala Cys Ala Gly Gly Ala 1380 1385 1390 Ala Ala Ala Cys Gly Gly Cys Ala Thr Thr Thr Cys Thr Gly Thr Ala 1395 1400 1405 Cys Ala Ala Thr Ala Cys Ala Ala Ala Gly Cys Ala Glu Thr Pro Ala 1410 1415 1420 Gln Asp Asn Pro Ala Gln Glu Asn Gly Ile Ser Val Gln Tyr Lys Ala 1425 1430 1435 1440 Gly Gly Gly Gly Ala Thr Gly Gly Gly Gly Gly Thr Gly Thr Thr Ala 1445 1450 1455 Ala Cys Ala Gly Cys Ala Ala Cys Cys Ala Ala Ala Thr Cys Cys Gly 1460 1465 1470 Cys Cys Cys Gly Cys Ala Gly Cys Thr Thr Cys Ala Cys Ala Thr Ala 1475 1480 1485 Ala Ala Ala Ala Ala Thr Ala Ala Cys Gly Gly Cys Gly Asp Gly Gly 1490 1495 1500 Val Asn Ser Asn Gln Ile Arg Pro Gln Leu His Ile Lys Asn Asn Gly 1505 1510 1515 1520 Ala Ala Thr Gly Cys Gly Ala Cys Gly Gly Thr Thr Gly Ala Thr Thr 1525 1530 1535 Thr Ala Ala Ala Ala Gly Ala Thr Gly Thr Cys Ala Cys Thr Gly Cys 1540 1545 1550 Cys Cys Gly Thr Thr Ala Cys Thr Gly Gly Thr Ala Thr Ala Ala Cys 1555 1560 1565 Gly Cys Gly Ala Ala Ala Ala Ala Cys Ala Ala Gly Asn Ala Thr Val 1570 1575 1580 Asp Leu Lys Asp Val Thr Ala Arg Tyr Trp Tyr Asn Ala Lys Asn Lys 1585 1590 1595 1600 Gly Gly Cys Cys Ala Ala Ala Ala Cys Thr Thr Thr Gly Ala Cys Thr 1605 1610 1615 Gly Thr Gly Ala Cys Thr Ala Cys Gly Cys Gly Cys Ala Gly Ala Thr 1620 1625 1630 Thr Gly Gly Ala Thr Gly Cys Gly Gly Cys Ala Ala Thr Cys Thr Gly 1635 1640 1645 Ala Cys Cys Cys Ala Cys Ala Ala Ala Thr Thr Thr Gly Gln Asn Phe 1650 1655 1660 Asp Cys Asp Tyr Ala Gln Ile Gly Cys Gly Asn Leu Thr His Lys Phe 1665 1670 1675 1680 Gly Thr Gly Ala Cys Gly Cys Thr Gly Cys Ala Thr Ala Ala Ala Cys 1685 1690 1695 Cys Cys Ala Ala Gly Cys Ala Ala Gly Gly Thr Gly Cys Ala Gly Ala 1700 1705 1710 Thr Ala Cys Cys Thr Ala Thr Cys Thr Gly Gly Ala Ala Cys Thr Gly 1715 1720 1725 Gly Gly Thr Thr Thr Thr Ala Ala Ala Ala Cys Ala Val Thr Leu His 1730 1735 1740 Lys Pro Lys Gln Gly Ala Asp Thr Tyr Leu Glu Leu Gly Phe Lys Thr 1745 1750 1755 1760 Gly Gly Ala Ala Cys Gly Cys Thr Gly Thr Cys Ala Cys Cys Gly Gly 1765 1770 1775 Gly Ala Gly Cys Ala Ala Gly Cys Ala Cys Ala Gly Gly Gly Ala Ala 1780 1785 1790 Thr Ala Thr Thr Cys Ala Gly Cys Thr Thr Cys Gly Thr Cys Thr Thr 1795 1800 1805 Cys Ala Cys Ala Ala Thr Gly Ala Thr Gly Ala Cys Gly Thr Leu Ser 1810 1815 1820 Pro Gly Ala Ser Thr Gly Asn Ile Gln Leu Arg Leu His Asn Asp Asp 1825 1830 1835 1840 Thr Gly Gly Ala Gly Thr Ala Gly Thr Thr Ala Thr Gly Cys Ala Cys 1845 1850 1855 Ala Ala Ala Gly Cys Gly Gly Cys Gly Ala Thr Thr Ala Thr Thr Cys 1860 1865 1870 Cys Thr Thr Thr Thr Thr Thr Cys Ala Ala Thr Cys Ala Ala Ala Thr 1875 1880 1885 Ala Cys Gly Thr Thr Thr Ala Ala Ala Ala Cys Ala Trp Ser Ser Tyr 1890 1895 1900 Ala Gln Ser Gly Asp Tyr Ser Phe Phe Gln Ser Asn Thr Phe Lys Thr 1905 1910 1915 1920 Ala Cys Gly Ala Ala Ala Ala Ala Ala Ala Thr Thr Ala Cys Ala Thr 1925 1930 1935 Thr Ala Thr Ala Thr Cys Ala Thr Cys Ala Ala Gly Gly Ala Ala Ala 1940 1945 1950 Ala Cys Thr Gly Ala Thr Thr Thr Gly Gly Gly Gly Ala Ala Cys Ala 1955 1960 1965 Gly Ala Ala Cys Cys Cys Cys Ala Thr Thr Ala Gly Thr Lys Lys Ile 1970 1975 1980 Thr Leu Tyr His Gln Gly Lys Leu Ile Trp Gly Thr Glu Pro His *** 1985 1990 1995 2000

Claims (4)

서열목록 1의 유전자 서열에 의해 코딩되는 바실러스 벨렌체시스 A-68 (Bacillus velezensis A-68, 균주 기탁번호 KACC 91178P) 균주 유래 섬유소 분해효소 단백질.
Fibrinase protein derived from strain Bacillus velezensis A-68, strain Accession No. KACC 91178P, encoded by the gene sequence of SEQ ID NO: 1.
서열목록 1의 유전자를 p-TGEM T-이지 벡터에 연결한 후 결합시켜 제조되어 에셰리키아 콜리 (E. coli)의 섬유소 분해효소 발현용 재조합벡터 pTA-68.
Recombinant vector pTA-68 for fibrinase expression of Escherichia coli ( E. coli ) prepared by linking the gene of SEQ ID NO: 1 to the p-TGEM T-Easy vector.
재조합벡터 pTA-68를 도입시켜 형질전환된 재조합 균주 에셰리키아 콜리 A-68 (Escherichia coli A-68, 균주 기탁번호 KACC 91335P).
Recombinant strain Escherichia coli A-68 transformed by introducing recombinant vector pTA-68 (Esherichia coli A-68, strain Accession No. KACC 91335P).
재조합 균주 에셰리키아 콜리 A-68를 50 g/L의 왕겨와 2.5 g/L의 효모추출물로 이루어진 배지에서 초기 pH 7.3 및 35℃의 온도의 조건에서 배양하는 것을 특징으로 하는 섬유소 분해효소의 생산 방법.
Production of fibrinase, characterized in that the recombinant strain Escherichia coli A-68 is incubated in a medium consisting of 50 g / L rice hull and 2.5 g / L yeast extract at the conditions of the initial pH of 7.3 and 35 ℃ Way.
KR1020100039068A 2010-04-27 2010-04-27 Gene coding for cellulase from bacillus velezensis a-68 and production method of cellulase by transformed escherichia coli a-68 thereof KR20110119386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100039068A KR20110119386A (en) 2010-04-27 2010-04-27 Gene coding for cellulase from bacillus velezensis a-68 and production method of cellulase by transformed escherichia coli a-68 thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100039068A KR20110119386A (en) 2010-04-27 2010-04-27 Gene coding for cellulase from bacillus velezensis a-68 and production method of cellulase by transformed escherichia coli a-68 thereof

Publications (1)

Publication Number Publication Date
KR20110119386A true KR20110119386A (en) 2011-11-02

Family

ID=45390987

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100039068A KR20110119386A (en) 2010-04-27 2010-04-27 Gene coding for cellulase from bacillus velezensis a-68 and production method of cellulase by transformed escherichia coli a-68 thereof

Country Status (1)

Country Link
KR (1) KR20110119386A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437567B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG51 gene from rumen microorganism of black goat and uses thereof
KR101437589B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG37 gene from rumen microorganism of black goat and uses thereof
KR101437588B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG43 gene from rumen microorganism of black goat and uses thereof
KR101437585B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG33 gene from rumen microorganism of black goat and uses thereof
KR101437562B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG49 gene from rumen microorganism of black goat and uses thereof
KR101437529B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG48 gene from rumen microorganism of black goat and uses thereof
KR101437571B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase Cel-KG11 gene from rumen microorganism of black goat and uses thereof
KR101437573B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG26 gene from rumen microorganism of black goat and uses thereof
KR101437577B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG27 gene from rumen microorganism of black goat and uses thereof
KR101437545B1 (en) * 2012-11-20 2014-09-11 대한민국 cellulase cel-KG36 gene from rumen microorganism of black goat and uses thereof
KR101437544B1 (en) * 2012-11-20 2014-09-11 대한민국 cellulase cel-KG25 gene from rumen microorganism of black goat and uses thereof
KR101437548B1 (en) * 2012-11-20 2014-09-11 대한민국 cellulase cel-KG38 gene from rumen microorganism of black goat and uses thereof
KR101437551B1 (en) * 2012-11-20 2014-09-11 대한민국 cellulase cel-KG45 gene from rumen microorganism of black goat and uses thereof
KR101437542B1 (en) * 2012-11-20 2014-09-11 대한민국 cellulase cel-KG21 gene from rumen microorganism of black goat and uses thereof
KR101437538B1 (en) * 2012-11-20 2014-09-11 대한민국 cellulase cel-KG55 gene from rumen microorganism of black goat and uses thereof
CN107523525A (en) * 2017-10-16 2017-12-29 山东省林业科学研究院 One plant of Bei Laisi bacillus and its application in Walnut Canker, Dothiorella Gregaria Sacc is prevented and treated
CN108004175A (en) * 2017-12-28 2018-05-08 云南中烟工业有限责任公司 A kind of Bei Laisi bacillus and its preparation method and application
CN109439595A (en) * 2018-12-12 2019-03-08 沈阳农业大学 A kind of Bei Laisi bacillus preventing and treating false smut
CN109576179A (en) * 2018-12-12 2019-04-05 沈阳农业大学 A kind of Bei Laisi Bacillus strain and its application in false smut
CN109762760A (en) * 2019-01-07 2019-05-17 国家海洋局第三海洋研究所 A kind of preparation method and application of Bei Laisi bacillus DH82 and its antibacterial protein
WO2021254117A1 (en) * 2020-06-16 2021-12-23 金华康扬环境科技有限公司 Bacillus velezensis ky01 and application thereof in degradation of kitchen garbage
CN116286557A (en) * 2023-05-09 2023-06-23 佛山科学技术学院 Salt-tolerant bacillus beijerinckii for producing cellulase and culture method thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437551B1 (en) * 2012-11-20 2014-09-11 대한민국 cellulase cel-KG45 gene from rumen microorganism of black goat and uses thereof
KR101437588B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG43 gene from rumen microorganism of black goat and uses thereof
KR101437542B1 (en) * 2012-11-20 2014-09-11 대한민국 cellulase cel-KG21 gene from rumen microorganism of black goat and uses thereof
KR101437538B1 (en) * 2012-11-20 2014-09-11 대한민국 cellulase cel-KG55 gene from rumen microorganism of black goat and uses thereof
KR101437562B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG49 gene from rumen microorganism of black goat and uses thereof
KR101437529B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG48 gene from rumen microorganism of black goat and uses thereof
KR101437571B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase Cel-KG11 gene from rumen microorganism of black goat and uses thereof
KR101437573B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG26 gene from rumen microorganism of black goat and uses thereof
KR101437577B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG27 gene from rumen microorganism of black goat and uses thereof
KR101437545B1 (en) * 2012-11-20 2014-09-11 대한민국 cellulase cel-KG36 gene from rumen microorganism of black goat and uses thereof
KR101437544B1 (en) * 2012-11-20 2014-09-11 대한민국 cellulase cel-KG25 gene from rumen microorganism of black goat and uses thereof
KR101437548B1 (en) * 2012-11-20 2014-09-11 대한민국 cellulase cel-KG38 gene from rumen microorganism of black goat and uses thereof
KR101437567B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG51 gene from rumen microorganism of black goat and uses thereof
KR101437589B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG37 gene from rumen microorganism of black goat and uses thereof
KR101437585B1 (en) * 2012-11-20 2014-09-05 대한민국 cellulase cel-KG33 gene from rumen microorganism of black goat and uses thereof
CN107523525A (en) * 2017-10-16 2017-12-29 山东省林业科学研究院 One plant of Bei Laisi bacillus and its application in Walnut Canker, Dothiorella Gregaria Sacc is prevented and treated
CN108004175A (en) * 2017-12-28 2018-05-08 云南中烟工业有限责任公司 A kind of Bei Laisi bacillus and its preparation method and application
CN108004175B (en) * 2017-12-28 2021-05-25 云南中烟工业有限责任公司 Bacillus belgii and preparation method and application thereof
CN109439595A (en) * 2018-12-12 2019-03-08 沈阳农业大学 A kind of Bei Laisi bacillus preventing and treating false smut
CN109576179A (en) * 2018-12-12 2019-04-05 沈阳农业大学 A kind of Bei Laisi Bacillus strain and its application in false smut
CN109439595B (en) * 2018-12-12 2021-06-22 沈阳农业大学 Bacillus belgii for preventing and treating ustilaginoidea virens
CN109576179B (en) * 2018-12-12 2021-07-16 沈阳农业大学 Bacillus belgii strain and application thereof in ustilaginoidea virens
CN109762760A (en) * 2019-01-07 2019-05-17 国家海洋局第三海洋研究所 A kind of preparation method and application of Bei Laisi bacillus DH82 and its antibacterial protein
WO2021254117A1 (en) * 2020-06-16 2021-12-23 金华康扬环境科技有限公司 Bacillus velezensis ky01 and application thereof in degradation of kitchen garbage
CN116286557A (en) * 2023-05-09 2023-06-23 佛山科学技术学院 Salt-tolerant bacillus beijerinckii for producing cellulase and culture method thereof
CN116286557B (en) * 2023-05-09 2024-01-23 佛山科学技术学院 Salt-tolerant bacillus beijerinckii for producing cellulase and culture method thereof

Similar Documents

Publication Publication Date Title
KR20110119386A (en) Gene coding for cellulase from bacillus velezensis a-68 and production method of cellulase by transformed escherichia coli a-68 thereof
Sanjivkumar et al. Biosynthesis, purification and characterization of β-1, 4-xylanase from a novel mangrove associated actinobacterium Streptomyces olivaceus (MSU3) and its applications
Azadian et al. Purification and biochemical properties of a thermostable, haloalkaline cellulase from Bacillus licheniformis AMF-07 and its application for hydrolysis of different cellulosic substrates to bioethanol production
Shaikh et al. Production, purification and kinetics of chitinase of Stenotrophomonas maltophilia isolated from rhizospheric soil
CN109385413B (en) Glucoamylase TlGA1931 and gene and application thereof
JP2015500041A (en) Enzyme cocktail prepared from mixed culture
Annamalai et al. Purification and characterization of thermostable alkaline cellulase from marine bacterium Bacillus licheniformis AU01 by utilizing cellulosic wastes
US20080248524A1 (en) AMP Deaminase Originating Streptomyces And Utilization Thereof
CN104726435A (en) Beta-glucosidase mutant, recombinant expression plasmid thereof and transformed engineering strain
CN114480205A (en) Bacillus amyloliquefaciens and application thereof in brewing of solid-state fermented vinegar
CN110373403A (en) High temperature resistant neutrality Pullulanase and its application
KR20110092511A (en) Novel xylanase produced from cellulosimicrobium funkei hy-13 strain
KR100738007B1 (en) -68 Novel Bacillus Velezensis A-68 and Use of the Same
Manivasagan et al. Isolation, identification and characterization of multiple enzyme producing actinobacteria from sediment samples of Kodiyakarai coast, the Bay of Bengal
CN1768136B (en) Agar-digesting enzyme and utilization thereof
Orikasa et al. Molecular characterization of β-fructofuranosidases from Rhizopus delemar and Amylomyces rouxii
KR101746398B1 (en) Streptomyces atrovirens WJ2, a new microbe having great activity degrading xylan
KR20090085379A (en) Cellulase protein derived from bacillus amyloliquefaciens dl-3 and transformed escherichia coli dl-3 strain thereof
KR100652186B1 (en) -53 Novel Bacillus Subtilis Subsp. Subtilis A-53 and Method for Preparing Cellulase Using the Same
KR100526662B1 (en) Gene coding xylanase and recombinant xylanase through transformant thereof
KR101036331B1 (en) Cellulase protein derived from Bacillus subtilis subsp. subtilis A-53 and transformed Escherichia coli A-53 strain thereof
CN114807095B (en) Chitinase mutant and application thereof
KR101699018B1 (en) Novel endo-beta-1,4-glucanase derived from Cellulosimicrobium sp. and uses thereof
KR101236558B1 (en) A novel isolated Phoma sp. from rotten tangerine peel and cellulolytic enzymes and β-glucosidase produced by thereof
CN113774045B (en) Glucoamylase mutant M3 with improved secretion expression level as well as gene and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E601 Decision to refuse application
E801 Decision on dismissal of amendment
J201 Request for trial against refusal decision
J121 Written withdrawal of request for trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20130208

Effective date: 20140723