KR20070034822A - -1 Novel Bacillus sp. YN1 and method for producing poly gamma glutamic acid using the same - Google Patents

-1 Novel Bacillus sp. YN1 and method for producing poly gamma glutamic acid using the same Download PDF

Info

Publication number
KR20070034822A
KR20070034822A KR1020050089398A KR20050089398A KR20070034822A KR 20070034822 A KR20070034822 A KR 20070034822A KR 1020050089398 A KR1020050089398 A KR 1020050089398A KR 20050089398 A KR20050089398 A KR 20050089398A KR 20070034822 A KR20070034822 A KR 20070034822A
Authority
KR
South Korea
Prior art keywords
glutamic acid
pga
strain
bacillus
production
Prior art date
Application number
KR1020050089398A
Other languages
Korean (ko)
Other versions
KR100717169B1 (en
Inventor
권현주
김병우
김동은
남수완
전숭종
김영만
유경옥
Original Assignee
(주)오리엔탈 바이오텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)오리엔탈 바이오텍 filed Critical (주)오리엔탈 바이오텍
Priority to KR1020050089398A priority Critical patent/KR100717169B1/en
Publication of KR20070034822A publication Critical patent/KR20070034822A/en
Application granted granted Critical
Publication of KR100717169B1 publication Critical patent/KR100717169B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/22Processes using, or culture media containing, cellulose or hydrolysates thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/38Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine

Abstract

본 발명은 폴리감마글루탐산을 생산하는 신규한 바실러스속 YN-1 균주와 이를 이용한 폴리감마글루탐산의 제조방법에 관한 것으로, 상기 균주를 통상의 탄소원 및 질소원을 포함한 배지에서 배양하고, 상기 배양물으로부터 폴리감마글루탐산을 수득하는 것을 포함하는 폴리감마글루탐산의 제조방법을 제공함으로써, 품질이 우수하고 값이 저렴한 폴리감마글루탐산의 제공할 수가 있다.The present invention relates to a novel Bacillus YN-1 strain producing polygamma glutamic acid and a method for producing polygamma glutamic acid using the same, wherein the strain is cultured in a medium containing a common carbon source and a nitrogen source, and the poly By providing a method for producing polygamma glutamic acid comprising obtaining gamma glutamic acid, it is possible to provide polygamma glutamic acid which is excellent in quality and inexpensive.

폴리감마글루탐산, 바실러스속 YN-1 균주 Polygamma glutamic acid, Bacillus YN-1 strain

Description

폴리감마글루탐산을 생산하는 신규한 바실러스속 YN-1 균주와 이를 이용한 폴리감마글루탐산의 제조방법{Novel Bacillus sp. YN―1 and method for producing poly gamma glutamic acid using the same}Novel Bacillus gen-1 strain producing polygamma glutamic acid and method for producing polygamma glutamic acid using the same {Novel Bacillus sp. YN-1 and method for producing poly gamma glutamic acid using the same}

도 1은 바실러스속 YN-1 균주의 pH(A)와 온도(B)에 따른 폴리감마글루탐산의 생산량에 대한 그래프이고,1 is a graph showing the production of polygamma glutamic acid according to pH (A) and temperature (B) of the genus Bacillus YN-1 strain,

도 2는 바실러스속 YN-1 균주의 탄소원에 따른 폴리감마글루탐산의 생산량에 대한 그래프이고,Figure 2 is a graph of the production of poly-gamma glutamic acid according to the carbon source of the genus Bacillus YN-1 strain,

도 3은 바실러스속 YN-1 균주의 과당 농도에 따른 폴리감마글루탐산의 생산량에 대한 그래프이고,Figure 3 is a graph of the production of polygamma glutamic acid according to fructose concentration of the genus Bacillus YN-1 strain,

도 4는 바실러스속 YN-1 균주의 질소원에 따른 폴리감마글루탐산의 생산량에 대한 그래프이고,Figure 4 is a graph of the production of polygamma glutamic acid according to the nitrogen source of the genus Bacillus YN-1 strain,

도 5는 L-글루탐산 비의존성 폴리감마글루탐산 생산 균주의 체내 대사 과정을 간략하게 나타낸 도식화이고,FIG. 5 is a schematic of the metabolic process in the body of L-glutamic acid independent polygammaglutamic acid producing strain,

도 6은 바실러스 속 YN-1 균주의 배양 시간에 따라 생산된 폴리감마글루탐산의 물리적인 특성의 변화를 SDS-PAGE의 결과로 나타낸 사진이고,Figure 6 is a photograph showing the change in the physical properties of the polygamma glutamic acid produced according to the incubation time of Bacillus YN-1 strain as a result of SDS-PAGE,

도 7은 바실러스속 YN-1 균주의 성장곡선과 성장 시간에 따른 PGA생산량과 pH의 변화를 나타낸 그래프이다.7 is a graph showing changes in PGA production and pH according to growth curve and growth time of Bacillus YN-1 strains.

1. Abe, K., Y. Ito, T. Ohmachi, and Y. Asada. 1997. Purification and properties of two isozymes of gamma-glutamyltranspeptidase from Bacillus subtilis TAM-4. Biosci . Biotechnol. Biochem. 61: 1621-1625. Abe, K., Y. Ito, T. Ohmachi, and Y. Asada. 1997. Purification and properties of two isozymes of gamma-glutamyltranspeptidase from Bacillus subtilis TAM-4. Biosci . Biotechnol. Biochem . 61 : 1621-1625.

2. Ashiuchi, M., K, Tani, K, Soda, and H, Misono. 1998. Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing poly-gamma-glutamate. J. Biochem. 123: 1156-1163.2.Ashiuchi, M., K, Tani, K, Soda, and H, Misono. 1998. Properties of glutamate racemase from Bacillus subtilis IFO 3336 producing poly-gamma-glutamate. J. Biochem . 123 : 1156-1163.

3. Ashiuchi, M., C. Nawa, T. Kamei, J. J. Song, S. P. Hong, M. H. Sung, K. Soda, T. Yagi, and H. Misono. 2001. Physiological and biochemical characteristics of poly gamma-glutamate synthetase complex of Bacillus subtilis. Eur . J. Biochem. 268: 5321-5328.Ashiuchi, M., C. Nawa, T. Kamei, JJ Song, SP Hong, MH Sung, K. Soda, T. Yagi, and H. Misono. 2001. Physiological and biochemical characteristics of poly gamma-glutamate synthetase complex of Bacillus subtilis. Eur . J. Biochem . 268 : 5321-5328.

4. Ashiuchi, M., T. Kamei, D.-H. Baek, S.-Y. Shin, M.-H. Sung, K. Soda, T. Yagi, and H. Misono. 2001. Isolation of Bacillus subtilis (chungkookjang), a poly-γ-glutamate producer with high genetic competence. Appl Microbiol Biotechnol. 57: 764-769. 4. Ashiuchi, M., T. Kamei, D.-H. Baek, S.-Y. Shin, M.-H. Sung, K. Soda, T. Yagi, and H. Misono. 2001. Isolation of Bacillus subtilis ( chungkookjang ), a poly-γ-glutamate producer with high genetic competence. Appl Microbiol Biotechnol . 5 7: 764-769.

5. Bovarnick, M. 1942. The formation of extracellular D(-)glutamic acid polypeptide by Bacillus subtilis. J. Biol . Chem. 145: 415-424. 5. Bovarnick, M. 1942.The formation of extracellular D (-) glutamic acid polypeptide by Bacillus subtilis . J. Biol . Chem . 145 : 415-424.

6. Cheng, C., Y. Asada, and T. Asida. 1989. Production of γ- polyglutamic acid by Bacillus subtilis A35 under denitrifying conditions. Agtic . Biol . Chem. 53: 2369-2375. 6. Cheng, C., Y. Asada, and T. Asida. 1989. Production of γ-polyglutamic acid by Bacillus subtilis A35 under denitrifying conditions. Agtic . Biol . Chem . 53 : 2369-2375.

7. Gota, A. and M. Kunioka. 1992. Biosynthesis and hydrolysis of poly(γ-glutamic acid) from Bacillus subtilis IFO3335. Biosci . Biotech. Biochem. 56: 1031-1035.7. Gota, A. and M. Kunioka. 1992. Biosynthesis and hydrolysis of poly (γ-glutamic acid) from Bacillus subtilis IFO3335. Biosci . Biotech. Biochem . 56 : 1031-1035.

8. Hara, T., Y, Fujio, and S. Ueda. 1982. Polyglutamate production by Bacillus subtilis (natto). J Appl Biochem. 4: 112-120. 8. Hara, T., Y, Fujio, and S. Ueda. 1982. Polyglutamate production by Bacillus subtilis ( natto ). J Appl Biochem . 4 : 112-120.

9. Holzer, H. 1969. Regulation of enzymes by enzyme-catalyzed chemical modification. Adv Enzymol. 32: 297-326.9.Holzer, H. 1969. Regulation of enzymes by enzyme-catalyzed chemical modification. Adv Enzymol . 32 : 297-326.

10. Ito, Y., T. Tanaka, T. Ohmachi, and Y. Asada. 1996. Glutamic acid independent production of poly (γ-glutamic acid) by Bacillus subtilis TAM-4. Biosci . Biotech. Biochem. 60: 1239-1242.10. Ito, Y., T. Tanaka, T. Ohmachi, and Y. Asada. 1996. Glutamic acid independent production of poly (γ-glutamic acid) by Bacillus subtilis TAM-4. Biosci . Biotech. Biochem. 60 : 1239-1242.

11. Kubota, H., T. Matsunobu, K. Uotani, H. Takabe, A. Satoh. T. Tanaka, and M. Taniguchi. 1993. Production of poly(γ-glutamic acid) by Bacillus subtilis F-2-01. Biosci , Biotech. Biochem. 57: 1212-1213.11. Kubota, H., T. Matsunobu, K. Uotani, H. Takabe, A. Satoh. T. Tanaka, and M. Taniguchi. 1993. Production of poly (γ-glutamic acid) by Bacillus subtilis F-2-01. Biosci , Biotech. Biochem . 57 : 1212-1213.

12. Kunioka, M. 1997. Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl Microbiol Biotechnol. 47: 467-475. 12. Kunioka, M. 1997. Biosynthesis and chemical reactions of poly (amino acid) s from microorganisms. Appl Microbiol Biotechnol . 47 : 467-475.

13. Stadtman, E. R. 1966. Allosteric regulation of enzyme activity. Adv Enzymol. 28: 41-154.13. Stadtman, ER 1966. Allosteric regulation of enzyme activity. Adv Enzymol . 28 : 41-154.

14. Thorne, C. B. and D. M. Molnar. 1955. D-Amino acid transamination in Bacillus anthracis. J. Bacteriol. 70: 420-426.14. Thorne, CB and DM Molnar. 1955. D-Amino acid transamination in Bacillus anthracis . J. Bacteriol . 70 : 420-426.

15. Thorne, C. B., C.G. Gomez, H.E. Noyes, and R.D. Housewright. 1954. Production of glutamyl polypeptide by Bacillus subtillis. J. Bacteriol. 68: 307-315.15. Thorne, CB, CG Gomez, HE Noyes, and RD Housewright. 1954. Production of glutamyl polypeptide by Bacillus subtillis . J. Bacteriol . 68 : 307-315.

16. Yahata, K., J. Sadanobu and T. Endo, T. 1992. Preparation of poly-α-benzyl-γ-glutamate fiber. Polym . Prepr . Jpn. 41: 1077.16. Yahata, K., J. Sadanobu and T. Endo, T. 1992. Preparation of poly-α-benzyl-γ-glutamate fiber. Polym . Prepr . Jpn . 41 : 1077.

본 발명은 폴리감마글루탐산을 생산하는 신규한 바실러스속 YN-1 균주와 이를 이용한 폴리감마글루탐산의 제조방법에 관한 것이다.The present invention relates to a novel Bacillus YN-1 strain producing polygamma glutamic acid and a method for producing polygamma glutamic acid using the same.

최근 환경문제의 심각성과 각종 환경 규제로 인해 친환경 생분해성 고분자에 대한 연구가 활발히 이루어지고 있다. 이중 많은 연구와 관심이 집중되어 있는 생분해성 고분자에는 미생물이 생산하는 폴리에스터계의 폴리히드록시알칸노에이트(polyhydroxyalkanoates; PHA), 풀룰란(pullulan), 미생물 셀룰로오스(microbial cellulose) 등의 다당류와 폴리펩타이드계의 폴리 감마 글루탐산(poly-γ-glutamic acid; 이하 PGA라 칭함) 등이 있다. 이중 PGA는 일본 전통식품 낫토(natto), 한국 청국장의 점액물질로 잘 알려져 있으며, 글루탐산의 감마-카르복실산(γ-carboxylic acid)과 α-아미노기(α-amino)가 아미드 링크(amide linkages)에 의해 연결되어 있는 거대한 중합체(polymer)로 그 분자량은 생산균에 의해 100∼1000 kDa 정도이다[문헌정보 1, 6, 7, 16]. 그리고, 이의 PGA의 주요 생산 균주로는 바실러스속(Bacillus sp.)으로 B. 안트라시아(B. anthracis), B. 리케니포르미스(B. licheniformis), B. 메가테리움(B. megaterium), B. 서브틸리스[B. subtilis (natto)], B. 서브틸리스[B. subtilis (chungkookjang)] 등이 알려져 있다[문헌정보 2, 4]. Recently, due to the seriousness of environmental problems and various environmental regulations, research on eco-friendly biodegradable polymers is being actively conducted. Among these, biodegradable polymers, which have attracted much research and attention, include polysaccharides and polysaccharides such as polyester-based polyhydroxyalkanoates (PHA), pullulan, and microbial cellulose. Peptide-based poly-gamma glutamic acid (poly-γ-glutamic acid; hereinafter referred to as PGA). Among these, PGA is well known as a slime substance of natto, a Korean traditional soup, and gamma-carboxylic acid and α-amino group of glutamic acid have amide linkages. It is a large polymer connected by the molecular weight, and its molecular weight is about 100 to 1000 kDa by the production bacteria [document information 1, 6, 7, 16]. In addition, the main production strain of PGA is Bacillus sp. , Bacillus (B. anthracis ), B. licheniformis ( B. licheniformis ), B. megaterium ( B. megaterium ) , B. subtilis - B. subtilis (natto)], B. subtilis [B. subtilis (chungkookjang)], etc. are known [Document information 2, 4].

PGA는 바실러스 서브틸리스 등의 몇몇 바실러스 속 균주의 발효 생산물로써, 배양 시에 세포 밖으로 분비되어 지며 사람과 환경에 독성이 전혀 없고, 수용성이며 생분해 가능한 고분자로 알려져 있다[문헌정보 6, 7]. 이런 특징 때문에 PGA는 침전농축장치, 습윤제, 동결방지제, 약물 담체(drug carrier), 생분해성 섬유, 사료첨가제 등의 다양한 분야에서 이용이 가능하며, 이러한 이유로 몇 년 전부터 식품, 화장품, 의약 등의 산업에서 많은 관심을 가지고 있는 고부가가치 바이오소재로 인식되어 오고 있다. PGA is a fermentation product of several strains of the genus Bacillus, such as Bacillus subtilis, which is secreted out of cells at the time of culture and is known as a water-soluble and biodegradable polymer that is not toxic to humans and the environment. Because of this feature, PGA can be used in various fields such as precipitation thickeners, wetting agents, cryoprotectants, drug carriers, biodegradable fibers, feed additives, etc. Has been recognized as a high value-added biomaterial with much interest.

일반적으로 PGA 생산 균주는 크게 두 가지 형태로 분류하는 데, 배지 내에 L-글루탐산의 존재 하에서만 PGA를 생산하는 것과 L-글루탐산의 존재 유무에 상관없이 PGA를 생산하는 균주로 구분한다. 이중, L-글루탐산 의존 균주는 바실러스 서브틸리스[문헌정보 5], 바실러스 서브틸리스 ATCC9945[문헌정보 15], 바실러스 서브틸리스 IFO3335[문헌정보 7]와 바실러스 서브틸리스 F-2-01[문헌정보 11] 등이 보고되어 있다. 그리고 L-글루탐산 비의존성 균주로는 바실러스 서브틸리스 TAM-4 [문헌정보 10] 와 바실러스 리케니포르미스 A35[문헌정보 6]가 보고되어 있다. In general, PGA-producing strains are classified into two types, which are classified into those which produce PGA only in the presence of L-glutamic acid and those which produce PGA regardless of the presence or absence of L-glutamic acid. Of these, L-glutamic acid dependent strain is Bacillus Subtilis [document 5], Bacillus Subtilis ATCC9945 [Documentation 15], Bacillus Subtilis IFO3335 [Ref. 7] and Bacillus Subtilis F-2-01 [document information 11] and the like have been reported. And L-glutamic acid independent strain, Bacillus Subtilis TAM-4 [Ref. 10] and Bacillus rickenformis A35 [Documentation 6] is reported.

그러나, 현재까지 보고된 PGA 연구에 대한 결과는 주로 합성경로와 유전자 등에 관한 것으로 산업화에 직접 적용할 수 있는 대량 생산 균주의 보고 및 대량 생산 방법에 대한 연구는 거의 이루어지지 않았다. However, the results of PGA studies reported to date are mainly related to synthetic pathways and genes, and there have been few studies on reports of mass production strains and methods of mass production that can be directly applied to industrialization.

이에, 본 발명자는 청국장에서 PGA를 대량 생산하는 신규한 균주를 분리하고, 상기 균주의 생화학적 특성을 연구하여 산업적으로 PGA의 대량 생산공정에 사용할 수 있도록 함으로써, 품질 좋고 가격이 저렴한 PGA를 소비자에게 제공하고자 하였다. Therefore, the present inventor isolates a new strain that produces large amounts of PGA in Cheonggukjang, and studies the biochemical properties of the strain so that it can be industrially used in the mass production process of PGA, thereby providing a high quality and low cost PGA to consumers. To provide.

따라서 본 발명의 목적은 통상의 탄소원 및 질소원을 포함한 배지로부터 폴리감마글루탐산의 생산효율이 우수한 신규한 균주를 제공하는 것이다.Accordingly, an object of the present invention is to provide a novel strain having excellent production efficiency of polygamma glutamic acid from a medium containing a common carbon source and nitrogen source.

또한, 본 발명의 다른 목적은 상기 신규한 균주를 통상의 탄소원 및 질소원을 포함한 배지에서 배양하고, 상기 배양물으로부터 폴리감마글루탐산을 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method of culturing the novel strain in a medium containing a common carbon source and a nitrogen source, and producing polygammaglutamic acid from the culture.

상기와 같은 목적을 달성하기 위하여, 본 발명은 통상의 탄소원 및 질소원을 포함한 배지로부터 폴리감마글루탐산을 생산하는 기탁번호가 KACC 91170P인 바실러스속 YN-1 균주(Bacillus sp. YN-1)를 제공한다.In order to achieve the above object, the present invention provides a Bacillus sp. YN-1 strain ( Bacillus sp. YN-1) having a deposit number KACC 91170P for producing polygamma glutamic acid from a medium containing a common carbon source and nitrogen source. .

또한, 다른 목적을 달성하기 위하여, 본 발명은 상기 균주를 통상의 탄소원 및 질소원을 포함한 배지에서 배양하고, 상기 배양물으로부터 폴리감마글루탐산을 수득하는 것을 포함하는 폴리감마글루탐산의 제조방법을 제공한다.In addition, to achieve another object, the present invention provides a method for producing polygamma glutamic acid comprising culturing the strain in a medium containing a common carbon source and a nitrogen source, and obtaining polygamma glutamic acid from the culture.

이하, 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail.

이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가진다.At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning commonly understood by those of ordinary skill in the art.

또한, 종래와 동일한 기술적 구성 및 작용에 대한 반복되는 설명은 생략하기로 한다.In addition, repeated description of the same technical configuration and operation as in the prior art will be omitted.

이하, 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail.

이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가진다.At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning commonly understood by those of ordinary skill in the art.

또한, 종래와 동일한 기술적 구성 및 작용에 대한 반복되는 설명은 생략하기로 한다.In addition, repeated description of the same technical configuration and operation as in the prior art will be omitted.

1. 신규 미생물의 분리 및 동정1. Isolation and Identification of New Microorganisms

본 발명은 통상의 탄소원과 질소원이 포함된 배지에서 미생물을 이용하여 폴리감마글루탐산(Poly-γ-glutamic acid; PGA)을 생산하는 방법에 있어서, 생산 효율이 매우 우수하여 종래 사용되는 균주를 대체할 수 있는 신규 바실러스 속 균주를 연구하고 이를 산업 기술에 적용하기 위하여, 전국 각 지역의 청국장으로부터 연구 목적에 부합되는 신규 미생물을 분리하였으며, 이를 바실러스속 YN-1(Bacillus sp. YN-1)라 명명하였다. 그리고, 상기 균주를 동정한 결과, 바실러스 서브틸러스 MO4(Bacillus subtilis MO4), 바실러스속 WL-3(Bacillus sp . WL-3), 바실러스 아밀로리퀘파시엔 Ba-S13(Bacillus amyloliquefaciens Ba-S13), 및 바실러스 리첸니포르미스 DFM13(Bacillus licheniformis DSM 13)과 밀접한 근연종으로 확인되었다.The present invention is a method of producing poly-gamma glutamic acid (Poly-γ-glutamic acid; PGA) using a microorganism in a medium containing a common carbon source and nitrogen source, the production efficiency is very excellent to replace the conventionally used strains In order to study the new strains of Bacillus spp. And apply them to industrial technology, new microorganisms suitable for the purpose of research were isolated from Cheonggukjang of various regions of the country and named Bacillus sp. YN-1. It was. And, as a result of identifying the strain, Bacillus subtilis MO4 ( Bacillus subtilis MO4), Bacillus sp . WL-3, Bacillus amyloliquefacien Ba-S13 ( Bacillus amyloliquefaciens) Ba-S13), and Bacillus licheniformis DSM13 ( Bacillus licheniformis DSM 13).

그리고, 상기 균주는 2005년 7월 20일 농업진흥청 산하 농업생명공학연구원에 기탁하여, 기탁번호 KACC 91170P를 부여받았다.In addition, the strain was deposited with the Agricultural Biotechnology Research Institute under the Agriculture Promotion Agency on July 20, 2005, and received the accession number KACC 91170P.

2. 바실러스속 YN-1의 배양2. Culture of Bacillus YN-1

가. 배지end. badge

본 발명에서 바실러스속 YN-1의 폴리감마글루탐산 생산량을 증가시키기 위해, 사용하는 배지에 탄소원은 과당(fructose), 젖당(lactose), 갈락토스(galactose), 글리세롤(glycerol) 및 시트르산(citric acid)으로 이루어지는 군에서 적어도 1종이 선택된 탄소원을 사용하고, 질소원은 염화암모늄 또는 L-글루탐산을 포함하여 사용하는 것이 바람직하다. 특히, 탄소원은 가장 바람직하게 과당을 배지 중량기준으로 1∼4%를 사용하는 것이 바람직한 데, 이는 1% 미만일 경우에는 폴리감마글루탐산의 생산량이 감소되고, 4%를 초과할 경우에는 초과량에 비하여 증산 효과가 거의 없기 때문이다. 그리고, 본 발명에서는 가장 바람직하게는 멸균수에 3% 글루탐산, 4% 과당, 1% 시트르산, 1% 염화암모늄[(NH4)2SO4], 0.1% 이인산칼륨(K2HPO4), 0.05% 황산마그네슘(MgSO4), 0.005% 제이염화철(FeCl3), 0.02% 염화칼슘(CaCl2), 0.002% 황산망간(MnSO4)를 혼합하고, 상기 배지의 ㎖ 당 50㎍의 바이오틴(biotine)을 첨가하여 이루어지는 배지를 사용한다.In order to increase the polygamma glutamic acid production of Bacillus YN-1 in the present invention, the carbon source is used as fructose, fructose, lactose, galactose, glycerol and citric acid. It is preferable to use at least 1 selected carbon source from the group which consists of, and a nitrogen source including ammonium chloride or L-glutamic acid. In particular, the carbon source is most preferably used 1 to 4% of the fructose by weight of the medium, which is less than 1%, the production of poly-gamma glutamic acid is reduced, when exceeding 4% compared to the excess This is because there is little increase effect. In the present invention, most preferably, 3% glutamic acid, 4% fructose, 1% citric acid, 1% ammonium chloride [(NH 4 ) 2 SO 4 ], 0.1% potassium diphosphate (K 2 HPO 4 ), 0.05% magnesium sulfate (MgSO 4 ), 0.005% iron dichloride (FeCl 3 ), 0.02% calcium chloride (CaCl 2 ), 0.002% manganese sulfate (MnSO 4 ) are mixed and 50 μg of biotine per ml of the medium. A medium formed by adding is used.

나, 조건Me, condition

본 발명의 바실러스속 YN-1 균주는 pH 8.0과 온도 37℃에서 가장 높은 PGA의 생산량을 나타낸다.The Bacillus YN-1 strain of the present invention exhibits the highest production of PGA at pH 8.0 and at 37 ° C.

3. 폴리감마글루탐산의 물리적인 특성3. Physical Properties of Polygammaglutamic Acid

본 발명의 바실러스속 YN-1 균주는 최적의 조건에서 12시간 이상 배양을 하면 4,000∼6,000KDa 분자량의 폴리감마글루탐산을 생산한다.The Bacillus YN-1 strain of the present invention produces polygamma glutamic acid having a molecular weight of 4,000 to 6,000 KDa when incubated for 12 hours or more under optimal conditions.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 오로지 본 발명을 구체적으로 셜명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only intended to specifically describe the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

[[ 실험예Experimental Example ]] PGA 분리, 정제 및 분자량 측정PGA Separation, Purification and Molecular Weight Measurement

먼저, LB배지에 배양한 균주를 완전 배지(complete medium; 0.5% polypeptone, 0.25% yeast extract, 0.5% NaCl, 0.05% MgSO4·7H2O, pH7.0)에 접종하고 배양액이 660nm에서 흡광도(OD660nm )가 2.1이 될 때까지 배양한 다음, 상기 배양액을 원심분리하여 균체를 수거하고, 수거한 균체는 0.85% NaCl 용액으로 현탁하고 원심분리하여 다시 균체를 수거하였다. 그리고, 상기 수거된 균체를 NaCl로 재현탁하고, 이를 균체가 10%가 되도록 PGA 기초 생산 배지에 접종하여 37℃, 72시간 동안 배양하였다. 이때, PGA 기초 생산 배지는 2% 글루탐산, 1% 황산암모늄, 1% 시트르산, 0.1% 이인산칼륨, 0.1% 인산수소나트륨(Na2HPO4), 0.05% 황산마그네슘, 0.005% 염화제이철, 0.02% 염화칼슘, 0.002% 황산망간에 50㎍/㎖의 바이오틴이 첨가되어 이루어져 있으며, 생산된 PGA는 배양 완료된 배지를 시료로 하여 측정하였다.First, strains incubated in LB medium were inoculated in complete medium (0.5% polypeptone, 0.25% yeast extract, 0.5% NaCl, 0.05% MgSO 4 · 7H 2 O, pH7.0) and the culture absorbed at 660 nm. OD 660 nm ) was incubated until 2.1, and the cells were collected by centrifugation of the culture solution, and the collected cells were suspended in 0.85% NaCl solution and centrifuged to collect the cells again. The collected cells were resuspended with NaCl, and the cells were inoculated in a PGA basal production medium so that the cells became 10% and incubated at 37 ° C. for 72 hours. At this time, the PGA basal production medium was 2% glutamic acid, 1% ammonium sulfate, 1% citric acid, 0.1% potassium diphosphate, 0.1% sodium hydrogen phosphate (Na 2 HPO 4 ), 0.05% magnesium sulfate, 0.005% ferric chloride, 0.02% 50 μg / ml of biotin was added to calcium chloride and 0.002% manganese sulfate, and the produced PGA was measured by using the cultured medium as a sample.

그런 다음, 배양액은 12,000×g, 10분간 원심분리하여 균체를 제거하고 상등액을 모은다[문헌정보 3]. 상등액의 4배 부피의 메탄올을 첨가하여 PGA를 침전시키고, 침전된 PGA는 멸균수 2㎖에 녹인 후 멸균수를 이용하여 투석하여 순수한 PGA만 남도록 하였다. 분리 정제된 PGA는 SDS-PAGE를 행하여 확인하였다.Then, the culture solution is centrifuged for 12,000 × g, 10 minutes to remove the cells and collect the supernatant [document 3]. PGA was precipitated by adding methanol four times the volume of the supernatant, and the precipitated PGA was dissolved in 2 ml of sterile water and dialyzed with sterile water so that only pure PGA remained. The separated and purified PGA was confirmed by performing SDS-PAGE.

또한, 투석으로 수득된 PGA는 멸균수에 녹인 다음, PGA 용액 10㎕를 SDS-PAGE(5% acrylamide)로 분석하였다. PGA는 메틸렌 블루(methylene blue)염색으로 확인하였다[문헌정보10]. 그리고, 전기영동으로 분리된 PGA은 플루오르켐 5500 이미지 분석기(FluorchemTM 5500 Image Analyzer)를 사용하여 정량하였다.In addition, PGA obtained by dialysis was dissolved in sterile water, and then 10 µl of PGA solution was analyzed by SDS-PAGE (5% acrylamide). PGA was confirmed by methylene blue staining [document 10]. The PGA separated by electrophoresis was quantified using a Fluorchem 5500 Image Analyzer.

[[ 실시예Example 1]  One] 폴리감마글루탐산Polygamma Glutamic Acid (PGA) 생산 균주 분리 및 동정(PGA) Production Strain Isolation and Identification

PGA 생산 균주를 분리할 목적으로 전국 각 지역의 재래식으로 조제된 청국장을 채집하고, 각각의 청국장 1g을 멸균수 10㎖에 현탁한 후, 포자를 형성하지 않는 균주들을 제거하기 위하여 100℃에서 5분간 열처리하였다. 그리고, LB-아가 배지(0.5% Yeast extract, 0.5% NaCl, 1% Bacto tryptone, 1.5% Agar)에 100℃, 5분간 열처리한 청국장을 평판 희석하고 37℃에서 배양하여 균주를 분리하였다. 분리된 균주는 PGA 생산배지[2% Glutamic acid, 1% (NH4)2SO4, 1% Citric acid, 0.1% K2HPO4, 0.1% Na2HPO4, 0.05% MgSO4, 0.005% FeCl3, 0.02% CaCl2, 0.002% MnSO4, 50㎍/㎖ biotin]에 배양하고, 배양물에서 PGA의 존재유무를 SDS-PAGE로 확인하여 PGA 생산균주를 분리하였다. For the purpose of isolating PGA-producing strains, conventionally prepared Cheonggukjang was collected from each country in Korea, and 1g of each Cheonggukjang was suspended in 10ml of sterile water, followed by 5 minutes at 100 ° C to remove spores that did not form spores. Heat treatment. In addition, the strain was isolated by diluting the plate of Cheonggukjang which was heat-treated at 100 ° C. for 5 minutes in LB-agar medium (0.5% Yeast extract, 0.5% NaCl, 1% Bacto tryptone, 1.5% Agar) and incubated at 37 ° C. The isolated strain was PGA production medium [2% Glutamic acid, 1% (NH 4 ) 2 SO 4 , 1% Citric acid, 0.1% K 2 HPO 4 , 0.1% Na 2 HPO 4 , 0.05% MgSO 4 , 0.005% FeCl 3 , 0.02% CaCl 2 , 0.002% MnSO 4 , 50 μg / ml biotin], and the presence of PGA in the culture was confirmed by SDS-PAGE to isolate the PGA producing strain.

분리된 PGA 생산 균주는 16s rRNA 서열 분석(Macrogen), API test (bioMetrieux) 및 베르게이 메뉴얼(Bergey's manual) 상에 준하여 동정하였다.Isolated PGA producing strains were identified according to 16s rRNA sequence analysis (Macrogen), API test (bioMetrieux) and Bergey's manual.

이의 결과, 먼저, 열처리를 거쳐 순수 분리된 세균 콜로니는 약 30여 종류였고, 이의 균주들을 각각 완전배지(complete medium)에서 전 배양을 하고, PGA생산 배지에서 72시간 본 배양하여 PGA의 생산 정도를 비교하여 순수 분리된 30여 종류의 세균 중에서 PGA를 생산하는 12종의 균주를 선정하였고, 이중 중 가장 생산성이 높은 균주를 선택하였다.As a result, there were about 30 kinds of bacterial colonies that were purely separated through heat treatment, and their strains were pre-cultured in a complete medium, and then cultured for 72 hours in a PGA production medium to improve the production of PGA. In comparison, 12 strains producing PGA were selected from 30 kinds of bacteria isolated purely, and among them, the most productive strain was selected.

그리고, 가장 생산성이 높은 균주의 형태적 및 생리적 특성과 탄소원의 이용성 및 16s rRNA 염기서열의 측정한 결과를 하기 표 1에 나타내었다.In addition, the morphological and physiological characteristics of the most productive strains, the availability of carbon sources, and the measurement results of the 16s rRNA sequences are shown in Table 1 below.

이의 결과, 최종 선발된 균주는 그람 양성의 간균이며 운동성이 없으며 내열성의 포자를 형성하고, 전분 가수분해(starch hydrolysis)와 리파제 가수분해(lipase hydrolysis)가 음성이며 45℃의 온도에서도 활발하게 성장하는 생화학적인 특성을 나타내었다. 또한 이 균주는 고 농도의 NaCl(7%)에서도 활발한 성장을 나타내었으며, 탄소원의 이용성을 조사한 결과 바실러스 속으로 나타났다.As a result, the final selected strain was Gram-positive bacillus, motionless, forming heat-resistant spores, negative in starch hydrolysis and lipase hydrolysis, and actively growing even at a temperature of 45 ° C. Biochemical properties were shown. In addition, the strain showed active growth even at high concentrations of NaCl (7%).

그리고, 16s rRNA 서열분석(sequencing)을 이용하여 확인 및 동정한 결과 바실러스 서브틸리스 MO4과 97.7%, 바실러스속 WL-3과 97.6%, 바실러스 아밀로리퀘파시엔 Ba-S13와 97.6%, 바실러스 리첸니포르미스 DFM13와 88.6%의 상동성을 나타내었다.In addition, 97.7% of Bacillus subtilis MO4 was identified and identified using 16s rRNA sequencing. Bacillus WL-3 and 97.6%, Bacillus amyloliquefaciene Ba-S13 and 97.6%, It showed a homology of 88.6% with Bacillus licheniformis DFM13.

Figure 112005053803053-PAT00001
Figure 112005053803053-PAT00001

이에, 본 발명자는 최종 선발 균주를 바실러스속 YN-1로 명명하였으며, 이의 균주를 2005년 7월 20일 농업진흥청 산하 농업생명공학연구원에 기탁하여, 기탁번호 KACC 91170P를 부여받았다.Therefore, the present inventor named the final selection strain Bacillus YN-1, and the strain was deposited on July 20, 2005 to the Agricultural Biotechnology Research Institute under the Agriculture Promotion Agency, was given the accession number KACC 91170P.

[[ 실시예Example 2] PGA 생산 균주의 글루탐산  2] Glutamic Acid of PGA-producing Strains 요구성Demand

통상적으로 PGA생산 균주는 크게 두 가지로 분류되는 데, 한 그룹은 PGA생산 및 균주 성장에 글루탐산을 필요로 하는 글루탐산 의존 그룹(glutamic acid dependent group)과 글루탐산이 필요없는 글루탐산 비의존 그룹(glutamic acid independent group)이라 하는 데, 본 실시예에서는 본 발명의 신규한 균주의 글루탐산의 요구성을 알아보고자, PGA 기초 생산 배지에서 글루탐산을 제외하고 배양하여 균주 성장의 유무를 확인해 보았다. Generally, PGA-producing strains are largely classified into two groups, one group is a glutamic acid dependent group requiring glutamic acid for PGA production and strain growth, and a glutamic acid independent group without glutamic acid. In this example, to determine the requirement of glutamic acid of the novel strain of the present invention, the presence of strain growth was confirmed by culturing except for glutamic acid in a PGA basal production medium.

이의 결과, 본 발명의 균주 성장에 글루탐산을 요구하지 않았어도 PGA 생산이 원활하게 일어나는 것을 확인할 수 있었다(미도시). 따라서 본 발명의 바실러스속 YN-1 균주는 글루탐산 비의존 그룹에 속하는 것을 알 수 있었다.As a result, even if glutamic acid was not required for growth of the strain of the present invention, it was confirmed that PGA production occurred smoothly (not shown). Therefore, Bacillus YN-1 strain of the present invention was found to belong to the glutamic acid independent group.

[[ 실시예Example 3] PGA 생산의 최적 조건 3] Optimum Condition of PGA Production

일반적으로 PGA생산 균주는 배양조건에 따라 PGA생산량의 크게 차이를 보이며 PGA의 생산량의 약 2∼20배의 탄소원과 질소원을 필요로 하는 등의 PGA생산에 배양조건이 아주 중요한 것으로 알려져 있다[문헌정보 12].In general, PGA-producing strains vary greatly in PGA production according to culture conditions, and it is known that culture conditions are very important for PGA production, such as requiring a carbon source and nitrogen source of about 2 to 20 times the production of PGA. 12].

이에, 본 실시예는 본 발명의 바실러스속 YN-1 균주의 PGA대량 생산 조건을 결정하고자, pH, 온도, 탄소원 및 질소원 등의 최적 배양 조건을 알아보고자 하였다.Thus, this example was to determine the optimum PGA mass production conditions of the Bacillus YN-1 strain of the present invention, to find the optimal culture conditions such as pH, temperature, carbon source and nitrogen source.

1. pH와 온도PH and temperature

pH와 온도 변화에 따른 PGA생산량 변화를 측정하였다.Changes in PGA production with pH and temperature were measured.

이의 결과, 도 1의 (A)에 도시된 바와 같이, 산성 환경인 경우에는 PGA생산량이 현저히 약하게 나타나는 것을 확인할 수 있었고 알칼리성의 환경에서 PGA생산량이 증가하는 것을 알 수 있었으며, 이 중에서 PGA 생산 최적 pH를 8.0으로 결정하였다. As a result, as shown in (A) of FIG. 1, it was confirmed that PGA production was significantly weak in an acidic environment, and PGA production was increased in an alkaline environment. Was determined to be 8.0.

그리고, 도 1의 (B)에 의하면, 온도에 따른 PGA 생산량에 차이를 나타내었으며, 이중 37℃에서 가장 높은 량의 PGA를 생산함을 알 수 있었다.In addition, according to (B) of Figure 1, the difference in PGA production according to the temperature was shown, it can be seen that the production of the highest amount of PGA at 37 ℃.

2. 탄소원과 질소원2. Carbon and Nitrogen Sources

PGA 생산 최적 조건의 탄소원과 질소원을 결정하기 위하여, 먼저 탄소원은 말토스(maltose), 과당(fructose), 젖당(lactose), 갈락토스(galactose), 포도당(glucose), 글리세롤(glycerol), 자일로스(xylose), 사카로스(saccharose)를 최종 농도 2%가 되도록 PGA 기초 생산 배지에 첨가하였다. 그리고, 각각 탄소원이 첨가된 배지에서 본 발명의 바실러스속 YN-1을 배양하여 생성된 PGA를 SDS-PAGE로 확인하여 가장 많은 양의 PGA가 생성된 탄소원의 배지를 선정하여 PGA 생산 최적의 탄소원으로 결정하였으며, 질소원은 질산나트륨(NaNO3), 질산암모늄(NH4NO3), 염화암모늄(NH4Cl), 황산암모늄[(NH4)2SO4], 펩톤(peptone), 효모 추출물(yeast extract)을 1%가 되도록 PGA 기초 생산배지에 첨가하여 배양한 후, PGA 생산량을 검토하여 PGA 생산 최적 질소원을 결정하였다.To determine the carbon and nitrogen sources for optimal PGA production, first, the carbon source is maltose, fructose, lactose, galactose, glucose, glycerol, and xylose. xylose) and saccharose were added to the PGA basal production medium to a final concentration of 2%. In addition, the PGA produced by culturing Bacillus YN-1 of the present invention in the medium to which the carbon source was added was identified by SDS-PAGE, and the medium of the carbon source in which the largest amount of PGA was produced was selected as the optimal carbon source for PGA production. The nitrogen sources were sodium nitrate (NaNO 3 ), ammonium nitrate (NH 4 NO 3 ), ammonium chloride (NH 4 Cl), ammonium sulfate [(NH 4 ) 2 SO 4 ], peptone, yeast extract (yeast) extract was added to the PGA basal production medium to 1%, followed by cultivation, and the PGA production was examined to determine the optimal nitrogen source for PGA production.

먼저, 탄소원의 경우, PGA 생산에 필요한 탄소원을 결정하고자, 도 2에 도시된 바와 같이, 탄소원의 최종 농도는 2%로 하였으며 과당을 포함한 10종의 탄소원을 이용하여 본 균주의 PGA 생산량 변화를 확인한 결과, 말토스, 자일로스, 포도당, 사카로스를 탄소원으로 한 경우에는 탄소원을 첨가하지 경우에 비교하여 PGA생산량에는 큰 차이점이 나타나지 않았으며, 젖당, 갈락토스, 글리세롤을 탄소원으로 첨가한 경우에는 1.5∼2.5배 정도의 PGA 생산량이 증가하였고, 과당을 사용한 경우에는 4배 이상의 PGA 생산량이 증가하는 것을 알 수 있었다. 특히, 과당의 경우, 도 3에 도시된 바와 같이, 1∼4%까지는 과당의 첨가량에 따라 점차적으로 PGA의 생산량이 증가하였으나 4% 이상의 첨가에는 생산량의 변화가 없었다. 따라서 본 발명의 바실러스속 YN-1의 탄소원으로 4%의 과당이 가장 바람직하다는 것을 알 수 있었다.First, in the case of the carbon source, to determine the carbon source required for PGA production, as shown in Figure 2, the final concentration of the carbon source was 2% and confirmed the change in PGA production of this strain using 10 carbon sources including fructose As a result, when maltose, xylose, glucose and saccharose were used as the carbon source, there was no significant difference in PGA production compared to the case where no carbon source was added. When lactose, galactose and glycerol were added as carbon sources, It was found that PGA production increased by 2.5 times and that PGA production increased by 4 times when fructose was used. In particular, in the case of fructose, as shown in Figure 3, the production of PGA gradually increased with the addition amount of fructose up to 1 to 4%, but the addition of 4% or more did not change the yield. Therefore, it was found that 4% of fructose is the most preferable carbon source of the genus Bacillus YN-1.

질소원의 경우에는 도 4에 도시된 바와 같이, 각종 질소원을 각각 1%의 농도로 첨가한 결과, 펩톤(peptone)을 비롯한 여러 가지 질소원들은 PGA 생산량을 증가시키지 못하였으나, 염화암모늄(NH4Cl)을 첨가한 경우에는 5배 이상의 PGA 생산량이 증가하는 것을 확인할 수 있었다. 따라서 본 균주의 질소원은 염화암모늄이 가장 바람직한 것을 알 수 있었다.In the case of the nitrogen source, as shown in FIG. 4, as a result of adding various nitrogen sources at a concentration of 1%, various nitrogen sources including peptone did not increase PGA production, but ammonium chloride (NH 4 Cl) When added, it was confirmed that more than 5 times the PGA production increased. Therefore, it was found that ammonium chloride was the most preferable nitrogen source of this strain.

그리고, PGA 생산 균주 중, L-글루탐산 비의존성 균주인 경우에는 도 5에 도시된 바와 같이, 일반적으로 균체내의 대사 과정에서 L-글루탐산이 생성되고 L-글루탐산은 트리카르복실산 사이클(tricarboxylic acid cycle)에 의해 2-옥소글루타르산(2-oxoglutaric acid)과 이소시트르산(isocitric acid)을 통한 시트르산(citric acid)으로부터 생산되는 것으로 추정된다[문헌정보 12]. 그리고, 2-옥소글루타르산에서 L-글루탐산으로 전환되는 경로는 2가지로 알려져 있는 데, 이중 한 가지 경로는 글루타메이트 디하이드로게나제(glutamate dehydrogenase) 경로에 의한 것으로 TCA 사이클의 한 물질인 α-케토글루타르산(α-Ketoglutaric acid)에 암모니아(NH3)가 함께 작용하여 L-글루탐산을 생산하고[문헌정보 13], 또 다른 경로는 글루타민 합성효소(glutamine synthetase; GS)와 글루타민 2--옥소글루타레이트 아미노트랜스퍼라제(glutamine 2-oxoglutarate aminotransferase; GOGAT)에 의해 생성되는 반응하여 L-글루탐산을 생산하는 것이 알려져 있다[문헌정보 9]. In the PGA producing strain, L-glutamic acid-independent strains, as shown in FIG. 5, generally, L-glutamic acid is generated during metabolic processes in cells and L-glutamic acid is a tricarboxylic acid cycle. Is estimated to be produced from citric acid via 2-oxoglutaric acid and isocitric acid (Ref. 12). In addition, there are two known pathways for converting 2-oxoglutaric acid to L-glutamic acid, one of which is by the glutamate dehydrogenase pathway and α-, which is a substance of the TCA cycle. Ammonia (NH 3 ) acts together with α-Ketoglutaric acid to produce L-glutamic acid [13], and another route is glutamine synthetase (GS) and glutamine 2--. It is known to produce L-glutamic acid by reaction produced by glutamine 2-oxoglutarate aminotransferase (GOGAT) [Ref. Information 9].

이에, 본 발명의 바실러스속 YN-1 균주는 상기 실시한 실시예의 결과와 기공지된 연구 논문에 따라, PGA 대량 생산을 위하여 시트르산과 소량의 글루탐산 필요로 하고, L-글루탐산으로 전환되는 2가지 경로 모두를 경유하는 것으로 판단된다. 또한, 본 발명의 균주는 과당과 염화 암모늄(ammonium chloride)을 PGA 생산에 필요로 하는 데, 이는 과당의 경우 여러 효소에 의해 글리세르알데히드-D-인산(glyceralde-D-phosphate)로 되면 해당과정을 거쳐 TCA 사이클로 들어가게 되고 시트르산 등의 과정을 거쳐 글루탐산을 생산하도록 하고, 염화암모늄은 글루타메이트 디하이드로게나제나 글루타민 합성효소에 암모니아를 제공하는 것으로 추정된다. Thus, the Bacillus genus YN-1 strain of the present invention requires citric acid and a small amount of glutamic acid for mass production of PGA according to the results of the above-described embodiment and a well-known research paper, and both pathways are converted to L-glutamic acid. It is believed to pass via. In addition, the strain of the present invention requires fructose and ammonium chloride (ammonium chloride) for the production of PGA, which in the case of fructose glyceralde-D-phosphate by various enzymes, glycolysis It is supposed to enter the TCA cycle and to produce glutamic acid through citric acid and the like, and ammonium chloride is believed to provide ammonia to glutamate dehydrogenase or glutamine synthetase.

이의 판단 근거로, PGA생산 균주 중 하나인 바실러스 서브틸리스 IF03335가 글루탐산 L/D형의 이소머(isomer)가 17/83 의 비율로 존재하여 PGA를 생성하고 있는 것으로 보고하고 있고[문헌정보 12], D-글루탐산은 보통 직접적으로 L-글루탐산에서 변형되기보다는 간접적으로 생성되는 미생물들이 많은 것으로 알려져 있는 데, 구체적인 예로 일본 청국장인 낫토 미생물인 바실러스 서브틸리스(natto)와 바실러스 안트라시아(B. anthracis)의 D-글루탐산 생성 경로를 보면 2-옥소글루타르산과 L-알라닌은 L-글루탐산과 피루브산에 의해 생성되고, D-알라닌은 L-알라닌에서 라세미화(racemization)를 통하여 생성하게 되면서, 생성된 D-알리닌과 2-옥소글루타르산으로부터 D-글루탐산과 피루브산이 합성되는 것으로 보고되어 있다[문헌정보8, 14].Based on this judgment, Bacillus subtilis IF03335, one of the PGA-producing strains, reported that isomer of glutamic acid L / D type was present at a ratio of 17/83 to generate PGA. ], D-glutamic acid is known to have many microorganisms that are indirectly produced rather than directly modified from L-glutamic acid. Specific examples are natto microorganisms (natto) and Bacillus anthracy ( B. anthracis ) D-glutamic acid production pathway, 2-oxoglutaric acid and L-alanine are produced by L-glutamic acid and pyruvic acid, D-alanine is produced by racemization in L-alanine, It has been reported that D-glutamic acid and pyruvic acid are synthesized from D-alanine and 2-oxoglutaric acid (Refs. 8 and 14).

따라서, 상기와 같은 실시예 결과와 공지된 문헌에 의한 판단을 종합한 결과, 본 발명의 바실러스속 YN-1 균주의 최적 PGA 대량 생산 배지는 3% 글루탐산, 4% 과당, 1% 시트르산, 1% 염화암모늄, 0.1% 이인산칼륨(K2HPO4), 0.05% 황산 마그네슘(MgSO4),0.005% 염화제이철(FeCl3), 0.02% 염화칼슘(CaCl2), 0.002% 황산망간(MnSO4) 및 50㎍/㎖ 바이오틴으로 결정하였다.Therefore, as a result of combining the results of the above-described examples and the known literature, the optimum PGA mass production medium of the Bacillus YN-1 strain of the present invention is 3% glutamic acid, 4% fructose, 1% citric acid, 1% Ammonium chloride, 0.1% potassium diphosphate (K 2 HPO 4 ), 0.05% magnesium sulfate (MgSO 4 ), 0.005% ferric chloride (FeCl 3 ), 0.02% calcium chloride (CaCl 2 ), 0.002% manganese sulfate (MnSO 4 ) and 50 μg / ml biotin was determined.

[[ 실시예Example 4] 4] 성장곡선에 따른 PGA 생산 및 분자량 측정PGA production and molecular weight measurement according to growth curve

본 실시예는 본 발명의 균주 성장곡선과 성장 시간에 따른 PGA 생산량과 PGA의 분자량을 알아보고자 하였다.This example was to determine the molecular weight of PGA production and PGA according to the strain growth curve and growth time of the present invention.

이의 결과, 본 발명의 균주를 대량 PGA 생산 배지에 접종하여 배양하면, 다른 균주와는 달리 12시간 이후부터 PGA가 생산되고, 이의 크기는 4,000∼6,000 kDa 정도로 생산 초기부터 큰 분자량의 PGA를 생산하는 특징이 있음을 알 수 있었다(도 6 참조). 특히, 종래 글루탐산 비의존성 균주로 알려진 바실러스 서브틸리스 TAM-4 균주의 성장곡선에 따른 PGA 생산 양상의 경우, 균주의 배양 시간이 36시간 정도가 되면 분자량이 200 kDa 이하의 PGA를 생산하고 54시간 이상 배양하게 되면 200 kDa 이상의 PGA를 생산[문헌정보 10]하는 것과 비교하면 그 효율이 매우 우수함을 알 수 있다. As a result, when the strain of the present invention is inoculated in a large PGA production medium and cultured, unlike other strains, PGA is produced after 12 hours, and its size is about 4,000 to 6,000 kDa, which produces large molecular weight PGA from the beginning of production. It can be seen that there is a characteristic (see Fig. 6). Particularly, in the case of PGA production according to the growth curve of the Bacillus subtilis TAM-4 strain known as a glutamic acid-independent strain, when the incubation time of the strain is about 36 hours, the PGA having a molecular weight of 200 kDa or less is produced and 54 hours. In the case of the above culture, it can be seen that the efficiency is very excellent as compared with the production of PGA of 200 kDa or more.

이외에, 일반적으로 PGA를 생산하는 균주는 성장에 따른 pH 변화도 크게 중성의 범위에서 벗어나지 않지만, 본 발명의 균주는 균주의 배양시간에 관계없이 배양 12시간부터 PGA를 생산하기 시작하여 시간에 따른 생산량은 증가하면서, 배양에 따른 pH의 변화는 점차 산성쪽으로 pH가 변화하는 것을 알 수 있었다(도 7 참조).In addition, in general, the strain producing PGA does not deviate significantly from the neutral pH range with growth, but the strain of the present invention starts producing PGA from 12 hours of culture regardless of the incubation time of the strain, and the yield according to the time. While increasing, the pH of the culture was gradually changed to pH toward the acid was found (see Figure 7).

이상과 같이, 본 발명의 신규한 바실러스속 YN-1 균주는 통상의 탄소원과 질소원을 포함한 배지 내에서 질 좋은 폴리감마글루탐산의 생산효율이 매우 우수하여, 미생물을 이용한 폴리감마글루탐산의 제조공정에 적용하면 품질이 우수하고 값이 저렴한 폴리감마글루탐산의 제공할 수가 있다.As described above, the novel Bacillus YN-1 strain of the present invention is excellent in the production efficiency of high quality polygamma glutamic acid in a medium containing a common carbon source and nitrogen source, and applied to the production process of polygamma glutamic acid using microorganisms. The polygamma glutamic acid can be provided with excellent quality and low cost.

<110> ORIENTAL BIOTECH CO,.LTD <120> Novel Bacillus subtilis YN-1 and Method for producing poly gamma glutamic acid using the same <160> 1 <170> KopatentIn 1.71 <210> 1 <211> 1418 <212> DNA <213> Bacillus sp. YN-1 <220> <221> rRNA <222> (1)..(1418) <223> 16s rRNA partial sequence <400> 1 cggtaagatg ggagcttgnt ccctgatgtt agcggtcgga cgggtgagta acacgtgggt 60 aacctgcctg ctaagactgg gataactccg ggaaaccggg gctaataccg gatgnttgtt 120 tgaaccgcat ggttcagaca taaaaggtgg cttcggctac cacttacaga tggacccgcg 180 gcgcattagc tagttggtga ggtaacggct caccaaggcn acgatgcgta gccgacctga 240 gagggtgatc ggccacactg ggactgagac acggcccaga ctcctacggg aggcagcagt 300 agggaatctt ccgcaatgga cgaaagtctg acggagcaac gccgcgtgag tgatgaaggt 360 tttcggatcg taaagctctg ttgttaggga agaacaagtg ccgttcaaat agggcggcac 420 cttgacggta cctaaccaga aagccacggc taactacgtg ccagcagccg cggtaatacg 480 taggtggcaa gcgttgtccg gaattattgg gcgtaaaggg ctcgcaggcg gtttcttaag 540 tctgatgtga aagcccccgg ctcaaccggg gagggtcatt ggaaactggg gaacttgagt 600 gcagaagagg agagtggaat tccacgtgta gcggtgaaat gcgtagagat gtggaggaac 660 accagtggcg aaggcgactc tctggtctgt aactgacgct gaggagcgaa agcgtgggga 720 gcgaacagga ttagataccc tggtagtcca cgccgtaaac gatgagtgct aagtgttagg 780 gggtttccgc cccttagtgc tgcagctaac gcattaagca ctccgcctgg ggagtacggt 840 cgcaagactg aaactcaaag gaattgacgg gggcccgcac aagcggtgga gcatgtggtt 900 taattcgaag caacgcgaag aaccttacca ggtcttgaca tcctctgaca atcctagaga 960 taggacgtcc ccttcggggg cagagtgaca ggtggtgcat ggttgtcgtc agctcgtgtc 1020 gtgagatgtt gggttaagtc ccgcaacgag cgcaaccctt gatcttagtt gccagcattc 1080 agttgggcac tctaaggtga ctgccggtga caaaccggag gaaggtgggg atgacgtcaa 1140 atcatcatgc cccttatgac ctgggctaca cacgtgctac aatggacaga acaaagggca 1200 gcgaaaccgc gaggttaagc caatcccaca aatctgttct cagttcggat cgcagtctgc 1260 aactcgactg cgtgaagctg gaatcgctag taatcgcgga tcagcatgcc gcggtgaata 1320 cgttcccggg ccttgtacac accgcccgtc acaccacgag agtttgtaac acccgaagtc 1380 ggtgaggtaa cctttagagc cagccgccgg tgtgtcct 1418 <110> ORIENTAL BIOTECH CO, .LTD <120> Novel Bacillus subtilis YN-1 and Method for producing poly gamma          glutamic acid using the same <160> 1 <170> KopatentIn 1.71 <210> 1 <211> 1418 <212> DNA <213> Bacillus sp. YN-1 <220> <221> rRNA (222) (1) .. (1418) <223> 16s rRNA partial sequence <400> 1 cggtaagatg ggagcttgnt ccctgatgtt agcggtcgga cgggtgagta acacgtgggt 60 aacctgcctg ctaagactgg gataactccg ggaaaccggg gctaataccg gatgnttgtt 120 tgaaccgcat ggttcagaca taaaaggtgg cttcggctac cacttacaga tggacccgcg 180 gcgcattagc tagttggtga ggtaacggct caccaaggcn acgatgcgta gccgacctga 240 gagggtgatc ggccacactg ggactgagac acggcccaga ctcctacggg aggcagcagt 300 agggaatctt ccgcaatgga cgaaagtctg acggagcaac gccgcgtgag tgatgaaggt 360 tttcggatcg taaagctctg ttgttaggga agaacaagtg ccgttcaaat agggcggcac 420 cttgacggta cctaaccaga aagccacggc taactacgtg ccagcagccg cggtaatacg 480 taggtggcaa gcgttgtccg gaattattgg gcgtaaaggg ctcgcaggcg gtttcttaag 540 tctgatgtga aagcccccgg ctcaaccggg gagggtcatt ggaaactggg gaacttgagt 600 gcagaagagg agagtggaat tccacgtgta gcggtgaaat gcgtagagat gtggaggaac 660 accagtggcg aaggcgactc tctggtctgt aactgacgct gaggagcgaa agcgtgggga 720 gcgaacagga ttagataccc tggtagtcca cgccgtaaac gatgagtgct aagtgttagg 780 gggtttccgc cccttagtgc tgcagctaac gcattaagca ctccgcctgg ggagtacggt 840 cgcaagactg aaactcaaag gaattgacgg gggcccgcac aagcggtgga gcatgtggtt 900 taattcgaag caacgcgaag aaccttacca ggtcttgaca tcctctgaca atcctagaga 960 taggacgtcc ccttcggggg cagagtgaca ggtggtgcat ggttgtcgtc agctcgtgtc 1020 gtgagatgtt gggttaagtc ccgcaacgag cgcaaccctt gatcttagtt gccagcattc 1080 agttgggcac tctaaggtga ctgccggtga caaaccggag gaaggtgggg atgacgtcaa 1140 atcatcatgc cccttatgac ctgggctaca cacgtgctac aatggacaga acaaagggca 1200 gcgaaaccgc gaggttaagc caatcccaca aatctgttct cagttcggat cgcagtctgc 1260 aactcgactg cgtgaagctg gaatcgctag taatcgcgga tcagcatgcc gcggtgaata 1320 cgttcccggg ccttgtacac accgcccgtc acaccacgag agtttgtaac acccgaagtc 1380 ggtgaggtaa cctttagagc cagccgccgg tgtgtcct 1418

Claims (6)

통상의 탄소원 및 질소원을 포함한 배지로부터 폴리감마글루탐산을 생산하는 기탁번호가 KACC 91170P인 바실러스속 YN-1 균주(Bacillus sp. YN-1).Bacillus YN-1 strain ( Bacillus sp. YN-1) having accession number KACC 91170P for producing polygammaglutamic acid from a medium containing a common carbon and nitrogen source. 제 1항 기재의 균주를 통상의 탄소원 및 질소원을 포함한 배지에서 배양하고, 상기 배양물으로부터 폴리감마글루탐산을 수득하는 것을 포함하는 폴리감마글루탐산의 제조방법.A method for producing polygamma glutamic acid comprising culturing the strain of claim 1 in a medium containing a common carbon source and a nitrogen source, and obtaining polygamma glutamic acid from the culture. 제 2항에 있어서, The method of claim 2, 상기 배지는 과당, 젖당, 갈락토스, 글리세롤 및 시트르산으로 이루어지는 군에서 적어도 1종 이상 선택된 탄소원이 포함된 배지인 것을 특징으로 하는 폴리감마글루탐산의 제조방법.The medium is a method for producing polygamma glutamic acid, characterized in that the medium containing at least one carbon source selected from the group consisting of fructose, lactose, galactose, glycerol and citric acid. 제 3 항에 있어서,The method of claim 3, wherein 상기 배지는 중량기준으로 1∼4 %의 과당이 포함된 배지인 것을 특징으로 하는 폴리감마글루탐산의 제조방법.The medium is a method of producing polygamma glutamic acid, characterized in that the medium containing 1 to 4% of fructose by weight. 제 2 항에 있어서,The method of claim 2, 상기 배지는 염화암모늄(NH4Cl) 또는 글루탐산이 질소원으로 포함된 배지인 것을 특징으로 하는 폴리감마글루탐산의 제조방법.The medium is ammonium chloride (NH 4 Cl) or a method for producing polygamma glutamic acid, characterized in that the medium containing glutamic acid as a nitrogen source. 제 2 항 내지 제 5 항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 5, 상기 배지는 3% 글루탐산, 4% 과당, 1% 시트르산, 1% 염화암모늄, 0.1% K2HPO4, 0.05% 황산마그네슘, 0.005% 제이염화철, 0.02% 염화칼슘, 0.002% 황산망간 및 50㎍/㎖ 바이오틴과 나머지는 멸균수로 이루어지는 것을 특징으로 하는 폴리감마글루탐산의 제조방법.The medium was 3% glutamic acid, 4% fructose, 1% citric acid, 1% ammonium chloride, 0.1% K2HPO4, 0.05% magnesium sulfate, 0.005% iron dichloride, 0.02% calcium chloride, 0.002% manganese sulfate and 50 μg / ml biotin and the remainder. The method for producing polygamma glutamic acid, characterized in that consisting of sterile water.
KR1020050089398A 2005-09-26 2005-09-26 -1 Novel Bacillus sp. YN1 and method for producing poly gamma glutamic acid using the same KR100717169B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050089398A KR100717169B1 (en) 2005-09-26 2005-09-26 -1 Novel Bacillus sp. YN1 and method for producing poly gamma glutamic acid using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050089398A KR100717169B1 (en) 2005-09-26 2005-09-26 -1 Novel Bacillus sp. YN1 and method for producing poly gamma glutamic acid using the same

Publications (2)

Publication Number Publication Date
KR20070034822A true KR20070034822A (en) 2007-03-29
KR100717169B1 KR100717169B1 (en) 2007-05-10

Family

ID=41635653

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050089398A KR100717169B1 (en) 2005-09-26 2005-09-26 -1 Novel Bacillus sp. YN1 and method for producing poly gamma glutamic acid using the same

Country Status (1)

Country Link
KR (1) KR100717169B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849617B1 (en) * 2007-03-30 2008-07-31 주식회사 창성테크 Vitamin beverage of fermented soybeans and preparation method of thereof
KR101236309B1 (en) * 2010-12-30 2013-02-26 대한민국 Medium composition for high concentration culture of Bacillus and uses thereof
KR20200000653A (en) * 2018-06-25 2020-01-03 한국원자력연구원 Bacillus siamensis strain, process for preparing gamma PGA from the same and supernatant comprising gamma PGA prepared from the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102021097B1 (en) * 2018-06-04 2019-09-11 주식회사 잇츠한불 Novel bacillus subtilis hb-31 strain having improved poly-gamma-glutamic acid productivity and medium for poly-gamma-glutamic acid production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100399091B1 (en) 2002-07-10 2003-09-22 Bioleaders Corp Macromolecular weight poly(gamma-glutamic acid) and its use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100849617B1 (en) * 2007-03-30 2008-07-31 주식회사 창성테크 Vitamin beverage of fermented soybeans and preparation method of thereof
KR101236309B1 (en) * 2010-12-30 2013-02-26 대한민국 Medium composition for high concentration culture of Bacillus and uses thereof
KR20200000653A (en) * 2018-06-25 2020-01-03 한국원자력연구원 Bacillus siamensis strain, process for preparing gamma PGA from the same and supernatant comprising gamma PGA prepared from the same

Also Published As

Publication number Publication date
KR100717169B1 (en) 2007-05-10

Similar Documents

Publication Publication Date Title
Ashiuchi et al. Isolation of Bacillus subtilis (chungkookjang), a poly-γ-glutamate producer with high genetic competence
Soliman et al. Polyglutamic acid (PGA) production by Bacillus sp. SAB-26: application of Plackett–Burman experimental design to evaluate culture requirements
Peng et al. High-level production of poly (γ-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus
WO2002055671A1 (en) Bacillus subtilis var. chungkookjang producing high molecular weight poly-gamma-glutamic acid
EP0670371B1 (en) Process for producing optically active 4-hydroxy-2-ketoglutaric acids
Shi et al. Efficient production of poly-γ-glutamic acid by Bacillus subtilis ZJU-7
KR100717169B1 (en) -1 Novel Bacillus sp. YN1 and method for producing poly gamma glutamic acid using the same
Obst et al. Degradation of cyanophycin by Sedimentibacter hongkongensis strain KI and Citrobacter amalonaticus strain G isolated from an anaerobic bacterial consortium
KR100670166B1 (en) -10 Novel Bacillus subtilis CH10 and method for producing poly gamma glutamic acid using the same
Bajaj et al. Sequential optimization Approach for Enhanced production of poly (γ-glutamic acid) from Newly Isolated Bacillus subtilis
JPH04365491A (en) Production of 4-halo-3-hydroxybutylamide
Jadhav et al. Salt tolerant protease produced by an aerobic species belonging to the Bacillus genus isolated from saline soil
JP4720614B2 (en) Poly-γ-L-glutamic acid high-producing microorganism or mutant thereof, method for producing poly-γ-L-glutamic acid using the microorganism, and high molecular weight poly-γ-L-glutamic acid
KR101968118B1 (en) Method for producing poly-gamma-glutamic acid by using novel bacillus subtilis hb-31 strain
KR102265998B1 (en) Method for producing poly(gamma-glutamic acid)
Tambekar et al. Optimization of the production and partial characterization of an extracellular alkaline protease from thermo-halo-alkalophilic lonar lake bacteria
KR100352192B1 (en) A New thermophilic bacterium Brevibacillus borstelensis BCS-1 and A thermostable D-stereospecific amino acid amidase produced therefrom
CN105483060B (en) A kind of Corynebacterium glutamicum of high yield citrulling and its application in fermenting and producing citrulling
Gross Bacterial γ-poly (glutamic acid)
Ahmed Optimization of Some Nutritional Conditions and α-Ketoglutaric Acid Concentration as PGA Precursor for Maximizing PGA Production from Bacillus sp. 42 and Bacillus sonorensis 44
US5496715A (en) Process for preparing indigo
KR100355496B1 (en) A novel obligately symbiotic thermophile Symbiobacterium toebii SC-1 producing thermostable L-tyrosine phenol-lyase and L-tryptophan indole-lyase and a method for screening its relative bacteria
JP4395005B2 (en) Strain producing low degree of polymerization ε-poly-L-lysine and method for producing low degree of polymerization ε-poly-L-lysine using the same
KR102021097B1 (en) Novel bacillus subtilis hb-31 strain having improved poly-gamma-glutamic acid productivity and medium for poly-gamma-glutamic acid production
EP0530522A2 (en) Process for preparing amides

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130424

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140502

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20151104

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160425

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170424

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee