KR100670166B1 - -10 Novel Bacillus subtilis CH10 and method for producing poly gamma glutamic acid using the same - Google Patents

-10 Novel Bacillus subtilis CH10 and method for producing poly gamma glutamic acid using the same Download PDF

Info

Publication number
KR100670166B1
KR100670166B1 KR1020050089394A KR20050089394A KR100670166B1 KR 100670166 B1 KR100670166 B1 KR 100670166B1 KR 1020050089394 A KR1020050089394 A KR 1020050089394A KR 20050089394 A KR20050089394 A KR 20050089394A KR 100670166 B1 KR100670166 B1 KR 100670166B1
Authority
KR
South Korea
Prior art keywords
glutamic acid
pga
bacillus subtilis
strain
bacillus
Prior art date
Application number
KR1020050089394A
Other languages
Korean (ko)
Inventor
전숭종
김병우
남수완
김동은
권현주
김영만
Original Assignee
(주)오리엔탈 바이오텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)오리엔탈 바이오텍 filed Critical (주)오리엔탈 바이오텍
Priority to KR1020050089394A priority Critical patent/KR100670166B1/en
Application granted granted Critical
Publication of KR100670166B1 publication Critical patent/KR100670166B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/22Processes using, or culture media containing, cellulose or hydrolysates thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/14Glutamic acid; Glutamine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2523/00Culture process characterised by temperature

Abstract

A novel Bacillus is provided to be able to produce high quality poly gamma glutamic acid(PGA) with high yield in a culture medium including a conventional carbon source and nitrogen source, thereby being able to provide inexpensive PGA with high quality. The Bacillus subtilis CH-10 for producing PGA from culture medium including a carbon source and a nitrogen source is deposited as a deposition number of KACC91169P. To produce the PGA, the Bacillus subtilis CH-10 is cultured in the culture medium including a conventional carbon source such as sucrose, glucose, fructose, galactose and maltose, and nitrogen source such as glutamic acid and glutamine at a temperature of 37 deg.C under pH of 7.5, and the PGA is isolated from the culture material.

Description

폴리감마글루탐산을 생산하는 신규 바실러스 서브틸리스 CH-10 균주와 이를 이용한 폴리감마글루탐산의 제조방법{Novel Bacillus subtilis CH―10 and method for producing poly gamma glutamic acid using the same}Novel Bacillus subtilis CH-10 and method for producing poly gamma glutamic acid using the same}

도 1은 바실러스 서브틸리스 CH-10 균주의 pH(A)와 온도(B)에 따른 폴리감마글루탐산의 생산량에 대한 그래프이고,1 is a graph of the production of poly gamma glutamic acid according to pH (A) and temperature (B) of Bacillus subtilis CH-10 strain,

도 2는 바실러스 서브틸리스 CH-10 균주의 배양시간에 따른 배지 내 pH 변화 및 균주의 성장(-○-)과 폴리감마글루탐산의 생산량(-●-)을 비교하여 나타낸 그래프이고,FIG. 2 is a graph showing comparison of pH change and growth of medium (-○-) and polygamma glutamic acid production (-●-) according to incubation time of B. subtilis CH-10 strain,

도 3은 바실러스 서브틸리스 CH-10 균주의 배양 시간에 따라 생산된 폴리감마글루탐산의 물리적인 특성과 생산량의 변화를 SDS-PAGE의 결과로 나타낸 사진이다.Figure 3 is a photograph showing the change in physical properties and yield of the polygamma glutamic acid produced according to the culture time of the Bacillus subtilis CH-10 strain as a result of SDS-PAGE.

1. Abe, K., Y. Ito, T. Ohmachi and Y. Asada. 1997. Purification and properties of two isozymes of γ-glutamyltranspeptidase from Bacillus subtilis TAM-4, Biosci . Biotechnol . Biochem. 61, 1621-1625.Abe, K., Y. Ito, T. Ohmachi and Y. Asada. 1997. Purification and properties of two isozymes of γ-glutamyltranspeptidase from Bacillus subtilis TAM-4, Biosci . Biotechnol . Biochem. 61 , 1621-1625.

2. Aono, R. 1987. Characterization of structural component of cell walls of alkalophilic strain of Bacillus sp. C-125, Biochem . J. 245, 467-472.2. Aono, R. 1987. Characterization of structural component of cell walls of alkalophilic strain of Bacillus sp. C-125, Biochem . J. 245 , 467-472.

3. Ashiuchi, M. and H. Misono. 2002. Biopolymers, vol. 7, Chapter 6, pp. 123. in: Fahnestock, S. R. and A. Steinbchel (Eds.), Wiley-VCH, Weinheim. 3. Ashiuchi, M. and H. Misono. 2002. Biopolymers, vol. 7 , Chapter 6, pp. 123. in: Fahnestock, SR and A. Steinbchel (Eds.), Wiley-VCH, Weinheim.

4. Ashiuchi, M. and H. Misono. 2002. Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl . Microbiol . Biotechnol . 59, 9-14. 4. Ashiuchi, M. and H. Misono. 2002. Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Appl . Microbiol . Biotechnol . 59 , 9-14.

5. Ashiuchi, M., H. Nakamura, T. Yamamoto, T. Kamei, K. Soda, C. Park, M. H. Sung, T. Yagi and H. Misono. 2003. Poly-γ-glutamate depolymerase of Bacillus subtilis: production, simple purification and substrate selectivity. J. Mol . Catalysis B: Enzymatic 23, 249-2555.Ashiuchi, M., H. Nakamura, T. Yamamoto, T. Kamei, K. Soda, C. Park, MH Sung, T. Yagi and H. Misono. 2003. Poly-γ-glutamate depolymerase of Bacillus subtilis : production, simple purification and substrate selectivity. J. Mol . Catalysis B: Enzymatic 23 , 249-255

6. Ashiuchi M, K. Shimanouchi, H. Nakamura, T. Kamei, K. Soda, C. Park, M. H. Sung and H. Misono. 2004. Enzymatic synthesis of high-molecular-mass poly-γ-glutamate and regulation of its stereochemistry. Appl . Environ. Microbiol . 70, 4249-4255.6.Ashiuchi M, K. Shimanouchi, H. Nakamura, T. Kamei, K. Soda, C. Park, MH Sung and H. Misono. 2004. Enzymatic synthesis of high-molecular-mass poly-γ-glutamate and regulation of its stereochemistry. Appl . Environ. Microbiol . 70 , 4249-4255.

7. Birrer, G. A., A. M. Cromwick and R. A. Gross. 1994. Poly-γ-glutamic acid formation by Bacillus licheniformis 9945A: physiological and biochemical studies. Int . J. Biol . Macromol. 16, 265-275.7. Birrer, GA, AM Cromwick and RA Gross. 1994. Poly-γ-glutamic acid formation by Bacillus licheniformis 9945A: physiological and biochemical studies. Int . J. Biol . Macromol. 16 , 265-275.

8. Cheng, C., Y. Asada and T. Aaida. 1989. Production of poly-γ-glutamic acid by Bacillus subtilis A35 under denitrifying conditions. Agric . Biol . Chem . 53, 2369-2375. 8. Cheng, C., Y. Asada and T. Aaida. 1989. Production of poly-γ-glutamic acid by Bacillus subtilis A35 under denitrifying conditions. Agric . Biol . Chem . 53 , 2369-2375.

9. Goto, A. and M. Kunioka. 1992. Biosynthesis and hydrolysis of poly-γ-glutamic acid from Bacillus subtilis IFO3335. Biosci . Biotechnol . Biochem . 56, 1031-1035.9. Goto, A. and M. Kunioka. 1992. Biosynthesis and hydrolysis of poly-γ-glutamic acid from Bacillus subtilis IFO3335. Biosci . Biotechnol . Biochem . 56 , 1031-1035.

10. Hara, T. 2000. Desert greening. Greening by utilization of microbial macromolecules, Kobunshi 49, 367-370.10. Hara, T. 2000. Desert greening. Greening by utilization of microbial macromolecules, Kobunshi 49 , 367-370.

11. Hezayen, F. F., B. H. A. Rehm, B. J. Tindall and A. Steinbuchel. 2001 Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(γ-glutamic acid), Int . J. Syst. Evol . Microbiol. 51, 1133-1142.11.Hezayen, FF, BHA Rehm, BJ Tindall and A. Steinbuchel. 2001 transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly (γ-glutamic acid), Int . J. Syst. Evol . Microbiol. 51 , 1133-1142.

12. Holzer, H. 1969. Regulation of enzymes by enzyme-catalyzed chemical modification. Adv. Enzymol . 32, 297-32612. Holzer, H. 1969. Regulation of enzymes by enzyme-catalyzed chemical modification. Adv. Enzymol . 32 , 297-326

13. Ito, Y., T. Tanaka, T. Ohmachi and Y. Asada. 1996. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus subtilis TAM-4. Biosci . Biotechnol . Biochem. 60, 1239-1242.13. Ito, Y., T. Tanaka, T. Ohmachi and Y. Asada. 1996.Glutamic acid independent production of poly-γ-glutamic acid by Bacillus subtilis TAM-4. Biosci . Biotechnol . Biochem. 60 , 1239-1242.

14. King, E. C., A. J. Blacker, and T. D. M. Bugg. 2000. Enzymatic breakdown of poly-γ-D-glutamic acid in Bacillus licheniformis: identification of a polyglutamyl-γ-hydrolase enzyme. Biomacromolecules 1, 75-83.14. King, EC, AJ Blacker, and TDM Bugg. Enzymatic breakdown of poly-γ-D-glutamic acid in Bacillus licheniformis : identification of a polyglutamyl-γ-hydrolase enzyme. Biomacromolecules 1 , 75-83.

15. Kubota, H., T. Matsunobu, K. Uotani, H. Takebe, A. Satoh, T. Tanaka and M. Tanguchi. 1993. Production of poly-γ-glutamic acid by Bacillus subtilis F-2-01. Biosci . Biotechnol. Biochem . 57, 1212-121315. Kubota, H., T. Matsunobu, K. Uotani, H. Takebe, A. Satoh, T. Tanaka and M. Tanguchi. 1993. Production of poly-γ-glutamic acid by Bacillus subtilis F-2-01. Biosci . Biotechnol. Biochem . 57 , 1212-1213

16. Kubota, H., Y. Nambu and T. Endo. 1996. Alkaline hydrolysis of poly-γ-glutamic acid produced by microorganism. J. Poly . Sci . Chem . 34, 1347-1351.16. Kubota, H., Y. Nambu and T. Endo. Alkaline hydrolysis of poly-γ-glutamic acid produced by microorganism. J. Poly . Sci . Chem . 34 , 1347-1351.

17. Prez-Camero, G., F. Congregado, J. J. Bou and S. Muoz-Guerra. 1999. Biosynthesis and ultrasonic degradation of bacterial poly-γ-glutamic acid. Biotechnol . Bioeng . 63, 110-115.17. Prez-Camero, G., F. Congregado, JJ Bou and S. Muoz-Guerra. 1999. Biosynthesis and ultrasonic degradation of bacterial poly-γ-glutamic acid. Biotechnol . Bioeng . 63 , 110-115.

18. Shih, I. L. and Y. T. Van. 2001. The production of poly-γ-glutamic acid from microorganisms and its various applications. Bioresource Technology 79, 207-225.18. Shih, IL and YT Van. 2001. The production of poly-γ-glutamic acid from microorganisms and its various applications. Bioresource Technology 79 , 207-225.

19. Stadtman, E. R. 1966. Allosteric regulation of enzyme activity. Adv . Enzymol . 28, 41-15419. Stadtman, ER 1966. Allosteric regulation of enzyme activity. Adv . Enzymol . 28 , 41-154

20. Sveath, P. H. A., N. S. Mair, M. E. Sharpe and J. G. Holt. 1984. Bergy's Manual of Ayatematic Bacteriology. Vol. 2, Williams and Wilkins, Baltimore.20. Sveath, PHA, NS Mair, ME Sharpe and JG Holt. 1984. Bergy's Manual of Ayatematic Bacteriology. Vol. 2 , Williams and Wilkins, Baltimore.

21. Tanaka, T., O. Hiruta, T. Futamura, K. Uotani, A. Satoh, M. Taniguchi and S. Oi. 1993. Purification and characterization of poly-γ-glutamic acid hydrolase from a filamentous fungus, Myrotheciumsp. TM-4222. Biosci . Biotechnol . Biochem . 57, 2148-2153.21. Tanaka, T., O. Hiruta, T. Futamura, K. Uotani, A. Satoh, M. Taniguchi and S. Oi. 1993. Purification and characterization of poly-γ-glutamic acid hydrolase from a filamentous fungus, Myrothecium sp. TM-4222. Biosci . Biotechnol . Biochem . 57 , 2148-2153.

22. Tanaka, T., T. Yaguchi, O. Hiruta, T. Futamura, K. Uotani, A. Satoh, M. Taniguchi and S. Oi. 1993. Screening for microorganism having poly-γ-glutamic acid endohydrolase activity and the enzyme production by Myrothecium sp. TM-4222. Biosci . Biotechnol . Biochem. 57, 1809-1810.22. Tanaka, T., T. Yaguchi, O. Hiruta, T. Futamura, K. Uotani, A. Satoh, M. Taniguchi and S. Oi. 1993. Screening for microorganism having poly-γ-glutamic acid endohydrolase activity and the enzyme production by Myrothecium sp. TM-4222. Biosci . Biotechnol . Biochem. 57 , 1809-1810.

23. Troy, F. A. 1973. Chemistry and biosynthesis of the poly(γ-D-glutamyl) capsule in Bacillus licheniformis. 1. Properties of the membrane-mediated biosynthetic reaction. J. Biol. Chem . 248, 305-316.23. Troy, FA 1973. Chemistry and biosynthesis of the poly (γ-D-glutamyl) capsule in Bacillus licheniformis . 1.Properties of the membrane-mediated biosynthetic reaction. J. Biol. Chem . 248 , 305-316.

24. Zhao, X. Q., K. H. Park, Y. Y. Jin, I. H. Lee, Y. Y. Yang and J. W. Suh. 2005. Isolation and characterization of a new γ-polyglutamic acid producer, Bacillus mesentericus MJM1, from korean domestic chungkukjang bean paste. J. Microbiol . Biotechnol. 15, 59-6524. Zhao, XQ, KH Park, YY Jin, IH Lee, YY Yang and JW Suh. 2005. Isolation and characterization of a new γ-polyglutamic acid producer, Bacillus mesentericus MJM1, from korean domestic chungkukjang bean paste. J. Microbiol . Biotechnol. 15 , 59-65

본 발명은 폴리감마글루탐산을 생산하는 신규한 바실러스 서브틸리스 CH-10 균주와 이를 이용한 폴리감마글루탐산의 제조방법에 관한 것이다.The present invention relates to a novel Bacillus subtilis CH-10 strain producing polygamma glutamic acid and a method for producing polygamma glutamic acid using the same.

일반적으로, 폴리감마글루탐산(Poly-γ-glutamic Acid, 이하 PGA라 칭함)은 글루탐산의 γ-카르복실기와 글루탐산의 α-아미노기가 아마이드 결합[3] 아미노산 고분자 소재로서 고도의 수용성 및 생분해성을 가진 음이온성 폴리머로 알려져 있다. In general, poly-gamma glutamic acid (hereinafter referred to as PGA) is an amino acid polymer material in which the γ-carboxyl group of glutamic acid and the α-amino group of glutamic acid are amide bonds [3] and have high water solubility and biodegradability. Known as a sex polymer.

폴리감마글루탐산은 전기 점성 유체, 전해질 수용액, 수분 흡수제, 수분-흡 수 수지, 섬유(fiber) 또는 필름(film)의 재료, 미네랄 흡수 촉진제, 칼슘 이온 용해제, 칼슘흡수 촉진제, 의약운반용 담체, 사료첨가물, 식품의 선도유지제 등, 그 이용범위가 다양하여[문헌정보 10], 식품, 의약, 환경, 화장품, 공업용의 고부가가치 소재로서 다양한 분야에 응용할 수 있다[문헌 정보 18]. Polygamma glutamic acid is an electrically viscous fluid, an aqueous electrolyte solution, a moisture absorbent, a moisture-absorbing resin, a material of a fiber or film, a mineral absorption accelerator, a calcium ion dissolving agent, a calcium absorption accelerator, a pharmaceutical carrier, a feed additive. Its use range is wide, such as food freshness and maintenance agents [Ref. Information 10], and it can be applied to various fields as high value-added materials for food, medicine, environment, cosmetics, and industrial use [Ref. Information 18].

그리고, 미생물이 생산하는 폴리감마글루탐산은 지금까지 나트리알바 애집티아카(Natrialba aegyptiaca), 바실러스 안트라시아(Bacillus anthracis), 바실러스 메센테리쿠스(Bacillus mesentericus ), 바실러스 리체니포르미스(Bacillus licheniformis), 바실러스 마가테리움(Bacillus magaterium), 바실러스 서브틸리스(Bacillus subtilis) 등의 균주가 생산하는 것으로 보고되어 있으며[문헌정보 1,2,11,17], 미생물에 따라서 조금씩 다른 성질을 나타내는 것으로 알려져 있다. 폴리감마글루탐산 생산균주는 글루탐산(glutamic acid) 의존성에 따라 크게 두 종류로 구분되는데, 첫 번째는 폴리감마글루탐산 생산을 위하여 L-글루탐산을 첨가해야 하는 글루탐산 의존성 균주(B. subtilis chungkookjang, B. anthracis , B. licheniformis ACTC 9945A, B. subtilis IFO 3335, B. subtilis F-2-01)[문헌정보9,15], 두 번째는 배지 내에 L-글루탐산의 첨가가 필요 없는 글루탐산 비의존성 균주(B. subtilis 5E, B. subtilis TAM-4, B. subtilis A35)[문헌정보 8,13]로 구분된다. 현재, 폴리감마글루탐산의 생산은 주로 바실러스속 균주인 바실러스 서브틸리스 청국장(B. subtilis chungkookjang), 바실러스 서브틸리스 낫토(B. subtilis natto) 및 바실러스 리체니포르미스 등의 미생물의 배양액으로부터 제조하는 공정이 대부분을 차지하고 있다. Then, the poly-gamma-glutamic acid is so far or tree alba aejip thiazol car (Natrialba aegyptiaca), Bacillus anthranilic cyano (Bacillus anthracis), Bacillus mesen Terry kusu (Bacillus mesentericus), Bacillus piece you formate miss (Bacillus licheniformis) to the producing microorganism, Bacillus magaterium ( Bacillus magaterium ), Bacillus subtilis ( Bacillus subtilis ) and other strains have been reported to produce [document information 1,2,11,17], it is known to show slightly different properties depending on the microorganism. . Polygamma glutamic acid producing strains are classified into two types according to their dependence on glutamic acid. First, glutamic acid-dependent strains ( B. subtilis) that require addition of L-glutamic acid to produce polygamma glutamic acid are used. chungkookjang, B. anthracis , B. licheniformis ACTC 9945A , B. subtilis IFO 3335, B. subtilis F-2-01) [document 9,15], the second is glutamic acid independent strain ( B. subtilis 5E, B. subtilis) that does not require the addition of L-glutamic acid in the medium. TAM-4, B. subtilis A35) [document information 8, 13]. At present, the production of poly-gamma-glutamic acid is mainly in Bacillus subtilis Soybean Bacillus strains (B. subtilis chungkookjang), Bacillus subtilis natto (B. subtilis natto) and Bacillus licheniformis, etc. The production process from the culture medium of the microorganisms is the majority.

또한, 최근 폴리감마글루탐산의 활용범위가 다양해짐에 따라, 폴리감마글루탐산의 생산성이 뛰어난 균주 개발의 연구가 활발히 진행되고 있으며, 폴리감마글루탐산의 물성은 분자량에 크게 의존하기 때문에 다양한 분자량의 바이오 폴리머 생산이 요구되고 있는 실정이다 [문헌정보 7,14,16,21,22,23].In addition, as the application range of polygamma glutamic acid is diversified recently, researches on the development of strains having excellent productivity of polygamma glutamic acid are being actively conducted. Since the physical properties of polygamma glutamic acid largely depend on the molecular weight, biomolecules of various molecular weights are produced. This situation is required [document information 7,14,16,21,22,23].

이에, 본 발명자는 퇴비에서 폴리감마글루탐산을 대량 생산하는 신규한 바실러스속 균주를 발굴하고 이의 균주로부터 생화학적 특성을 연구하여 산업적으로 PGA의 대량 생산공정에 사용할 수 있도록 함으로써, 품질 좋고 가격이 저렴한 PGA를 소비자에게 제공하여, 본 발명을 완성하였다.Therefore, the present inventors have discovered a new strain of Bacillus genus that mass-produces polygammaglutamic acid in the compost, and studies the biochemical properties from the strain, so that it can be industrially used in the mass production process of PGA, PGA quality and low cost It was provided to the consumer to complete the present invention.

따라서, 본 발명의 목적은 통상의 탄소원 및 질소원을 포함한 배지로부터 폴리감마글루탐산을 대량으로 생산할 수 있는 신규 미생물을 제공하는 것이다.Accordingly, an object of the present invention is to provide a novel microorganism capable of producing a large amount of polygamma glutamic acid from a medium containing a common carbon source and a nitrogen source.

또한, 본 발명의 다른 목적은 상기 신규 미생물을 이용하여 폴리감마글루탐산의 제조방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing polygamma glutamic acid using the novel microorganism.

상기와 같은 목적을 달성하기 위하여, 본 발명은 통상의 탄소원 및 질소원을 포함한 배지로부터 폴리감마글루탐산을 생산하는 기탁번호가 KACC 91169P인 바실러스 서브틸리스 CH-10 균주(Bacillus subtilis CH-10)를 제공한다.In order to achieve the above object, the present invention provides a Bacillus subtilis CH-10 strain having the accession number KACC 91169P for producing polygamma glutamic acid from a medium containing a common carbon source and nitrogen source. do.

또한, 다른 목적을 달성하기 위하여, 본 발명은 상기 균주를 통상의 탄소원 및 질소원을 포함한 배지에서 배양하고, 상기 배양물로부터 폴리감마글루탐산을 수득하는 것을 포함하는 폴리감마글루탐산의 제조방법을 제공한다.In addition, to achieve another object, the present invention provides a method for producing polygamma glutamic acid comprising culturing the strain in a medium containing a common carbon source and a nitrogen source, and obtaining polygamma glutamic acid from the culture.

이하, 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail.

이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가진다.At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning commonly understood by those of ordinary skill in the art.

또한, 종래와 동일한 기술적 구성 및 작용에 대한 반복되는 설명은 생략하기로 한다.In addition, repeated description of the same technical configuration and operation as in the prior art will be omitted.

이하, 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail.

이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가진다.At this time, if there is no other definition in the technical terms and scientific terms used, it has a meaning commonly understood by those of ordinary skill in the art.

또한, 종래와 동일한 기술적 구성 및 작용에 대한 반복되는 설명은 생략하기로 한다.In addition, repeated description of the same technical configuration and operation as in the prior art will be omitted.

1. 신규 미생물의 분리 및 동정1. Isolation and Identification of New Microorganisms

본 발명은 통상의 탄소원과 질소원이 포함된 배지에서 미생물을 이용하여 폴리감마글루탐산(Poly-γ-glutamic acid; PGA)을 생산하는 방법에 있어서, 생산 효율이 매우 우수하여 종래 사용되는 균주를 대체할 수 있는 신규 바실러스 속 균주를 연구하고 이를 산업 기술에 적용하기 위하여, 퇴비에서 연구 목적에 부합되는 신규 미생물을 분리하였으며, 이를 바실러스 서브틸리스 CH-10(Bacillus subtilis. CH-10)라 명명하였다. 그리고, 상기 균주를 동정한 결과, 그람 양성의 간균이고 운동성이 없으며 내열성의 포자를 형성하였고, 바실러스 속 균주 동정 키트를 이용하 여 분석한 결과 바실러스 서브틸리스(Bacillus subtilis)에 속하고, 또한 16s rRNA 염기서열을 분석하여 다른 균주와의 상동성을 검색한 결과, 바실러스 서브틸리스 BFAS(Bacillus subtilis BFAS)와 99.4%, 바실러스 발리스모르티스(Bacillus vallismortis)와 99.1%, 바실러스 리체니포르미스(Bacillus licheniformis)와 98.8%의 상동성을 나타낸다.The present invention is a method of producing poly-gamma glutamic acid (Poly-γ-glutamic acid; PGA) using a microorganism in a medium containing a common carbon source and nitrogen source, the production efficiency is very excellent to replace the conventionally used strains In order to study the novel strains of the genus Bacillus and to apply them to industrial techniques, new microorganisms suitable for the purpose of the study were isolated from compost and named Bacillus subtilis . CH-10. The strains were identified as Gram-positive bacillus, non-motile and heat-resistant spores, and analyzed using the Bacillus strain identification kit, and belong to Bacillus subtilis , and also 16s rRNA. The sequence was analyzed to find homology with other strains. As a result, Bacillus subtilis BFAS ( Bacillus subtilis BFAS) and 99.4%, Bacillus vallismortis and 99.1%, It has a homology of 98.8% with Bacillus licheniformis .

2. 바실러스 서브틸리스 CH-10의 배양2. Incubation of Bacillus subtilis CH-10

가. 배지end. badge

본 발명에서 바실러스 서브틸리스 CH-10의 폴리감마글루탐산 생산량을 증가시키기 위해, 사용하는 배지에 탄소원은 수크로스, 포도당, 과당, 갈락토스 및 말토스로 이루어지는 군에서 적어도 1종 이상 선택된 탄소원을 사용하고, 질소원은 L-글루탐산 또는 L-글루타민(glutamime)을 포함하여 사용하는 것이 바람직하다. 이중, 탄소원으로 수크로스와 질소원으로 L-글루탐산을 사용하는 것이 가장 바람직하다. 그리고 본 발명에서 가장 바람직하게는 멸균수에 2% 수크로스(sucrose), 3% L-글루탐산(L-glutamic acid), 1% 황산암모늄[(NH4)2SO4], 0.1% 이인산칼륨(K2HPO4), 0.1% 인산수소나트륨(Na2HPO4), 0.05% 황산마그네슘(MgSO4), 0.005% 염화제이철(FeCl3), 0.02% 염화칼슘(CaCl2), 0.002% 황산망간(MnSO4) 및 0.00005% 바이오틴(biotine)을 첨가하여 이루어지는 배지를 사용한다.In order to increase the polygamma glutamic acid production of Bacillus subtilis CH-10 in the present invention, the carbon source is a carbon source selected from the group consisting of sucrose, glucose, fructose, galactose and maltose. , It is preferable to use a nitrogen source containing L- glutamic acid or L- glutamine (glutamime). Of these, it is most preferable to use sucrose as the carbon source and L-glutamic acid as the nitrogen source. And most preferably in the present invention 2% sucrose (sterucrose), 3% L-glutamic acid (L-glutamic acid), 1% ammonium sulfate [(NH 4 ) 2 SO 4 ], 0.1% potassium diphosphate in sterile water (K 2 HPO 4 ), 0.1% sodium hydrogen phosphate (Na 2 HPO 4 ), 0.05% magnesium sulfate (MgSO 4 ), 0.005% ferric chloride (FeCl 3 ), 0.02% calcium chloride (CaCl 2 ), 0.002% manganese sulfate ( MnSO 4 ) and a medium consisting of 0.00005% biotine are added.

그리고, 상기 균주는 2005년 7월 20일 농업진흥청 산하 농업생명공학연구원에 기탁하여, 기탁번호 KACC 91169P를 부여받았다.In addition, the strain was deposited with the Agricultural Biotechnology Research Institute under the Agriculture Promotion Agency on July 20, 2005, and received the accession number KACC 91169P.

나, 조건Me, condition

본 발명의 바실러스 서브틸리스 CH-10 균주는 pH 7.5와 온도 37℃에서 가장 높은 PGA의 생산량을 나타낸다.The Bacillus subtilis CH-10 strain of the present invention exhibits the highest production of PGA at pH 7.5 and temperature 37 ° C.

3. 폴리감마글루탐산의 물리적인 특성3. Physical Properties of Polygammaglutamic Acid

본 발명의 바실러스 서브틸리스 CH-10 균주는 최적의 조건에서 12시간 이상 배양을 하면 200∼1,000kDa 분자량의 폴리감마글루탐산을 생산하고, 96시간 이상을 배양하면 평균 분자랑 1,100kDa의 폴리감마글루탐산을 18 ㎎/㎖의 양으로 생산하는 특성이 있다.The Bacillus subtilis CH-10 strain of the present invention produces polygamma glutamic acid having a molecular weight of 200 to 1,000 kDa when incubated for 12 hours or more under optimal conditions, and polygamma glutamic acid having an average molecular weight of 1,100 kDa when incubated for 96 hours or longer. Is produced in an amount of 18 mg / ml.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 오로지 본 발명을 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

[[ 실험예Experimental Example ]]

1. PGA의 분리 및 정제1. Isolation and Purification of PGA

50 ㎖의 균체 배양액을 원심분리(12,000×g, 30분)하여 균체를 제거하고 상등액을 회수하였다. 상등액에는 4배량의 메탄올을 첨가하고 생긴 침전을 회수하여 10 ㎖의 10 mM Tris-HCl 완충용액(pH 8.0)에 녹인 후, 2 ℓ의 동 완충용액으로 3번 투석하였다. 투석액은 동결건조한 후, 1 ㎖의 10 mM Tris-HCl buffer (pH 8.0)에 용해하고 α-폴리펩티드(α-polypeptide)의 제거를 위해 프로테아제 K(Proteinase K, 100㎍/㎖)를 37℃, 12시간 처리하였다. 처리액은 10 mM Tris-HCl 완충용액(pH 8.0)로 투석한 후 동결 건조하여 사용하였다. 50 ml of the cell culture was centrifuged (12,000 x g, 30 minutes) to remove the cells and the supernatant was recovered. Four times the amount of methanol was added to the supernatant, and the resulting precipitate was collected, dissolved in 10 ml of 10 mM Tris-HCl buffer (pH 8.0), and dialyzed three times with 2 L of copper buffer. The dialysate was lyophilized and then dissolved in 1 ml of 10 mM Tris-HCl buffer (pH 8.0) and protease K (Proteinase K, 100 μg / ml) was removed at 37 ° C., 12 for removal of α-polypeptide. Time was processed. The treated solution was dialyzed with 10 mM Tris-HCl buffer (pH 8.0) and then lyophilized.

그리고, PGA의 정량을 위해 동일한 양의 6M HCl과 함께 105℃, 24시간 가수분해하였고 6M NaOH로 중화한 후에 용액 중의 글루타메이트(glutamate)의 양을 측정하였다. 중화한 글루타메이트 용액은 닌히드린(Ninhydrin)과 37℃, 10분간 반응하고 A570 에서 흡광도를 측정하였고 L-글루타메이트의 표준곡선을 작성하여 정량하였다.And, the amount of glutamate in the solution was measured after hydrolysis at 105 ° C. for 24 hours with the same amount of 6M HCl and neutralized with 6M NaOH for quantification of PGA. The neutralized glutamate solution was reacted with ninhydrin at 37 ° C. for 10 minutes, the absorbance was measured at A 570 , and the standard curve of L-glutamate was prepared and quantified.

2. PGA의 분자량 측정2. Molecular Weight Measurement of PGA

PGA의 분자량은 SDS-PAGE와 FDNB법을 사용하여 측정하였다. 정제한 PGA는 10% 농도의 SDS-PAGE상에서 고분자량 마커(High molecular weight marker,Amersham Biosciences)와 함께 전기영동 하였다. 전기영동 후 젤(gel)은 쿠마시 브릴란트 블루 R-250(Coomassie Brilliant Blue R-250)로 염색한 후 7% 아세트산/10% 메탄올로 이루어진 탈염색용액(destaining solution)으로 탈색하였고, 0.5% 메틸렌 블루(methylene blue)/3% 아세트산으로 이루어진 염색용액으로 다시 염색한 후, 증류수를 사용하여 탈색하였다. 이때, PGA의 평균 분자량은 FDNB법[문헌정보 6]에 따라 측정하였다.The molecular weight of PGA was measured using SDS-PAGE and FDNB methods. Purified PGA was electrophoresed with high molecular weight marker (Amersham Biosciences) on SDS-PAGE at 10% concentration. After electrophoresis, the gel was stained with Coomassie Brilliant Blue R-250 and bleached with a destaining solution consisting of 7% acetic acid / 10% methanol. After dyeing again with a dye solution consisting of methylene blue / 3% acetic acid, it was decolorized using distilled water. At this time, the average molecular weight of PGA was measured according to the FDNB method [document information 6].

[[ 실시예Example 1] 본 발명의 균주 분리 및 동정 1] Isolation and Identification of Strains of the Invention

폴리감마글루탐산(PGA)을 생산하는 호기성 및 포자형성 미생물은 경상남도 남해 일대의 퇴비에서 분리하고자 하였다. Aerobic and spore-forming microorganisms producing polygamma glutamic acid (PGA) were intended to be separated from compost in the South Sea of Gyeongsangnam-do.

퇴비는 멸균수에 현탁하고 10분간 끓인 후에 LB agar 배지에 접종하여 37℃, 2~3일 배양하였다. 배지 위에 형성된 콜로니 중에서 점액성의 콜로니를 LB 액체배지에 접종하고 1일 전 배양한 후 PGA 생산용 배지(2% sucrose, 3% L-glutamic acid, 1% (NH4)2SO4, 0.27% KH2PO4, 0.42% Na2HPO4, 0.5% MgSO4·7H2O, and 0.5 μg/ml biotin, pH 7.5)에 1%(v/v) 접종하여 37℃, 5일간 배양하였다.The compost was suspended in sterile water, boiled for 10 minutes, inoculated in LB agar medium and incubated at 37 ° C. for 2-3 days. Among the colonies formed on the medium, the viscous colonies were inoculated in LB liquid medium and cultured one day before, followed by PGA production medium (2% sucrose, 3% L-glutamic acid, 1% (NH 4 ) 2 SO 4 , 0.27% KH). 2 PO 4 , 0.42% Na 2 HPO 4 , 0.5% MgSO 4 · 7H 2 O, and 0.5 μg / ml biotin, pH 7.5) was inoculated 1% (v / v) and incubated for 5 days at 37 ℃.

그리고, 분리균주는 16s rRNA 염기서열을 분석하였고 API 50CH 동정 키트(Biomerieux, France)를 이용하여 생리 및 생화학적 특성을 조사한 뒤, 그 결과들을 Bergy's Manual of Systematic Bacteriology[문헌 정보 20]에 준하여 동정하였다. The isolates were analyzed for 16s rRNA sequences and examined for physiological and biochemical properties using API 50CH identification kit (Biomerieux, France), and the results were identified according to Bergy's Manual of Systematic Bacteriology [Ref. 20]. .

이의 결과,먼저, 열처리를 거쳐 순수 분리된 균주 콜로니는 약 50여 종류였고, 이의 균주들을 각 LB 배지(LB medium)에서 전 배양을 하고, PGA 생산용 배지에서 72시간 본 배양하여 PGA의 생산 정도를 비교하여 순수 분리된 50여 종류의 세균 중에서 PGA를 생산하는 10종의 균주를 선정하였고, 이중 가장 생산성이 높은 균주를 선택하였다.As a result, first, about 50 kinds of strain colonies isolated purely by heat treatment were pre-cultured in each LB medium (LB medium), and then cultured in PGA production medium for 72 hours to produce PGA. In comparison, 10 strains producing PGA were selected from 50 kinds of bacteria isolated purely, and among them, the strain having the highest productivity was selected.

그리고, 가장 생산성이 높은 균주의 형태적 및 생리적 특성과 탄소원의 이용성 및 16s rRNA 염기서열의 측정한 결과를 하기 표 1에 나타내었다.In addition, the morphological and physiological characteristics of the most productive strains, the availability of carbon sources, and the measurement results of the 16s rRNA sequences are shown in Table 1 below.

이의 결과, 최종 선발된 균주는 그람 양성의 간균이고 운동성이 없으며 내열성의 포자를 형성하였고, 바실러스속 균주 동정 키트(API 50CH)를 이용하여 16s rRNA 서열분석(sequencing)을 확인 및 동정한 결과, 바실러스 서브틸리스 BFAS(Bacillus subtilis BFAS)와 99.4%, 바실러스 발리스모르티스(Bacillus vallismortis)와 99.1%, 바실러스 리체니포르미스(Bacillus licheniformis)와 98.8%의 상동성을 나타내었다(서열목록 서열번호 1 참조).As a result, the final selected strains were Gram-positive bacilli, motile and heat-resistant spores, and Bacillus was identified and identified by 16s rRNA sequencing using the Bacillus strain identification kit (API 50CH). Subtilis BFAS ( Bacillus subtilis BFAS) and 99.4%, Bacillus vallismortis and 99.1%, It showed 98.8% homology with Bacillus licheniformis (see SEQ ID NO: 1).

Figure 112005053796739-pat00001
Figure 112005053796739-pat00001

이에, 본 발명자는 최종 선발 균주를 바실러스 서브틸리스 CH-10으로 명명하였으며, 이의 균주를 2005년 7월 20일 농업진흥청 산하 농업생명공학연구원에 기탁하여, 기탁번호 KACC 91169P를 부여받았다.Accordingly, the present inventor named the final selection strain Bacillus subtilis CH-10, and the strain was deposited with the Agricultural Biotechnology Research Institute under the Agricultural Promotion Agency on July 20, 2005, and was given accession number KACC 91169P.

[[ 실시예Example 3] PGA 생산의 최적 조건 3] Optimum Condition of PGA Production

본 실시예는 본 발명의 바실러스 서브틸리스 CH-10 균주의 PGA대량 생산 조건을 결정하고자, pH, 온도, 탄소원 및 질소원 등의 최적 배양 조건을 알아보고자 하였다.In this example, to determine the PGA mass production conditions of the Bacillus subtilis CH-10 strain of the present invention, to find the optimal culture conditions such as pH, temperature, carbon source and nitrogen source.

1. pH와 온도PH and temperature

pH와 온도 변화에 따른 PGA생산량 변화를 측정하였다.Changes in PGA production with pH and temperature were measured.

이의 결과, 도 1의 (A)에 도시된 바와 같이, 산성 환경인 경우에는 PGA생산량이 현저히 약하게 나타나는 것을 확인할 수 있었고 알칼리성의 환경에서 PGA생산량이 증가하는 것을 알 수 있었으며, 이 중에서 PGA 생산 최적 pH를 7.5로 결정하였다. As a result, as shown in (A) of FIG. 1, it was confirmed that PGA production was significantly weak in an acidic environment, and PGA production was increased in an alkaline environment. Was determined to be 7.5.

그리고, 도 1의 (B)에 의하면, 온도에 따른 PGA 생산량에 차이를 나타내었으며, 이중 37℃에서 가장 높은 량의 PGA를 생산함을 알 수 있었다.In addition, according to (B) of Figure 1, the difference in PGA production according to the temperature was shown, it can be seen that the production of the highest amount of PGA at 37 ℃.

2. 2. 탄소원과Carbon source 질소원 Nitrogen source

(1) 탄소원(1) carbon source

PGA 생산 최적 조건의 탄소원과 질소원을 결정하기 위하여, 먼저, 탄소원은 포도당(glucose), 과당(fructose), 갈락토스(galactose), 수크로스(sucrose), 말토스(maltose), 글리세롤(glycerol), 자일로스(xylose) 및 시트르산(citric acid)을 최종 농도 2%가 되도록 PGA 생산 배지에 첨가하였다. 그리고, 각각의 탄소원이 첨가된 배지에 본 발명의 바실러스 서브틸리스 CH-10을 배양하고 생성된 PGA의 양은 닌히드린(ninhydrin) 반응을 통하여 결정하였으며, 질소원은 L-글루타메이트(L-glutamate), L-글루타민(L-glutamine), 질산나트륨(NaNO3), 질산암모늄(NH4NO3), 염화암모늄(NH4Cl), 황산암모늄[(NH4)2SO4], 카사미노산(casamino acid), 펩톤(peptone)을 1%가 되도록 PGA 생산배지에 첨가하여 PGA의 생산량을 검토하였다.To determine the carbon and nitrogen sources for optimal PGA production, first, the carbon source is glucose, fructose, galactose, sucrose, maltose, glycerol, and xyl. Loss of xylose and citric acid were added to the PGA production medium to a final concentration of 2%. In addition, the Bacillus subtilis CH-10 of the present invention was cultured in a medium to which each carbon source was added, and the amount of PGA generated was determined by a ninhydrin reaction, and the nitrogen source was L-glutamate, L-glutamine, sodium nitrate (NaNO 3 ), ammonium nitrate (NH 4 NO 3 ), ammonium chloride (NH 4 Cl), ammonium sulfate [(NH 4 ) 2 SO 4 ], casamino acid ), The production of PGA was examined by adding peptone to 1% PGA production medium.

이의 결과, 탄소원의 경우는 하기 표 2에 나타난 바와 같이, 자일로스, 시트르산을 첨가한 경우에는 균주가 거의 성장하지 않았고 따라서 PGA도 생산하지 않았는데, 이것은 다른 PGA 생산 균주들이 탄소원으로 시트르산를 이용하는 것[문헌정보 9]과는 대조적인 결과로, 본 발명의 균주는 시트르산을 이용하지 않고, 글리세롤을 첨가한 경우에 균주는 성장하였으나 PGA는 거의 생산하지 않는 반면, 포도당, 과당, 갈락토스, 수크로스, 말토스를 첨가한 경우에는 PGA 생산량이 크게 증가하였고 특히 수크로스는 B. subtilis CH-10의 PGA 생산을 위한 가장 유용한 탄소원으로서 18.84 mg/ml의 PGA를 생산함을 알 수 있었다. As a result, in the case of a carbon source, as shown in Table 2, when xylose and citric acid were added, the strain hardly grew and therefore did not produce PGA, which means that other PGA producing strains used citric acid as a carbon source. In contrast to Information 9], the strain of the present invention did not use citric acid, but when glycerol was added, the strain grew but produced little PGA, whereas glucose, fructose, galactose, sucrose, maltose PGA production increased significantly, and sucrose produced 18.84 mg / ml PGA as the most useful carbon source for PGA production of B. subtilis CH-10.

Figure 112005053796739-pat00002
Figure 112005053796739-pat00002

(2) 질소원(2) nitrogen source

한편, 탄소원인 수크로스와 더불어 여러 가지 질소원을 사용하여 본 균주의 PGA 생산량의 변화를 측정한 결과, 하기 표 3에 나타난 바와 같이, 질산나트륨, 질산암모늄, 염화암모늄, 황산암모늄은 본 균주가 성장하지 않았고 PGA도 생산하지 않았으며, L-글루타메이트, L-글루타민은 각각 12와 6.43 mg/ml의 PGA 생산량을 나타내었다.On the other hand, as a result of measuring the change in PGA production of this strain using a variety of nitrogen sources in addition to sucrose as a carbon source, as shown in Table 3, sodium nitrate, ammonium nitrate, ammonium chloride, ammonium sulfate as the strain is grown N-glutamate and L-glutamine produced 12 and 6.43 mg / ml of PGA, respectively.

Figure 112005053796739-pat00003
Figure 112005053796739-pat00003

따라서, 본 발명의 균주는 PGA 생산 및 균주 성장에 글루타메이트를 반드시 필요로 하는 글루타메이트 의존성 균주임을 알 수 있었다. Therefore, it was found that the strain of the present invention is a glutamate dependent strain that requires glutamate for PGA production and strain growth.

그리고, 일반적으로 PGA 합성을 위해 많은 양의 글루타메이트가 필요한 데, 이것은 시트르산과 황산암모늄으로부터 생산하는 것으로 알려져 있고, L-글루타메이트의 합성을 위해서는 일반적으로 2가지의 다른 경로가 필요한데 이중 한가지는 글루타메이트 디히드로게나제 경로(glutamate dehydrogenase pathway; GD)[문헌정보 19]로 하기 식 (1)과 같은 반응식으로 진행되고, 또 다른 경로는 글루타민 합성효소(glutamine synthetase; GS)와 글루타민 2-옥소글루타레이트 아미노트란스퍼라제(glutamine 2-oxoglutarate aminotransferase; GOGAT)[문헌정보 12]를 사용하여 하기 식 (2) 및 (3)과 같은 반응식으로 진행되는 것으로 보고되고 있다.And, in general, a large amount of glutamate is required for PGA synthesis, which is known to be produced from citric acid and ammonium sulfate, and generally two different routes are required for the synthesis of L-glutamate, one of which is glutamate dehydro The glutamate dehydrogenase pathway (GD) [Ref. 19] proceeds to the reaction of formula (1), and another route is glutamine synthetase (GS) and glutamine 2-oxoglutarate amino. It is reported that the transferase (Glutamine 2-oxoglutarate aminotransferase; GOGAT) [Ref. 12] proceeds to the reaction scheme as shown in the following formulas (2) and (3).

[식][expression]

Figure 112005053796739-pat00004
Figure 112005053796739-pat00004

따라서, 본 발명의 균주는 PGA 생산을 위해 L-글루타메이트를 반드시 필요로 하고, 또한 L-글루타민도 PGA 합성을 활성화하기 때문에, 상기 식 (2)과 (3)의 반응식에 따라 L-글루타메이트를 생산하는 것으로 판단된다.Therefore, since the strain of the present invention necessarily requires L-glutamate for PGA production, and also L-glutamine also activates PGA synthesis, L-glutamate is produced according to the schemes of Formulas (2) and (3) above. I think that.

3. 3. 바실러스Bacillus 서비틸리스Subvitlis CH-10의 배양시간에 따른 PGA 생산변화 Changes in PGA Production According to Incubation Time of CH-10

본 발명의 균주에 대하여, 배양시간에 따른 PGA 생산량과 분자량을 확인하고자 하였다.For the strain of the present invention, to determine the PGA production and molecular weight according to the incubation time.

이의 결과, 도 2에 도식된 바와 같이, 본 발명의 균주는 배양 12시간부터 PGA를 생산하기 시작하여 시간이 경과함에 따라 PGA 생산량이 증가하였고 96시간을 배양했을 때에 PGA의 최대 생산량(18 mg/ml)을 나타내었다. As a result, as shown in Figure 2, the strain of the present invention began to produce PGA from 12 hours of cultivation, PGA production increased with time and the maximum yield of PGA (18 mg / culturing 96 hours) ml).

그리고, 배양에 따른 pH의 변화는 배양 36시간까지 점차 산성 쪽으로 변화하다가 그 이후 다시 중성으로 바뀌었지만 커다란 pH 변화는 없었다. In addition, the change in pH according to the culture gradually changed to acidic until 36 hours of culture, and then changed to neutral again, but there was no significant pH change.

또한, 도 3에 도시된 바와 같이, SDS-PAGE를 이용하여 배양시간에 따라 생성된 PGA의 분자량을 확인해 본 결과, 배양한 후 84시간 배양 이후부터는 200 kDa 이하의 저분자량의 PGA가 증가하였고, 120시간 배양한 후에는 생산된 PGA의 양이 감소하였다. In addition, as shown in Figure 3, using the SDS-PAGE to confirm the molecular weight of the PGA produced according to the culture time, after 84 hours of incubation, the low molecular weight PGA of 200 kDa or less increased, After 120 hours of incubation the amount of PGA produced decreased.

이와 같은 결과로, 본 발명의 균주는 배양시간이 경과함에 따라 PGA 분해효소(PGA depolymerase)[문헌정보 5]가 세포외로 분비되어 생산된 PGA가 분해되는 것으로 추정된다. As a result, the strain of the present invention is estimated to degrade PGA produced by secretion of PGA depolymerase [document information 5] extracellularly as the culture time passes.

또한, FDNB법에 의해 96시간 배양 후에 PGA의 평균분자량을 조사한 결과, 1100 kDa의 평균분자량을 나타내었다(미도시). 이는 PGA 생산 균주 중, 바실러스 서비틸리스(chungkookjang)과 나트리알바 애집티아카 균주가 분자량 106 Da 이상의 PGA를 생산하는 것과 비교하면 큰 차이가 있으며, 본 발명의 균주가 바실러스 서브틸리스(natto)와 바실러스 리체니포르미스 IFO 3335의 105~106 Da의 분자량과는 유사한 것을 알 수 있었다[문헌정보 4].In addition, the average molecular weight of PGA after 96 hours of cultivation by the FDNB method showed an average molecular weight of 1100 kDa (not shown). Among the PGA producing strains, Bacillus subtilis (chungkookjang) and Natrialba agyattiaka strains are significantly different compared to producing PGA having a molecular weight of 10 6 Da or more, the strain of the present invention is Bacillus subtilis (natto ) And Bacillus Richenformis It was found to be similar to the molecular weight of 10 5 ~ 10 6 Da of IFO 3335 [Document 4].

한편, 최근 자오 외(Zhao et al.)는 PGA를 생산하는 바실러스 메센테리쿠스MJM1(Bacillus mesentericus MJM1)을 분리하였고, 이 균주에서는 PGA 생산에 관여하는 감마-글루타밀트란스펩티드(γ-glutamyltranspeptidase)의 유전자가 플라스미드 pMMH1(plasmid pMMH1)상에 존재하는 것으로 보고 하였는 데[[문헌정보 24], 본 발명의 균주는 플라스미드의 존재유무를 검토한 결과, 플라스미드를 보유하지 않는 것으로 밝혀졌고, 따라서, PGA 생산에 관련된 유전자는 염색체상에 존재할 것으로 판단된다. On the other hand, Zhao et al. Recently isolated Bacillus mesentericus MJM1, which produces PGA, and in this strain the gamma-glutamyltranspeptidase involved in PGA production. It was reported that the gene was present on plasmid pMMH1 [plasma 24], the strain of the present invention was found to have no plasmid as a result of examining the presence or absence of plasmid, thus producing PGA The gene involved in is thought to be present on the chromosome.

또한, 차후 본 발명의 균주가 생산하는 PGA의 자세한 물성연구와 PGA 분해효소에 의한 PGA의 절단기작이 연구하여 밝혀지면 다양한 크기의 PGA 생산이 가능할 것으로 기대된다.In addition, it is expected that the production of PGA of various sizes will be possible if a detailed physical property study of PGA produced by the strain of the present invention and the cutting of PGA by PGA degrading enzyme are studied.

이상과 같이, 본 발명의 신규 바실러스속 YN-1 균주는 통상의 탄소원과 질소원을 포함한 배지 내에서 질 좋은 폴리감마글루탐산의 생산효율이 매우 우수하여, 미생물을 이용한 폴리감마글루탐산의 제조공정에 적용하면 품질이 우수하고 값이 저렴한 폴리감마글루탐산을 제공할 수가 있다.As described above, the novel Bacillus genus YN-1 strain of the present invention has excellent production efficiency of high quality polygamma glutamic acid in a medium containing a common carbon source and nitrogen source, and when applied to the production process of polygamma glutamic acid using microorganisms, High quality and low cost polygammaglutamic acid can be provided.

서열목록 전자파일 첨부 Attach sequence list electronic file

Claims (6)

통상의 탄소원 및 질소원을 포함한 배지로부터 폴리감마글루탐산을 생산하는 기탁번호가 KACC 91169P인 바실러스 서브틸리스 CH-10 균주(Bacillus subtilis CH-10). Bacillus subtilis CH-10 strain having accession number KACC 91169P for producing polygammaglutamic acid from a medium containing a common carbon source and nitrogen source. 제 1항 기재의 균주를 통상의 탄소원 및 질소원을 포함한 배지에서 배양하고, 상기 배양물로부터 폴리감마글루탐산을 수득하는 것을 포함하는 폴리감마글루탐산의 제조방법.A method for producing polygamma glutamic acid comprising culturing the strain of claim 1 in a medium containing a common carbon source and nitrogen source, and obtaining polygamma glutamic acid from the culture. 제 2항에 있어서, The method of claim 2, 상기 배지는 수크로스, 포도당, 과당, 갈락토스 및 말토스로 이루어지는 군에서 적어도 1종 이상 선택된 탄소원이 포함된 배지인 것을 특징으로 하는 폴리감마글루탐산의 제조방법.The medium is a method for producing polygamma glutamic acid, characterized in that the medium containing at least one carbon source selected from the group consisting of sucrose, glucose, fructose, galactose and maltose. 제 2 항에 있어서,The method of claim 2, 상기 배지는 글루탐산 또는 글루타민이 질소원으로 포함된 배지인 것을 특징으로 하는 폴리감마글루탐산의 제조방법.The medium is a method for producing polygamma glutamic acid, characterized in that the medium containing glutamic acid or glutamine as a nitrogen source. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 4, 상기 배지는 2% 수크로스, 3% L-글루탐산, 1% 황산암모늄, 0.1% 이인산칼륨, 0.1% 인산수소나트륨(Na2HPO4 ·12H2O), 0.05% 황산마그네슘(MgSO4), 0.005% 염화제이철, 0.02% 염화칼슘, 0.002% 황산망간 및 0.00005% 바이오틴과 나머지는 멸균수로 이루어지는 것을 특징으로 하는 폴리감마글루탐산의 제조방법.The culture medium is 2% sucrose, 3% L- glutamate, 1% ammonium sulfate, 0.1% potassium phosphate, 0.1% of sodium hydrogen phosphate (Na 2 HPO 4 · 12H 2 O), 0.05% magnesium sulfate (MgSO 4), 0.005% ferric chloride, 0.02% calcium chloride, 0.002% manganese sulfate and 0.00005% biotin and the remainder is made of sterile water. 제 2 항 내지 제 4 항 중 어느 한 항에 있어서,The method according to any one of claims 2 to 4, 상기 배양은 37℃의 온도와 pH 7.5에서 배양하는 것을 특징으로 하는 폴리감마글루탐산의 제조방법.The culturing is a method for producing polygamma glutamic acid, characterized in that the culture at a temperature of 37 ℃ and pH 7.5.
KR1020050089394A 2005-09-26 2005-09-26 -10 Novel Bacillus subtilis CH10 and method for producing poly gamma glutamic acid using the same KR100670166B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050089394A KR100670166B1 (en) 2005-09-26 2005-09-26 -10 Novel Bacillus subtilis CH10 and method for producing poly gamma glutamic acid using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050089394A KR100670166B1 (en) 2005-09-26 2005-09-26 -10 Novel Bacillus subtilis CH10 and method for producing poly gamma glutamic acid using the same

Publications (1)

Publication Number Publication Date
KR100670166B1 true KR100670166B1 (en) 2007-01-16

Family

ID=38013958

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050089394A KR100670166B1 (en) 2005-09-26 2005-09-26 -10 Novel Bacillus subtilis CH10 and method for producing poly gamma glutamic acid using the same

Country Status (1)

Country Link
KR (1) KR100670166B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101067335B1 (en) 2008-07-04 2011-09-23 엠에스바이오텍 주식회사 Bacillus subtilis se-4 and calcium supplement composition comprising a culture of bacillus subtilis se-4
KR101811052B1 (en) * 2016-01-29 2017-12-20 영남대학교 산학협력단 Novel Bacillus sp. FBL-2 Strain or Method for Preparing of Poly(γ-glutamic acid)
KR20200000653A (en) * 2018-06-25 2020-01-03 한국원자력연구원 Bacillus siamensis strain, process for preparing gamma PGA from the same and supernatant comprising gamma PGA prepared from the same
KR102403670B1 (en) * 2021-11-04 2022-05-30 주식회사 현대바이오랜드 Method for purifying poly-gamma-glutamic acid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017182A (en) 1999-07-09 2001-01-23 Nagase & Co Ltd PRODUCTION OF POLY-gamma-GLUTAMIC ACID
KR100399091B1 (en) 2002-07-10 2003-09-22 Bioleaders Corp Macromolecular weight poly(gamma-glutamic acid) and its use

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017182A (en) 1999-07-09 2001-01-23 Nagase & Co Ltd PRODUCTION OF POLY-gamma-GLUTAMIC ACID
KR100399091B1 (en) 2002-07-10 2003-09-22 Bioleaders Corp Macromolecular weight poly(gamma-glutamic acid) and its use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101067335B1 (en) 2008-07-04 2011-09-23 엠에스바이오텍 주식회사 Bacillus subtilis se-4 and calcium supplement composition comprising a culture of bacillus subtilis se-4
KR101811052B1 (en) * 2016-01-29 2017-12-20 영남대학교 산학협력단 Novel Bacillus sp. FBL-2 Strain or Method for Preparing of Poly(γ-glutamic acid)
KR20200000653A (en) * 2018-06-25 2020-01-03 한국원자력연구원 Bacillus siamensis strain, process for preparing gamma PGA from the same and supernatant comprising gamma PGA prepared from the same
KR102080185B1 (en) 2018-06-25 2020-04-07 한국원자력연구원 Bacillus siamensis strain, process for preparing gamma PGA from the same and supernatant comprising gamma PGA prepared from the same
KR102403670B1 (en) * 2021-11-04 2022-05-30 주식회사 현대바이오랜드 Method for purifying poly-gamma-glutamic acid

Similar Documents

Publication Publication Date Title
KR100500796B1 (en) Bacillus subtilis var. chungkookjang producing high molecular weight poly-gamma-glutamic acid
Ashiuchi et al. Isolation of Bacillus subtilis (chungkookjang), a poly-γ-glutamate producer with high genetic competence
Cao et al. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes
Peng et al. High-level production of poly (γ-glutamic acid) by a newly isolated glutamate-independent strain, Bacillus methylotrophicus
Cao et al. Synthesis of poly (γ-glutamic acid) and heterologous expression of pgsBCA genes
Shih et al. Microbial production of a poly (γ-glutamic acid) derivative by Bacillus subtilis
Wang et al. A newly isolated Bacillus siamensis SB1001 for mass production of poly-γ-glutamic acid
Divyashree et al. Extractability of polyhydroxyalkanoate synthesized by Bacillus flexus cultivated in organic and inorganic nutrient media
KR100670166B1 (en) -10 Novel Bacillus subtilis CH10 and method for producing poly gamma glutamic acid using the same
Shi et al. Microbial production of natural poly amino acid
Shi et al. Efficient production of poly-γ-glutamic acid by Bacillus subtilis ZJU-7
KR100717169B1 (en) -1 Novel Bacillus sp. YN1 and method for producing poly gamma glutamic acid using the same
KR20160017797A (en) Polyglutamic Acid production method use Bacillus subtillis MJ80 strain
Liu et al. Flocculation of real sewage sludge using poly-γ-glutamic acid produced by Bacillus sp. isolated from soil
Jadhav et al. Salt tolerant protease produced by an aerobic species belonging to the Bacillus genus isolated from saline soil
KR102265998B1 (en) Method for producing poly(gamma-glutamic acid)
KR101968118B1 (en) Method for producing poly-gamma-glutamic acid by using novel bacillus subtilis hb-31 strain
Miri et al. Medium optimization for exopolysaccharides production by Bacillus Zhangzhouensis BZ 16 strain isolated from Khnifiss Lagoon
KR100352192B1 (en) A New thermophilic bacterium Brevibacillus borstelensis BCS-1 and A thermostable D-stereospecific amino acid amidase produced therefrom
KR100618035B1 (en) Process for preparing Poly?­glutamic acid from Bacillus Subtilis BS62, and Poly?­glutamic acid prepared from the same
Ahmed Optimization of Some Nutritional Conditions and α-Ketoglutaric Acid Concentration as PGA Precursor for Maximizing PGA Production from Bacillus sp. 42 and Bacillus sonorensis 44
Gross Bacterial γ-poly (glutamic acid)
Wang et al. Improved production of poly-γ-glutamate by newly Bacillus subtilis 115
KR100561888B1 (en) Manufacturing process of poly-glutamic acid using a newly isolated Bacillus sp. RKY3 KCTC 10412BP
JP3873512B2 (en) Method for producing D-3- (2-naphthyl) alanine

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121228

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140110

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee