KR20070035582A - 입자 오염을 감소시키는 기구 및 방법과 리소그래피 툴 - Google Patents

입자 오염을 감소시키는 기구 및 방법과 리소그래피 툴 Download PDF

Info

Publication number
KR20070035582A
KR20070035582A KR1020077001547A KR20077001547A KR20070035582A KR 20070035582 A KR20070035582 A KR 20070035582A KR 1020077001547 A KR1020077001547 A KR 1020077001547A KR 20077001547 A KR20077001547 A KR 20077001547A KR 20070035582 A KR20070035582 A KR 20070035582A
Authority
KR
South Korea
Prior art keywords
mesh
gas
opening
temperature
space
Prior art date
Application number
KR1020077001547A
Other languages
English (en)
Inventor
마이클 소가드
Original Assignee
가부시키가이샤 니콘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 니콘 filed Critical 가부시키가이샤 니콘
Priority to KR1020077001547A priority Critical patent/KR20070035582A/ko
Publication of KR20070035582A publication Critical patent/KR20070035582A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95623Inspecting patterns on the surface of objects using a spatial filtering method
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/42Projection printing apparatus, e.g. enlarger, copying camera for automatic sequential copying of the same original
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like

Abstract

본 발명은 망선(916)과 망선 차폐부(920) 사이의 온도 구배를 형성하여 망선상의 입자 오염을 감소시키기 위해서 비교적 저온의 가스 흐름을 이용하는 방법 및 장치에 관한 것이다. 본 발명의 일 측면에 따르면, 대상물(928)의 표면상의 입자 오염물질을 감소시키는 기구는, 플레이트(920)와, 가스 공급원(954)을 포함한다. 플레이트는, 제 2 온도를 갖는 플레이트와 제 1 온도를 갖는 대상물이 공간에 의해 실질적으로 분리되도록 대상물에 근접하에 위치된다. 가스 공급원은 공간에 가스 흐름을 공급한다. 가스는 제 1 온도 및 제 2 온도의 양자보다 낮은 제 3 온도를 갖는다. 가스는 플레이트 및 대상물과 협력하여 온도 구배를 발생시키며, 그에 따라서 공간 내의 입자를 대상물로부터 멀리 운반하는 열 영동력을 발생시킨다.

Description

입자 오염을 감소시키는 기구 및 방법과 리소그래피 툴{EXTREME ULTRAVIOLET RETICLE PROTECTION}
본 발명은 반도체 처리에 사용되는 설비에 관한 것이다. 보다 상세하게는, 본 발명은 극 자외선 리소그래피 시스템(extreme ultraviolet lithography system)에 사용되는 망선(reticle)에서의 입자의 오염 감소시키도록 배열되는 기구에 관한 것이다.
리소그래피 시스템에서, 망선의 패턴이 웨이퍼 표면상으로 이탈하여 투영되거나, 또는 극 자외선(EUV) 리소그래피의 경우는 웨이퍼 표면상에서 이탈하여 반사되는 정밀도가 중요하다. 패턴이 예컨대 망선의 표면상의 입자 오염에 의해 왜곡되면, 망선을 이용하는 리소그래피 공정은 손상될 수도 있다. 따라서, 망선의 표면상의 입자 오염의 감소가 중요하다.
전형적으로, 포토리소그래피 시스템은 입자로부터 망선을 보호하기 위해 박막(pellicle)을 이용한다. 당업자가 이해할 수 있는 바와 같이, 박막은 입자가 패턴 면에 부착되는 것을 방지하기 위해 망선의 패턴 면을 보호하는 프레임상의 얇은 막이다. 그러나, 일반적으로 박막은 EUV 방사의 존재시에 보호하기에는 적합하지 않기 때문에, 박막은 EUV 망선을 보호하는데 사용되지 않는다. 또한, 입자 오염물질로부터 망선을 보호하고 그에 따라 입자를 고온의 망선으로부터 저온 주변, 예컨대 저온 표면으로 이동시키는 것에 의해서 망선을 입자 오염물질로부터 보호하기 위해서 열영동(thermophoresis)의 원리가 적용될 수도 있다.
일반적으로 EUV 시스템에 사용될 열영동을 망선 척에 장착된 망선을 보호할 목적으로, 열 영동을 고 진공 환경에 사용할 수는 없기 때문에, 약 40 밀리토트(mTorr) 이상의 압력에서 가스를 실질적으로 망선 주위를 흐르도록 도입할 수도 있다. 약 40mTorr 이상의 압력에서 가스를 망선 주위에 흐르게 하면, 입자가 망선으로부터 저온 표면쪽으로 멀리 효율적으로 추진될 수도 있다. 당업자가 용이하게 이해할 수 있는 바와 같이, 제로(0)에 가까운 압력에서는, 열영동력(thermophoretic force)이 비교적 적다. 그러나, 약 50 mTorr의 압력에서는, 열영동력이 입자를 고온 영역으로부터 저온 영역으로 운반하기에 충분한 정도로 상당히 큰 것이 일반적이다.
도 1은 EUV 리소그래피 또는 노광 시스템의 일부를 도시하는 개략적 측면도이다. EUV 리소그래피 시스템(100)은 제1 영역(108) 및 제2 영역(110)을 포함하는 챔버(104)를 포함한다. 제1 영역(108)은 망선(122)을 유지하는 망선 척(118)을 지지하는 망선 스테이지(114)를 수용하도록 배열되어 있다. 제2 영역(110)은 투사 광학(도시 안됨) 및 웨이퍼 스테이지 설비(도시 안됨)를 수용하도록 배열되어 있다. 제1 및 제2 영역(108, 110)은 개구(130)가 형성된 차동 펌핑 장벽(pumping barrier)(126)에 의해 실질적으로 분리되어 있다.
약 50mTorr 이상의 압력의 가스가 챔버(104) 내의 가스 공급 개구(132)를 통해 제1 영역(108)에 공급된다. 가스 중의 EUV 방사 흡수 손실을 최소화하기 위해서, 제2 영역(110)은 제1 영역(108)에 유지되는 압력보다 낮은 압력, 예컨대 약 1mTorr 미만으로 유지된다. 따라서, 제1 영역(108) 및 제2 영역(110)의 독립적인 차동 펌핑이 펌프(134, 136)에 의해 각각 유지되어, 고압의 가스가 개구(130)를 통해 제1 영역(108)에 공급되는 동안 제2 영역(110) 내의 압력은 약 1mTorr 미만으로 유지될 수도 있다.
열영동의 원리를 이용하는 가스에 의해서 망선(122)과 장벽(126) 사이에 위치한 입자(도시 안됨)가 망선(122)으로부터 멀리 운반되도록 하기 위해서, 망선(122)과 망선(122)의 주변 사이의 온도차가 유지되어야 한다. 통상적으로, 열영동이 입자를 망선(122)으로부터 멀리 운반하도록 하기 위해서, 망선(122)은 장벽(126)보다 고온으로 유지된다. 망선(122)이 장벽(126)보다 고온으로 유지되면, 도 2를 참조하여 후술하는 바와 같이, 망선(122)과 장벽(126) 사이에 존재하는 입자(도시 안됨)가 장벽(126)쪽으로 끌어당겨질 수도 있다. 어떤 경우에는, 장벽(126)쪽으로 끌어당겨진 입자(도시 안됨)가 개구(130)를 통해 제2 영역(110) 내로 통과할 수도 있다. 가스가 제1 영역(108)으로부터 제2 영역(110)으로 흐르면, 입자가 망선(122)으로부터 멀리 운반되어, 임자가 망선(122)과 접촉하는 것을 억제하는데 도움이 된다.
도 2를 참조하여, 망선의 표면으로부터 입자를 실질적으로 멀리 배출하기 위 한 열영동의 이용을 설명할 것이다. 제1 온도에 유지되는 망선(222)은 저온 표면(226) 가까이에 위치될 수도 있다. 저온 표면(226)은 EUV 리소그래피에 사용되는 챔버 내의 차동 펌핑 장벽일 수도 있거나, 망선(222)을 보호하도록 배열되는 차폐부일 수도 있다. 망선(222)과 저온 표면(226) 사이에, 상대적으로 고온의 망선(222) 부근으로부터 상대적으로 차가운 저온 표면(226) 부근에 이르는 가스 온도의 변화가 일반적으로 형성된다. 이에 의해, 열영동의 존재를 위한 필수 조건인 가스의 온도 구배가 형성된다. 입자(228)는 대체적으로 망선(222)으로부터 저온 표면(226)쪽으로 튄다. 즉, 열영동력은 입자를 고온 망선(222)으로부터 저온 표면(226)쪽으로 멀리 추진하도록 한다. 어떤 입자(228)는 저온 표면(226)에 실질적으로 부착될 수도 있다.
망선보다 저온인 망선에 근접하여 표면을 위치시키면 망선의 입자 오염이 감소되지만, EUV장치 내에 상이한 온도의 표면을 유지하는 것은 종종 문제가 된다. 예컨대, 표면을 상이한 온도로 유지하면 중요한 시스템의 온도 제어가 복잡하게될 수도 있다. 또한, 망선 및 인접 부품이 상이한 온도에 유지되면, 통상적으로 열 팽창 및 왜곡과 관련된 문제점이 발생한다. EUV 장치 내에서 망선 또는 차폐부에 관하여 열 팽창 또는 왜곡이 발생하면, 전체의 리소그래피 공정의 완전성 또는 보다 일반적으로는 반도체 제조 공정이 손상될 수도 있다. 또한, 가스가 챔버(104)의 제1 영역(108)으로부터 제1 영역(110)으로 흐르면, 제1 영역(108)에서 생긴 입자가 망선(122)에 근접하게 휩쓸려가서, 열영동에 의해 제공되는 보호에도 불구하고 오염의 위험을 증가시킨다.
따라서, 전체의 EUV 리소그래피 공정에 실질적으로 악영향을 미치는 일 없이 EUV 망선을 입자의 오염으로부터 유효하고 효율적으로 보호하는 것이 가능한 시스템이 요망된다. 즉, 상당한 열 팽창 및 왜곡의 문제점의 발생 위험이 없이 EUV 망선과 같은 망선을 입자의 오염으로부터 보호할 수 있는 시스템이 필요하다.
발명의 요약
본 발명은 망선과 망선 차폐부간의 온도 구배를 형성하여 망선상의 입자 오염이 감소될 수 있도록 하기 위해서 상대적으로 저온이 가스의 유동을 이용하는 것에 관한 것이다. 본 발명의 일 측면에 따르면, 대상물의 표면상의 입자 오염을 감소시키는 장치는, 대상물에 근접한 표면을 갖는 부재, 예컨대 플레이트 및 가스 공급원을 포함한다. 플레이트는, 제2 온도인 플레이트와 제1 온도인 대상물이 실질적으로 공간에 의해 분리되도록 대상물에 근접하게 배열된다. 가스 공급원은 공간에 가스 흐름을 공급한다. 가스는, 제1 온도 및 제2 온도보다 낮은 제3 온도이다. 가스, 플레이트 및 대상물 사이의 열 유동은 가스에 온도 구배를 형성하고, 그에 따라 공간내의 입자를 멀리 운반하기에 적합한 열영동력을 형성한다.
일 실시예에서, 플레이트는 가스 흐름을 공간 내로 통과시키는 것을 가능하게 하는 적어도 하나의 제1 개구를 포함한다. 그러한 실시예에서, 플레이트는 제 2 개구를 포함할 수도 있다. 제2 개구는 가스 흐름을 통과시켜 공간에서 배출하여 공간 내의 입자를 대상물로부터 그리고 플레이트로부터 멀리 운반하는 것을 가능하게 한다.
망선 및 부근의 표면, 예컨대 망선 차폐부를 실질적으로 동일한 온도로 유지시키는 동시에 열영동 효과가 입자를 망선으로부터 멀리 운반하도록 하면, 비교적 상당한 열 왜곡 결과 및 성능의 문제점을 발생시키는 일 없이 망선의 오염이 감소된다. 망선과 그의 인접 표면 사이의 공간에 저온 또는 냉각 가스를 공급하면서 망선과 그 인접 표면을 실질적으로 동일한 온도로 유지하는 것에 의해서, 망선과 인접 표면 사이에 온도 구배가 형성될 수도 있다. 온도 구배가 존재하면, 열영동력이 망선과 인접 표면의 양자로부터 입자를 멀리 운반하는 것이 가능하다. 가스 공급원은 국부적이며, 가스는 국부적으로 여과될 수도 있으므로, 가스가 망선 부근으로 추가의 입자를 휩쓸 가능성은 매우 적다.
본 발명의 다른 측면에 따르면, 대상물의 표면상의 입자 오염을 감소시키는 방법은, 대상물의 표면과 차폐부 사이에 공간이 한정되도록 위치되는 대상물의 표면에 근접하여 차폐부를 제공하는 단계를 포함한다. 차폐부는 제1 개구를 가지며, 대상물의 표면은 제1 온도인 반면, 차폐부는 제2 온도이다. 또한, 이 방법은, 대상물의 표면과 차폐부 사이에 한정된 공간에 가스 흐름을 공급하는 단계를 포함하며, 상기 가스는 제1 온도 및 제2 온도의 양자보다 낮은 제3 온도이다. 가스 흐름은 제1 개구를 통해서 공급된다.
일 실시예에서, 공간 내의 가스 흐름은, 가스 흐름이 공간 내의 임의의 입자를 대상물로부터 멀리 운반하는 것을 가능하게 하는 공간내 온도 구배를 형성한다. 다른 실시예에서, 공간에 가스 흐름을 공급하는 단계는, 가스를 제3 온도로 냉각하는 단계와 제1 개구를 통해서 흐르는 가스의 양을 제어하는 단계를 포함한다.
본 발명의 또 다른 실시예에 따르면, 대상물의 표면상의 입자 오염을 감소시키도록 배열되는 장치는, 챔버, 제1 스캐닝 장치 및 가스 공급원을 포함한다. 챔버는 제1 영역 및 제2 영역을 갖는데, 제1 영역은 적어도 약 50mTorr의 압력을 갖는 반면, 제2 영역은 제1 영역의 압력보다 낮은 압력을 갖는다. 제1 스캐닝 장치가 대상물을 주사하고 제1 영역에 위치된다. 제1 스캐닝 장치는, 대상물의 제1 표면에 근접하게 배열되는 플레이트를 포함하되, 플레이트의 제1 표면과 대상물의 제1 표면은 제1 영역 내의 공간에 의해 실질적으로 분리되도록 되어 있다. 대상물의 제1 표면은 제1 온도이고, 플레이트의 제1 표면은 제2 온도이다. 가스 공급원이 공간에 가스 흐름을 공급한다. 가스는 제1 온도 및 제2 온도보다 낮은 제3 온도이고, 그리고 플레이트 및 대상물과 협력하여 열영동력을 형성함으로써 공간 내의 임의의 입자를 대상물로부터 멀리 운반한다.
본 발명의 다른 측면에 따르면, 제1 대상물의 표면상의 입자 오염을 감소시키도록 배열된 장치는, 제1 대상물에 근접한 제1 표면과 제2 대상물에 근접한 제2 표면을 갖는 부재를 포함한다. 이 부재는 부재와 제2 대상물이 실질적으로 공간에 의해 분리되도록 제2 대상물에 근접하게 위치하고, 그리고 그것을 통해 형성된 노즐을 갖는다. 노즐은 제2 대상물에 보다 근접한 관련 구멍과, 제1 대상물에 보다 근접하고 상기 구멍보다 큰 개구를 갖는다. 또한, 노즐은 공간에 가스 흐름을 공급하는 가스 공급원을 갖는다. 또한, 이 장치는 가스 흐름이 공간을 통해 구멍으로부터 실질적으로 멀리 운반되도록 하는 펌핑 장치를 포함한다. 일 실시예에서, 제1 대상물은 광학 장치와 관련된 미러이고, 제2 대상물은 망선 단 조립체에 장착 되고 진공 챔버 내에 봉입되는 망선이다.
본 발명의 이러한 이점 및 다른 이점들은 하기의 상세한 설명 및 첨부 도면을 참조하면 보다 명확하게 이해될 것이다.
본 발명은 첨부 도면과 함께 하기의 설명을 참조하면 가장 잘 이해할 수 있다.
도 1은 극자외선 리소그래피 또는 노광 시스템의 일부분의 개략적 측면도,
도 2는 망선, 인접 표면, 및 열영동을 이용하여 망선으로부터 멀리 끌어당겨진 입자를 나타낸 개략도,
도 3a는 본 발명의 일 실시예에 따르는 망선과 입자 차폐부 사이의 가스 흐름의 층을 나타내는 개략도,
도 3b는 본 발명의 일 실시예에 따르는 망선과 망선 차폐부 사이에 위치한 가스와 관련된 온도 구배를 나타내는 개략도,
도 4a는 본 발명의 일 실시예에 따르는 열 영동력을 형성하기 위해 냉각 가스를 이용하는 EUV 리소그래피 챔버의 일부분을 나타내는 개략적 단면도,
도 4b는 본 발명의 일 실시예에 따르는 망선과 장벽 사이에서 가스를 흐르게 할 수 있는 개구 중 하나, 즉 도 4a의 개구(432)의 구성을 나타내는 개략적 저면도,
도 4c는 본 발명의 일 실시예에 따르는 망선과 장벽 사이에서 가스를 흐르게 할 수 있는 다른 개구, 즉 도 4a의 개구(432)의 구성을 나타내는 개략적 저면도,
도 5a는 본 발명의 일 실시예에 따르는 차동 펌핑 장벽에 대한 제1 위치의 망선을 나타내는 개략도,
도 5b는 본 발명의 일 실시예에 따르는 차동 펌핑 장벽에 대한 제2 위치의 망선, 즉 도 5a의 망선(512) 및 차동 펌핑 장벽(528)의 개략도,
도 5c는 본 발명의 일 실시예에 따르는 차동 펌핑 장벽에 대한 제3 위치의 망선, 즉 도 5a의 망선(512) 및 차동 펌핑 장벽(528)의 개략도,
도 5d는 본 발명의 일 실시예의 적용을 도시하는, 2개의 극단 위치의 망선, 즉 도 5a의 망선(512)의 개략도,
도 5e는 본 발명의 일 실시예에 따르는 제2 차동 펌핑 장벽을 갖는 망선의 개략적 측면도,
도 5f는 본 발명의 다른 실시예의 개략적 측면도,
도 6은 본 발명의 일 실시예에 따르는 EUV 리소그래피 시스템의 블록 다이아그램,
도 7은 본 발명의 일 실시예에 따르는 반도체 장치의 조립과 관련된 단계를 도시하는 공정 흐름도,
도 8은 본 발명의 일 실시예에 따르는 웨이퍼 처리와 관련된 단계, 즉 도 7의 단계(1304)를 도시하는 공정 흐름도,
도 9는 본 발명의 일 실시예에 따르는 망선을 보호하기 위해 망선 차폐부를 이용하는 망선 단 조립체의 개략 단면도.
극 자외선(EUV) 리소그래피 시스템에 이용되는 망선과 같은 망선의 임계 표면상의 입자 오염은 망선을 이용하여 형성되는 반도체의 완전성을 저해할 수도 있다. 따라서, 공수 오염물질로부터 망선의 임계 표면을 보보하는 것이 리소그래피 공정의 완전성을 확보하는데 있어 중요하다. 일부 망선들은 박막을 사용하여 공수 입자로부터 보호된다. 그러나, 박막은 EUV 망선의 표면을 보호하는데 사용하기에는 적절하지 않다. 또한, 열영동은 적어도 적은 가스압이 존재할 때 입자 오염물질로부터 망선 표면을 보호하는데 유효하기는 하지만, 열영동력이 작용할 수 있도록하기 위해 망선에 근접한 표면을 망선보다 저온으로 유지하면, 전체의 EUV 리소그래피 시스템 내부에 열 팽창 및 왜곡이 발생하게 된다.
망선과 인접 표면, 예컨대 망선 및 인접 표면보다 저온인 망선 차폐부 사이에서 흐르는 가스를 도입함으로써, 열 영동을 이용하여 입자를 망선으로부터 멀리 운반하는 동시에 망선을 인접 표면과 실질적으로 동일한 온도로 유지할 수도 있다. 전형적으로, 저온 가스는 망선과 인접 표면 양자에 인접한 국소 온도 구배를 형성하여, 입자를 망선과 인접 표면의 양자로부터 효율적으로 멀리 쓸어내는 열영동력을 발생시킨다. 망선 및 인접 표면은 실질적으로 동일한 온도로 유지되기 때문에, 망선의 입자 오염을 감소시킬 수도 있는 동시에, 열 팽창 및 왜곡의 가능성도 상당히 감소된다.
망선의 표면과 망선 차폐부의 표면 사이에 망선 및 망선 차폐부의 온도보다 낮은 온도의 가스를 도입하면, 망선과 망선 차폐부 사이의 가스에 온도 구배가 형성될 수 있다. 도 3a 및 3b를 참조하여, 본 발명의 일 실시예에 따라 망선과 망선 차폐부 사이의 온도 구배의 형성에 대해서 설명할 것이다. 도 3a에 도시된 바와 같이, 망선(304)과 이 망선(304)에 인접한 표면(308), 예컨대 차폐부 사이에 저온 가스(312)가 실질적으로 도입되면, 망선(304)의 표면 가까이에 경계층(316)이 형성되고, 표면(308) 가까이에 경계층(318)이 형성된다. 당업자가 이해할 수 있는 바와 같이, 경계층(316, 318)의 가스가 각각 망선(304)과 표면(308)에 의해 부분적으로 가열될 수도 있기 때문에, 경계층(316, 318)은 저온 가스(312)의 나머지보다 대체로 더 고온이다.
전형적으로, 저온 가스(312)는 국부적 온도 구배(320)를 형성하고, 대체적으로 입자를 망선(304) 및 표면(308)으로부터 멀리 이동시키켜서 저온 가스(312)의 흐름 내로 효율적으로 휩쓸 열영동력을 발생시킨다. 따라서, 표면(308)의 입자 오염 뿐만 아니라 망선(304)의 입자 오염을 감소시킬 수도 있다.
도 3b는 망선과 인접 표면 사이의 저온 가스, 예컨대 도 3a의 저온 가스(312)와 본 발명의 일 실시예에 따르는 온도 구배를 나타내는 개략도이다. 저온 가스(312)와 관련된 온도 구배(320)는, 온도 분포가 분포(326)로 표시된 바와 같이 대략 가우스 정수가, 되고 경계층(316)과 경계층(318) 사이의 실질적으로 중앙이 최저온이 되도록 된다. 보다 일반적으로는, 온도 분포는, 최저온이 경계층(316)과 경계층(318) 사이의 대략 중간인 한편, 최고온은 참조부호(322)로 표시된 바와 같이 경계층(316)과 경계층(318)에 위치하도록 되어 있다. 온도 분포의 실제 윤곽이 다양하게 변화될 수도 있다는 것을 인식해야 한다.
실질적으로 장치의 외부에 있는 가스 공급원을 사용하여 저온 가스(312)와 같은 저온 가스를 EUV 리소그래피 장치 내에 도입할 수도 있다. 도 4a는 본 발명의 일 실시예에 따라 열영동력을 발생시키기 위해 저온 가스를 이용하는 EUV 리소그래피 챔버의 일부를 도시하는 개략 단면도이다. EUV 리소그래피 챔버(400)는 차동 펌핑 장벽(428) 또는 망선 차폐부에 의해 실질적으로 분리된 제1 영역(410) 및 제2 영역(411)을 포함한다. 제1 영역(410)에는 약 50 밀리토르(mTorr)의 압력이 유지되는 한편, 제2 영역(411)에는 약 1mmTorr 미만의 압력, 즉 거의 진공이 유지된다.
망선 단 조립체(404)에 결합된 망선 척(408)에 의해 유지되는 망선(412)과 장벽(428)은 대략 동일한 온도로 유지된다.
가스 공급원(415)에 의해 공급되고 냉각기(424)를 사용하여 냉각되는 가스가 개구(432)를 통해서 망선(412)과 장벽(428) 사이의 공간 내에 도입될 수도 있다. 가스 흐름은 대략 층류이며, 가스 유량 조절기(420)에 의해 조절될 수도 있다. 일 실시예에서, 가스가 개구(432)를 통해 망선(412)과 장벽(428) 사이의 공간 내에 유입될 때 가스로부터 입자를 여과시키기 위해서 필터(438)가 사용될 수도 있다.
대체적으로 개구(432)는 다양한 형상 및 크기의 슬롯 또는 오리피스일 수도 있다. 도 4b에 도시된 바와 같이, 개구(432)는 일련의 실질적으로 원형 개구일 수도 있다. 변형예로, 개구(432')는 도 4c에 도시된 바와 같은 슬롯일 수도 있다. 개구(432)의 수 뿐만 아니라 개구(432)의 크기 및 형상은 다양하게 변화될 수도 있다. 일반적으로, 개구(432)의 크기 및 형상은 적절한 가스 층류(laminar flow)를 효율적으로 발생시킬 수 있도록 선택될 수도 있다.
개구(432)를 통해 망선(412)과 장벽(428) 사이의 공간 내로 흐르는 가스는 망선(412) 및 장벽(428)에 인접한 국부적 온도 구배를 형성하고, 열영동력이 입자를 망선(412) 및 장벽(428)으로부터 멀리 운반시키도록 한다. 입자는 개구 또는 대체적으로 EUV 빔을 통과시키도록 배열된 장벽(428) 내에 형성되는 차동 펌핑 구멍(436)을 통해서 운반될 수도 있다. 가스가 망선(412)과 장벽(428) 사이로부터 제1 영역(410)의 나머지 부분 또는 제2 영역(411) 내로 새나갈 수도 있지만, 유출하는 가스의 양은, 통상적으로 제1 영역(410) 내의 압력을 상당히 변경시키거나 또는 제2 영역(411) 내의 진공을 저해시킬 정도로 과다하지 않다는 것을 인식해야 한다.
망선(412)과 장벽(428) 사이에 도입되는 가스는 헬륨이나 수소와 같은 경질 가스일 수도 있다. 일반적으로, 가스는 EUV 방사를 흡수하는 퓨어 가스(pure gas)이다. 헬륨이나 수소 등의 경질 가스인 것 외에도, 가스는 아르곤이나 질소일 수도 있다. 질소는 비교적 저렴하고 통상적으로 망선 단 장치(404)의 일부분인 가스 베어링(도시 안됨)에 사용되기 때문에, 망선(412)과 장벽(428) 사이에 도입되는 가스로서 질소가 종종 사용될 수도 있다.
리소그래피 노출 도중에, 망선(412)은 망선 단 장치(404)에 의해서 개구(436) 위에서 전후로 주사된다. 망선(412)이 주사함에 따라, 가스가 망선(412) 및 장벽(428)과 접촉하여 흐를 때 데워지는 가스, 즉 냉각 가스에 의해서 발생하는 온도 및 열영동력의 변화가, 대체로 실질적으로 평균에 달할 수도 있다. 그러한 가스의 가온(warming)은, 가스가 개구(436)에 접근할 때 가스의 열역학적 냉각에 의해서 적어도 부분적으로 보상되어, 종종 가스의 온도 강하를 초래한다.
망선(412) 및 장벽(428)을 실질적으로 동일한 항온(constant temperature)으로 유지하기 위해서는, 열이 저온 유동 가스에 의해 제거될 때, 망선(412) 및 장벽(428)을 효율적으로 가열하기 위한 기구(도시 안됨)를 제공할 수도 있다. 장벽(428)의 온도 제어를 실행하기 위해서, 단열재(425)를 이용하여 주변 구조체로부터 장벽(428)을 단열시킬 수도 있다. 망선(412) 및 장벽(428)을 효율적으로 가열하기 위한 기구는 어떠한 적절한 기구일 수도 있다. 예시를 통해, 망선(412)은 개구(436)를 통과하는 EUV 방사에 의해 효율적으로 가열될 수도 있고, 망선(412)을 가열하기 위해 다른 기구를 사용할 필요가 없을 수도 있다. 가스 흐름에 의한 열 제거는 통상적으로 가스의 열 용량에 비례한다. 가스의 저압 때문에, 열 용량은 비교적 적고, 망선(412) 및 장벽(428)으로부터 제거되는 열의 양은 통상적으로 크기 않다.
망선과 장벽 사이로부터 주변 영역으로 효율적으로 배출할 수도 있는 냉각 가스의 양을 감소시키기 위해서, 망선의 위치에 따라 냉각 가스의 흐름의 일부를 때때로 막을 수도 있다. 예컨대, 망선이 이동의 끝 지점 근처에 있으면, 망선으로 효과적으로 덮여있지 않은 개구를 통한 가스 흐름이 차단될 수도 있다. 도 5a에 도시된 바와 같이, 망선 척(508)으로 지지되는 망선(512)이 장벽(528) 또는 차폐부 위에서 망선 단 장치(504)에 의해 주사되면, 개구(532a, 532b)의 양자가 망선(512)으로 효과적으로 덮여지도록 망선(512)이 위치될 수도 있다. 그러나, 도 5b에 도시된 바와 같이, 망선(512)이 말단 이동 지점에 위치하여 개구(532b)가 망선(512)으로 효과적으로 덮여있지 않으면, 개구(532b)를 통한 가스 흐름이 차단될 수도 있다. 변형예로, 도 5c에 도시된 바와 같이, 망선(512)이 다른 말단 이동 지점에 위치하여 개구(532a)가 망선(512)으로 효과적으로 덮여지지 않으면, 개구(531a)를 통하 가스 흐름이 차단될 수도 있다. 개구(532a, 532b) 중 하나를 통한 가스 흐름을 적절히 차단하는 것에 의해서, 가스가 주변 환경으로 직접 토출되는 것을 실질적으로 방지할 수도 있다.
도 5d는 망선과 장벽 사이로부터 방출되는 냉각 가스의 양을 감소시키는 다른 실시예를 도시한 것이다. 단 장치(504")에 부착된 스커트(540a, 540b)가 망선(512)의 길이를 효과적으로 연장시켜, 망선(512)이 말단 이동 위치에 위치하는 경우에도 수직 가스 흐름 패턴이 유지되도록 한다. 일 실시예에서, 장벽(518)에 대향된 스커트(540a, 540b)의 표면은, 장벽(58)에 대향된 망선(512)의 표며놔 실질적으로 동일한 높이에 위치한다. 그러한 스커트(540a, 540b)는 단 장치(504") 자체의 가속 및 감속을 제외하고는 힘을 받지 않으며, 그들의 위치가 매우 정밀하게될 필요도 없다. 따라서, 스커트(540a, 540b)는 매우 얇은 재료로 구성될 수도 있으므로, 그들의 추가는 단 성능에 영향을 미치지 않는다.
도 5e는 망선(512')과 장벽(528') 사이의 영역으로부터 장벽(528') 아래의 영역(511')으로의 적은 가스 흐름을 허용하는 실시예를 도시하고 있다. 노즐(545)은 장벽(528')에 부착되고, 노즐(545)의 상부면과 망선(512') 사이의 간극(560)은 비교적 적은 값으로 감소되어, 영역(511')으로의 가스 흐름을 제한한다. 간극(560)은 예컨대 약 1㎜ 미만일 수도 있다. 노즐(545)에 설치된 가스 입구(550a, 550b)는 망선(512')의 표면에 주로 평행한 가스 흐름을 제공한다. 망선(512')이 단 장치(504')에 의해 전후로 주사되기 때문에, 이러한 흐름은 대부분 방해받지 않는다. 단 장치(504')가 주사할 때 통상적으로 영역(510) 내로의 가스 흐름은 변동하지만, EUV 방사는 영역(510)을 통과하지 않으므로, 변동은 EUV의 강도에 상당한 영향을 미치지 않을 것이다.
도 5f는 본 발명의 다른 실시예를 도시한 것이다. 가스가 가스 입구(550a, 550b)를 통해 망선(512')과 장벽(528') 사이의 영역(521)에 도입된다. 입구의 가스 압력은 실질적으로 영역(521)의 주변 가스 압력과 영역(510')의 대기압 보다 실질적으로 높다. 따라서, 가스가 입구의 외부로 신속하게 팽창하여 공정에서 상당히 냉각한다. 입구의 가스의 최초 온도는 망선(512') 또는 장벽(528')의 온도보다 높거나 동일하거나 또는 더 낮게 조정될 수도 있지만, 가스가 영역(521) 내로 팽창함에 따라, 가스의 상당 부분은 망선(512') 및 장벽(528')보다 낮게된다. 따라서, 참조부호(424)와 같은 냉각기로 가스 공급을 초기에 냉각시킬 필요 없이, 이러한 상태에서 가스의 소망의 온도 구배가 확립될 수도 있다. 또한, 입구(550a, 550b)의 고온 가스 압력은 가스가 영역(521)을 통해 영역(510')내로 흐름에 따라 가스 흐름이 고속이 되도록 한다. 이것은 존재하는 임의의 입자에 상당한 견인력(drag force)을 부여하여 입자를 망선(512')으로부터 영역(521)의 외부로 신속히 운반하는 경향이 있다. 따라서, 본 실시예에서, 망선(512')은 가스의 온도 구배로부터 발생하는 열영동력과 영역(521)의 가스 흐름의 고속으로부터 발생하는 견인력의 양자에 의해서 보호된다.
도 5f에 도시된 실시예에서, 가스 입구(550a, 550b)로부터 팽창하는 가스가 입구를 아음속으로 빠져나간다. 가스가 초음속으로 영역(521)에 진입하면, 가스는 주변 가스와 충돌하여 충격파를 발생시키고 소망하는 냉각보다는 가스의 가열을 발생시킬 것이다. 가스 입구(550a, 550b)가 팽창 가스의 대략 분자 평균 자유 경로보다 적은 치수를 갖는 개구를 가지면, 영역(521) 내로의 아음속 흐름이 실질적으로 확보된다. 가스 입구(550a, 550b)가 각각 비교적 큰 개구를 가지면, 이들 입구는 유효 공극 크기가 대략 팽창 가스의 분자 평균 자유 경로 보다 적은 입자 필터로 덮일 수도 있다.
도 6을 참조하여, 본 발명의 일 실시예에 따르는 EUV 리소그래피 시스템을 설명할 것이다. EUV 리소그래피 시스템(900)은 소망하는 압력 레벨을 진공 챔버(902) 내에 유지할 수 있도록 배열된 펌프(906)를 갖는 진공 챔버(902)를 포함한다. 예컨대, 펌프(906b)는 챔버(902)의 제2 영역(908b) 내에 약 1mTorr 미만의 압력 레벨 또는 대기압을 유지하도록 배열될 수도 있다. EUV 리소그래피 시스템(900)의 각종 부품은, 설명을 용이하게 하기 위해 도시하지 않았지만, 당업자라면 반응 프레임, 진동 격리 기구, 각종 액츄에이터 및 각종 제어기 등의 부품을 포함할 수도 있다는 것을 인식해야 한다.
망선을 주사시키는 것을 허용하는 망선 단 조립체(910)에 결합된 망선 척(914)에 의해 유지될 수도 있는 EUV 망선(916)은, 조명원(924)이 미러(928)에서 실질적으로 반사하는 광선을 공급할 때, 광선이 망선(916)의 전면에서 반사하도록 위치된다. 망선 차폐 조립체(920) 또는 차동 장벽이 망선(916)을 보호하도록 배열되어, 입자에 의한 망선(916)의 오염을 감소시킬 수도 있다. 일 실시예에서, 망선 차폐 조립체(920)는 온도 조절기(958)로 가스 공급원(954)을 통해 공급되는 냉각 가스가 흐를 수도 있는 개구(950)를 포함한다.
전술한 바와 같이, 망선 차폐 조립체(920)는 개구를 포함하며, 이 개구를 통해서 광선, 예컨대 EUV 방사가 망선(916)의 일부를 조명할 수도 있다. 망선(916)상의 입사광은, 웨이퍼(932)를 주사시킬 수 있는 웨이퍼 단 조립체(940)상의 웨이퍼 척(936)에 의해 유지된 웨이퍼(932)의 표면상에 반사될 수도 있다. 따라서, 망선(916)상의 상이 웨이퍼(932)에 투영될 수도 있다.
웨이퍼 단 조립체(940)는, 평면 모터에 의해 구동될 수도 있는 위치설정 단 뿐만아니라 EI 코어 액츄에이터를 이용하여 위치설정 단에 자기적으로 결합되는 웨이퍼 테이블을 구비할 수도 있다. 통상 웨이퍼 척(936)이 웨이퍼 단 조립체(940)의 웨이퍼 테이블에 결합되는데, 이 웨이퍼 테이블은 소정 수의 보이스 코일 모터에 의해 부양될 수도 있다. 위치설정 단을 구동하는 평면 모터는, 자석 및 2차원으로 배열된 대응하는 전기자 코일에 의해 발생되는 전자기력을 이용할 수도 있다. 위치설정 단은 복수의 자유도, 예컨대 3내지 6의 자유로도 이동하도록 배열되어, 웨이퍼(932)를 투사 광학 시스템 망선(916)에 대해서 소망하는 위치 및 방향으로 위치설정할 수 있도록 한다.
웨이퍼 단 조립체(940) 및 망선 단 조립체(910)의 이동은 전체의 EUV 리소그래피 시스템(900)의 성능에 영향을 미칠 수도 있는 반력을 발생시킨다. 웨이퍼(기판) 단 이동에 의해서 발생되는 반력은, 미국 특허 제 5,528,118 호 및 공개 일본 특허 공보 8-166475 호에 개시된 것뿐만 아니라 전술한 바와 같은 프레임 부재를 사용하여 바닥 또는 지면에 기계적으로 가해질 수도 있다. 또한, 망선 단 조립체(910)의 이동에 의해서 발생되는 반력은, 전체 내용이 본 발명에 참고로 인용되는 미국 특허 제 5,874,820 호 및 공개 일본 특허 공보 8-330224 호에 개시된 것과 같은 프레임 부재를 사용하여 바닥(지면)에 기계적으로 가해질 수도 있다.
전술한 바와 같이, 망선이 망선 표면에 대해 실질적으로 평행한 가스 흐름을 발생시키는 노즐과 함께 EUV에 의해서 조명되는 경우를 제외하고, 망선을 덮는 망선 차폐부를 이용하여 망선을 입자로부터 보호할 수도 있다. 일 실시예에서, 노즐은 고정 블라인드 조립체의 일부분일 수도 있다. 본 명세서에서는, 가스 흐름을 이용하여 망선 표면으로부터 입자를 멀리 흡인하는 것을 점 영동(viscophoresis)라 칭한다. 또한, 가스가 입구로부터 팽창하고 냉각하여 약간의 열영동적 보호(thermophoretic protection)를 제공한다.
도 9는 본 발명의 일 실시예에 따르는 망선을 보호하기 위해 망선 차폐부를 이용하는 망선 단 조립체의 개략 단면도이다. 망선 단(1200)은 망선 척(1204)을 지지하고, 이 망선 척은 망선(1208)을 지지한다. 망선(1208)은 망선 차폐부(1220)에 의해 차폐된다. 고정 차폐 구멍(blind aperture)(1224)이 실질적으로 망선 차폐부(1220) 내에 배열되고, 망선 차폐부(1220)은 노즐(1228)을 형성하도록 배열된닫. 노즐(1228)은 투사 광학 환경(1216)으로 개방하는 한편, 망선 단(1200), 망선 척(1204) 및 망선(1208)은 실질적으로 망선 단 환경(1212) 내에 위치한다. 일 실시예에서, 투사 광학 환경(1216)이 투사 광학 챔버일 수도 있고 그리고 망선 단 환경(1212)이 망선 단 챔버일 수도 있다는 것을 인식해야 한다. 일반적으로, 투사 광학 환경(1216)은 광학 장치의 미러(도시 안됨) 등의 부품을 포함하도록 배열된다.
망선(1208)과 망선 차폐부(1220) 사이의 가스는 화살표(1230)로 표시된 바와 같이 흐른다. 가스는 노즐과 관련되거나 노즐에 포함되는 가스 공급원에 의해 토출된다. 일 실시예에서, 가스 중 일부는 망선 단 환경 진공 챔버(도시 안됨)에 부착된 진공 펌프에 의해서 망선 단 환경(1212)으로부터 토출된다. 망선 단 환경 진공 챔버는, 망선(1208)이 진공 챔버 내에 실질적으로 봉입되도록 설치될 수도 있다. 가스 중 일부는 고정 차폐 구멍(1224)을 통해서 투사 광학 환경(1216)으로 유출한다. 투사 광학 환경(1216)은 망선 단 환경(1212)보다 저압으로 유지되고, 망선(1208)과 고정 차폐 구멍(1224) 사이의 환경은 차동 펌핑 구멍의 기능을 효과적으로 수행한다. 망선 단 환경(1212)의 고압은 점영동 및 열영동을 가능하게 하며, 투사 광학 환경(1216)의 저압은 가스를 통한 EUV 방사의 비교적 높은 전달을 가능하게 한다.
투사 광학 미러의 반사력은 통상적으로 탄화수소 및 웨이퍼 증기 오염물질에 민감한다. 미러의 표면에 흡수된 단층이 적으면 반사력 및 그에 따라 리소그래피 처리량이 비교적 상당히 감소하는 결과가 발생할 수도 있다. 망선 단(1200) 또는 망선 척(1204) 또는 이에 부착된 호스 등의 망선 단 환경(1212)의 구조체로부터 탄화 수소 또는 수증기의 배출 가스는, 실질적으로 화살표(1230)로 표시된 가스 흐름에 의해서 망선 단 환경(1212) 내에 수용된다. 따라서, 투사 광학 환경(1216) 내의 투사 광학 미러는 가스 배출의 결과에 따른 오염으로부터 보호될 수도 있다. 가스 배출의 생성물 및 부산물의 봉쇄는, 투사 광학 환경(1216)과 망선 단 환경(1212) 사이의 차동 펌핑을 사용하여 부분적으로 달성될 수도 있다. 그러나, 노즐(1228)로부터의 가스 흐름이 망선 단 환경(1212)의 일부로부터의 배출 가스가 고정 차폐 구멍(1224) 및 투사 광학 환경(1216)의 투사 광학부에 접근하는 것을 효과적으로 방지할 때, 가스 배출의 생성물 부산물의 봉쇄가 실행된다.
가스 흐름은, 망선 단(1200) 또는 망선 척(1204)의 측면으로부터의 메탄과 같은 탄화수소, 즉 CH4 의 가스 방출이 망선 단(1200)의 주변에 실질적으로 한정될 수 있게 한다. CH4의 농도는 가스의 흐름에 의해 노즐(1228) 부근에서 약 2 차수의 크기 이상만큼 감소될 수도 있다.
망선(1200)이 하나의 말단 이동 위치로 이동하여 가스 방출 영역이 도 9에 도시된 것보다 고정 차폐 구멍(1224)에 더 근접하도록 하는 상황이 발생하면, 투사 광학 환경(1216)과 망선 단 환경(1212) 사이의 가스 흐름 및 압력차에 기인하는 CH4 방출 가스의 오염이 대체적으로 여전히 발생한다. 이것은, 통상적으로 망선 단 환경(1212)과 투사 광학 환경(1216) 사이의 차동 펌핑 상태가 유지되어, 도 5d의 망선 스커트(540)와 같은 망선 스커트의 포함을 필요로 하는 것으로 생각된다. 투사 광학 환경(1216)의 CH4의 농도는, 예컨대 압력차나 가스 흐름이 없으면 농도에 대한 크기의 약 2 차수 만큼 감소될 수도 있다.
상술한 실시예에 따른 EUV 리소그래피 시스템, 예컨대 망선 차폐부를 포함할 수도 있는 리소그래피 장치는, 지정된 기계적 정밀도, 전기적 정밀도 및 광학적 정밀도가 유지되도록 각종 부 시스템을 조립하는 것에 의해서 제작될 수도 있다. 각종 정밀도를 유지하기 위해서는, 조립의 전후에, 실질적으로 전체의 광학 시스템을 그의 광학적 정밀도를 달성하도록 조정할 수도 있다. 마찬가지로, 실질적으로 전체의 기계적 시스템 및 실질적으로 전체의 전기적 시스템을, 그들 각각의 소망하는 기계적 및 전기적 정밀도를 달성하도록 조정할 수도 있다. 각 부 시스템을 포토리소그래피 시스템으로 조립하는 공정은, 각 부 시스템간의 기계적 경계면, 전기 회로 배선 접속부 및 압력 배관 접속부를 개발하는 것을 포함하지만, 이것에 한정되는 것은 아니다. 또한, 각종 부 시스템으로부터 포토리소그래피 시스템을 조립하기 전에 각 부 시스템이 조립된다. 각종 부 시스템을 이용하여 포토리소그래피 시스템을 조립하면, 전체의 포토리소그래피 시스템 내에 실질적으로 전체의 소망하는 정밀도가 유지되는 것을 확보하기 위해서 전체의 조정이 대체적으로 수행된다. 또한, 온도 및 습도가 제어되는 청정실에서 노광 시스템을 제작하는 것이 바람직할 수도 있다.
또한, 도 7을 참조하여 후술하는 바와 같이, 전술한 시스템을 이용하여 반도체 장치를 조립할 수도 있다. 공정은, 반도체 장치의 기능 및 성능 특성이 설계되거나 다른 방법으로 결정되는 단계(1031)에서 시작된다. 그 다음에, 단계(1302)에서, 반도체 장치의 설계에 기초하여 패턴을 갖는 망선(마스크)이 설계된다. 수평 단계(1303)에서, 웨이퍼가 실리콘 재료로 제조되는 것을 인식해야 한다. 단계(1302)에서 설계된 마스크 패턴은, 단계(1303)에서 조립된 웨이퍼상에 포토리소그래피 시스템에 의해 단계(1304)에서 노출된다. 웨이퍼상으로의 마스크의 노출 공정을 도 8을 참조하여 하기에 설명할 것이다. 단계(1305)에서, 반도체 장치가 조립된다. 반도체 장치의 조립은, 웨이퍼 절단 공정, 접합 공정 및 포장 공정을 포함하는 것이 일반적이지만, 이것에 한정되지는 않는다. 최종적으로, 단계(1306)에서 완성된 장치가 검사된다.
도 8은, 본 발명의 일 실시예에 따르는 반도체 장치 조립의 경우에 웨이퍼 처리와 관련된 단계를 도시하는 흐름도이다. 단계(1311)에서, 웨이퍼의 표면이 산화된다. 그 다음, 화학적 증착(CVD) 단계인 단계(1312)에서, 웨이퍼 표면상에 절연 막이 형성될 수도 있다. 절연 막이 형성되면, 단계(1313)에서, 웨이퍼상에 증착에 의해서 전극이 형성된다. 그 다음, 단계(1314)에서 실질적으로 임의의 적절한 방법을 이용하여 웨이퍼에 이온이 주입될 수도 있다. 당업자가 인식하게 될 바와 같이, 단계(1311-1314)는 대체적으로 웨이퍼 처리 중의 웨이퍼의 전처리 단계인 것으로 고려된다. 또한, 각 단계에서 이루어지는 선택, 예컨대, 단계(1312)에서 절연 막의 형성에 사용하기 위한 각종 화학물질의 농도는, 처리 요건을 토대로 한다는 것을 이해하여야 한다.
웨이퍼 처리의 각 단계에서, 전처리 단계가 완료되면, 후처리 단계가 실행될 수도 있다. 후처리 단계 중에, 최초로 단계(1315)에서, 웨이퍼에 포토레지스트가 가해진다. 그 다음, 단계(1316)에서, 웨이퍼에 망선의 회로 패턴을 전사하기 위해 노광 장치가 사용될 수도 있다. 웨이퍼의 망선의 회로 패턴을 전사하는 것은, 일반적으로, 일 실시예에서 진동을 감쇠시키기 위한 힘 댐퍼(force damper)를 포함할 수도 있는 망선 주사 단(reticle scanning stage)을 주사하는 것을 포함한다.
망선상의 회로 패턴이 망선에 전사된 후에, 단계(1317)에서 노출된 웨이퍼가 현상된다. 노출된 웨이퍼가 현상되면, 잔류 포토레지스트 이외의 부분, 예컨대 노출된 재료 표면이 에칭에 의해 제거될 수도 있다. 최종적으로, 단계(1319)에서 에칭 후에 남는 임의의 불필요한 포토레지스트가 제거될 수도 있다. 당업자가 인식하게 되는 바와 같이, 전처리 및 후처리 단계의 반복을 통해서 복수의 회로 패턴이 형성될 수도 있다.
본 발명의 몇몇 실시예들만을 설명하였지만, 본 발명은 본 발명의 정신 및 범위에서 벗어남이 없이 많은 다른 특정한 형태로 구현될 수도 있다는 것을 이해하여야 한다. 예시적으로, 망선과 망선 차폐부 사이에 열영동력을 발생시키기 위해 저온 가스를 이용하는 것을 설명하였지만, 저온 가스는 열영동력을 발생시켜 입자가 웨이퍼 표면에 부착하는 것을 방지하도록 웨이퍼 표면 가까이에 사용될 수도 있다. 또한, 저온 가스 흐름을 웨이퍼 표면 가까이에 도입하면, 웨이퍼 표면의 배출 가스 생성물이 웨이퍼 표면으로부터 멀리 운반되도록 할 수도 있다.
망선과 망선 차폐부 사이의 공간에 도입되는 가스는, 대체적으로 망선 차폐부내의 개구에 근접한 냉각기에 의해서 냉각되는 것으로 설명하였다. 즉, 저온 가스가 국부적으로 냉각되는 것으로 설명하였다. 그러나, 적절한 위치의 임의의 적절한 기구에 의해 가스가 냉각될 수도 있다는 것을 인식해야 한다. 또한, 가스는 임의의 적절한 가스, 예컨대 헬륨 또는 수소 등의 경량 가스일 수도 있다.
망선의 온도와 망선 차폐부의 온도를, 망선과 망선 차폐부 사이에 한정된 공간에 공급되는 저온 가스의 온도보다 고온의 온도로 유지하기 위해 실질적으로 임의의 적절한 기구가 사용될 수도 있다. 그러한 적절한 기구의 구성은 대체적으로 매우 다양할 수도 있다.
고정 차폐 구멍, 예컨대 도 9의 고정 차폐 구멍(1224)은 망선 단 환경 또는 챔버와 투사 광학 환경 또는 챔버 사의의 채널인 것으로만 대체적으로 설명하였다. 그러나, 망선 단 환경과 투사 광학 환경 사이에 다른 채널이 존재할 수도 있다는 것을 이해해야 한다. 예시적으로, 정렬 현미경 및 간섭계 고정 미러를 수용하기 위해 망선 차폐부에 개구가 존재할 수도 있다. 오염물질 또는 입자가 망선 차폐부로부터 멀리 유지되도록 가스 흐름이 배열되기 때문에, 망선 차폐부 내의 임의의 다른 개구를 통해서 일부 오염물질 또는 입자가 운반될 수도 있다. 그러나, 망선 단 환경과 투사 광학 환경 사이의 전도성은 고정 차폐 구멍을 통해 발생하는 전도성에 비해서 대체로 작기 때문에, 망선 차폐부 내의 다른 개구를 통해 운반되는 임의의 오염물질은 비교적 무시할만한 것으로 간주하기 쉬울 수도 있다.
망선 차폐부와 함께 가스 흐름의 사용은 투사 광학부를 보호하기에 적합할 수도 있지만, 망선 차폐부와 함께 가스 흐름의 사용은 EUV 망선을 이용하는 전체의 시스템의 다른 부품을 보호하기에 적합할 수도 있다. 가령, 가스 흐름 및 망선 차폐부를 이용하여 조명 광학부를 보호할 수도 있다.
망선과 장벽 또는 망선 차폐부는 실질적으로 동일한 온도를 갖는 것으로 설명하였다. 일 실시예에서, 망선 및 장벽은 망선과 장벽 사이의 공간 내에 도입되는 저온 가스의 온도보다 고온인 상이한 온도를 가질 수도 있다. 즉, 본 발명의 범위에서 벗어남이 없이, 상이한 온도가 망선과 장벽 사이에 공급되는 저온 가스의 온도보다 높다면, 망선 및 장벽은 약간 상이한 온도를 가질 수도 있다. 따라서, 본 실시예들은 설명을 위한 것이며 비 제한적인 것으로 간주되어야 하고, 본 발명은 본 명세서의 세부 사항에 제한되어서는 안되고, 첨부된 청구범위 내에서 수정될 수도 있다.

Claims (56)

  1. 대상물의 표면상의 입자 오염을 감소시키도록 배열된 기구에 있어서,
    대상물에 가까운 표면을 갖는 부재로서, 이 부재와 대상물이 공간에 의해 실질적으로 분리되도록 배열되고, 상기 대상물은 제1 온도이고, 상기 부재는 제2 온도인, 상기 부재와,
    상기 공간 내에서 최소 값이 상기 제1 온도 및 상기 제2 온도보다 낮은 온도 분포를 갖는 가스 흐름을 상기 공간에 공급하도록 배열된 가스 공급원으로서, 상기 가스는 열영동력을 발생시켜 상기 공간 내의 임의의 입자를 대상물로부터 멀리 운반하기 위해 상기 부재 및 대상물과 협력하도록 배열되는
    기구.
  2. 제 1 항에 있어서,
    상기 부재는 내부에 규정된 적어도 제 1 개구를 포함하며, 상기 제 1 개구는 가스 흐름을 통과시켜 상기 공간 내로 흐를 수 있게 하도록 배열되는
    기구.
  3. 제 2 항에 있어서,
    상기 부재는 내부에 규정된 적어도 제 2 개구를 포함하며, 상기 제 2 개구는 가스 흐름을 통과시켜 상기 공간의 외부로 흐를 수 있게 하여 상기 공간 내의 입자 를 대상물로부터 그리고 상기 부재로부터 멀리 운반하도록 배열되는
    기구.
  4. 제 3 항에 있어서,
    상기 제 2 개구는 극 자외선 방사의 광선을 통과시켜 대상물의 제 2 표면상으로 향하게 하도록 추가로 배열되는
    기구.
  5. 제 2 항에 있어서,
    가스가 상기 제 1 개구를 통해서 흐르기 전에 가스를 제 3 온도로 냉각시키기 위해 가스 공급원에 결합된 냉각 장치를 더 포함하는
    기구.
  6. 제 5 항에 있어서,
    상기 냉각 장치는 상기 제 1 개구 부근에 배열되는
    기구.
  7. 제 2 항에 있어서,
    실질적으로 상기 제 1 개구의 주위에 형성되는 노즐을 더 포함하는
    기구.
  8. 제 1 항에 있어서,
    대상물을 주사할 수 있도록 배열되는 단 조립체와,
    상기 단 조립체에 결합되어 대상물을 지지하도록 배열되는 척을 더 포함하는
    기구.
  9. 제 8 항에 있어서,
    상기 단 장치는 적어도 하나의 스커트를 포함하며, 상기 적어도 하나의 스커트는 대상물의 표면과 실질적으로 동일한 높이에 위치하는
    기구.
  10. 제 1 항에 있어서,
    상기 제 1 온도 및 제 2 온도는 대략 동일한
    기구.
  11. 제 1 항에 있어서,
    상기 부재는 플레이트인
    기구.
  12. 제 1 항에 있어서,
    상기 부재 내에 형성된 개구를 통해서 대상물의 표면에 극자외선을 공급하도록 배열된 극 자외선 방사의 소스를 더 포함하며, 상기 대상물은 망선이고 상기 부재는 상기 극자외선 리소그래피 공정 중에 망선의 표면을 보호하도록 배열되는
    기구.
  13. 제 12 항의 기구에 의해 제조되는 장치.
  14. 제 12 항의 기구를 사용하여 상이 형성된 웨이퍼.
  15. 대상물의 표면의 입자 오염을 감소시키는 방법에 있어서,
    상기 대상물의 표면 부근에 차폐부를 제공하는 단계로서, 상기 차폐부는 상기 대상물의 표면과 상기 차폐부 사이에 공간이 한정되도록 위치되고, 상기 차폐부는 내부에 규정된 제 1 개구를 가지며, 상기 대상물의 표면은 제 1 온도이고, 상기 차폐부는 제 2 온도인, 차폐부의 제공 단계와,
    상기 대상물의 표면과 상기 차폐부 사이에 규정된 공간에 가스 흐름을 공급하는 단계로서, 상기 가스는 상기 공간 내에서 최소값이 상기 제 1 온도 및 상기 제 2 온도의 양자보다 낮은 온도 분포를 가지며, 상기 가스 흐름을 상기 제 1 개구를 통해서 공급되는, 가스 흐름 공급 단계를 포함하는
    입자 오염 감소 방법.
  16. 제 15 항에 있어서,
    상기 대상물의 표면과 상기 차폐부 사이에 규정된 공간 내의 가스 흐름은, 상기 공간 내의 임의의 입자를 상기 대상물의 표면으로부터 멀리 운반시킬 수 있는 온도 구배를 상기 공간 내에 형성하도록 배열되는
    입자 오염 감소 방법.
  17. 제 16 항에 있어서,
    상기 가스 흐름은 상기 공간 내의 입자를 상기 차폐부로부터 더욱 멀리 운반하는
    입자 오염 감소 방법.
  18. 제 16 항에 있어서,
    상기 차폐부는 내부에 규정된 제 2 개구를 가지며, 상기 가스 흐름은 상기 공간 내의 가스를 상기 제 2 개구를 통해서 상기 대상물의 표면으로부터 멀리 운반하는
    입자 오염 감소 방법.
  19. 제 18 항에 있어서,
    상기 차폐부에 규정된 제 2 개구를 통해서 광선을 공급하는 단계로서, 상기 광선은 대상물의 표면의 영역을 실질적으로 조명하도록 배열되는
    입자 오염 감소 방법.
  20. 제 15 항에 있어서,
    상기 대상물의 표면과 상기 차폐부 사이에 규정된 공간 내에 가스 흐름을 공급하는 단계는,
    가스를 제 3 온도로 냉각시키는 단계와
    상기 제 1 개구를 통해 흐르는 가스의 양을 제어하는 단계를 포함하는
    입자 오염 감소 방법.
  21. 제 15 항에 있어서,
    상기 대상물은 망선이고, 상기 차폐부는 망선 차폐부인
    입자 오염 감소 방법.
  22. 제 21 항에 있어서,
    상기 망선은 극 자외선 리소그래피 공정과 함께 사용되도록 배열되는
    입자 오염 감소 방법.
  23. 대상물의 표면상의 입자 오염을 감소시키도록 배열된 기구에 있어서,
    제 1 영역과 제 2 영역을 갖는 챔버로서, 상기 제 1 영역은 적어도 약 50mTorr의 압력을 가지며, 상기 제 2 영역은 상기 제 1 영역의 압력보다 낮은 압력 을 갖는, 챔버와,
    상기 대상물을 주사하도록 상기 제 1 영역에 배열된 제 1 주사 장치로서, 상기 대상물의 제 1 표면 부근에 배열되되, 부재의 제 1 표면과 상기 대상물의 제 1 표면이 실질적으로 상기 제 1 영역 내의 공간에 의해 분리되도록 하는 부재를 포함하며, 상기 대상물의 제 1 표면은 제 1 온도이고 상기 부재의 제 1 표면은 제 2 온도인, 제 1 주사 장치와,
    상기 공간에 가스 흐름을 공급하도록 배열된 가스 공급원으로서, 상기 공간 내에, 최소 값이 상기 제 1 온도 및 상기 제 2 온도 보다 낮은 온도 분포를 가지며, 상기 부재 및 상기 대상물과 협력하여 상기 공간 내의 임의의 입자를 대상물로부터 멀리 운반하기 위한 열영동력을 발생시키도록 배열되는, 가스 공급원을 포함하는
    기구.
  24. 제 23 항에 있어서,
    상기 대상물은 극자외선 망선이고, 상기 기구는,
    웨이퍼를 주사하도록 제 2 영역에 배열되는 제 2 주사 장치로서, 상기 제 2 영역의 압력이 약 1mTorr 미만인, 제 2 주사 장치를 더 포함하는
    기구.
  25. 제 24 항에 있어서,
    상기 제 1 개구는 상기 부재 내에 규정되고, 상기 극자외선 광선은 상기 제 1 개구를 통과하여 상기 대상물에서 반사하여 웨이퍼상으로 향하도록 배열되는
    기구.
  26. 제 23 항에 있어서,
    상기 부재는 내부에 규정된 적어도 제 1 개구를 포함하고, 상기 제 1 개구는 가스 흐름을 통과시켜 상기 공간 내로 향할 수 있게 하도록 배열되는
    기구.
  27. 제 26 항에 있어서,
    상기 부재는 실질적으로 상기 노즐의 주위에 배열된 노즐을 더 포함하는
    기구.
  28. 제 26 항에 있어서,
    상기 부재는 내부에 규정된 적어도 제 2 개구를 포함하며, 상기 제 2 개구는 가스 흐름을 통과시켜 상기 공간의 외부로 흐를 수 있게 하여 상기 공간 내의 입자를 대상물로부터 그리고 상기 부재로부터 멀리 운반하도록 배열되는
    기구.
  29. 제 28 항에 있어서,
    상기 제 2 개구는 극 자외선 방사의 광선을 통과시켜 대상물의 제 2 표면상으로 향하게 하도록 추가로 배열되는
    기구.
  30. 제 26 항에 있어서,
    가스가 상기 제 1 개구를 통해서 흐르기 전에 가스를 제 3 온도로 냉각시키기 위해 가스 공급원에 결합된 냉각 장치를 더 포함하는
    기구.
  31. 제 30 항에 있어서,
    상기 냉각 장치는 상기 제 1 개구 부근에 배열되는
    기구.
  32. 제 23 항에 있어서,
    상기 제 1 온도 및 제 2 온도는 대략 동일한
    기구.
  33. 제 24 항에 있어서,
    상기 부재 내에 형성된 개구를 통해서 대상물의 표면에 극자외선을 공급하도록 배열된 극 자외선 방사의 소스를 더 포함하며, 상기 대상물은 망선이고 상기 부 재는 상기 극자외선 리소그래피 공정 중에 망선의 표면을 보호하도록 배열되는
    기구.
  34. 제 33 항의 기구에 의해 제조되는 장치.
  35. 제 33 항의 기구를 사용하여 상이 형성된 웨이퍼.
  36. 제 1 항에 있어서,
    대상물을 유지하는 챔버를 더 포함하며, 상기 챔버는 그 챔버 내의 압력을 소정 압력으로 유지하기 위한 진공 펌프를 더 포함하는
    기구.
  37. 제 2 항에 있어서,
    상기 제 1 개구에서 유출하는 가스는 상기 공간 내의 압력보다 고압으로 유출하고, 상기 고압은 가스가 상기 공간내로 팽창함에 따라 가스를 냉각시켜 공간내에 온도 분포를 형성하는
    기구.
  38. 제 1 항에 있어서,
    상기 제 1 개구에 인접하게 배치된 필터를 더 포함하며, 상기 필터는 가스 공급원으로부터의 입자가 공간에 유입하는 것을 방지하도록 구성되는
    기구.
  39. 광 표면과,
    패턴을 형성한 망선을 유지하도록 구성되고, 상기 망선을 상기 광 표면에 대에 위치시키도록 구성되는 망선 척과,
    상기 광 표면과 상기 망선 사이에 위치되는 망선 차폐부와,
    상기 망선 차폐부에 인접하게 위치되고, 오염물질을 상기 광표면으로부터 실질적으로 멀리 운반하기 위한 가스 흐름을 제공하도록 구성되는 가스 유동 조립체를 포함하는
    리소그래피 툴.
  40. 제 39 항에 있어서,
    가스 흐름의 부근에 형성되는 진공을 더 포함하며, 상기 진공은 가스 흐름을 실질적으로 진공쪽으로 향하게 하는 것에 의해서, 오염물질이 광 표면을 오염시키는 것을 방지하는 것을 보조하도록 구성되는
    리소그래피 툴.
  41. 제 40 항에 있어서,
    상기 진공은 진공 펌프에 의해서 형성되는
    리소그래피 툴.
  42. 제 39 항에 있어서,
    상기 망선은 제 1 압력을 갖는 제 1 환경에서 작동하도록 구성되고, 상기 광 표면은 제 2 압력을 갖는 환경에서 작동하도록 구성되며, 상기 제 1 압력은 상기 제 2 압력보다 높은
    리소그래피 툴.
  43. 제 39 항에 있어서,
    상기 광선을 상기 광 표면에 대해 이동시키도록 구성되는 망선 단을 더 포함하는
    리소그래피 툴.
  44. 제 39 항에 있어서,
    상기 오염물질은 수증기 또는 산화수소인
    리소그래피 툴.
  45. 제 39 항에 있어서,
    상기 망선 차폐부는 상기 망선과 상기 광 표면 사이에 조명 방사선의 통과를 허용하도록 구성되는
    리소그래피 툴.
  46. 제 45 항에 있어서,
    상기 조명 방사선의 파장 범위는
    a. 0.1㎚ 내지 5㎚;
    b. 5㎚ 내지 100㎚; 또는
    c. 100㎚ 내지 250㎚ 중 하나 이내인
    리소그래피 툴.
  47. 제 39 항에 있어서,
    상기 광 표면은 투사 광 시스템의 일부분이며, 상기 투사 광 시스템은, 조명 방사선이 상기 망선상에 투사되어 상기 투사 광 시스템을 통과할 때 상기 망선에 의해서 형성된 패턴을 기판상에 노출시키도록 구성되는
    리소그래피 툴.
  48. 제 39 항에 있어서,
    상기 가스 유동 조립체는 가스의 흐름을 공급하도록 구성된 하나 또는 그 이상의 노즐을 더 포함하는
    리소그래피 툴.
  49. 제 39 항에 있어서,
    상기 가스 유동 조립체는 상기 망선 차폐부와 상기 망선 척의 사이에 위치되는
    리소그래피 툴.
  50. 제 39 항에 있어서,
    상기 가스 유동 조립체는 상기 망선과 상기 광 표면의 사이에 위치되는
    리소그래피 툴.
  51. 제 45 항에 있어서,
    상기 가스 유동 조립체는 실질적으로 상기 망선 차폐부의 개구를 포위하며, 상기 개구로부터 실질적으로 멀리 가스 흐름을 공급하도록 추가로 구성되는
    리소그래피 툴.
  52. 제 45 항에 있어서,
    상기 가스 유동 조립체는 실질적으로 상기 망선 차폐부의 개구를 포위하며, 가스 흐름의 일부를 상기 개구를 통해서 상기 망선으로부터 멀리 공급하도록 추가로 구성되는
    리소그래피 툴.
  53. 제 48 항에 있어서,
    상기 가스는 상기 노즐 개구와 관련된 입자 필터를 통과하는
    리소그래피 툴.
  54. 제 53 항에 있어서,
    상기 입자 필터는 1㎜ 미만의 유효 구멍 사이즈를 갖는
    리소그래피 툴.
  55. 제 48 항에 있어서,
    상기 하나 또는 그 이상의 노즐은 1㎜ 미만의 유효 사이즈를 갖는 가스 유동 출구를 갖는
    리소그래피 툴.
  56. 제 48 항에 있어서,
    상기 하나 또는 그 이상의 노즐은 초음속의 가스 흐름을 공급하도록 구성되는
    리소그래피 툴.
KR1020077001547A 2004-07-23 2005-07-21 입자 오염을 감소시키는 기구 및 방법과 리소그래피 툴 KR20070035582A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020077001547A KR20070035582A (ko) 2004-07-23 2005-07-21 입자 오염을 감소시키는 기구 및 방법과 리소그래피 툴

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/898,475 2004-07-23
KR1020077001547A KR20070035582A (ko) 2004-07-23 2005-07-21 입자 오염을 감소시키는 기구 및 방법과 리소그래피 툴

Publications (1)

Publication Number Publication Date
KR20070035582A true KR20070035582A (ko) 2007-03-30

Family

ID=43656663

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077001547A KR20070035582A (ko) 2004-07-23 2005-07-21 입자 오염을 감소시키는 기구 및 방법과 리소그래피 툴

Country Status (1)

Country Link
KR (1) KR20070035582A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9513568B2 (en) 2012-07-06 2016-12-06 Asml Netherlands B.V. Lithographic apparatus
KR20200014821A (ko) * 2017-05-29 2020-02-11 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9513568B2 (en) 2012-07-06 2016-12-06 Asml Netherlands B.V. Lithographic apparatus
US10788763B2 (en) 2012-07-06 2020-09-29 Asml Netherlands B.V. Lithographic apparatus
KR20200014821A (ko) * 2017-05-29 2020-02-11 에이에스엠엘 네델란즈 비.브이. 리소그래피 장치

Similar Documents

Publication Publication Date Title
US20070121091A1 (en) Extreme ultraviolet reticle protection using gas flow thermophoresis
US7875864B2 (en) Devices and methods for thermophoretic and electrophoretic reduction of particulate contamination of lithographic reticles and other objects
US7804583B2 (en) EUV reticle handling system and method
US7397056B2 (en) Lithographic apparatus, contaminant trap, and device manufacturing method
EP1674932B1 (en) Lithographic apparatus, illumination system and debris trapping system
KR100632891B1 (ko) 리소그래피 장치 및 디바이스 제조 방법
KR100665750B1 (ko) 리소그래피 장치 및 디바이스 제조방법
EP3346488B1 (en) Apparatus and method for forming a particle shield
US7554648B2 (en) Blind devices and methods for providing continuous thermophoretic protection of lithographic reticle
JP2004006690A (ja) リソグラフ装置およびデバイス製造方法
KR20070035582A (ko) 입자 오염을 감소시키는 기구 및 방법과 리소그래피 툴
KR101583644B1 (ko) 자석을 포함하는 리소그래피 장치, 리소그래피 장치에서 자석의 보호를 위한 방법, 및 디바이스 제조 방법
US7323698B2 (en) Thermally insulated thermophoretic plate
JP2006287160A (ja) 露光装置及びデバイスの製造方法
CN110959139B (zh) 颗粒抑制系统和方法
US9921497B2 (en) Lithographic apparatus and device manufacturing method
CN110945437B (zh) 用于粒子抑制的气体注射系统
KR20080101751A (ko) 노광장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application