KR20060123970A - Porous metal-organic framework with coordinatively unsaturated sites, preparation method thereof and its uses as a molecule adsorber and a catalyst - Google Patents

Porous metal-organic framework with coordinatively unsaturated sites, preparation method thereof and its uses as a molecule adsorber and a catalyst Download PDF

Info

Publication number
KR20060123970A
KR20060123970A KR1020050045646A KR20050045646A KR20060123970A KR 20060123970 A KR20060123970 A KR 20060123970A KR 1020050045646 A KR1020050045646 A KR 1020050045646A KR 20050045646 A KR20050045646 A KR 20050045646A KR 20060123970 A KR20060123970 A KR 20060123970A
Authority
KR
South Korea
Prior art keywords
ndc
organic framework
porous metal
manganese
naphthalenedicarboxylate
Prior art date
Application number
KR1020050045646A
Other languages
Korean (ko)
Other versions
KR100817537B1 (en
Inventor
백명현
문회리
Original Assignee
재단법인서울대학교산학협력재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020050045646A priority Critical patent/KR100817537B1/en
Publication of KR20060123970A publication Critical patent/KR20060123970A/en
Application granted granted Critical
Publication of KR100817537B1 publication Critical patent/KR100817537B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A porous metal-organic framework with coordinatively unsaturated sites, a preparation method thereof and its uses as a molecule adsorbent and a catalyst are provided to permanently preserve the porous properties, stably maintain the structure at high temperature, and perform the catalyst reaction. The porous metal-organic framework with coordinatively unsaturated sites represented by the formula(1): Mn_x (NDC)_y (Sol)_z in which x and y are independently an integer of above 1, z is an integer of above 0 and sol is solvent, wherein manganese ion and 2,6-naphthalene dicarboxylate(NDC) are coordinatively bound; the solvent is formamide, methylformamide, ethylformamide, propylformamide, butylformamide, dimethylformamide, diethylformamide, dipropylformamide, dibutylformamide, diethylether, methanol, ethanol, propanol, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, dimethyl sulfoxide, water, benzene, chlorobenzene, toluene, phenol or pyridine.

Description

빈 배위자리가 있는 다공성 금속-유기 골격체, 그 제조방법 및 분자 흡착제 및 촉매로서의 용도{Porous metal-organic framework with coordinatively unsaturated sites, preparation method thereof and its uses as a molecule adsorber and a catalyst}Porous metal-organic framework with coordinatively unsaturated sites, preparation method according and its uses as a molecule adsorber and a catalyst}

도 1(a)는 [Mn(NDC)(DEF)]의 ORTEP 도면이고, 1(b)는 [Mn(NDC)(DEF)] 3D 골격체의 평면도이며, 1(c)는 [Mn(NDC)(DEF)] 3D 골격체의 측면도이다.1 (a) is an ORTEP diagram of [Mn (NDC) (DEF)], 1 (b) is a plan view of the [Mn (NDC) (DEF)] 3D skeleton, and 1 (c) is [Mn (NDC) ) (DEF)] Side view of the 3D framework.

도 2(a)는 [Mn(NDC)(DEF)]의 XRPD 패턴이고, 2(b)는 [Mn(NDC)(DEF)]의 단결정 X-선 데이터에 기초를 둔 시뮬레이션 XRPD 패턴이며, 2(c)는 [Mn(NDC)]의 XRPD 패턴이고, 2(d)는 [Mn(NDC)]를 DEF에 침지시킨 후 XRPD 패턴이며, 2(e)는 [Mn(NDC)]를 수증기에 노출시킨 후 XRPD 패턴이다.2 (a) is an XRPD pattern of [Mn (NDC) (DEF)], 2 (b) is a simulated XRPD pattern based on single crystal X-ray data of [Mn (NDC) (DEF)], 2 (c) is the XRPD pattern of [Mn (NDC)], 2 (d) is the XRPD pattern after immersing [Mn (NDC)] in DEF, and 2 (e) shows [Mn (NDC)] in water vapor. XRPD pattern after exposure.

도 3은 [Mn(NDC)(DEF)] 및 [Mn(NDC)]의 확산 반사율 스펙트럼이다.3 is a diffuse reflectance spectrum of [Mn (NDC) (DEF)] and [Mn (NDC)].

도 4는 [Mn(NDC)(DEF)]의 TGA 및 DSC 결과이다.4 shows TGA and DSC results of [Mn (NDC) (DEF)].

도 5(a)는 [Mn(NDC)]의 질소 기체 흡착 등온선이고, 5(b)는 수소 기체 흡착 등온선이다.Fig. 5A is a nitrogen gas adsorption isotherm of [Mn (NDC)], and 5 (b) is a hydrogen gas adsorption isotherm.

도 6은 [Mn(NDC)]의 아르곤 기체 흡착 등온선이다.6 is an argon gas adsorption isotherm of [Mn (NDC)].

도 7은 [Mn(NDC)]의 과산화수소 해리 촉매작용을 나타내는 사진이다. 7 is a photograph showing the dissociation of hydrogen peroxide in [Mn (NDC)].

본 발명은 빈 배위자리가 있는 다공성 금속-유기 골격체, 그 제조방법 및 분자 흡착제 및 촉매로서의 용도에 관한 것으로, 더욱 상세하게는 망간(II) 이온과 2,6-나프탈렌디카복실레이트가 배위결합되어 있고, 상기 망간(II) 이온에는 빈 배위자리가 존재할 수 있으며, 영구적인 다공성 성질을 갖는 3차원 구조의 다공성 금속-유기 골격체, 그 제조방법 및 분자 흡착제 및 촉매로서의 용도에 관한 것이다.The present invention relates to a porous metal-organic framework having an empty coordination site, a method for preparing the same, and a use as a molecular adsorbent and a catalyst. More specifically, a manganese (II) ion and a 2,6-naphthalenedicarboxylate are coordinated. The manganese (II) ion may have an empty coordination site, and relates to a porous metal-organic framework having a three-dimensional structure with permanent porous properties, a method for preparing the same, and a use as a molecular adsorbent and a catalyst.

금속-유기 골격체(Metal-Organic Framework : MOF)는 이온 교환, 촉매, 센서 기술 및 광전자 등과 같은 분자의 흡착 및 분리 과정과 관련된 분야에 응용될 수 있는 잠재력 때문에 최근 주목받고 있는 연구 과제이다. 금속-유기 골격체는 다양한 크기 및 모양의 공동(cavity) 또는 채널을 형성하도록 적절한 빌딩 블록을 선택하여 설계 및 조립된다. 그러나, 활발한 연구에도 불구하고, 영구적인 다공성을 가지는 금속-유기 골격체 설계를 위한 정보는 많지 않다. 그 이유는 첫째, 금속-유기 골격체는 견고하지 못하여 그 빈 공간을 채우고 있던 게스트 분자가 제거되면 붕괴되는 경우가 많고, 둘째, 열에 대한 불안정성 때문에 고온에서 또는 심지어 저온에서도 진공하에서 쉽게 파괴되며, 셋째, 종종 용매에 녹아 빌딩 블록으로 해리되곤 하기 때문이다. 따라서, 아직은 그 응용분야가 무기 제올라이트(zeolite)에 비하여 제한되고 있다.Metal-Organic Framework (MOF) is a recent research project because of its potential for application in the field of adsorption and separation of molecules such as ion exchange, catalysts, sensor technology and optoelectronics. Metal-organic frameworks are designed and assembled by selecting appropriate building blocks to form cavities or channels of various sizes and shapes. However, despite active research, there is not much information for designing metal-organic frameworks with permanent porosity. This is because, firstly, the metal-organic framework is not strong and often collapses when the guest molecule that fills the void is removed, and secondly, it is easily destroyed under vacuum at high or even low temperatures due to heat instability. Often they dissolve in solvents and dissociate into building blocks. Thus, its application is still limited compared to inorganic zeolites.

금속-유기 골격체를 구축하기 위한 다양한 배위 중합체가 제조되었으나, 위와 같이 배위하고 있던 용매가 제거되면 골격체 구조가 쉽게 붕괴되기 때문에, 영구적 다공성(permanent porosity)을 갖는 배위 중합체는 매우 드물다[S. Takamizawa, E. Nakata, H. Yokoyama, K. Mochizuki, W. Mori, Angew. Chem. 2003, 115, 4467-4470; Angew. Chem. Int. Ed. 2003, 42, 4331-4334; E. Y. Lee, M. P. Suh, Angew. Chem. 2004, 116, 2858-2861; Angew. Chem. Int. Ed. 2004, 43, 2798-2801; S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334-2375; 대한민국 공개특허공보 제2004-96545호; 대한민국 공개특허공보 제2005-8749호].Various coordinating polymers have been prepared to build metal-organic frameworks, but coordinating polymers with permanent porosity are very rare [S. Takamizawa, E. Nakata, H. Yokoyama, K. Mochizuki, W. Mori, Angew. Chem. 2003 , 115 , 4467-4470; Angew. Chem . Int. Ed . 2003 , 42 , 4331-4334; EY Lee, MP Suh, Angew. Chem . 2004 , 116 , 2858-2861; Angew. Chem . Int. Ed. 2004 , 43 , 2798-2801; S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem . Int. Ed. 2004 , 43 , 2334-2375; Korean Laid-Open Patent Publication No. 2004-96545; Republic of Korea Patent Publication No. 2005-8749].

이에 본 발명자들은 영구 다공성을 가지는 금속-유기 골격체에 대한 연구를 진행하던 중, 망간(II) 이온과 2,6-나프탈렌디카복실레이트(2,6-naphthalenedicarboxylate = NDC)가 배위결합된 금속-유기 골격체의 합성에 성공하고, 이 금속-유기 골격체의 망간(II) 이온에 빈 배위자리가 존재할 수 있어, 배위하고 있던 용매 분자를 제거하더라도 금속-유기 골격체가 붕괴되지 않고, 영구적 다공성 성질과 열적 안정성을 갖는다는 사실을 발견하여 본 발명을 완성하기에 이르렀다.Accordingly, the present inventors have studied the metal-organic framework having permanent porosity, and the coordination of manganese (II) ion and 2,6-naphthalenedicarboxylate (2,6-naphthalenedicarboxylate = NDC)- Successful synthesis of the organic framework, and there may be an empty coordination site in the manganese (II) ions of the metal-organic framework, even if the solvent molecules are removed, the metal-organic framework does not collapse, permanent porous properties The discovery of superthermal stability has led to the completion of the present invention.

본 발명의 목적은 망간(II) 이온과 2,6-나프탈렌디카복실레이트가 배위결합되어 있고, 상기 망간(II) 이온에는 빈 배위자리가 존재할 수 있으며, 영구적인 다공성 성질을 갖는 3차원 구조의 다공성 금속-유기 골격체, 그 제조방법 및 분자 흡착제 및 촉매로서의 용도를 제공하는 데 있다.An object of the present invention is a coordination bond between manganese (II) ions and 2,6-naphthalenedicarboxylate, the manganese (II) ions may have an empty coordination site, and has a three-dimensional structure of permanent porous properties It is to provide a porous metal-organic framework, a method for producing the same and its use as a molecular adsorbent and a catalyst.

본 발명은 하기 화학식으로 표현되는, 망간(II) 이온과 2,6-나프탈렌디카복실레이트가 배위결합된 다공성 금속-유기 골격체를 제공한다.The present invention provides a porous metal-organic framework in which a manganese (II) ion and 2,6-naphthalenedicarboxylate are coordinated to each other, represented by the following formula.

[Mnx(NDC)y(Sol)z][Mn x (NDC) y (Sol) z ]

(상기 식에서 x 및 y는 1 이상의 정수이고, z은 0 이상의 정수이며;Wherein x and y are integers of at least 1 and z is an integer of at least 0;

NDC는 2,6-나프탈렌디카복실레이트를 가리키고, Sol은 용매를 가리킨다.)NDC refers to 2,6-naphthalenedicarboxylate and Sol refers to solvent.)

본 발명의 다공성 금속-유기 골격체는 망간(II) 이온과 2,6-나프탈렌디카복실레이트가 배위결합된 다공성 금속-유기 골격체(이하, '망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체'라 함)이다. 상기 망간(II) 이온에는 빈 배위자리가 구조적으로 존재할 수 있으므로, 배위하고 있던 용매가 제거되더라도 그 구조가 붕괴되지 않는다. 따라서, 본 발명의 다공성 금속-유기 골격체는 열적 안정성을 갖는 영구적인 다공성 성질을 갖는 3차원 구조의 다공성 금속-유기 골격체이다.The porous metal-organic framework of the present invention is a porous metal-organic framework in which a manganese (II) ion and 2,6-naphthalenedicarboxylate are coordinated (hereinafter, 'manganese (II) -naphthalenedicarboxylate porous metal- Organic framework). Since the empty coordination site may exist structurally in the manganese (II) ion, the structure does not collapse even when the solvent coordinating is removed. Thus, the porous metal-organic framework of the present invention is a porous metal-organic framework of three-dimensional structure with permanent porous properties with thermal stability.

상기 용매(Sol)는 망간(II) 이온과 배위결합을 이룰 수 있는 것이라면 특별히 그 종류를 한정하지 않으며, 예를 들면 포름아마이드, 메틸포름아마이드, 에틸포름아마이드, 프로필포름아마이드, 부틸포름아마이드, 디메틸포름아마이드, 디에틸포름아마이드, 디프로필포름아마이드, 디부틸포름아마이드, 디에틸에테르, 메탄올, 에탄올, 프로판올, 메틸아민, 디메틸아민, 트리메틸아민, 에틸아민, 디에틸아민, 트리에틸아민, 디메틸설폭사이드, 물, 벤젠, 클로로벤젠, 톨루엔, 페놀 및 피리딘 가운데 적어도 어느 하나이다.The solvent (Sol) is not particularly limited as long as it can form a coordination bond with manganese (II) ions, for example, formamide, methylformamide, ethylformamide, propylformamide, butylformamide, dimethyl Formamide, diethylformamide, dipropylformamide, dibutylformamide, diethylether, methanol, ethanol, propanol, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, dimethyl sulfoxide Side, water, benzene, chlorobenzene, toluene, phenol and pyridine.

본 발명의 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체의 가장 바람직한 예는,The most preferred example of the manganese (II) -naphthalenedicarboxylate porous metal-organic framework of the present invention is

[Mn(NDC)(DEF)]; 또는[Mn (NDC) (DEF)]; or

[Mn(NDC)]이다.[Mn (NDC)].

(상기 식에서 DEF는 디에틸포름아마이드(diethylformamide)를 가리킨다.)(In the formula, DEF refers to diethylformamide.)

본 발명의 용매 분자가 배위된 실시형태에 따른 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체에서 각 카복실레이토기는 바이덴테이트(bidentate) 또는 트리덴테이트(tridentate)로 작용할 수 있다. 카복실레이토기가 트리덴테이트로 작용하는 경우 도 1a의 O(1)-C-O(2)와 Mn(1)과의 결합 모드에서 나 타낸 바와 같이, 카복실레이토기는 망간(II)와 사각 킬레이트 고리를 형성한다. 도 1a에서 NDC2-의 벤젠 고리는 복잡성을 피하기 위해 생략하였다.In the manganese (II) -naphthalenedicarboxylate porous metal-organic framework according to the embodiment in which the solvent molecules of the present invention are coordinated, each carboxylate group may act as a bidentate or tridentate. . When the carboxylated group acts as a tridentate As shown in the binding mode of O (1) -CO (2) and Mn (1) of FIG. 1A, the carboxylated group is a manganese (II) and a square chelate ring. To form. In FIG. 1A the benzene ring of NDC 2- is omitted to avoid complexity.

본 발명의 용매 분자가 배위된 실시형태에 따른 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체에서 각 망간(II) 이온은 4개의 카복실레이토기와 1개의 용매 분자의 결합 원자와 배위결합하여 일그러진 팔면체 구조(distorted octahedral)를 형성한다. 망간(II) 이온들은 도 1a 및 하기 도해 1(a) 및 1(b)에 나타낸 바와 같이, 카복실레이토(carboxylato)기에 의해 다리 결합되어(bridged) 있다. 따라서, 망간(II) 이온들은 도 1c에 나타낸 바와 같이, a 방향으로 뻗어 있는 1차원의 망간(II) 사슬을 형성한다. 그리고, 이러한 1차원의 망간(II) 사슬은 NDC2-의 나프탈렌 고리를 통해 서로 연결되어 있다.In the manganese (II) -naphthalenedicarboxylate porous metal-organic framework according to the embodiment in which the solvent molecules of the present invention are coordinated, each manganese (II) ion is coordinated with the binding atoms of four carboxylated groups and one solvent molecule. It combines to form a distorted octahedral. Manganese (II) ions are bridged by carboxylato groups, as shown in FIGS. 1A and 1 (a) and 1 (b) below. Thus, manganese (II) ions form one-dimensional manganese (II) chains extending in the a direction, as shown in FIG. 1C. And, the one-dimensional manganese (II) chain is connected to each other through the naphthalene ring of NDC 2- .

Figure 112005028631616-PAT00001
Figure 112005028631616-PAT00001

망간(II) 사슬을 연결하는 NDC2-의 나프탈렌 고리로 형성되는 평면은 하기 도해 2와 같이, (0 1 1) 및 (0 1 -1) 평면에 평행하다. 상기 평면은 상기 1차원 망간(II) 사슬과 교차하여 3차원 골격체를 형성하고, 상기 3차원 골격체는 대각 길이(diagonal length) 21.5Å, 10.5Å을 갖는 롬빅 구멍(rhombic aperture)의 1차원 채널을 제공한다. 상기 채널은 망간(II) 이온에 배위 결합하는 용매 분자로 채워진다(도 1b, 도 1c).The plane formed of the naphthalene ring of NDC 2- connecting the manganese (II) chain is parallel to the (0 1 1) and (0 1 -1) planes, as shown in Figure 2 below. The plane intersects the one-dimensional manganese (II) chain to form a three-dimensional skeleton, and the three-dimensional skeleton is a one-dimensional rhombic aperture having a diagonal length of 21.5 Å and 10.5 Å Provide a channel. The channel is filled with solvent molecules coordinating to manganese (II) ions (FIGS. 1B, 1C).

Figure 112005028631616-PAT00002
Figure 112005028631616-PAT00002

한편, 본 발명의 용매 분자가 배위되지 않은 실시형태에 따른 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체에 대해 PLATON으로 평가한 자유 용적(free volume)은 약 42.1 %이다. 본 발명의 용매 분자가 배위된 실시형태에 따른 다공성 금속-유기 골격체의 XRPD(X-ray powder diffraction) 패턴 (도 2(a))과 본 발명의 용매 분자가 배위되지 않은 실시형태에 따른 다공성 금속-유기 골격체의 XRPD 패턴 (도 2(c))을 비교하면, 양자에 차이가 있음을 알 수 있어, 용매 분자의 배위 여부에 따라 본 발명의 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체의 구조가 달라진다는 것이 확인된다.On the other hand, the free volume evaluated by PLATON for the manganese (II) -naphthalenedicarboxylate porous metal-organic framework according to the embodiment in which the solvent molecule of the present invention is not coordinated is about 42.1%. The X-ray powder diffraction (XRPD) pattern (FIG. 2 (a)) of the porous metal-organic framework according to the embodiment in which the solvent molecules of the present invention are coordinated and the porosity according to the embodiment in which the solvent molecules of the present invention are not coordinated Comparing the XRPD pattern of the metal-organic framework (Fig. 2 (c)), it can be seen that there is a difference in both, the manganese (II)-naphthalenedicarboxylate porous metal of the present invention depending on the coordination of the solvent molecules It is confirmed that the structure of the organic framework is different.

또한, 본 발명은 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체의 제조방법을 제공한다.The present invention also provides a method for producing a manganese (II) -naphthalenedicarboxylate porous metal-organic framework.

본 발명의 제조방법은 망간(II)의 질산염, 염화염, 또는 아세테이트염을 2,6-나프탈렌디카복실산과 용매하에서 혼합하는 단계를 포함한다. 이 단계에 의해서는 용매 분자가 배위된 실시형태에 따른 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체가 생성된다.The preparation method of the present invention comprises the step of mixing nitrate, chloride, or acetate salt of manganese (II) with 2,6-naphthalenedicarboxylic acid in a solvent. This step produces a manganese (II) -naphthalenedicarboxylate porous metal-organic framework according to an embodiment in which solvent molecules are coordinated.

상기 용매(Sol)는 망간(II) 이온과 배위결합을 이룰 수 있는 것이라면 특별히 그 종류를 한정하지 않으며, 예를 들면 포름아마이드, 메틸포름아마이드, 에틸포름아마이드, 프로필포름아마이드, 부틸포름아마이드, 디메틸포름아마이드, 디에틸포름아마이드, 디프로필포름아마이드, 디부틸포름아마이드, 디에틸에테르, 메탄올, 에탄올, 프로판올, 메틸아민, 디메틸아민, 트리메틸아민, 에틸아민, 디에틸아민, 트리에틸아민, 디메틸설폭사이드, 물, 벤젠, 클로로벤젠, 톨루엔, 페놀 및 피리딘 가운데 적어도 어느 하나이다.The solvent (Sol) is not particularly limited as long as it can form a coordination bond with manganese (II) ions, for example, formamide, methylformamide, ethylformamide, propylformamide, butylformamide, dimethyl Formamide, diethylformamide, dipropylformamide, dibutylformamide, diethylether, methanol, ethanol, propanol, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, dimethyl sulfoxide Side, water, benzene, chlorobenzene, toluene, phenol and pyridine.

본 발명의 제조방법은 상기와 같이 얻어진 용매 분자가 배위된 실시형태에 따른 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체를 탈용매화하여 용매 분자가 배위되지 않은 실시형태에 따른 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체를 얻을 수도 있다.The preparation method of the present invention is carried out by desolvating the manganese (II) -naphthalenedicarboxylate porous metal-organic framework according to the embodiment in which the solvent molecules obtained as described above are coordinated with the manganese according to the embodiment in which the solvent molecules are not coordinated ( II) -naphthalenedicarboxylate porous metal-organic frameworks may also be obtained.

상기 탈용매화 단계는 용매 분자가 배위된 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체를 감압하, 200-450℃에서 가열하는 단계를 포함할 수 있다. 상기 감압 조건은 탈용매화의 효율성 관점에서 10-4~10-6 Torr가 적절하다. 상기 온도 조건에서 200℃ 미만이면 탈용매화가 잘 일어나지 않고, 450℃ 초과이면 화합물의 분해가 일어나는 문제점이 발생한다.The desolvation step may include heating the manganese (II) -naphthalenedicarboxylate porous metal-organic framework in which the solvent molecules are coordinated at 200-450 ° C. under reduced pressure. The decompression conditions are appropriately 10 −4 to 10 −6 Torr in view of the efficiency of desolvation. If the temperature is lower than 200 ° C., desolvation does not occur well. If the temperature is higher than 450 ° C., decomposition of the compound occurs.

본 발명에 따른 [Mnx(NDC)y] (x 및 y는 1 이상의 정수) 형태의 용매 분자가 배위되지 않은 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체는 언급한 바와 같이 망간(II) 이온을 중심으로 빈 배위자리가 존재하므로, 가역적인 분자 흡착제로 이용될 수 있다. 상기 분자로는 질소, 수소 또는 아르곤을 예로 들 수 있다.Manganese (II) -naphthalenedicarboxylate porous metal-organic frameworks in which the solvent molecules of the form [Mn x (NDC) y ] (x and y are integers of 1 or more) are not coordinated, as mentioned (II) Since an empty coordination site exists around the ion, it can be used as a reversible molecular adsorbent. Examples of the molecule include nitrogen, hydrogen or argon.

또한, 본 발명에 따른 [Mnx(NDC)y] (x 및 y는 1 이상의 정수) 형태의 용매 분자가 배위되지 않은 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체는 언급한 바와 같이 망간(II) 이온을 중심으로 빈 배위자리가 존재하므로, 불균일 촉매로서 이용될 수 있다. 예를 들어, 본 발명에 따른 용매 분자가 배위되지 않은 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체는 과산화수소의 분해 반응에 촉매로 이용될 수 있다.In addition, manganese (II) -naphthalenedicarboxylate porous metal-organic frameworks in which the solvent molecules of the form [Mn x (NDC) y ] (x and y are integers of 1 or more) are not coordinated as mentioned. As such, since an empty coordination group exists around manganese (II) ions, it can be used as a heterogeneous catalyst. For example, manganese (II) -naphthalenedicarboxylate porous metal-organic frameworks in which the solvent molecules according to the present invention are not coordinated can be used as catalysts for the decomposition reaction of hydrogen peroxide.

이하 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것으로 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following examples. The following examples are intended to illustrate the invention and are not intended to limit the scope of the invention.

하기 실시예에서, 합성에 사용된 모든 화합물과 용매는 시약 등급이었고, 추가 정제 없이 사용하였다. IR 스펙트럼은 Perkin Elmer Spectrum One FT-IR spectrophotometer를 이용하여 얻었다. UV/vis 확산 반사율 스펙트럼은 Perkin Elmer Lambda 35 UV/vis spectrophotometer를 이용하여 얻었다. TGA(thermogravimetric analysis)와 DSC(Differential scanning calorimetry)는 TA Instruments의 TGAQ50과 DSCQ10을 이용하여 질소 기체하에서 스캔 속도 5℃/분으로 수행하였다. 원소 분석은 서울대학교 기초과학 공동기기원에서 실시하였다. XRPD(X-ray powder diffraction) 데이터는 Bruker D5005 회절분석기로 40kV, 40mA에서 Cu Kα(λ=1.5406 Å)에 대해 스캔 속도 5°/분 및 스텝 크기 0.02°in 2θ로 기록하였다. 기체 흡착(gas sorption) 데이터는 Quantachrome Autosorb-1 기체수착장치로 얻었다.In the examples below, all compounds and solvents used in the synthesis were reagent grade and used without further purification. IR spectra were obtained using a Perkin Elmer Spectrum One FT-IR spectrophotometer. UV / vis diffuse reflectance spectra were obtained using a Perkin Elmer Lambda 35 UV / vis spectrophotometer. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed using a TA Instruments TGAQ50 and DSCQ10 at a scan rate of 5 ° C / min under nitrogen gas. Elemental analysis was conducted at the Institute of Basic Sciences, Seoul National University. X-ray powder diffraction (XRPD) data was recorded with a Bruker D5005 diffractometer at a scan rate of 5 ° / min and step size of 0.02 ° in 2θ for Cu Kα (λ = 1.5406 kV) at 40 kV, 40 mA. Gas sorption data was obtained with a Quantachrome Autosorb-1 gas sorption unit.

<실시예 1> [Mn(NDC)(DEF)]의 제조Example 1 Preparation of [Mn (NDC) (DEF)]

질산망간(Mn(NO3)2·nH2O)(0.18 g, 1.0 mmol)과 2,6-나프탈렌디카르복실산(H2NDC, 0.22 g, 1.0 mmol)을 DEF (7 mL)에 용해시켰다. 용액을 오토클레이브 내의 테플론 용기에 넣고, 105 ℃에서 24시간 동안 가열한 후, 실온으로 냉각시켰다. 형성된 엷은 노랑색의 블록 형태의 결정을 여과하고, DEF로 세척하고, 공기중에서 건 조시켰다. 수율: 88%. FT-IR (KBr): ν = 3065(s), 2981(s), 2940(s), 1942(s), 1651(s), 1613(s), 1573(s), 1556(s), 1494(s), 1446(s), 1360(s) cm-1; UV/vis (도 3, 확산 반사율, λmax): 330, 285 nm. 원소 분석: MnC17H17NO5 (%), 이론값 C 55.15, H 4.63, N 3.78; 측정값 C 55.17, H 4.71, N 3.50.Manganese nitrate (Mn (NO 3 ) 2 nH 2 O) (0.18 g, 1.0 mmol) and 2,6-naphthalenedicarboxylic acid (H 2 NDC, 0.22 g, 1.0 mmol) are dissolved in DEF (7 mL) I was. The solution was placed in a Teflon vessel in an autoclave, heated at 105 ° C. for 24 hours and then cooled to room temperature. The pale yellow block-form crystals formed were filtered, washed with DEF and dried in air. Yield: 88%. FT-IR (KBr): ν = 3065 (s), 2981 (s), 2940 (s), 1942 (s), 1651 (s), 1613 (s), 1573 (s), 1556 (s), 1494 (s), 1446 (s), 1360 (s) cm −1 ; UV / vis (FIG. 3, diffuse reflectance, λ max ): 330, 285 nm. Elemental Analysis: MnC 17 H 17 NO 5 (%), Theoretical Values C 55.15, H 4.63, N 3.78; Found C 55.17, H 4.71, N 3.50.

X-ray 결정분석: [Mn(NDC)(DEF)]의 단결정을 모액(mother liquid)과 함께 유리 모세관에 밀봉하였다. 회절 데이터를 Enraf Nonius Kappa CCD diffractometer상에서 흑연-단파장 Mo-Kα방사(λ= 0.71073 Å)로부터 153K에서 수집하였다. 결정 구조는 SHELXS-97을 이용한 직접 방식(direct method)으로 풀었고, WinGX 프로그램 패키지에 포함된 SHELXL-97을 이용하여 full-matrix least-squares 법으로 정련하였다. 모든 수소 원자의 위치는 이상적인 위치에 위치시켰다. 정련 과정에서, 이방성 열 파라미터를 모든 수소 이외의 원자에 적용하였고, 등방성 열 파라미터를 수소 원자에 적용하였다. X-ray Crystallography : Single crystals of [Mn (NDC) (DEF)] were sealed in a glass capillary along with a mother liquid. Diffraction data were collected at 153K from graphite-short wavelength Mo-Kα radiation (λ = 0.71073 μs) on an Enraf Nonius Kappa CCD diffractometer. Crystal structure was solved by direct method using SHELXS-97, and refined by full-matrix least-squares method using SHELXL-97 included in WinGX program package. The positions of all hydrogen atoms were placed in ideal positions. In the refining process, anisotropic thermal parameters were applied to all non-hydrogen atoms and isotropic thermal parameters were applied to hydrogen atoms.

결정 데이터: MnC17H17NO5, Mr = 370.26, 단사정계(monoclinic), 공간 그룹 P21/a, a= 7.535(5), b = 21.513(5), c= 10.466(5) Å, β= 96.666(5), V = 1685.1(14)Å3 , Z = 4, T = 153 K, R 1 = 0.0457(I> 2σ(I)), wR 2(F 2) = 0.1108 (I > 2σ(I)), GOF = 0.995.Determination data: MnC 17 H 17 NO 5 , M r = 370.26, monoclinic, space group P 2 1 / a , a = 7.535 (5), b = 21.513 (5), c = 10.466 (5) Å , β = 96.666 (5), V = 1685.1 (14) Å 3 , Z = 4, T = 153 K, R 1 = 0.0457 ( I > 2σ ( I )), wR 2 ( F 2 ) = 0.1108 ( I > 2σ ( I )), GOF = 0.95.

<실시예 2> [Mn(NDC)]의 제조Example 2 Preparation of [Mn (NDC)]

[Mn(NDC)(DEF)]를 Schlenck 튜브에 넣고 220 ℃, 진공하에서 18시간 가열하였다. FT-IR (KBr 펠릿): ν = 3263 (s), 1603 (s), 1564 (s), 1538 (s), 1504 (s), 1385 (s), 1312 (s) cm-1; UV/vis (도 3, 확산 반사율, λmax): 357, 289 nm. 원소 분석: MnC12H6O4 (%), 이론값 C 53.56, H 2.25; 측정값 C 52.54, H 2.43.[Mn (NDC) (DEF)] was placed in a Schlenck tube and heated at 220 ° C. under vacuum for 18 hours. FT-IR (KBr pellets): ν = 3263 (s), 1603 (s), 1564 (s), 1538 (s), 1504 (s), 1385 (s), 1312 (s) cm −1 ; UV / vis (FIG. 3, diffuse reflectance, λ max ): 357, 289 nm. Elemental Analysis: MnC 12 H 6 O 4 (%), Theoretical Values C 53.56, H 2.25; Found C 52.54, H 2.43.

<실험예 1> X-ray 분말 회절 특성 측정Experimental Example 1 Measurement of X-ray Powder Diffraction Characteristics

[Mn(NDC)(DEF)]와 [Mn(NDC)]에 대한 X-ray 분말 회절 측정 특성 측정 결과를 도 2에 나타내었다. [Mn(NDC)(DEF)] 분말에 대한 XRPD 패턴(도 2(a))은 [Mn(NDC)(DEF)]의 단결정에 대한 X-ray 데이터에 기초한 시뮬레이션 데이터(도 2(b))와 일치한다. 이것은 벌크 시료가 단결정과 같은 구조를 가짐을 의미한다. 한편, 용매가 제거된 [Mn(NDC)]에 대한 XRPD 패턴(도 2(c))은 [Mn(NDC)(DEF)]의 XRPD 패턴과 다른 결과가 얻어진다. 이것은 배위결합하고 있던 DEF가 제거될 때 골격체의 구조 변화가 일어나기 때문이다. 다음으로, [Mn(NDC)]를 DEF에 24시간 동안 침지시킨 후에도 XRPD 패턴(도 2(d))은 변화하지 않았다. 이것은 금속에서 배위결합된 용매가 일단 제거되고 나면 용매에 침지되어도 원래 구조로 다시 복원되지 않는 것을 나타낸다. 또한, [Mn(NDC)]를 수증기에 3일 동안 노출시켰을 때의 XRPD 패턴(도 2(e))은 [Mn(NDC)(DEF)]와 [Mn(NDC)]의 XRPD 패턴 어느 것과도 다르다. 이것은 망간(II)의 빈 배위자리에 물 분자가 배위결합하여 골격체 구조가 변화된 것을 나타낸다.X-ray powder diffraction measurement characteristics measurement results for [Mn (NDC) (DEF)] and [Mn (NDC)] are shown in FIG. 2. The XRPD pattern (FIG. 2 (a)) for the [Mn (NDC) (DEF)] powder is simulated data based on X-ray data for the single crystal of [Mn (NDC) (DEF)] (FIG. 2 (b)). Matches This means that the bulk sample has a structure like a single crystal. On the other hand, the XRPD pattern (FIG. 2 (c)) for [Mn (NDC)] from which the solvent was removed is different from the XRPD pattern of [Mn (NDC) (DEF)]. This is because the structural change of the framework occurs when the DEF that is coordinated is removed. Next, even after immersing [Mn (NDC)] in DEF for 24 hours, the XRPD pattern (Fig. 2 (d)) did not change. This indicates that once the coordinating solvent in the metal has been removed it does not revert back to its original structure even when immersed in the solvent. In addition, the XRPD pattern (FIG. 2 (e)) when [Mn (NDC)] was exposed to water vapor for 3 days was different from the XRPD patterns of [Mn (NDC) (DEF)] and [Mn (NDC)]. different. This indicates that the skeletal structure changed due to the coordination of water molecules in the empty coordination site of manganese (II).

<실험예 2> TGA 및 DSC 분석Experimental Example 2 TGA and DSC Analysis

[Mn(NDC)(DEF)]에 대한 열중량분석법(Thermogravimetric analysis, TGA)과 미분주사열량측정법(Differential scanning calorimetry, DSC)에 의한 분석 결과를 도 4에 나타내었다. [Mn(NDC)(DEF)]을 250℃로 가열하면 모든 배위결합한 용매(이론값: 27.3 중량%, 측정값: 26.6 중량%)가 제거되었다. 용매가 제거된 [Mn(NDC)]는 450℃까지 열분해되지 않았다.The analysis results by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) for [Mn (NDC) (DEF)] are shown in FIG. 4. Heating [Mn (NDC) (DEF)] to 250 ° C. removed all coordinated solvents (theoretical value: 27.3 wt%, measured value: 26.6 wt%). Solvent free [Mn (NDC)] did not pyrolyze to 450 ° C.

<실험예 3> 기체 수착 특성 측정Experimental Example 3 Measurement of Gas Sorption Characteristics

기체 수착 특성은 Quantachrome Autosorb-1 기기로 측정하였다. 정확히 측정된 양의 [Mn(NDC)]를 기체 수착 기기 내로 도입하고, 230℃ 및 10-5 Torr에서 처리하여 배위결합한 모든 용매를 제거하였다. 탈용매된 고체의 N2 기체 수착 등온선을 정적법에 의해 각 평형압력 및 77K에서 측정하였다. 같은 방법으로 77K에서 탈용매된 고체의 H2 및 Ar 기체 수착 등온선을 측정하였다.Gas sorption characteristics were measured with a Quantachrome Autosorb-1 instrument. Accurately measured amounts of [Mn (NDC)] were introduced into the gas sorption apparatus and treated at 230 ° C. and 10 −5 Torr to remove all coordinating solvents. N 2 gas sorption isotherms of desolvated solids were measured by static method at each equilibrium pressure and at 77K. In the same manner, the H 2 and Ar gas sorption isotherms of the solids desolvated at 77K were measured.

[Mn(NDC)]에 대한 N2 기체 수착 특성을 도 5(a)에 나타내었다. [Mn(NDC)]는 N2 기체를 흡착하여 가역적인 유형 I의 등온선(isotherm)을 나타내었고, 이것은 [Mn(NDC)(DEF)]에서 DEF 분자가 제거되어 고체 내에 영구 다공성이 생성되었음을 암시한다. 상기 등온선으로부터 산정한 랭그뮈르 표면적은 191 m2/g이고, 이것은 Mn(HCO2)2·1/3C4H8O2의 약 240 m2/g에 상당한다. Dubinin-Radushkevich 식으로 산정한 다공의 부피는 0.07 cm3/g 이다. 또한, [Mn(NDC)]는 H2 기체를 77K에서 0.56 중량%까지 흡착하고(도 5(b)), 아르곤 기체도 흡착하였다(도 6).N 2 gas sorption characteristics for [Mn (NDC)] are shown in FIG. 5 (a). [Mn (NDC)] showed a reversible type I isotherm by adsorbing N 2 gas, suggesting the removal of DEF molecules in [Mn (NDC) (DEF)] resulting in permanent porosity in the solid. do. The Langurr surface area calculated from the isotherm is 191 m 2 / g, which corresponds to about 240 m 2 / g of Mn (HCO 2 ) 2 / 3C 4 H 8 O 2 . The pore volume calculated by the Dubinin-Radushkevich formula is 0.07 cm 3 / g. In addition, [Mn (NDC)] adsorbed H 2 gas up to 0.56 wt% at 77 K (FIG. 5 (b)), and also adsorbed argon gas (FIG. 6).

<실험예 4> 과산화수소 분해 촉매 작용 실험Experimental Example 4 Hydrogen Peroxide Decomposition Catalysis

과산화수소의 분해 반응에 대한 촉매작용을 알아보기 위하여, 실온에서 30%의 과산화수소 용액 5 mL를 [Mn(NDC)(DEF)] 44.4 mg(0.12 mmol)과 [Mn(NDC)] 33.2 mg(0.12 mmol)에 각각 가해 주었다.To investigate the catalysis of the decomposition reaction of hydrogen peroxide, 5 mL of 30% hydrogen peroxide solution was added to 44.4 mg (0.12 mmol) of [Mn (NDC) (DEF)] and 33.2 mg (0.12 mmol) of [Mn (NDC)] at room temperature. ) Respectively.

과산화수소를 [Mn(NDC)]에 가해주면 도 7과 같이 O2 기체가 격렬히 발생하였다. 그러나, [Mn(NDC)(DEF)]에 과산화수소를 가하면 아무런 반응도 일어나지 않았다. 또한, 과량의 과산화수소와의 분해반응이 일어나고 난 후, 회수한 [Mn(NDC)]에 다시 과산화수소를 가해주면 또다시 산소가 발생하는 과산화수소 분해반응이 일어났다. 그러므로, [Mn(NDC)]는 과산화수소 분해 반응에서 촉매로 작용함을 알 수 있다.When hydrogen peroxide was added to [Mn (NDC)], O 2 gas was violently generated as shown in FIG. 7. However, no reaction occurred when hydrogen peroxide was added to [Mn (NDC) (DEF)]. In addition, after the decomposition reaction with excess hydrogen peroxide occurred, hydrogen peroxide was added to the recovered [Mn (NDC)] again to cause hydrogen peroxide decomposition. Therefore, it can be seen that [Mn (NDC)] acts as a catalyst in the hydrogen peroxide decomposition reaction.

따라서, 본 발명의 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기 골격체는 빈 배위자리가 존재할 수 있으므로, 영구적인 다공성 성질을 갖고, 높은 온도 에서도 그 구조를 안정적으로 유지하며, 촉매작용을 할 수 있어 분자 흡착, 분리 공정, 이온 교환, 불균일 촉매, 센서 분야 등 다양한 응용 범위를 갖는다.Therefore, the manganese (II) -naphthalenedicarboxylate porous metal-organic framework of the present invention may have an empty coordination site, and thus have permanent porous properties, maintain its structure stably even at high temperatures, and catalyze It can be used in various fields such as molecular adsorption, separation process, ion exchange, heterogeneous catalyst, sensor.

Claims (8)

하기 화학식 1로 표현되는, 망간(II) 이온과 2,6-나프탈렌디카복실레이트가 배위결합된 다공성 금속-유기 골격체.A porous metal-organic framework in which a manganese (II) ion and 2,6-naphthalenedicarboxylate are coordinated to each other, represented by the following Formula 1. <화학식 1><Formula 1> [Mnx(NDC)y(Sol)z][Mn x (NDC) y (Sol) z ] (상기 식에서 x 및 y는 1 이상의 정수이고, z은 0 이상의 정수이며;Wherein x and y are integers of at least 1 and z is an integer of at least 0; NDC는 2,6-나프탈렌디카복실레이트를 가리키고, Sol은 용매를 가리킨다.)NDC refers to 2,6-naphthalenedicarboxylate and Sol refers to solvent.) 제1항에 있어서, 상기 용매는 포름아마이드, 메틸포름아마이드, 에틸포름아마이드, 프로필포름아마이드, 부틸포름아마이드, 디메틸포름아마이드, 디에틸포름아마이드, 디프로필포름아마이드, 디부틸포름아마이드, 디에틸에테르, 메탄올, 에탄올, 프로판올, 메틸아민, 디메틸아민, 트리메틸아민, 에틸아민, 디에틸아민, 트리에틸아민, 디메틸설폭사이드, 물, 벤젠, 클로로벤젠, 톨루엔, 페놀 및 피리딘 가운데 적어도 어느 하나인 것을 특징으로 하는 다공성 금속-유기 골격체.The method of claim 1, wherein the solvent is formamide, methylformamide, ethylformamide, propylformamide, butylformamide, dimethylformamide, diethylformamide, dipropylformamide, dibutylformamide, diethyl ether , Methanol, ethanol, propanol, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, dimethylsulfoxide, water, benzene, chlorobenzene, toluene, phenol and pyridine Porous metal-organic framework. 제1항에 있어서,The method of claim 1, [Mn(NDC)(DEF)]; 또는[Mn (NDC) (DEF)]; or [Mn(NDC)]인 것을 특징으로 하는 다공성 금속-유기 골격체.Porous metal-organic framework, characterized in that [Mn (NDC)]. (상기 식에서, DEF는 디에틸포름아마이드를 가리킨다.)(Wherein DEF refers to diethylformamide) 망간(II)의 질산염, 염화염, 또는 아세테이트염을 2,6-나프탈렌디카복실산과 용매하에서 혼합하여 다공성 금속 유기 골격체를 얻는 단계를 포함하는 다공성 금속-유기 골격체의 제조방법.A method for producing a porous metal-organic framework comprising mixing a nitrate, chloride, or acetate salt of manganese (II) with 2,6-naphthalenedicarboxylic acid in a solvent to obtain a porous metal organic framework. 제4항에 있어서, 상기 얻어진 다공성 금속 유기 골격체를 탈용매화하는 단계를 더 포함하는 것을 특징으로 하는 다공성 금속-유기 골격체의 제조방법.The method of claim 4, further comprising desolvating the obtained porous metal organic framework. 제5항에 있어서, 상기 탈용매화하는 단계는 10-4 ~ 10-6 Torr 및 200-450℃에서 가열하는 것을 특징으로 하는 다공성 금속-유기 골격체의 제조방법.6. The method of claim 5, wherein the desolvating is performed at 10 −4 to 10 −6 Torr and 200 to 450 ° C. 7 . 하기 화학식 2로 표현되는, 망간(II) 이온과 2,6-나프탈렌디카복실레이트가 배위결합된 다공성 금속-유기 골격체를 포함하는 분자 흡착제.A molecular adsorbent comprising a porous metal-organic framework in which a manganese (II) ion and 2,6-naphthalenedicarboxylate are coordinated to each other, represented by Formula 2 below. <화학식 2><Formula 2> [Mnx(NDC)y][Mn x (NDC) y ] (상기 식에서 x 및 y는 1 이상의 정수이며;Wherein x and y are integers of at least 1; NDC는 2,6-나프탈렌디카복실레이트를 가리킨다.)NDC refers to 2,6-naphthalenedicarboxylate.) 하기 화학식 2로 표현되는, 망간(II) 이온과 2,6-나프탈렌디카복실레이트가 배위결합된 다공성 금속-유기 골격체를 포함하는 불균일 촉매.A heterogeneous catalyst comprising a porous metal-organic framework in which a manganese (II) ion and 2,6-naphthalenedicarboxylate are coordinated to each other, represented by the following Chemical Formula 2. <화학식 2><Formula 2> [Mnx(NDC)y][Mn x (NDC) y ] (상기 식에서 x 및 y는 1 이상의 정수이며;Wherein x and y are integers of at least 1; NDC는 2,6-나프탈렌디카복실레이트를 가리킨다.)NDC refers to 2,6-naphthalenedicarboxylate.)
KR1020050045646A 2005-05-30 2005-05-30 Porous metal-organic framework with coordinatively unsaturated sites, preparation method thereof and its uses as a molecule adsorber and a catalyst KR100817537B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050045646A KR100817537B1 (en) 2005-05-30 2005-05-30 Porous metal-organic framework with coordinatively unsaturated sites, preparation method thereof and its uses as a molecule adsorber and a catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050045646A KR100817537B1 (en) 2005-05-30 2005-05-30 Porous metal-organic framework with coordinatively unsaturated sites, preparation method thereof and its uses as a molecule adsorber and a catalyst

Publications (2)

Publication Number Publication Date
KR20060123970A true KR20060123970A (en) 2006-12-05
KR100817537B1 KR100817537B1 (en) 2008-04-01

Family

ID=37728770

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050045646A KR100817537B1 (en) 2005-05-30 2005-05-30 Porous metal-organic framework with coordinatively unsaturated sites, preparation method thereof and its uses as a molecule adsorber and a catalyst

Country Status (1)

Country Link
KR (1) KR100817537B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026619A1 (en) * 2015-08-13 2017-02-16 고려대학교 산학협력단 Preparation of magnesium metal-organic framework (mg-mof) and amine functionalization thereof
CN115746327A (en) * 2022-12-27 2023-03-07 广东轻工职业技术学院 Manganese (II) metal catalyst for silicon cyanation reaction of benzaldehyde derivative, and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100846477B1 (en) * 2005-01-21 2008-07-17 삼성에스디아이 주식회사 Carbon-metal composite material and process for preparing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017026619A1 (en) * 2015-08-13 2017-02-16 고려대학교 산학협력단 Preparation of magnesium metal-organic framework (mg-mof) and amine functionalization thereof
KR101707821B1 (en) * 2015-08-13 2017-02-17 고려대학교 산학협력단 Preparation of Mg-MOF and its amine-functionalization
CN115746327A (en) * 2022-12-27 2023-03-07 广东轻工职业技术学院 Manganese (II) metal catalyst for silicon cyanation reaction of benzaldehyde derivative, and preparation method and application thereof

Also Published As

Publication number Publication date
KR100817537B1 (en) 2008-04-01

Similar Documents

Publication Publication Date Title
Wang et al. Toward a rational design of titanium metal-organic frameworks
Qi et al. A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide
Carlucci et al. Heterometallic Modular Metal–Organic 3D Frameworks Assembled via New Tris‐β‐Diketonate Metalloligands: Nanoporous Materials for Anion Exchange and Scaffolding of Selected Anionic Guests
KR102011160B1 (en) Metal-organic frameworks with exceptionally large pore aperatures
Li et al. A chiral salen-based MOF catalytic material with high thermal, aqueous and chemical stabilities
Li et al. Microporous 2D indium metal–organic frameworks for selective CO 2 capture and their application in the catalytic CO 2-cycloaddition of epoxides
KR20120099204A (en) Complex mixed ligand open framework materials
Reynolds et al. Highly selective room temperature acetylene sorption by an unusual triacetylenic phosphine MOF
Saha et al. A magnesium-based multifunctional metal–organic framework: Synthesis, thermally induced structural variation, selective gas adsorption, photoluminescence and heterogeneous catalytic study
Liu et al. Facile synthesis of ZIF-8 nanocrystals in eutectic mixture
Liu et al. Flexible porous coordination polymers constructed from 1, 2-bis (4-pyridyl) hydrazine via solvothermal in situ reduction of 4, 4′-azopyridine
US20160185806A1 (en) PROCESS FOR OBTAINING METAL-ORGANIC MATERIALS WITH STRUCTURE TYPE MIL-101 (Cr) AND MIL-101-Cr-Mx+
WO2018204607A1 (en) Metal organic frameworks, their synthesis and use
Croitor et al. 1, 2-Cyclohexanedionedioxime as a useful co-ligand for fabrication of one-dimensional Zn (II) and Cd (II) coordination polymers with wheel-and-axle topology and luminescent properties
Liang et al. Hydrothermal synthesis and structural characterization of metal–organic frameworks based on new tetradentate ligands
Assen et al. The chemistry of metal–organic frameworks with face-centered cubic topology
Tăbăcaru et al. Nickel (ii) and copper (i, ii)-based metal-organic frameworks incorporating an extended tris-pyrazolate linker
Gu et al. Coordination polymers from an unexplored biphenyl-tricarboxylate linker: hydrothermal synthesis, structural traits and catalytic cyanosilylation
Marri et al. Two novel 3D-MOFs (Ca-TATB and Co-HKUST): Synthesis, structure and characterization
Cepeda et al. Structural diversity of coordination compounds derived from double-chelating and planar diazinedicarboxylate ligands
Zhang et al. Effect of N-donor auxiliary ligands on the engineering of crystalline architectures of a series of lead (ii) complexes with 5-amino-2, 4, 6-triiodoisophthalic acid
KR20080080870A (en) Porous metal-organic framework and method for preparing the same
KR100817537B1 (en) Porous metal-organic framework with coordinatively unsaturated sites, preparation method thereof and its uses as a molecule adsorber and a catalyst
Chen et al. Synthesis, crystal structures and vapor adsorption properties of Hg (II) and Cd (II) coordination polymers derived from two hydrazone Schiff base ligands
Xu et al. A 3D K–Cu heterometal–organic coordination polymer with luminescent properties constructed from two kinds of Cu-cyanide complex units and binuclear K oxo-cluster

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130422

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140318

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee