KR20070025614A - Manufacturing method of activated minerals from the deep sea water and the deep sea rock floor water - Google Patents

Manufacturing method of activated minerals from the deep sea water and the deep sea rock floor water Download PDF

Info

Publication number
KR20070025614A
KR20070025614A KR1020050081969A KR20050081969A KR20070025614A KR 20070025614 A KR20070025614 A KR 20070025614A KR 1020050081969 A KR1020050081969 A KR 1020050081969A KR 20050081969 A KR20050081969 A KR 20050081969A KR 20070025614 A KR20070025614 A KR 20070025614A
Authority
KR
South Korea
Prior art keywords
water
concentrated
concentrated mineral
mineral
sent
Prior art date
Application number
KR1020050081969A
Other languages
Korean (ko)
Other versions
KR100688637B1 (en
Inventor
서희동
Original Assignee
서희동
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서희동 filed Critical 서희동
Priority to KR1020050081969A priority Critical patent/KR100688637B1/en
Publication of KR20070025614A publication Critical patent/KR20070025614A/en
Application granted granted Critical
Publication of KR100688637B1 publication Critical patent/KR100688637B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/481Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A method for manufacturing activated minerals from deep sea water or deep sea rock floor water is provided to produce uniform activated minerals compared with natural activated minerals. A deep sea water or deep sea rock floor water is collected to be heated at a temperature of 20-30 degrees. The deep sea water or deep sea rock floor water is filtered through sand filtering, micro filtering, and ultra filtering. A first pH of the deep sea water or deep sea rock floor water is adjusted into weak acid of 4.5-6.5. A salt water is concentrated in a reverse osmosis filtering process. The concentrated salt water is filtered in a nano filtering process for concentrating divalent minerals. The concentrated mineral water is neutralized. The neutralized concentrated mineral water is evaporated and concentrated. Magnetized and activated minerals are generated from the evaporated and concentrated mineral water and salty water discharged from a table salt factory.

Description

해양 심층수나 해저 심층암반수로부터 활성미네랄을 제조하는 방법{Manufacturing method of activated minerals from the deep sea water and the deep sea rock floor water}Manufacturing method of activated minerals from the deep sea water and the deep sea rock floor water}

도 1은 해양 심층수나 해저 심층암반수로부터 역삼투 여과 후 나노여과에 의한 활성미네랄을 제조하는 공정도1 is a process chart for preparing active minerals by nanofiltration after reverse osmosis filtration from deep sea water or deep sea bedrock.

도 2는 해양 심층수나 해저 심층암반수로부터 나노여과에 의한 활성미네랄을 제조하는 공정도Figure 2 is a process chart for producing active minerals by nanofiltration from deep seawater or deep sea bedrock

도 3은 대기 중의 공기에 의한 증발농축을 하는 공정에 의한 중화·증발농축·자화 및 활성미네랄생성반응·자화처리에 의한 활성미네랄을 제조하는 공정도3 is a process chart for producing activated minerals by neutralization, evaporative concentration, magnetization and active mineral generation reaction and magnetization by the process of evaporative concentration by air in the atmosphere.

도 4는 가열공기를 공급하는 증발탑으로 증발농축을 하는 공정에 의한 중화·증발농축·자화 및 활성미네랄생성반응·자화처리에 의한 활성미네랄을 제조하는 공정도Figure 4 is a process diagram for producing active minerals by neutralization, evaporation concentration, magnetization and active mineral generation reaction, magnetization by the process of evaporative concentration in the evaporation tower for supplying the heating air

도 5는 35℃에서 해수의 비중변화에 따른 각종 염의 석출율도5 is a precipitation rate of various salts according to the change in specific gravity of seawater at 35 ℃

도 6은 80℃에서 해수의 비중변화에 따른 각종 염의 석출율도6 is a precipitation rate of various salts according to the change in specific gravity of seawater at 80 ℃

〈도면의 주요부분에 대한 부호의 설명〉<Explanation of symbols for main parts of drawing>

1: 중화조 2: 중화조교반기1: Chinese Tanker 2: Chinese Tanker

3: 농축미네랄수 이송펌프 4: 농축조3: concentrated mineral water transfer pump 4: concentration tank

5: 농축조 레이크(Rake) 6: 증발탑5: Thickener Lake 6: Evaporation Tower

7: 증발탑 팬(Fan) 8: 분무노즐(Spray nozzle)7: Fan Nozzle 8: Spray Nozzle

9: 농축미네랄수 저장조 10: 농축미네랄수 반송펌프9: concentrated mineral water storage tank 10: concentrated mineral water return pump

11: 자화 및 활성미네랄생성반응조 11: Magnetization and active mineral production reactor

12: 자화 및 활성미네랄생성반응조 교반기12: Magnetization and Active Mineral Production Reactor Agitator

13: 자화기 순환펌프 14: 자화기13: magnetizer circulation pump 14: magnetizer

15: 가열공기를 공급하는 증발탑 16: 데미스터(Demister)15: Evaporation tower 16: Demister supplying heated air

17: 버너(Burner) 18: 송풍기17: Burner 18: Blower

19: 필터(Filter) M: 모터(Motor)19: Filter M: Motor

N: N극(North Pole) S: S극(South Pole) N: North Pole S: South Pole

pHIS: pH 지시 스위치(pH indicating switch)pHIS: pH indicating switch

BIS: 보메도 지시 스위치(Baume indicating switch)BIS: Baume indicating switch

본 발명은 수심 200m이하의 해양 심층수(海洋深層水)나 해저(海底) 심층암반수(深層巖盤水)를 취수하여 모래여과(sand filter), 정밀여과(Micro filter), 한외여과(Ultra filter) 등에 의해서 수중의 부유고형물질(SS; Suspended solid)을 제거한 다음에, pH를 4.5∼6.5로 조정한 것을 역삼투여과(RO filter)에 의한 농축 염수를 나노여과(Nano filter)를 하여 2가 이상의 미네랄성분을 농축한 농축미네랄수 를 중화 처리한 것과 식염제조공정에서 배출되는 간수(苦汁)에 미네랄착염을 생성하는 유기산을 주입하고 자화 처리하여 활성미네랄을 제조하는 방법에 관한 것이다. The present invention is to collect the deep seawater (sea marine deep seawater) or deep sea bed rock water of 200m or less depth sand (sand filter), microfiltration, ultrafiltration (Ultra filter) After removing the suspended solids (SS) in water by adjusting the pH to 4.5-6.5, the concentrated brine by RO filter was subjected to nano-filtration through nanofiltration. The present invention relates to a method of producing active minerals by neutralizing concentrated mineral water with concentrated components and injecting and magnetizing organic acids that produce mineral complex salts into the brine discharged from the salt production process.

표 1 해양 심층수와 표층해수의 성분 분석표 Table 1 Analysis table of deep seawater and surface seawater

항목            Item 해양 심층수  Deep ocean water 표층 해수    Surface seawater 일반항목General item 수온(℃)Water temperature (℃) 99 16.5~24.016.5-24.0 pH pH 7.807.80 8.158.15 DO 용존산소 (mg/L)DO dissolved oxygen (mg / L) 7.807.80 8.918.91 TOC 유기 탄소 (mg/L)TOC Organic Carbon (mg / L) 0.9620.962 1.7801.780 용해성 증발잔류물(mg/L)Soluble evaporation residue (mg / L) 4075040750 3759037590 M-알칼리도 (mg/L)M-alkalido (mg / L) 114.7114.7 110.5110.5 주요원소Major element Cℓ 염화물이온(wt%)Cℓ chloride ion (wt%) 2.2372.237 2.1922.192 Na 나트륨 (wt%)Na sodium (wt%) 1.0801.080 1.0301.030 Mg 마그네슘 (wt%)Mg magnesium (wt%) 0.1300.130 0.1310.131 Ca 칼슘 (mg/L)Ca Calcium (mg / L) 456456 441441 K 칼륨 (mg/L)K potassium (mg / L) 414414 399399 Br 취소 (mg/L)Br cancel (mg / L) 68.868.8 68.168.1 Sr 스트론튬 (mg/L)Sr Strontium (mg / L) 7.777.77 7.617.61 B 붕소 (mg/L)B boron (mg / L) 4.444.44 4.484.48 Ba 바륨(mg/L)Ba barium (mg / L) 0.0440.044 0.0250.025 F 불소 (mg/L)F Fluorine (mg / L) 0.530.53 0.560.56 SO₄(mg/L)SO₄ (mg / L) 28332833 26272627 영양염류Nutrients NH₄ 암모니아태질소 (mg/L)NH₄ ammonia nitrogen (mg / L) 0.050.05 0.030.03 NO₃ 질산태질소 (mg/L)NO₃Nitrate Nitrate (mg / L) 1.1581.158 0.0810.081 PO₄ 인산태인 (mg/L)PO₄ Phosphate (mg / L) 0.1770.177 0.0280.028 Si 규소 (mg/L)Si silicon (mg / L) 1.891.89 0.320.32 미량원소Trace elements Pb 납 (μg/L)Pb lead (μg / L) 0.1020.102 0.0870.087 Cd 카드뮴 (μg/L)Cd Cadmium (μg / L) 0.0280.028 0.0080.008 Cu 구리 (μg/L)Cu copper (μg / L) 0.1530.153 0.2720.272 Fe 철 (μg/L)Fe iron (μg / L) 0.2170.217 0.3550.355 Mn 망간 (μg/L)Mn Manganese (μg / L) 0.2650.265 0.3130.313 Ni 니켈 (μg/L)Ni nickel (μg / L) 0.3870.387 0.4960.496 Zn 아연 (μg/L)Zn Zinc (μg / L) 0.6240.624 0.4520.452 As 비소 (μg/L)As Arsenic (μg / L) 1.0511.051 0.4400.440 Mo 몰리브덴(μg/L)Mo molybdenum (μg / L) 5.0955.095 5.5555.555 균 수Number of bacteria 생균수(개/ml)Viable count (pcs / ml) 10²10² 10³∼10⁴10³ to 10⁴

※상기 분석표는 일본 고우치현(高知縣)의 무로도 등대(室戶岬) 동쪽 해저 374m의 해양 심층수와 표층해수를 취수하여 분석한 분석치 이다.※ The above analysis table analyzes the deep seawater and surface seawater of 374m below the east side of Murodo Lighthouse in Kouchi Prefecture, Japan.

수심 200m 이하의 해양 심층수와 표층해수는 표 1의 "해양 심층수와 표층해수의 성분 분석표"에서 보는 봐와 같이 염분(NaCl)의 농도와 대부분의 미네랄 농도 는 비슷하나, 영양염류(질산태질소, 인산, 규소), 생균 수, 수온은 상당한 차이가 있다.Deep seawater and surface seawater with a depth of 200 m or less have similar concentrations of salinity (NaCl) and most mineral concentrations as shown in Table 1, "Analysis Table of Deep Sea Water and Surface Seawater", but nutrients (nitrogen nitrogen, Phosphoric acid, silicon), viable cell number, and water temperature are significantly different.

해양 심층수의 수온은 계절을 통해서 연중 거의 일정하며, 해면 표층수의 수온은 16℃~28℃이지만, 수심 374m 심층수의 수온은 9℃로 저온 안정성을 나타내는 특성으로 플랑크톤, 미생물, 특히 병원성 세균 등이 적은 청정성(淸淨性)이 있다.The water temperature of deep ocean water is almost constant throughout the year, and the surface water temperature of sea surface water is 16 ℃ ~ 28 ℃, but the water temperature of 374m deep water is 9 ℃, which shows low temperature stability and is low in plankton, microorganisms, especially pathogenic bacteria. There is cleanliness.

해양 심층수는 일반 세균 외 병원성 대장균과 병원성 바이러스 등 10종류의 세균의 검사에서도 검출되지 않았으며, 총생균수는 표층수의 10분의 1에서 100분의 1 정도로 깨끗한 물이다.Deep seawater was not detected in the test of 10 kinds of bacteria including pathogenic Escherichia coli and pathogenic virus. The total viable count is clean water from 1/10 to 100% of surface water.

또한, 해양 심층수에는 표층수의 약 5∼10배의 무기영양염류가 포함되어 있으면서 사람에게 필요한 주요원소가 70종류를 넘는 다종다양한 미네랄성분이 포함되어 있으면서, 필요하기는 하지만 다량으로 섭취하면 해가 될 수 있는 필수 미량원소인 동, 아연과 같이 사람의 건강에 깊은 관계가 있는 것은 극히 소량 포함되어 있는 미네랄밸런스(Mineral balance)가 좋은 점이 해양 심층수의 특성이다.In addition, deep sea water contains about 5 to 10 times more inorganic nutrients than surface water, and contains more than 70 kinds of minerals, which are necessary for humans. Deep mineral water, which has a very small amount, has a deep relationship to human health, such as copper and zinc, which are essential trace elements.

그리고 섬지역이나 해안지역의 200m이하의 해저 암반을 굴착하여 취수한 해저 암반수(海底巖盤水, 海洋深層巖盤水 또는 海底深層化石海水라 하기도 함)의 경우는 해수가 암반이나 토양으로 침투되면서 암반과 토양의 성상에 따라서 다소 차이는 있으나 Na+ 이온, Mg2 +이온 등이 암반이나 토양의 칼슘(Ca)과 치환되면서 Na+ 이온과 Mg2 +이온의 농도는 다소 떨어지면서 Ca2 +이온이 증가한 현상 이외에는 해양 심층수와 거의 동일한 특성이 있으며, 부산 영도 해저 260m 해저암수의 무기질함유 량의 성분분석은 표 2의 내용과 같다.In the case of seabed rocks (also referred to as seawater, 海洋 深層 巖 盤 水 or 海底 深層 化石 海水), excavated less than 200m of rock in the island or coastal areas, the seawater penetrates into the rock or soil. vary slightly depending on the rock and the aqueous phase of the soil, but Na + ion, Mg 2 + ions and the like while as substituted and rock or calcium (Ca) of a soil concentration of Na + ions and Mg 2 + ions is slightly away Ca 2 + ions Except for this increased phenomenon, it has almost the same characteristics as the deep seawater, and the component analysis of mineral content of 260m undersea seawater in Youngdo, Busan is shown in Table 2.

표 2 부산 영도 해저 260m 해저암수의 무기질함유량 분석표 Table 2 Analysis Table of Mineral Contents of 260m Subsea Rock and Water

성 분      ingredient 해 저 암 반 수    Undersea rock K(칼륨) (mg/ℓ)   K (potassium) (mg / L) 175.5        175.5 Ca(칼슘)(mg/ℓ)   Ca (calcium) (mg / L) 11185      11185 Na(나트륨)(mg/ℓ)   Na (sodium) (mg / ℓ) 1827       1827 Mg(마그네슘)(mg/ℓ)   Mg (magnesium) (mg / ℓ) 518.4        518.4

일반적으로 해양 심층수나 해저 심층암반수의 특성은 저온안전성(低溫安全性), 청정성(淸淨性), 부영양성(富榮養性), 미네랄의 특성, 숙성성(熟成性) 등을 언급하고 있으나, 활성미네랄제조 측면에서 특성을 검토하면 다음과 같다.Generally, the characteristics of deep seawater and deep sea bedrock refers to low temperature safety, cleanliness, eutrophicity, mineral properties, and maturation. The characteristics of the active minerals are as follows.

1. 매우 청정(淸淨)하면서 동·식물의 생육에 필요한 다양한 미네랄을 함유하고 있다.1. It is very clean and contains various minerals necessary for the growth of animals and plants.

심해에는 동·식물의 생육에 필요한 다양한 미네랄성분을 함유하고 있으며, 햇빛이 투과되지 않으면서 저온·고압상태로 병원성 미생물이 거의 존재하지 않으면서 생활폐수나 환경호르몬과 같은 오염물질이 없는 청정(淸淨)한 상태의 물이다.The deep sea contains various minerals necessary for the growth of animals and plants, and it is clean and free of contaminants such as domestic wastewater and environmental hormones, with little or no pathogenic microorganisms in low temperature and high pressure without sunlight being transmitted. 물) It is water in a state.

2. 해양 심층수나 해저 심층암반수는 육상의 광천수(鑛泉水)나 하천수(河川水)에 비해서 무한한 양이 존재하면서 위생적으로 양질의 활성미네랄을 만들 수 있다.2. Deep ocean waters and deep sea bedrock can produce high-quality active minerals in a sanitary manner, with an infinite amount of mineral water and river waters.

3. 대식세포(大食細胞; Macrophage)의 증식을 활성화하는 것으로 밝혀졌다.3. It has been shown to activate the proliferation of macrophage.

4. 대부분의 미네랄성분이 수중에 용해된 상태(수용성 미네랄)로 존재하기 때문에 활성미네랄로 용이하게 제조될 수 있다.4. Since most minerals are dissolved in water (soluble minerals), they can be easily prepared as active minerals.

5. 표층수에 비해서 심층수에서는 산화-환원반응을 반복하면서 2가-3가철(二 價-三價鐵)이 다량 존재하기 때문에 자화처리를 하였을 때 처리효율이 향상된다.5. Compared with surface water, deep water has a large amount of divalent trivalent iron (II 價-三 價 鐵) while repeating the oxidation-reduction reaction, so that the treatment efficiency is improved when the magnetization treatment is performed.

따라서 해양 심층수나 해저 심층암반수는 염분만 적절히 제거하면 양질의 활성미네랄을 만들 수 있다.Therefore, deep ocean waters or deep sea bedrock can produce high quality active minerals by only removing salts properly.

해양 심층수나 해저 심층암반수로부터 활성미네랄을 제조하는 종래기술은 조사되지 않았으며, 천연에서 활성미네랄이 출토되는 일본 나가사키현(長崎縣)의 시마하라반도(島原半島)의 운젠화산군(雲仙火山群)의 북서쪽 가라고(唐比) 함몰습지(陷沒濕地)에 해양성 규조류, 플랑크톤(Plankton), 동·식물의 유체(遺體)가 대사이드(Dacite)의 화산분출물, 자화된 2가-3가 철(자철광)이 혼합퇴적되어 pH가 2∼3으로 되면서 부식물질 중에서 풀브산(Fulvic acid)이 유리(遊離)의 상태로 유도되면서 킬레이트(Chelate)성 풀브산미네랄착염의 형태로 출토되고 있는데, 출토 장소와 위치에 따라서 성능 및 함량의 차이가 심한 문제점이 있으면서, 행정 당국의 습지보호정책으로 채굴이 제한되고 있는 문제점과 국내에서는 이와 같은 활성미네랄이 출토되는 곳이 없어 사료첨가제, 수질개량제, 미생물배양 등에 이를 상당히 고가로 수입하여 사용하고 있는 실정에 있다.The prior art of producing active minerals from deep ocean waters and deep sea bedrock has not been investigated, and Unzen volcanoes of Shimahara Peninsula in Nagasaki Prefecture, Japan, where active minerals are excavated from nature. Marine diatoms, plankton, animal and plant fluids in volcanic eruptions of Dacite, magnetized divalent and trivalent iron (Magnetite) is mixed and deposited to pH 2 ~ 3, and pulvic acid (Fulvic acid) in the corrosive substance is induced in the free state, and is excavated in the form of chelate-type fulbrate mineral complex salt. There is a serious problem in performance and content depending on the location and location, and mining is restricted due to the wetland protection policy of the administrative authorities. , And in the circumstances that it uses fairly expensive imports like water conditioner, microbial culture.

그리고 본 발명에서 해수의 비중을 나타내는 보메비중계(Baume's hydrometer)의 보메도(°Be)는 액체의 비중을 측정하기 위하여 보메비중계를 액체에 띄웠을 때의 눈금의 수치로 나타낸 것으로, 물의 비중보다 무거운 중액용(重液用)의 무거운 보메도(중보메도)와 물의 비중보다 가벼운 경액용(輕液用)의 가벼운 보메도(경보메도)가 있으며, 이 중에서 중액용은 순수(純水)를 0°Be로 하고, 15% 식염수를 15°Be로 하여, 그 사이를 15 등분한 눈금을 가지며, 경액용은 10% 식염 수를 0°Be로 하고, 순수(純水)를 10°Be로 하여, 그 사이를 15 등분한 눈금을 매기고 있으며, 보메도(°Be)는 해수의 경우 염 농도(wt%)와 근사(近似)하기 때문에 농도를 표시하는 척도로도 널리 사용되고 있다.In the present invention, the Bomedo (° Be) of the Baume's hydrometer representing the specific gravity of the seawater is expressed as a numerical value of the scale when the Bomeviometer floated on the liquid to measure the specific gravity of the liquid, Heavy bomedoes for heavy liquids and light bomedoes for light liquids that are lighter than the specific gravity of water, among which heavy liquids are pure water. It is ° Be, 15% saline is 15 ° Be, and the division is divided into 15 equal parts. For the liquid solution, 10% saline is 0 ° Be, and pure water is 10 ° Be. The scale is divided into 15 equal parts between them, and BOME (° Be) is widely used as a measure of concentration because seawater approximates salt concentration (wt%).

보메도(°Be)와 액체의 비중(d)과의 관계는 다음과 같다.The relationship between the Bume (° Be) and the specific gravity (d) of the liquid is

액체의 비중이 물의 비중보다 무거운 중보메도의 경우For heavy media that has a specific gravity of liquid greater than that of water

d = 144.3/(144.3-Be) ………………………………………………① d = 144.3 / (144.3-Be). … … … … … … … … … … … … … … … … … ①

액체의 비중이 물의 비중보다 가벼운 경보메도의 경우In the case of an alarm field where the specific gravity of the liquid is lower than the specific gravity of the water

d = 144.3/(134.3+Be) ………………………………………………② d = 144.3 / (134.3 + Be)... … … … … … … … … … … … … … … … … … ②

본 발명은 상기와 같은 문제점을 해소하기 위해 해양 심층수나 해저 심층암반수로부터 활성미네랄을 인공제조하는 방법을 제공하는데 본 발명의 목적이 있는 것이다.It is an object of the present invention to provide a method for artificially manufacturing active minerals from deep ocean water or deep sea bedrock to solve the above problems.

이와 같은 목적을 달성하기 위한 본 발명은, 수심 200m 이하의 해양 심층수나 해저 심층암반수를 취수하여 20∼30℃로 가온하는 단계, 모래여과 - 정밀여과 - 한외여과에 의한 전처리 여과단계, l차 pH를 4.5∼6.5의 약산성으로 조정하는 단계, 역삼투 여과공정에서 염수를 농축하는 단계, 역삼투 여과공정의 농축 염수를 나노여과(Nano filtration) 공정에서 여과하여 2가 이상의 미네랄을 농축하는 단계, 나노여과공정에서 농축된 농축미네랄수를 중화처리를 하는 단계. 중화처리된 농축미네랄수를 증발·농축하는 단계, 증발·농축된 미네랄수와 식염공장에서 배출되는 간수를 자화 및 활성미네랄을 생성하는 단계, 활성미네랄을 포장 및 검사단계 로 이루어진 것에 특징이 있다.In order to achieve the above object, the present invention is to take the deep seawater or seabed deep seawater with a depth of 200m or less and warm it to 20 ~ 30 ℃, sand filtration-microfiltration-ultrafiltration pretreatment by ultrafiltration, l primary pH Adjusting to weak acidity of 4.5 to 6.5, concentrating the brine in the reverse osmosis filtration process, concentrating the brine in the reverse osmosis filtration process in the nanofiltration process, concentrating the divalent or more minerals, nano Neutralizing the concentrated mineral water concentrated in the filtration process. Evaporating and concentrating the neutralized concentrated mineral water, magnetizing and generating active minerals from the evaporated and concentrated mineral water and salt water discharged from the salt factory, and packing and inspecting the active mineral.

활성미네랄(Activated mineral)은 광물 중에서 수 중에 용해될 수 있는 미네랄을 말하는 학자도 있으나, 일부 학자들은 수중에 용해되어 있는 미네랄이 유기산과 반응하여 킬레이트(Chelate)성유기산미네랄착염(錯鹽)의 상태의 미네랄을 말한다. Although activated minerals are minerals that can be dissolved in water in minerals, some scholars believe that the minerals dissolved in water react with organic acids to form chelated organic acid mineral complex salts. Says minerals.

200m이하의 해양 심층수나 해저 심층암반수는 햇빛이 투과되지 않아 광합성이 일어나지 않으며 저온성으로 미생물의 농도가 낮은 청정성이 있으면서, 질산염, 인산염, 규소와 같은 영양염류의 농도가 높으며 다종다양한 미네랄(Minerals)성분이 수중에 용해되어 있는 상태로 있기 때문에 쉽게 활성미네랄을 만들 수 있는 특성이 있다. Deep seawater below 200m or deep sea bedrock do not penetrate sunlight and photosynthesis does not occur, and it is low temperature and has low microbial concentration, high concentration of nutrients such as nitrate, phosphate, and silicon, and various minerals. Since the component is dissolved in water, it has the property of making active mineral easily.

이하 도면을 중심으로 본 발명의 내용을 상세히 설명하면 다음과 같다.Hereinafter, the contents of the present invention will be described in detail with reference to the drawings.

도 1에서 해양 심층수의 취수방법은 선상(船上)에서 해저 200m이하에 배관을 내려 취수하던가, 해저 수심 200m이하까지 배관을 설치하여 펌프(Pump)로 취수하던가, 해저 수심 200m이하까지 배관을 설치하여 취수정을 해수면 이하로 설치하여 사이펀(siphon) 원리에 의해서 취수를 한다.In Figure 1, the deep sea water intake method is to take the pipe down to 200m or less from the bottom of the ship, or to install the pipe to the seabed depth of 200m or less, with a pump (Pump), or to install a pipe to the seabed 200m or less Intake wells are installed below sea level and are ingested according to the siphon principle.

그리고 해저 심층암반수를 취수하는 경우는 취수정으로 오염된 해양 표층수가 유입될 우려가 있기 때문에 취수정의 배관을 해저 200m까지는 밀폐되게 설치를 하여 해양 표층수가 유입되지 않게 취수정을 설치하여야 한다.In case of infiltration of deep sea bedrock, there is a possibility that the surface water contaminated by the intake well may flow, so the piping of the well should be installed up to 200m below the seabed so that the inlet well should not be introduced.

집수조에 취수된 해양 심층수나 해저 심층암반수는 온도가 낮으면서 점도가 높아 여과효율이 떨어지기 때문에 20∼30℃로 가온 처리를 한다.Deep seawater or seabed deep seawater collected in the sump is warmed to 20 ~ 30 ℃ because of its low viscosity and high filtration efficiency.

가온 방법은 보일러에서 열을 공급받거나, 여름철에는 해양 표층수를 이용할 수도 있다.The warming method may be supplied with heat from a boiler, or may use sea surface water in summer.

가온 처리된 해양 심층수나 해저 심층암반수는 모래여과(Sand filter), 정밀여과(Micro filter ), 한외여과(限外濾過; Ultra filter)를 단독 또는 2가지 이상을 조합한 여과를 하여 후단의 나노여과(Nano filter)와 역삼투여과(Reverse Osmosis filter)에서 막 막힘(Fouling) 현상이 야기될 수 있는 부유고형물(SS; Suspended solid)을 제거하는 전처리 여과공정이다. For warmed deep seawater or deep seabed rock, sand filtration (Sand filter), micro filtration, and ultra filtration alone or a combination of two or more of them (Nano filter and Reverse Osmosis filter) is a pretreatment filtration process to remove suspended solids (SS) that can cause fouling.

이때 여과압력은 운전조건에 따른 여과기의 압력손실과 배관의 압력손실을 고려하여 결정하며, 모래여과의 경우 여과속도는 6∼10m/시간으로 하고, 여과사(濾過砂)의 유효경(有效徑)은 0.3∼0.45㎜, 균등계수(均等係數)는 2.0 이하로 하며, 여층(濾層)의 두께는 0.5∼1.0m로 한다.At this time, the filtration pressure is determined in consideration of the pressure loss of the filter and the pressure loss of the pipe according to the operating conditions.In the case of sand filtration, the filtration speed is 6-10 m / hour, and the effective diameter of the filter sand Is 0.3 to 0.45 mm, the uniformity factor is 2.0 or less, and the thickness of a fibrous layer is 0.5 to 1.0 m.

그리고 정밀여과와 한외여과는 여과 막의 종류에는 구애받지 않으며, 벤더(Vendor)의 사양에 따라서 여과속도와 압력손실을 고려하여 공급압력을 결정한다.Microfiltration and ultrafiltration are independent of the type of filtration membrane, and the supply pressure is determined in consideration of the filtration rate and the pressure loss according to the specifications of the vendor.

전처리여과공정에서 수중의 부유고형물질이 제거된 해양 심층수나 해저 심층암반수는 pH조정공정으로 보내어 나노여과막이나 역삼투여과막에서 스케일(Scale)이 생성되지 않도록 pH를 4.5∼6.5로 조정하며, 이때 pH조정제로는 무기산(無機酸) 중에서 5∼10wt%의 염산(HCl) 수용액을 사용한다.In the pretreatment filtration process, the deep seawater or subsea deep rock water from which suspended solids have been removed is sent to the pH adjustment process to adjust the pH to 4.5-6.5 so that no scale is produced in the nanofiltration membrane or the reverse osmosis membrane. As an adjusting agent, 5-10 wt% hydrochloric acid (HCl) aqueous solution is used in an inorganic acid.

pH조정 방법은 교반시간(체류시간)을 15∼30분간, 180∼360RPM(회전속도)의 프로펠러 교반기(Propeller Agitator)로 교반하면서 전처리 여과된 해양 심층수나 해저 심층암반수에 pH조정제를 주입하면서 pH를 4.5∼6.5로 조정한 다음에 역삼투여과공정으로 보낸다.The pH adjustment method is performed by injecting a pH adjuster into the pre-filtered deep seawater or the deep sea bedrock while stirring the agitation time (retention time) for 15 to 30 minutes with a propeller agitator of 180 to 360 RPM (rotational speed). Adjust to 4.5 ~ 6.5 and send to reverse osmosis filtration process.

이하 사용하는 나노여과(Nano filter)와 역삼투여과(Reverse Osmosis filter)의 막 모듈(Module) 형태는 관형(管形; tubular), 중공사형(中空絲形; hollow fiber), 나선형(螺旋形; spiral wound), 평판형(平板形; plate and frame) 등 어떠한 형태를 사용하여도 상관이 없으며, 그리고 막(膜)의 재질(材質)도 특별히 제한하지는 않는다.Membrane modules of the nano filter and reverse osmosis filter used are tubular, hollow fiber, spiral, and spiral. It does not matter which form is used, such as wound or plate and frame, and the material of the film is not particularly limited.

pH조정공정에서 pH를 4.5∼6.5로 조정하여 역삼투여과공정에 공급되면 운전압력을 50∼60기압(atm)으로 여과 막에 공급하며, 나선형여과막의 경우 막투과수량은 0.5∼0.8㎥/㎡·일로 운전하면 염분은 99.0 ∼ 99.85wt% 범위로 제거되며, 염분이 탈염(脫鹽)된 탈염수는 음용수제조공정으로 보내고, 염수는 나노여과공정으로 보낸다.When the pH is adjusted to 4.5 to 6.5 in the pH adjustment process and supplied to the reverse osmosis filtration process, the operating pressure is supplied to the filtration membrane at 50 to 60 atmospheres (atm), and the membrane permeation amount is 0.5 to 0.8 ㎥ / m2 When it is operated to work, the salinity is removed in the range of 99.0 ~ 99.85wt%, demineralized salt is sent to the drinking water manufacturing process, and the brine is sent to the nanofiltration process.

나노여과(Nano filter)공정에서는 염수 중의 NaCl, KCl과 같은 1가의 염과 CaCO3, CaSO4, MgCl2, MgSO4 와 같은 2가 이상의 미네랄성분이 90wt%이상 분리되도록 공급압력을 15∼25기압(atm)으로 하며, 나선형의 경우 막투과수량(膜透過水量)은 0.7∼1.4㎥/㎡·일로 하면, 이때 막투과수량은 유입수량의 80∼90%가 된다.In the nano filtration process, the supply pressure is 15 to 25 atmospheres so that monovalent salts such as NaCl and KCl in brine and more than 90 wt% of divalent or more minerals such as CaCO 3 , CaSO 4 , MgCl 2 , and MgSO 4 are separated. Atm, and in the case of spiral, the membrane permeation amount is 0.7 to 1.4 m 3 / m 2 · day, where the membrane permeation amount is 80 to 90% of the inflow.

나노여과공정에서 CaCO3, CaSO4, MgCl2, MgSO4 와 같은 2가 이상의 미네랄성분이 농축된 농축미네랄수는 중화처리공정으로 보내고, 2가 이상의 미네랄성분이 제거된 탈미네랄염수인 NaCl을 다량 함유한 염수는 식염제조공정으로 보낸다.In the nanofiltration process, concentrated mineral water concentrated with divalent or more minerals such as CaCO 3 , CaSO 4 , MgCl 2 , and MgSO 4 is sent to the neutralization process, and a large amount of NaCl, a demineralized brine from which the divalent or higher minerals are removed, is removed. The brine contained is sent to the salt production process.

그리고 도 2에서와 같이 전처리여과 후 pH조정공정에서 pH를 4.5∼6.5로 조정한 해양 심층수나 해저 심층암반수를 나노여과공정으로 보내어 탈미네랄염수는 역삼투여과공정으로 보내어 탈염수는 음용수제조공정으로 보내고, 농축 염수는 식염제조공정으로 보내면서, 나노여과공정에서 NaCl, KCl과 같은 1가의 염이 제거된 농축미네랄수는 중화처리공정으로 보낸다.And in the pH adjustment process after pre-treatment as shown in Figure 2 sent the deep seawater or seabed deep rock water adjusted to pH 4.5 ~ 6.5 to the nanofiltration process, the demineralized brine is sent to reverse osmosis filtration process to send the demineralized water to the drinking water production process, Concentrated brine is sent to the salt production process, while concentrated mineral water from which monovalent salts such as NaCl and KCl are removed from the nanofiltration process is sent to the neutralization process.

나노여과공정에서 배출하는 농축미네랄수가 중화처리공정의 중화조(1)에 유입되면 중화제로는 Ca(OH)2, CaO, NaOH, NaHCO3, Na2CO3 중에서 한 종류의 수용액을 공급하면서 중화조교반기(2)로 교반을 하면서 pH를 6.5∼7.5의 범위로 중화처리를 하여 농축미네랄수 이송펌프(3)에 의해서 농축미네랄수 반송수와 함께 증발·농축공정의 증발탑(6) 상부로 보내어 분무노즐(Spray nozzle: 8)을 통해서 분무한다. When concentrated mineral water discharged from the nanofiltration process flows into the neutralization tank (1) of the neutralization process, neutralization is carried out by supplying one kind of aqueous solution among Ca (OH) 2 , CaO, NaOH, NaHCO 3 and Na 2 CO 3 as a neutralizing agent. While stirring with a co-stirrer (2), the pH was neutralized in the range of 6.5 to 7.5, and the concentrated mineral water transfer pump (3) was fed to the upper portion of the evaporation tower (6) of the evaporation and concentration process together with the concentrated mineral water return water. And spray through a spray nozzle (8).

중화처리공정의 운전조건도 pH조정공정에서와 같이 교반시간(체류시간)을 15∼30분간, 180∼360RPM(회전속도)의 프로펠러 교반기로 교반하면서 중화제를 주입하여 pH를 6.5∼7.5로 조정한다.As in the pH adjustment process, the neutralization process is also carried out with a neutralizer while stirring with a propeller stirrer of 180 to 360 RPM (rotational speed) for 15 to 30 minutes to adjust the pH to 6.5 to 7.5. .

중화처리된 농축미네랄수가 농축미네랄수 반송수와 함께 증발·농축공정의 증발탑(6) 상부의 분무노즐(8)을 통해서 분무하면 증발탑(8) 상부에 설치된 증발탑 팬(7)에 의해서 증발탑(8) 하부로부터 대기 중의 공기를 흡입하여 상부로 배출하면서 농축미네랄수는 공기와 향류접촉(向流接觸)을 하면서 수분은 증발한 후 농축조(4)로 떨어진다.When the neutralized concentrated mineral water is sprayed together with the concentrated mineral water return water through the spray nozzle 8 at the top of the evaporation tower 6 in the evaporation and concentration process, the evaporation tower fan 7 installed at the top of the evaporation tower 8 is used. The concentrated mineral water is in countercurrent contact with the air while the air in the air is sucked out from the bottom of the evaporation tower 8 and discharged to the upper portion.

증발탑(6)에서 수분이 증발되어 농축되면서 석출된 고형물(CaCO3, CaSO4 … 등)이 농축조(4) 하부로 침전되면, 농축조 레이크(5)에 의해서 농축조(4) 하부 콘(Cone)으로 모이면 간헐적(間歇的)으로 자화 및 활성미네랄생성반응조(11)로 배출하고, 농축조(4) 상부로 익류(Over flow)하는 농축미네랄수는 농축미네랄저장조 (9)로 보내어 농축미네랄수 반송펌프(10)에 의해서 증발탑(6) 상부로 반송하면서 보매도비중이 도 5와 도 6의 "해수의 비중변화에 따른 각종 염의 석출율도"와 표 3의 "해수의 증발농축에서 석출율"에서 보는 바와 같이 30보메(Be) 이상 되면 MgSO4, MgCl2, KCl … 등이 대량으로 석출하기 때문에 농축미네랄수 저장조(9)에 설치된 보메도비중계 BIS(Baume indicating switch)에 의해서 전자변(Solenoid valve)의 작동도록 하여 자화 및 활성미네랄반응공정의 자화 및 활성미네랄반응조(11)로 보낸다.When the solids (CaCO 3 , CaSO 4 ..., Etc.) precipitated as the water is evaporated and concentrated in the evaporation tower 6 are precipitated to the bottom of the concentration tank 4, the cone bottom of the concentration tank 4 by the concentration tank rake 5. Condensate into the concentrated and concentrated mineral storage tank (9) and return it to the concentrated mineral storage tank (9). The short-selling weight ratio is conveyed to the upper part of the evaporation tower 6 by the pump 10, and the "deposition rate of various salts according to the change of specific gravity of seawater" in FIGS. 5 and 6 and "deposition rate in evaporative concentration of seawater" of Table 3 As can be seen from more than 30 bome (Be) MgSO 4 , MgCl 2 , KCl… Since the precipitates in large quantities, the magneto- and active mineral reaction tanks of the magnetization and active mineral reaction processes are operated by operating the solenoid valve by the BME (Baume indicating switch) installed in the concentrated mineral water reservoir (9). Send to).

증발탑(6)의 형태와 구조는 일반 산업공장의 냉각수를 냉각하는 냉각탑의 구조와 동일하며, 농축조(4)는 하·폐수처리에 사용하는 농축조와 동일한 구조이며, 증발탑(6)의 재질은 내염성 재질을 사용한다. The shape and structure of the evaporation tower 6 is the same as the structure of the cooling tower for cooling the cooling water of a general industrial factory, the concentration tank 4 is the same structure as the concentration tank used for sewage and wastewater treatment, the material of the evaporation tower (6) Silver flameproof material is used.

농축조(4)와 농축미네랄수 저장조(9)의 재질은 철근 콘크리트(Reinforced concrete)에 에폭시 코팅을 한 것이나 티타늄이나 SUS-316L 또는 스틸 강판에 FRP수지나 에폭시 수지를 라이닝 또는 코팅을 한 것을 사용한다. The thickening tank (4) and concentrated mineral water storage tank (9) are made of reinforced concrete with epoxy coating or titanium or SUS-316L or steel plate with FRP resin or epoxy resin lining or coating. .

농축조(4)의 직경은 익류수의 표면적 부하가 15∼30㎥/㎥·일의 범위로 하고, 깊이는 3∼4m로, 하부 바닥의 경사는 1.5/10∼2.5/10 범위의 구배(句配)가 되게 설계한다.The diameter of the concentration tank 4 is in the range of 15-30 m 3 / m 3 · day of surface water load of the water, the depth is 3-4 m, the slope of the bottom bottom is a gradient of 1.5 / 10 to 2.5 / 10 range 설계) designed to be.

표 3 해수의 증발농축에서 석출율(g/ℓ)                  Table 3 Precipitation Rate (g / ℓ) in Seawater Evaporative Concentration

비중 (°Be)Specific gravity (° Be) 부피 (cc) Volume (cc) Fe2O3 Fe 2 O 3 CaCO3 CaCO 3 CaSO4 CaSO 4 MgSO4 MgSO 4 MgCℓ2 MgCℓ 2 NaCℓNaCℓ MgBr2 MgBr 2 KCℓKCℓ 3.43.4 1,0001,000 7.17.1 533533 0.00300.0030 0.06420.0642 11.511.5 316316 TraceTrace 14.014.0 245245 TraceTrace 16.7516.75 190190 0.05300.0530 0.56000.5600 20.6020.60 145.5145.5 0.50200.5020 22.0022.00 131.0131.0 0.16000.1600 25.0025.00 112.0112.0 0.15080.1508 26.2526.25 95.095.0 0.14760.1476 0.00400.0040 0.00780.0078 3.26143.2614 27.027.0 64.064.0 0.14400.1440 0.01300.0130 0.03560.0356 9.65009.6500 28.5028.50 39.039.0 0.07000.0700 0.02600.0260 0.04370.0437 7.89607.8960 0.07280.0728 32.3032.30 30.030.0 0.01440.0144 0.01740.0174 0.01500.0150 2.62402.6240 0.03580.0358 32.4032.40 23.023.0 0.02540.0254 0.02400.0240 2.27202.2720 0.05180.0518 35.035.0 16.216.2 0.53820.5382 0.02740.0274 1.40401.4040 0.06200.0620 전석출량Total precipitation -  - 0.00300.0030 0.11720.1172 1.74881.7488 0.62400.6240 0.15350.1535 27.107427.1074 0.22240.2224 간수 중 잔존량Remaining water -  - 1.85481.8548 3.16403.1640 0.58850.5885 0.33000.3300 0.53350.5335 합 계Sum -  - 0.00300.0030 0.11720.1172 1.74881.7488 2.47882.4788 3.31753.3175 27.695927.6959 0.55240.5524 0.53350.5335

그리고 농축미네랄수 저장조(9)는 체류시간이 30∼60분의 용량으로 하며, 농축미네랄수 반송펌프의 용량은 반송수량이 유입수량(중화처리된 농축미네랄수의 유량)의 2∼4배의 유량으로 한다. The concentrated mineral water storage tank 9 has a residence time of 30 to 60 minutes, and the capacity of the concentrated mineral water return pump is about 2 to 4 times the amount of the inflow water (the flow rate of the neutralized concentrated mineral water). Let flow rate.

그리고 전술한 도 3의" 대기 중의 공기에 의한 증발농축을 하는 공정에 의한 중화·증발농축·자화 및 활성미네랄생성반응·자화처리에 의한 활성미네랄을 제조하는 공정"은 대기온도가 낮은 동절기(冬節期)나 우기(雨期)의 경우에는 증발·농축이 거의 일어나지 않기 때문에 대기 중의 공기를 공급하여 증발하는 증발탑(6) 대신에 도 4의 "가열공기를 공급하는 증발탑(15)으로 증발농축을 하는 공정에 의해서 중화·증발농축·자화 및 활성미네랄생성반응·자화처리에 의한 활성미네랄을 제조하는 공정"에 의해서 수분을 증발농축을 한다.In addition, the process of preparing active minerals by neutralization, evaporative concentration, magnetization and active mineral generation reaction and magnetization by the process of evaporative concentration by air in the air of FIG. In the case of i) or rainy season, since evaporation and concentration hardly occur, evaporation is carried out to evaporation tower 15 for supplying heating air instead of evaporation tower 6 for supplying air in the atmosphere and evaporation. Water is evaporated and concentrated by the process of producing active minerals by neutralization, evaporative concentration, magnetization and active mineral generation reaction and magnetization.

가열공기를 공급하는 증발탑(15)으로 증발농축을 하는 경우는 중화처리된 농축미네랄수와 농축미네랄수 반송수를 압축공기와 함께 가열공기를 공급하는 증발탑(15) 상부로 보내어 분무 노즐(18)을 통해 분무하면서 송풍기(18)에서 공급된 공기를 버너(17)에 의해서 가열한 열풍이 필터(19)를 통해 하부로 공급되면, 열풍공기와 향류접촉(向流接觸)하면서 증발된 수분은 데미스터(Demister; 16)를 통해 대기로 방출되고, 증발·농축된 함수는 농축조(4)로 보내어 석출된 염이 침전되면 염농축조 레이크(5)에 의해서 하부 중앙 콘으로 모이면 간헐적으로 자화 및 활성미네랄생성반응조(11)로 배출하고, 농축조(4) 상부로 익류하는 농축미네랄수는 농축미네랄저장조 (9)로 보내어 농축미네랄수 반송펌프(10)에 의해서 증발탑(6) 상부로 반송하면서 보매도비중이 도 5와 도 6 "해수의 비중변화에 따른 각종 염의 석출율도"와 표 3의 "해수의 증발농축에서 석출율 표"에서 보는 바와 같이 30보메(Be) 이상 되면 MgSO4, MgCl2, KCl … 등이 대량으로 석출하기 때문에 농축미네랄수 저장조(9)에 설치된 보메도비중계 BIS(Baume indicating switch)에 의해서 전자변의 작동에 의해서 자화 및 활성미네랄반응공정의 자화 및 활성미네랄반응조(11)로 보낸다.When the evaporation is concentrated in the evaporation tower 15 for supplying the heated air, the neutralized concentrated mineral water and the concentrated mineral water return water are sent to the upper part of the evaporation tower 15 for supplying the heated air together with the compressed air and spray nozzles ( When the hot air heated by the burner 17 is sprayed through the air supplied by the blower 18 while being sprayed through 18) and is supplied downward through the filter 19, the water evaporated while being countercurrently in contact with the hot air air. Silver is released to the atmosphere through a demister (16), and the evaporated and concentrated water is sent to the concentration tank (4), and when the precipitated salt precipitates, the salt is collected by the salt concentration lake (5) and intermittently magnetized. And the concentrated mineral water discharged to the active mineral production reaction tank (11), and the upstream of the concentrated tank (4) is sent to the concentrated mineral storage tank (9) and returned to the upper part of the evaporation tower (6) by the concentrated mineral water return pump (10). While the short-selling weight ratio 6 As shown in the "deposition rate of various salts according to the change of specific gravity of seawater" and "deposition rate table in evaporative concentration of seawater" of Table 3, when MgSO 4 , MgCl 2 , KCl. The precipitates in large quantities are sent to the magnetization and active mineral reaction tank 11 of the magnetization and active mineral reaction process by the operation of the electron valve by the BME (Baume indicating switch) installed in the concentrated mineral water storage tank 9.

가열공기를 공급하는 증발탑(15)의 재질은 내염성 재질인 티타늄(Titanium)이나 SUS-316L을 사용하는 것이 바람직하지만 경제성을 감안하여 스틸(Steel) 강판에 FRP( Fiber reinforced plastics) 수지나 에폭시 수지(Epoxy resin)를 라이닝(Lining) 또는 코팅(Coating)을 한 것을 사용할 수도 있다. As the material of the evaporation tower 15 for supplying the heating air, it is preferable to use titanium or SUS-316L, which is flame-resistant. However, in consideration of economic efficiency, FRP (Fiber reinforced plastics) resin or epoxy resin is used on the steel sheet. You can also use lining or coating of epoxy resin.

가열공기를 공급하는 증발탑(15)의 분부 노즐(8)에는 분무효율을 향상하기 위해서 압축공기를 입구(Up-stream) 측에 1∼6기압(atm)의 압력으로, 공기와 액체의 질량비가 1.1∼1.2의 비율로 공급한다.In the part nozzle 8 of the evaporation tower 15 for supplying the heated air, the mass ratio of air and liquid at a pressure of 1 to 6 atm on the upstream side of the compressed air to improve spraying efficiency. Is supplied at a ratio of 1.1 to 1.2.

송풍기(18)에서 공급되는 열풍공기의 가열은 버너(17)에서 중유나 경유를 사용하나 천연가스(LNG; Liquid Natural Gas )나 LPG(Liquid Petroleum Gas)를 사용할 수도 있으며, 열풍의 온도는 150∼400℃로 하고, 데미스터(16)를 통해서 대기로 배기 되는 습윤공기의 온도는 60∼80℃로 한다.The heating of the hot air air supplied from the blower 18 may use heavy oil or light oil in the burner 17, but may use natural gas (LNG) or liquid petroleum gas (LPG). The temperature of the wet air discharged to the atmosphere through the demister 16 is set to 400 ° C and 60 ° C to 80 ° C.

그리고 가열공기를 공급하는 증발탑(15)에서 증발은 항율건조(恒率乾燥)만 진행되기 때문에 하부에서 농축조(4)로 배출되는 증발·농축된 농축미네랄수의 온도는, 열에 약한 성분이 열 분해되지 않도록 80℃ 이하가 되게 탑의 높이를 설계한다.In the evaporation tower 15 for supplying the heating air, the evaporation proceeds only with the constant drying, so that the temperature of the evaporated and concentrated mineral water discharged from the lower part to the concentration tank 4 is low. The height of the tower should be designed to be below 80 ° C so as not to decompose.

농축조(4)의 익류수가 농축미네랄수저장조(9)로 익류되어 농축미네랄수 반송펌프(10)에 의해서 가열공기를 공급하는 증발탑(15)로 반송하는 유량은 농축미네랄수의 유입수량에 2∼4배의 유량으로 한다. The flow rate of the water flowing from the concentrate tank 4 into the concentrated mineral water storage tank 9 and returned to the evaporation tower 15 which supplies the heated air by the concentrated mineral water transfer pump 10 is equal to the inflow amount of the concentrated mineral water. The flow rate is 2 to 4 times.

송풍기(18)에서 공급되는 열풍공기의 유량은 장치출입구의 엔탈피(Enthalpy) 및 물질 수지(Material balance)에서 구한 값에 열손실을 10% 감안하여 결정한다.The flow rate of the hot air air supplied from the blower 18 is determined in consideration of the heat loss of 10% to the value obtained from the enthalpy and the material balance of the device entrance.

송풍기(18)에서 공급되는 열풍공기의 유량이 결정되면 가열공기를 공급하는 증발탑(15)의 탑경(塔徑)은 열풍공기의 유속이 3∼5m/sec의 범위로 설계한다.When the flow rate of the hot wind air supplied from the blower 18 is determined, the top diameter of the evaporation tower 15 for supplying the heated air is designed such that the flow rate of the hot air air is in the range of 3 to 5 m / sec.

가열공기를 공급하는 증발탑(15)의 하부 콘(Cone)의 각도(α)는 10°≤α≤60°로 하고, 배출 부의 관경( D。)과 증발탑(6)의 관경(D)의 비(比)는 0.3≤D。/D ≤0.7의 범위로 설계한다.The angle α of the lower cone of the evaporation tower 15 for supplying the heated air is 10 ° ≦ α ≦ 60 °, and the diameter D of the discharge portion and the diameter D of the evaporation tower 6 are shown. The ratio of is designed in the range of 0.3≤D。 / D≤0.7.

농축미네랄수가 식염제조공정에서 배출하는 간수(苦汁)와 함께 자화 및 미네랄생성반응조(11)에 공급되면 구연산(Citric acid), 주석산(Tartaric acid), 호박산(Succinic acid), 사과산(Malic acid), 풀브산(Fulvic acid) …과 같은 유기산 중에서 단독 또는 2종류 이상 혼합한 것을 농축미네랄수와 간수 중에 함유된 총고형물(Total solid)의 양(총 미네랄성분의 양)은 건량기준으로 중량비(총 고형물/유기산)가 0.4∼1.2의 범위로 주입하면서 자화 및 활성미네랄생성반응조 교반기(12)로 교반하여 킬레이트(Chelate)성 유기산미네랄착염이 생성되도록 하면서, 자화기 순환펌프(13)로 자화기(14)의 자계(磁界)를 통하게 하여 자화 및 미네랄생성반응조 (11)로 반송하면서 자화처리를 하여 활성미네랄을 제조한다. When concentrated mineral water is supplied to the magnetization and mineral production reactor (11) with the brine discharged from the salt manufacturing process, citric acid, tartaric acid, succinic acid, malic acid, Fulvic acid… The amount of total solids (total solids) contained in concentrated mineral water and brine among the organic acids such as single or mixed two or more kinds is 0.4 to 1.2 by weight based on dry weight (total solids / organic acid). The magnetic field of the magnetizer 14 is transferred to the magnetizer circulation pump 13 while stirring with a magnetization and active mineral generation reactor stirrer 12 to produce a chelate organic acid mineral complex salt while being injected in the range of. Through the magnetization treatment while returning to the magnetization and mineral production reaction tank (11) to produce an active mineral.

활성미네랄은 포장공정으로 보내어 포장한 다음, 검사 후 제품으로 출하한다. Activated minerals are sent to the packaging process, packaged, and then shipped to the product after inspection.

자화 및 활성미네랄생성반응조(11)의 용량은 체류시간이 40∼120분으로 하며, 재질은 농축미네랄수 저장조(9)와 동일하게 하며, 자화 및 활성미네랄생성반응조 교반기(12)는 180∼360RPM(회전속도)의 프로펠러교반기로 교반한다.The capacity of the magnetization and activation mineral generation reactor 11 is 40 to 120 minutes, the material is the same as the concentrated mineral water storage tank (9), and the magnetization and activation mineral generation reactor stirrer (12) is 180 to 360 RPM Stir with a propeller stirrer at (speed).

자화기 순환펌프(13)의 토출(吐出) 측에 설치된 자화기(5)는 12,000 ∼ 15,000G(Gauss)범위로 착자(着磁)된 영구자석을 설치하던가, 합성수지(PVC, PE, 스티렌 수지 등), 에보나이트 (Ebonite), FRP, 베이클라이트(Bakelite)와 같은 절연성 재료의 원통형 도전관(導電管)에 감은 코일(Coil)에 0.5∼5V 범위의 교류 또는 직류의 저전압을 인가하여 코일의 내부에 자기장(磁氣場)이 형성하도록 한 정전압 도전관자화기(靜電壓導電管磁化器)를 사용한다.The magnetizer 5 installed on the discharge side of the magnetizer circulation pump 13 has a permanent magnet magnetized in the range of 12,000 to 15,000 G (Gauss) or synthetic resin (PVC, PE, styrene resin). Etc.), a coil applied to a cylindrical conductive tube of insulating material such as Ebonyite, FRP, Bakelite, etc., and a low voltage of 0.5 to 5 V is applied to the inside of the coil. A constant voltage conductive tube magnetizer is used in which a magnetic field is formed.

이상에서 전술한 바와 같이 본 발명에서 제조된 활성미네랄은 천연으로 출토되는 활성미네랄을 정제한 것에 비해서 제품의 품질이 균일한 특징이 있기 때문에 천연으로 생산되는 활성미네랄 대체품목으로 널리 보급될 것으로 기대된다. As described above, the active mineral prepared in the present invention is expected to be widely used as an alternative to the active mineral produced naturally because the quality of the product is uniform as compared to the purified purified natural mineral. .

Claims (4)

수심 200m이하에서 취수한 해양 심층수나 해저 심층암반수를 20∼30℃로 가온 처리한 후 모래여과, 정밀여과, 한외여과를 단독 또는 2종류 이상을 조합한 전처리여과를 하고, 이에 산(HCl)을 주입하여 pH를 4.5∼6.5로 조정하여 역삼투여과공정으로 보내어 탈염수는 음용수제조공정으로 보내고, 염수는 나노여과공정으로 보내어 탈미네랄염수는 식염제조공정으로 보내고, 2가 이상의 미네랄성분이 농축된 농축미네랄수는 중화처리공정으로 보내어 중화제로 Ca(OH)2, CaO, NaOH, NaHCO3, Na2CO3 중에서 한 종류의 수용액을 공급하면서 중화조 교반기(2)로 교반을 하면서 pH를 6.5∼7.5의 범위로 중화처리를 하여 농축미네랄수 이송펌프(3)에 의해서 농축미네랄수 반송수와 함께 증발·농축공정의 증발탑(6) 상부로 보내어 분무노즐(8)을 통해서 분무하면 증발탑(8) 상부에 설치된 증발탑 팬(7)에 의해서 증발탑(8) 하부로부터 대기 중의 공기를 흡입하여 상부로 배출하면서 농축미네랄수는 공기와 향류접촉(向流接觸)을 하여 수분을 증발한 후 농축조(4)로 떨어져 석출된 고형물(CaCO3, CaSO4)이 농축조(4) 하부로 침전되면, 농축조 레이크(5)에 의해서 농축조(4) 하부 콘(Cone)으로 모이면 간헐적(間歇的)으로 자화 및 활성미네랄생성반응조(11)로 배출하고, 농축조(4) 상부로 익류(Over flow)하는 농축미네랄수는 농축미네랄저장조 (9)로 보내어 농축미네랄수 반송펌프(10)에 의해서 증발탑(6) 상부로 반송하면서 보매도비중이 30보메(Be) 이상 되면 농축미네랄수 저장조(9)에 설치된 보메도비중 계 BIS(Baume indicating switch)에 의해 전자변을 작동하여 식염제조공정에서 배출하는 간수(苦汁)와 함께 자화 및 미네랄생성반응조(11)에 공급되면 구연산(Citric acid), 주석산(Tartaric acid), 호박산(Succinic acid), 사과산(Malic acid), 풀브산(Fulvic acid) 중에서 단독 또는 2종류 이상 혼합한 것을 총고형물(Total solid)양에 중량비(총고형물/유기산)가 0.4∼1.2의 범위로 주입하면서 자화 및 활성미네랄생성반응조 교반기(12)로 교반하여 킬레이트(Chelate)성 유기산미네랄착염을 생성 도록 하면서, 자화기 순환펌프(13)로 12,000 ∼ 15,000G(Gauss)범위로 착자(着磁)된 영구자석 자화기(14)나 절연성 재료의 원통형 도전관(導電管)에 감은 코일(Coil)에 0.5∼5V 범위의 교류 또는 직류의 저전압을 인가하여 코일의 내부에 자기장(磁氣場)이 형성하도록 한 정전압도전관자화기(靜電壓導電管磁化器)의 자계(磁界)를 통한 다음, 자화 및 미네랄생성반응조(11)로 반송하면서 자화처리를 하여 활성미네랄을 제조하는 방법. After warming up to 20 ~ 30 ℃ of deep seawater or subsea deep rock water taken below 200m, pretreatment of sand, microfiltration and ultrafiltration alone or in combination of two or more types After injection, adjust pH to 4.5 ~ 6.5, send to reverse osmosis filtration process, send demineralized water to drinking water manufacturing process, send brine to nanofiltration process, send demineralized salt to saline manufacturing process, concentrated mineral with divalent or higher mineral content The water was sent to a neutralization process, and the pH was adjusted to 6.5-7.5 while stirring with a neutralization tank stirrer (2) while supplying one kind of aqueous solution from Ca (OH) 2 , CaO, NaOH, NaHCO 3 , Na 2 CO 3 as a neutralizing agent. Neutralization treatment to a range by sending the concentrated mineral water transfer pump (3) to the top of the evaporation tower (6) of the evaporation and concentration process with the concentrated mineral water return water and sprayed through the spray nozzle (8) At the top Concentrated mineral water vaporizes moisture by countercurrent contact with air while inhaling air in the atmosphere from the lower part of the evaporation tower 8 by the installed evaporation tower fan 7 and discharging it to the upper part. When the solid precipitated (CaCO 3 , CaSO 4 ) precipitated in the bottom of the thickening tank 4 is collected by the thickening tank rake 5 into the bottom cone of the thickening tank 4, it is intermittently magnetized and activated. The concentrated mineral water discharged to the mineral production reaction tank (11) and overflowed to the upper part of the concentration tank (4) is sent to the concentrated mineral storage tank (9), and the upper part of the evaporation tower (6) by the concentrated mineral water return pump (10). When the short-selling weight is more than 30 beams (Be) while returning to water, the BEM (Baume indicating switch) installed in the concentrated mineral water storage tank (9) operates the electronic valve and discharges it from the salt production process. When supplied to the magnetization and mineral production reactor (11) together Citric acid, tartaric acid, succinic acid, malic acid, fulvic acid, or a mixture of two or more of them in a total weight ratio (total solid) Solids / organic acid) is injected into the range of 0.4 to 1.2, and stirred with a magnetization and active mineral production reactor stirrer 12 to produce chelate organic acid mineral complex salts, while 12,000 to 15,000 with a magnetizer circulation pump 13 A low voltage of AC or DC in the range of 0.5 to 5 V is applied to a permanent magnet magnetizer 14 magnetized in the G (Gauss) range or a coil wound around a cylindrical conductive tube of insulating material. Through the magnetic field of the constant-voltage conductive tube magnetizer, in which a magnetic field is formed inside the coil, it is magnetized while being returned to the magnetization and mineral generation reactor 11 Process for preparing activated minerals. 제1항에 있어서, 전처리여과 후 pH조정공정에서 pH를 4.5∼6.5로 조정한 해양 심층수나 해저 심층암반수를 나노여과공정으로 보내어 탈미네랄염수는 역삼투여과공정으로 보내어 탈염수는 음용수제조공정으로 보내고, 농축 염수는 식염제조공정으로 보내면서, 나노여과공정에서 1가의 염(NaCl, KCl)이 제거된 농축미네랄수는 중화처리공정으로 보내어 처리하는 공정에 의해서 활성미네랄을 제조하는 방법.According to claim 1, in the pH adjustment process after pre-treatment, the deep seawater or subsea deep rock water with pH adjusted to 4.5-6.5 is sent to the nanofiltration process, demineralized brine is sent to the reverse osmosis filtration process, the demineralized water is sent to the drinking water production process, Concentrated brine is sent to the salt production process, the concentrated mineral water from which monovalent salts (NaCl, KCl) are removed in the nanofiltration process is sent to the neutralization process to produce activated minerals. 제1항에 있어서, 대기온도가 낮은 동절기(冬節期)나 우기(雨期)의 경우에는 대기 중의 공기를 공급하여 증발하는 증발탑(6) 대신에 가열공기를 공급하는 증발탑으로 증발농축을 하는 공정의 가열공기를 공급하는 증발탑(15)으로 중화처리된 농축미네랄수와 농축미네랄수 반송수를 압축공기를 함께 가열공기를 공급하는 증발탑(15) 상부로 보내어 분무 노즐(18)을 통해 분무하면서 송풍기(18)에서 공급된 공기를 버너(17)에 의해서 가열한 열풍이 필터(19)를 통해 하부로 공급되면, 열풍공기와 향류접촉(向流接觸)하면서 증발된 수분은 데미스터(Demister; 16)를 통해 대기로 방출되고, 증발농축된 함수는 농축조(4)로 보내어 석출된 염이 침전되면 염농축조 레이크(5)에 의해서 하부 중앙 콘으로 모이면 간헐적으로 자화 및 활성미네랄생성반응조(11)로 배출하고, 농축조(4) 상부로 익류하는 농축미네랄수는 농축미네랄저장조 (9)로 보내어 농축미네랄수 반송펌프(10)에 의해서 증발탑(6) 상부로 반송하면서 보매도비중이 30보메(Be) 이상 되면 농축미네랄수 저장조(9)에 설치된 보메도비중계 BIS(Baume indicating switch)에 의해 전자변을 작동하여 자화 및 활성미네랄반응공정의 자화 및 활성미네랄반응조(11)로 보내는 공정에 의해서 활성미네랄을 제조하는 방법.The method of claim 1, wherein in the case of winter or rainy season with low atmospheric temperature, the evaporation concentration is carried out by an evaporation tower which supplies heating air instead of the evaporation tower 6 which supplies air in the atmosphere and evaporates. The neutralized treated concentrated mineral water and concentrated mineral water returned water are sent to the upper part of the evaporation tower 15 which supplies the compressed air together with the compressed air to the evaporation tower 15 for supplying the heating air. When the hot air heated by the burner 17 is supplied to the lower portion through the filter 19 while the air supplied from the blower 18 is sprayed through, the water vaporized while countercurrently contacting the hot air air is demister. (Demister; 16) is released to the atmosphere, and the evaporated function is sent to the concentration tank (4), and when the precipitated salt precipitates, it is collected by the salt concentration lake (5) to the lower center cone intermittently to generate magnetization and active minerals. Discharged into the reactor (11), The concentrated mineral water flowing into the upper part of the tank (4) is sent to the concentrated mineral storage tank (9) and returned to the upper part of the evaporation tower (6) by the concentrated mineral water return pump (10). A method for producing active minerals by operating an electron valve by a BME (Baume indicating switch) installed in a concentrated mineral water storage tank (9) and sending the magnetization and active mineral reaction processes to a magnetization and active mineral reaction tank (11). . 제2항에 있어서, 대기온도가 낮은 동절기(冬節期)나 우기(雨期)의 경우에는 대기 중의 공기를 공급하여 증발하는 증발탑(6) 대신에 가열공기를 공급하는 증발탑으로 증발농축을 하는 공정의 가열공기를 공급하는 증발탑(15)으로 중화처리된 농축미네랄수와 농축미네랄수 반송수를 압축공기를 함께 가열공기를 공급하는 증발탑(15) 상부로 보내어 분무 노즐(18)을 통해 분무하면서 송풍기(18)에서 공급된 공 기를 버너(17)에 의해서 가열한 열풍이 필터(19)를 통해 하부로 공급되면, 열풍공기와 향류접촉(向流接觸)하면서 증발된 수분은 데미스터(Demister; 16)를 통해 대기로 방출되고, 증발농축된 함수는 농축조(4)로 보내어 석출된 염이 침전되면 염농축조 레이크(5)에 의해서 하부 중앙 콘으로 모이면 간헐적으로 자화 및 활성미네랄생성반응조(11)로 배출하고, 농축조(4) 상부로 익류하는 농축미네랄수는 농축미네랄저장조 (9)로 보내어 농축미네랄수 반송펌프(10)에 의해서 증발탑(6) 상부로 반송하면서 보매도비중이 30보메(Be) 이상 되면 농축미네랄수 저장조(9)에 설치된 보메도비중계 BIS(Baume indicating switch)에 의해 전자변을 작동하여 자화 및 활성미네랄반응공정의 자화 및 활성미네랄반응조(11)로 보내는 공정에 의해서 활성미네랄을 제조하는 방법.According to claim 2, in the case of winter or rainy season with low atmospheric temperature, the evaporation concentration is carried out by an evaporation tower which supplies heating air instead of the evaporation tower 6 which supplies air in the atmosphere and evaporates it. The neutralized treated concentrated mineral water and concentrated mineral water returned water are sent to the upper part of the evaporation tower 15 which supplies the compressed air together with the compressed air to the evaporation tower 15 for supplying the heating air. When hot air heated by the burner 17 is supplied to the lower portion through the filter 19 while the air supplied from the blower 18 is sprayed through the water, the water vaporized while countercurrently contacting the hot air air is demister. (Demister; 16) is released to the atmosphere, and the evaporated function is sent to the concentration tank (4), and when the precipitated salt precipitates, it is collected by the salt concentration lake (5) to the lower center cone intermittently to generate magnetization and active minerals. Discharged into the reactor (11), The concentrated mineral water flowing into the upper part of the tank (4) is sent to the concentrated mineral storage tank (9) and returned to the upper part of the evaporation tower (6) by the concentrated mineral water return pump (10). A method for producing active minerals by operating an electron valve by a BME (Baume indicating switch) installed in a concentrated mineral water storage tank (9) and sending the magnetization and active mineral reaction processes to a magnetization and active mineral reaction tank (11). .
KR1020050081969A 2005-09-03 2005-09-03 Manufacturing method of activated minerals from the deep sea water and the deep sea rock floor water KR100688637B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050081969A KR100688637B1 (en) 2005-09-03 2005-09-03 Manufacturing method of activated minerals from the deep sea water and the deep sea rock floor water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050081969A KR100688637B1 (en) 2005-09-03 2005-09-03 Manufacturing method of activated minerals from the deep sea water and the deep sea rock floor water

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020060097725A Division KR100718840B1 (en) 2006-10-08 2006-10-08 Manufacturing method of activated minerals from the deep sea water and the deep sea rock floor water

Publications (2)

Publication Number Publication Date
KR20070025614A true KR20070025614A (en) 2007-03-08
KR100688637B1 KR100688637B1 (en) 2007-03-09

Family

ID=38099864

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050081969A KR100688637B1 (en) 2005-09-03 2005-09-03 Manufacturing method of activated minerals from the deep sea water and the deep sea rock floor water

Country Status (1)

Country Link
KR (1) KR100688637B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100881584B1 (en) 2007-04-12 2009-02-03 서희동 A method to produce electrolysis oxidation water and electrolysis reduction water from deep sea water
KR100882230B1 (en) 2008-03-04 2009-02-09 새한인텍 (주) Disposal apparatus of livestock wastewater and disposal method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506925B1 (en) * 2003-07-08 2005-08-09 서희동 Production method of magnetized micro-clustered mineral water from the deep a rock floor water
KR20040028807A (en) * 2004-01-02 2004-04-03 일산실업주식회사 Mineral Extract
KR200400448Y1 (en) 2005-08-10 2005-11-08 한국수자원공사 A Manufacturing Device for the Production of Mixed Beverage with High Hardness and Mineral by using Deep Sea Water or Ground Sea Water

Also Published As

Publication number Publication date
KR100688637B1 (en) 2007-03-09

Similar Documents

Publication Publication Date Title
KR100819210B1 (en) The manufacture method of the mineral adjustment agent from deep sea water
KR100589795B1 (en) Production method of drinking water from the deep sea water
Ammary Wastewater reuse in Jordan: Present status and future plans
KR101557096B1 (en) A method to produce tea beverages production water from deep-ocean water and a method to use this for tea beverages production
EP2691576B1 (en) Method for the sustainable cooling of industrial processes
KR100697563B1 (en) Manufacturing method of high-purity table salt, coarse salt, mineral salt and bittern from the deep sea water
Semiat et al. Water desalination
KR20070022986A (en) Manufacturing method of deep sea drinking microclustered water from the deep-sea water or the deep-sea rock floor water
KR100863892B1 (en) The manufacture method of the table salt from deep sea water
KR100821383B1 (en) Manufacturing method of salt for salting food and utilized the same
KR100686979B1 (en) Manufacturing method of a high purity clean-salt from deep sea water
KR100688637B1 (en) Manufacturing method of activated minerals from the deep sea water and the deep sea rock floor water
KR100688635B1 (en) Manufacturing method of drinking water from the deep-sea water
CN106110896A (en) A kind of reverse osmosis membrane antisludging agent
KR100718840B1 (en) Manufacturing method of activated minerals from the deep sea water and the deep sea rock floor water
KR100878350B1 (en) Continuous removing apparatus and method of algaes and nutrient salts by using potential difference method
KR101037280B1 (en) Manufacturing method of bed soil using bittern which was produced from deep sea water
KR100821385B1 (en) Manufacturing method of organic mineral salts by using contained in deep sea water mineral salts
KR100688638B1 (en) Manufacturing method of the humate and fulvate mineral complex and it&#39;s pellet from the deep-sea water or deep-sea rock floor water
KR100665892B1 (en) Manufacturing method of clean salt from deep sea water or deep sea rock floor water
KR100821384B1 (en) Manufacturing method of mineral salts from the deep sea water
KR100686963B1 (en) Method for producing table-salt contained high concentration of minerals, from the deep sea water
KR100697566B1 (en) Manufacturing method of bittern for soybean-curd manufacturing and utilized the same
Farooqi et al. Green technologies for saline water treatment
KR100958848B1 (en) Manufacturing method of the feed additive from deep-ocean water and deep sea rock floor water and method to use the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120223

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee