KR100817537B1 - Porous metal-organic framework with coordinatively unsaturated sites, preparation method thereof and its uses as a molecule adsorber and a catalyst - Google Patents
Porous metal-organic framework with coordinatively unsaturated sites, preparation method thereof and its uses as a molecule adsorber and a catalyst Download PDFInfo
- Publication number
- KR100817537B1 KR100817537B1 KR1020050045646A KR20050045646A KR100817537B1 KR 100817537 B1 KR100817537 B1 KR 100817537B1 KR 1020050045646 A KR1020050045646 A KR 1020050045646A KR 20050045646 A KR20050045646 A KR 20050045646A KR 100817537 B1 KR100817537 B1 KR 100817537B1
- Authority
- KR
- South Korea
- Prior art keywords
- ndc
- porous metal
- manganese
- organic framework
- naphthalenedicarboxylate
- Prior art date
Links
- 239000012621 metal-organic framework Substances 0.000 title claims abstract description 40
- 239000003054 catalyst Substances 0.000 title abstract description 8
- 238000002360 preparation method Methods 0.000 title description 5
- WAEMQWOKJMHJLA-UHFFFAOYSA-N Manganese(2+) Chemical compound [Mn+2] WAEMQWOKJMHJLA-UHFFFAOYSA-N 0.000 claims abstract description 17
- -1 manganese (II) ions Chemical class 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 10
- 239000003463 adsorbent Substances 0.000 claims abstract description 7
- 239000002638 heterogeneous catalyst Substances 0.000 claims abstract description 5
- 239000011572 manganese Substances 0.000 claims description 55
- 239000002904 solvent Substances 0.000 claims description 31
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 claims description 15
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- 159000000021 acetate salts Chemical class 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- MLSBUHFJFTXIGO-UHFFFAOYSA-L manganese(2+);naphthalene-1,2-dicarboxylate Chemical compound [Mn+2].C1=CC=CC2=C(C([O-])=O)C(C(=O)[O-])=CC=C21 MLSBUHFJFTXIGO-UHFFFAOYSA-L 0.000 abstract description 14
- 238000001179 sorption measurement Methods 0.000 abstract description 14
- 238000005342 ion exchange Methods 0.000 abstract description 3
- 238000000926 separation method Methods 0.000 abstract description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 21
- 238000000634 powder X-ray diffraction Methods 0.000 description 18
- 239000007789 gas Substances 0.000 description 13
- 238000000354 decomposition reaction Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000002411 thermogravimetry Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 4
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 4
- QUSNBJAOOMFDIB-UHFFFAOYSA-N Ethylamine Chemical compound CCN QUSNBJAOOMFDIB-UHFFFAOYSA-N 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 4
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 4
- 238000000113 differential scanning calorimetry Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000004807 desolvation Methods 0.000 description 3
- 238000000921 elemental analysis Methods 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XFTIKWYXFSNCQF-UHFFFAOYSA-N N,N-dipropylformamide Chemical compound CCCN(C=O)CCC XFTIKWYXFSNCQF-UHFFFAOYSA-N 0.000 description 2
- QQGNLKJAIVSNCO-UHFFFAOYSA-N N-butylformamide Chemical compound CCCCNC=O QQGNLKJAIVSNCO-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229960004132 diethyl ether Drugs 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- NZMAJUHVSZBJHL-UHFFFAOYSA-N n,n-dibutylformamide Chemical compound CCCCN(C=O)CCCC NZMAJUHVSZBJHL-UHFFFAOYSA-N 0.000 description 2
- KERBAAIBDHEFDD-UHFFFAOYSA-N n-ethylformamide Chemical compound CCNC=O KERBAAIBDHEFDD-UHFFFAOYSA-N 0.000 description 2
- SUUDTPGCUKBECW-UHFFFAOYSA-N n-propylformamide Chemical compound CCCNC=O SUUDTPGCUKBECW-UHFFFAOYSA-N 0.000 description 2
- 125000001624 naphthyl group Chemical group 0.000 description 2
- 239000013384 organic framework Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 238000000985 reflectance spectrum Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- QNRATNLHPGXHMA-XZHTYLCXSA-N (r)-(6-ethoxyquinolin-4-yl)-[(2s,4s,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]methanol;hydrochloride Chemical compound Cl.C([C@H]([C@H](C1)CC)C2)CN1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OCC)C=C21 QNRATNLHPGXHMA-XZHTYLCXSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 150000007942 carboxylates Chemical group 0.000 description 1
- 125000002579 carboxylato group Chemical group [O-]C(*)=O 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000002447 crystallographic data Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F13/00—Compounds containing elements of Groups 7 or 17 of the Periodic Table
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/223—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
- B01J20/226—Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/1691—Coordination polymers, e.g. metal-organic frameworks [MOF]
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Analytical Chemistry (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
본 발명은 빈 배위자리가 있는 다공성 금속-유기물 골격체, 그 제조방법 및 분자 흡착제 및 촉매로서의 용도에 관한 것으로, 본 발명의 다공성 금속-유기물 골격체는 망간(II) 이온과 2,6-나프탈렌디카복실레이트가 배위결합되어 있고, 상기 망간(II) 이온에는 빈 배위자리가 존재할 수 있으며, 영구적인 다공성 성질을 가지므로, 높은 온도에서도 그 구조를 안정적으로 유지하며, 촉매작용을 할 수 있어 분자 흡착, 분리 공정, 이온 교환, 불균일 촉매, 센서 분야 등 다양한 응용 범위를 갖는다.The present invention relates to a porous metal-organic framework having an empty configuration, a method for preparing the same, and its use as a molecular adsorbent and a catalyst, wherein the porous metal-organic framework of the present invention comprises manganese (II) ions and 2,6-naphthalene. The dicarboxylate is coordinately bonded, the manganese (II) ion may have an empty coordination site and has a permanent porous property, so that the structure can be stably maintained at a high temperature and can be catalyzed. It has a wide range of applications, including adsorption, separation processes, ion exchange, heterogeneous catalysts, and sensor applications.
다공성 금속-유기물 골격체, 망간(II)-나프탈렌디카복실레이트, 분자 흡착제, 불균일 촉매Porous metal-organic framework, manganese (II) -naphthalenedicarboxylate, molecular adsorbent, heterogeneous catalyst
Description
도 1(a)는 [Mn(NDC)(DEF)]의 ORTEP 도면이고, 1(b)는 [Mn(NDC)(DEF)] 3D 골격체의 평면도이며, 1(c)는 [Mn(NDC)(DEF)] 3D 골격체의 측면도이다.1 (a) is an ORTEP diagram of [Mn (NDC) (DEF)], 1 (b) is a plan view of the [Mn (NDC) (DEF)] 3D skeleton, and 1 (c) is [Mn (NDC) ) (DEF)] Side view of the 3D framework.
도 2(a)는 [Mn(NDC)(DEF)]의 XRPD 패턴이고, 2(b)는 [Mn(NDC)(DEF)]의 단결정 X-선 데이터에 기초를 둔 시뮬레이션 XRPD 패턴이며, 2(c)는 [Mn(NDC)]의 XRPD 패턴이고, 2(d)는 [Mn(NDC)]를 DEF에 침지시킨 후 XRPD 패턴이며, 2(e)는 [Mn(NDC)]를 수증기에 노출시킨 후 XRPD 패턴이다.2 (a) is an XRPD pattern of [Mn (NDC) (DEF)], 2 (b) is a simulated XRPD pattern based on single crystal X-ray data of [Mn (NDC) (DEF)], 2 (c) is the XRPD pattern of [Mn (NDC)], 2 (d) is the XRPD pattern after immersing [Mn (NDC)] in DEF, and 2 (e) shows [Mn (NDC)] in water vapor. XRPD pattern after exposure.
도 3은 [Mn(NDC)(DEF)] 및 [Mn(NDC)]의 확산 반사율 스펙트럼이다.3 is a diffuse reflectance spectrum of [Mn (NDC) (DEF)] and [Mn (NDC)].
도 4는 [Mn(NDC)(DEF)]의 TGA 및 DSC 결과이다.4 shows TGA and DSC results of [Mn (NDC) (DEF)].
도 5(a)는 [Mn(NDC)]의 질소 기체 흡착 등온선이고, 5(b)는 수소 기체 흡착 등온선이다.Fig. 5A is a nitrogen gas adsorption isotherm of [Mn (NDC)], and 5 (b) is a hydrogen gas adsorption isotherm.
도 6은 [Mn(NDC)]의 아르곤 기체 흡착 등온선이다.6 is an argon gas adsorption isotherm of [Mn (NDC)].
도 7은 [Mn(NDC)]의 과산화수소 해리 촉매작용을 나타내는 사진이다. 7 is a photograph showing the dissociation of hydrogen peroxide in [Mn (NDC)].
본 발명은 빈 배위자리가 있는 다공성 금속-유기물 골격체, 그 제조방법 및 분자 흡착제 및 촉매로서의 용도에 관한 것으로, 더욱 상세하게는 망간(II) 이온과 2,6-나프탈렌디카복실레이트가 배위결합되어 있고, 상기 망간(II) 이온에는 빈 배위자리가 존재할 수 있으며, 영구적인 다공성 성질을 갖는 3차원 구조의 다공성 금속-유기물 골격체, 그 제조방법 및 분자 흡착제 및 촉매로서의 용도에 관한 것이다.The present invention relates to a porous metal-organic framework having an empty coordination site, a method for preparing the same, and a use as a molecular adsorbent and a catalyst. More specifically, a manganese (II) ion and a 2,6-naphthalenedicarboxylate are coordinated. The manganese (II) ion may have an empty coordination site, and relates to a porous metal-organic framework having a three-dimensional structure with permanent porous properties, a method for preparing the same, and a use as a molecular adsorbent and a catalyst.
금속-유기물 골격체(Metal-Organic Framework : MOF)는 이온 교환, 촉매, 센서 기술 및 광전자 등과 같은 분자의 흡착 및 분리 과정과 관련된 분야에 응용될 수 있는 잠재력 때문에 최근 주목받고 있는 연구 과제이다. 금속-유기물 골격체는 다양한 크기 및 모양의 공동(cavity) 또는 채널을 형성하도록 적절한 빌딩 블록을 선택하여 설계 및 조립된다. 그러나, 활발한 연구에도 불구하고, 영구적인 다공성을 가지는 금속-유기물 골격체 설계를 위한 정보는 많지 않다. 그 이유는 첫째, 금속-유기물 골격체는 견고하지 못하여 그 빈 공간을 채우고 있던 게스트 분자가 제거되면 붕괴되는 경우가 많고, 둘째, 열에 대한 불안정성 때문에 고온에서 또는 심지어 저온에서도 진공하에서 쉽게 파괴되며, 셋째, 종종 용매에 녹아 빌딩 블록으로 해리되곤 하기 때문이다. 따라서, 아직은 그 응용분야가 무기 제올라이트(zeolite)에 비하여 제한되고 있다.Metal-organic frameworks (MOFs) are a recent research topic because of their potential for applications in the adsorption and separation processes of molecules such as ion exchange, catalysts, sensor technology and optoelectronics. Metal-organic frameworks are designed and assembled by selecting appropriate building blocks to form cavities or channels of various sizes and shapes. However, despite active research, there is not much information for designing metal-organic frameworks with permanent porosity. This is because, firstly, the metal-organic framework is not strong and often collapses when the guest molecule that fills the void is removed, and secondly, it is easily destroyed under vacuum at high or even low temperatures due to heat instability. Often they dissolve in solvents and dissociate into building blocks. Thus, its application is still limited compared to inorganic zeolites.
금속-유기물 골격체를 구축하기 위한 다양한 배위 중합체가 제조되었으나, 위와 같이 배위하고 있던 용매가 제거되면 골격체 구조가 쉽게 붕괴되기 때문에, 영구적 다공성(permanent porosity)을 갖는 배위 중합체는 매우 드물다[S. Takamizawa, E. Nakata, H. Yokoyama, K. Mochizuki, W. Mori, Angew. Chem. 2003, 115, 4467-4470; Angew. Chem. Int. Ed. 2003, 42, 4331-4334; E. Y. Lee, M. P. Suh, Angew. Chem. 2004, 116, 2858-2861; Angew. Chem. Int. Ed. 2004, 43, 2798-2801; S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem. Int. Ed. 2004, 43, 2334-2375; 대한민국 공개특허공보 제2004-96545호; 대한민국 공개특허공보 제2005-8749호].Various coordinating polymers have been prepared to construct metal-organic frameworks, but coordinating polymers with permanent porosity are very rare because the skeletal structure is easily disrupted when the solvents that are coordinating are removed as described above [S. Takamizawa, E. Nakata, H. Yokoyama, K. Mochizuki, W. Mori, Angew. Chem. 2003 , 115 , 4467-4470; Angew. Chem . Int. Ed . 2003 , 42 , 4331-4334; EY Lee, MP Suh, Angew. Chem . 2004 , 116 , 2858-2861; Angew. Chem . Int. Ed. 2004 , 43 , 2798-2801; S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem . Int. Ed. 2004 , 43 , 2334-2375; Korean Laid-Open Patent Publication No. 2004-96545; Republic of Korea Patent Publication No. 2005-8749].
이에 본 발명자들은 영구 다공성을 가지는 금속-유기물 골격체에 대한 연구를 진행하던 중, 망간(II) 이온과 2,6-나프탈렌디카복실레이트(2,6-naphthalenedicarboxylate = NDC)가 배위결합된 금속-유기물 골격체의 합성에 성공하고, 이 금속-유기물 골격체의 망간(II) 이온에 빈 배위자리가 존재할 수 있어, 배위하고 있던 용매 분자를 제거하더라도 금속-유기물 골격체가 붕괴되지 않고, 영구적 다공성 성질과 열적 안정성을 갖는다는 사실을 발견하여 본 발명을 완성하기에 이르렀다.Accordingly, the present inventors have been studying the metal-organic framework having a permanent porosity, while the coordination of manganese (II) ion and 2,6-naphthalenedicarboxylate (2,6-naphthalenedicarboxylate = NDC)- Successful synthesis of the organic framework, and there may be an empty coordination site in the manganese (II) ions of the metal-organic framework, even if the solvent molecules are removed, the metal-organic framework does not collapse, permanent porous properties The discovery of superthermal stability has led to the completion of the present invention.
본 발명의 목적은 망간(II) 이온과 2,6-나프탈렌디카복실레이트가 배위결합되어 있고, 상기 망간(II) 이온에는 빈 배위자리가 존재할 수 있으며, 영구적인 다공성 성질을 갖는 3차원 구조의 다공성 금속-유기물 골격체, 그 제조방법 및 분자 흡착제 및 촉매로서의 용도를 제공하는 데 있다.An object of the present invention is a coordination bond between manganese (II) ions and 2,6-naphthalenedicarboxylate, the manganese (II) ions may have an empty coordination site, and has a three-dimensional structure of permanent porous properties It is to provide a porous metal-organic framework, a method for producing the same and its use as a molecular adsorbent and a catalyst.
본 발명은 하기 화학식으로 표시되는, 망간(II) 이온과 2,6-나프탈렌디카복실레이트가 배위결합된 다공성 금속-유기물 골격체를 제공한다.The present invention provides a porous metal-organic framework in which a manganese (II) ion and a 2,6-naphthalenedicarboxylate are coordinated by the following formula.
[Mnx(NDC)y(Sol)z][Mn x (NDC) y (Sol) z ]
(상기 식에서 x 및 y는 1 이상의 정수이고, z은 0 이상의 정수이며;Wherein x and y are integers of at least 1 and z is an integer of at least 0;
NDC는 2,6-나프탈렌디카복실레이트를 가리키고, Sol은 용매를 가리킨다.)NDC refers to 2,6-naphthalenedicarboxylate and Sol refers to solvent.)
본 발명의 다공성 금속-유기물 골격체는 망간(II) 이온과 2,6-나프탈렌디카복실레이트가 배위결합된 다공성 금속-유기물 골격체(이하, '망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체'라 함)이다. 상기 망간(II) 이온에는 빈 배위자리가 구조적으로 존재할 수 있으므로, 배위하고 있던 용매가 제거되더라도 그 구조가 붕괴되지 않는다. 따라서, 본 발명의 다공성 금속-유기물 골격체는 열적 안정성을 갖는 영구적인 다공성 성질을 갖는 3차원 구조의 다공성 금속-유기물 골격체이다.The porous metal-organic framework of the present invention is a porous metal-organic framework in which manganese (II) ions and 2,6-naphthalenedicarboxylate are coordinated (hereinafter, 'manganese (II) -naphthalenedicarboxylate porous metal- Organic skeleton). Since the empty coordination site may exist structurally in the manganese (II) ion, the structure does not collapse even when the solvent coordinating is removed. Thus, the porous metal-organic framework of the present invention is a porous metal-organic framework of three-dimensional structure with permanent porous properties with thermal stability.
상기 용매(Sol)는 망간(II) 이온과 배위결합을 이룰 수 있는 것이라면 특별히 그 종류를 한정하지 않으며, 예를 들면 포름아마이드, 메틸포름아마이드, 에틸포름아마이드, 프로필포름아마이드, 부틸포름아마이드, 디메틸포름아마이드, 디에틸포름아마이드, 디프로필포름아마이드, 디부틸포름아마이드, 디에틸에테르, 메탄올, 에탄올, 프로판올, 메틸아민, 디메틸아민, 트리메틸아민, 에틸아민, 디에틸아민, 트리에틸아민, 디메틸설폭사이드, 물, 벤젠, 클로로벤젠, 톨루엔, 페놀 및 피리딘 가운데 적어도 어느 하나이다.The solvent (Sol) is not particularly limited as long as it can form a coordination bond with manganese (II) ions, for example, formamide, methylformamide, ethylformamide, propylformamide, butylformamide, dimethyl Formamide, diethylformamide, dipropylformamide, dibutylformamide, diethylether, methanol, ethanol, propanol, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, dimethyl sulfoxide Side, water, benzene, chlorobenzene, toluene, phenol and pyridine.
본 발명의 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체의 가장 바람직한 예는,The most preferred example of the manganese (II) -naphthalenedicarboxylate porous metal-organic framework of the present invention is
[Mn(NDC)(DEF)]; 또는[Mn (NDC) (DEF)]; or
[Mn(NDC)]이다.[Mn (NDC)].
(상기 식에서 DEF는 디에틸포름아마이드(diethylformamide)를 가리킨다.)(In the formula, DEF refers to diethylformamide.)
본 발명의 용매 분자가 배위된 실시형태에 따른 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체에서 각 카복실레이토기는 바이덴테이트(bidentate) 또는 트리덴테이트(tridentate)로 작용할 수 있다. 카복실레이토기가 트리덴테이트로 작용하는 경우 도 1a의 O(1)-C-O(2)와 Mn(1)과의 결합 모드에서 나타낸 바와 같이, 카복실레이토기는 망간(II)와 사각 킬레이트 고리를 형성한다. 도 1a에서 NDC2-의 벤젠 고리는 복잡성을 피하기 위해 생략하였다.In the manganese (II) -naphthalenedicarboxylate porous metal-organic framework according to the embodiment in which the solvent molecules of the present invention are coordinated, each carboxylate group may act as a bidentate or tridentate. . When the carboxylated group acts as a tridentate As shown in the binding mode of O (1) -CO (2) and Mn (1) of FIG. Form. In FIG. 1A the benzene ring of NDC 2- is omitted to avoid complexity.
본 발명의 용매 분자가 배위된 실시형태에 따른 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체에서 각 망간(II) 이온은 4개의 카복실레이토기와 1개의 용매 분자의 결합 원자와 배위결합하여 일그러진 팔면체 구조(distorted octahedral)를 형성한다. 망간(II) 이온들은 도 1a 및 하기 도해 1(a) 및 1(b)에 나타낸 바와 같이, 카복실레이토(carboxylato)기에 의해 다리 결합되어(bridged) 있다. 따라서, 망간(II) 이온들은 도 1c에 나타낸 바와 같이, a 방향으로 뻗어 있는 1차원의 망간(II) 사슬을 형성한다. 그리고, 이러한 1차원의 망간(II) 사슬은 NDC2-의 나프탈렌 고리를 통해 서로 연결되어 있다.In the manganese (II) -naphthalenedicarboxylate porous metal-organic framework according to the embodiment in which the solvent molecules of the present invention are coordinated, each manganese (II) ion is coordinated with the binding atoms of four carboxylated groups and one solvent molecule. It combines to form a distorted octahedral. Manganese (II) ions are bridged by carboxylato groups, as shown in FIGS. 1A and 1 (a) and 1 (b) below. Thus, manganese (II) ions form one-dimensional manganese (II) chains extending in the a direction, as shown in FIG. 1C. And, the one-dimensional manganese (II) chain is connected to each other through the naphthalene ring of NDC 2- .
망간(II) 사슬을 연결하는 NDC2-의 나프탈렌 고리로 형성되는 평면은 하기 도해 2와 같이, (0 1 1) 및 (0 1 -1) 평면에 평행하다. 상기 평면은 상기 1차원 망간(II) 사슬과 교차하여 3차원 골격체를 형성하고, 상기 3차원 골격체는 대각 길이(diagonal length) 21.5Å, 10.5Å을 갖는 롬빅 구멍(rhombic aperture)의 1차원 채널을 제공한다. 상기 채널은 망간(II) 이온에 배위 결합하는 용매 분자로 채워진다(도 1b, 도 1c).The plane formed of the naphthalene ring of NDC 2- connecting the manganese (II) chain is parallel to the (0 1 1) and (0 1 -1) planes, as shown in Figure 2 below. The plane intersects the one-dimensional manganese (II) chain to form a three-dimensional skeleton, and the three-dimensional skeleton is a one-dimensional rhombic aperture having a diagonal length of 21.5 Å and 10.5 Å Provide a channel. The channel is filled with solvent molecules coordinating to manganese (II) ions (FIGS. 1B, 1C).
한편, 본 발명의 용매 분자가 배위되지 않은 실시형태에 따른 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체에 대해 PLATON으로 평가한 자유 용적(free volume)은 약 42.1 %이다. 본 발명의 용매 분자가 배위된 실시형태에 따른 다공성 금속-유기물 골격체의 XRPD(X-ray powder diffraction) 패턴 (도 2(a))과 본 발명의 용매 분자가 배위되지 않은 실시형태에 따른 다공성 금속-유기물 골격체의 XRPD 패턴 (도 2(c))을 비교하면, 양자에 차이가 있음을 알 수 있어, 용매 분자의 배위 여부에 따라 본 발명의 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체의 구조가 달라진다는 것이 확인된다.On the other hand, the free volume evaluated by PLATON for the manganese (II) -naphthalenedicarboxylate porous metal-organic framework according to the embodiment in which the solvent molecule of the present invention is not coordinated is about 42.1%. The X-ray powder diffraction (XRPD) pattern (FIG. 2 (a)) of the porous metal-organic framework according to the embodiment in which the solvent molecules of the present invention are coordinated and the porosity according to the embodiment in which the solvent molecules of the present invention are not coordinated Comparing the XRPD pattern (Fig. 2 (c)) of the metal-organic framework, it can be seen that there is a difference in both, the manganese (II)-naphthalenedicarboxylate porous metal of the present invention depending on the coordination of solvent molecules It is confirmed that the structure of the organic framework differs.
또한, 본 발명은 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체의 제조방법을 제공한다.The present invention also provides a method for preparing a manganese (II) -naphthalenedicarboxylate porous metal-organic framework.
본 발명의 제조방법은 망간(II)의 질산염, 염화염, 또는 아세테이트염을 2,6-나프탈렌디카복실산과 용매하에서 혼합하는 단계를 포함한다. 이 단계에 의해서는 용매 분자가 배위된 실시형태에 따른 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체가 생성된다.The preparation method of the present invention comprises the step of mixing nitrate, chloride, or acetate salt of manganese (II) with 2,6-naphthalenedicarboxylic acid in a solvent. This step produces a manganese (II) -naphthalenedicarboxylate porous metal-organic framework according to an embodiment in which solvent molecules are coordinated.
상기 용매(Sol)는 망간(II) 이온과 배위결합을 이룰 수 있는 것이라면 특별히 그 종류를 한정하지 않으며, 예를 들면 포름아마이드, 메틸포름아마이드, 에틸포름아마이드, 프로필포름아마이드, 부틸포름아마이드, 디메틸포름아마이드, 디에틸포름아마이드, 디프로필포름아마이드, 디부틸포름아마이드, 디에틸에테르, 메탄올, 에탄올, 프로판올, 메틸아민, 디메틸아민, 트리메틸아민, 에틸아민, 디에틸아민, 트리에틸아민, 디메틸설폭사이드, 물, 벤젠, 클로로벤젠, 톨루엔, 페놀 및 피리딘 가운데 적어도 어느 하나이다.The solvent (Sol) is not particularly limited as long as it can form a coordination bond with manganese (II) ions, for example, formamide, methylformamide, ethylformamide, propylformamide, butylformamide, dimethyl Formamide, diethylformamide, dipropylformamide, dibutylformamide, diethylether, methanol, ethanol, propanol, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, dimethyl sulfoxide Side, water, benzene, chlorobenzene, toluene, phenol and pyridine.
본 발명의 제조방법은 상기와 같이 얻어진 용매 분자가 배위된 실시형태에 따른 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체를 탈용매화하여 용매 분자가 배위되지 않은 실시형태에 따른 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체를 얻을 수도 있다.The preparation method of the present invention is carried out by desolvating the manganese (II) -naphthalenedicarboxylate porous metal-organic framework according to the embodiment in which the solvent molecules obtained as described above are coordinated with the manganese according to the embodiment in which the solvent molecules are not coordinated ( II) -naphthalenedicarboxylate porous metal-organic frameworks may also be obtained.
상기 탈용매화 단계는 용매 분자가 배위된 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체를 감압하, 200-450℃에서 가열하는 단계를 포함할 수 있다. 상기 감압 조건은 탈용매화의 효율성 관점에서 10-4~10-6 Torr가 적절하다. 상기 온도 조건에서 200℃ 미만이면 탈용매화가 잘 일어나지 않고, 450℃ 초과이면 화합물의 분해가 일어나는 문제점이 발생한다.The desolvation step may comprise heating the manganese (II) -naphthalenedicarboxylate porous metal-organic framework in which the solvent molecules are coordinated at 200-450 ° C. under reduced pressure. The decompression conditions are appropriately 10 −4 to 10 −6 Torr in view of the efficiency of desolvation. If the temperature is lower than 200 ° C., desolvation does not occur well. If the temperature is higher than 450 ° C., decomposition of the compound occurs.
본 발명에 따른 [Mnx(NDC)y] (x 및 y는 1 이상의 정수) 형태의 용매 분자가 배위되지 않은 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체는 언급한 바와 같이 망간(II) 이온을 중심으로 빈 배위자리가 존재하므로, 가역적인 분자 흡착제로 이용될 수 있다. 상기 분자로는 질소, 수소 또는 아르곤을 예로 들 수 있다.Manganese (II) -naphthalenedicarboxylate porous metal-organic frameworks in which the solvent molecules of the form [Mn x (NDC) y ] (x and y are integers of 1 or more) are not coordinated, as mentioned (II) Since an empty coordination site exists around the ion, it can be used as a reversible molecular adsorbent. Examples of the molecule include nitrogen, hydrogen or argon.
또한, 본 발명에 따른 [Mnx(NDC)y] (x 및 y는 1 이상의 정수) 형태의 용매 분자가 배위되지 않은 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체는 언급한 바와 같이 망간(II) 이온을 중심으로 빈 배위자리가 존재하므로, 불균일 촉매로서 이용될 수 있다. 예를 들어, 본 발명에 따른 용매 분자가 배위되지 않은 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체는 과산화수소의 분해 반응에 촉매로 이용될 수 있다.Further, manganese (II) -naphthalenedicarboxylate porous metal-organic frameworks in which the solvent molecules of the form [Mn x (NDC) y ] (x and y are integers of 1 or more) are not coordinated, as mentioned. As such, since an empty coordination group exists around manganese (II) ions, it can be used as a heterogeneous catalyst. For example, the manganese (II) -naphthalenedicarboxylate porous metal-organic framework, in which the solvent molecule is not coordinated, can be used as a catalyst in the decomposition reaction of hydrogen peroxide.
이하 실시예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것으로 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following examples. The following examples are intended to illustrate the invention and are not intended to limit the scope of the invention.
하기 실시예에서, 합성에 사용된 모든 화합물과 용매는 시약 등급이었고, 추가 정제 없이 사용하였다. IR 스펙트럼은 Perkin Elmer Spectrum One FT-IR spectrophotometer를 이용하여 얻었다. UV/vis 확산 반사율 스펙트럼은 Perkin Elmer Lambda 35 UV/vis spectrophotometer를 이용하여 얻었다. TGA(thermogravimetric analysis)와 DSC(Differential scanning calorimetry)는 TA Instruments의 TGAQ50과 DSCQ10을 이용하여 질소 기체하에서 스캔 속도 5℃/분으로 수행하였다. 원소 분석은 서울대학교 기초과학 공동기기원에서 실시하였다. XRPD(X-ray powder diffraction) 데이터는 Bruker D5005 회절분석기로 40kV, 40mA에서 Cu Kα(λ=1.5406 Å)에 대해 스캔 속도 5°/분 및 스텝 크기 0.02°in 2θ로 기록하였다. 기체 흡착(gas sorption) 데이터는 Quantachrome Autosorb-1 기체수착장치로 얻었다.In the examples below, all compounds and solvents used in the synthesis were reagent grade and used without further purification. IR spectra were obtained using a Perkin Elmer Spectrum One FT-IR spectrophotometer. UV / vis diffuse reflectance spectra were obtained using a Perkin Elmer Lambda 35 UV / vis spectrophotometer. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed using a TA Instruments TGAQ50 and DSCQ10 at a scan rate of 5 ° C / min under nitrogen gas. Elemental analysis was conducted at the Institute of Basic Sciences, Seoul National University. X-ray powder diffraction (XRPD) data was recorded with a Bruker D5005 diffractometer at a scan rate of 5 ° / min and step size of 0.02 ° in 2θ for Cu Kα (λ = 1.5406 kV) at 40 kV, 40 mA. Gas sorption data was obtained with a Quantachrome Autosorb-1 gas sorption unit.
<실시예 1> [Mn(NDC)(DEF)]의 제조Example 1 Preparation of [Mn (NDC) (DEF)]
질산망간(Mn(NO3)2·nH2O)(0.18 g, 1.0 mmol)과 2,6-나프탈렌디카르복실산(H2NDC, 0.22 g, 1.0 mmol)을 DEF (7 mL)에 용해시켰다. 용액을 오토클레이브 내의 테플론 용기에 넣고, 105 ℃에서 24시간 동안 가열한 후, 실온으로 냉각시켰다. 형성된 엷은 노랑색의 블록 형태의 결정을 여과하고, DEF로 세척하고, 공기중에서 건 조시켰다. 수율: 88%. FT-IR (KBr): ν = 3065(s), 2981(s), 2940(s), 1942(s), 1651(s), 1613(s), 1573(s), 1556(s), 1494(s), 1446(s), 1360(s) cm-1; UV/vis (도 3, 확산 반사율, λmax): 330, 285 nm. 원소 분석: MnC17H17NO5 (%), 이론값 C 55.15, H 4.63, N 3.78; 측정값 C 55.17, H 4.71, N 3.50.Manganese nitrate (Mn (NO 3 ) 2 nH 2 O) (0.18 g, 1.0 mmol) and 2,6-naphthalenedicarboxylic acid (H 2 NDC, 0.22 g, 1.0 mmol) are dissolved in DEF (7 mL) I was. The solution was placed in a Teflon vessel in an autoclave, heated at 105 ° C. for 24 hours and then cooled to room temperature. The pale yellow block-form crystals formed were filtered, washed with DEF and dried in air. Yield 88%. FT-IR (KBr): ν = 3065 (s), 2981 (s), 2940 (s), 1942 (s), 1651 (s), 1613 (s), 1573 (s), 1556 (s), 1494 (s), 1446 (s), 1360 (s) cm −1 ; UV / vis (FIG. 3, diffuse reflectance, λ max ): 330, 285 nm. Elemental Analysis: MnC 17 H 17 NO 5 (%), Theoretical Values C 55.15, H 4.63, N 3.78; Found C 55.17, H 4.71, N 3.50.
X-ray 결정분석: [Mn(NDC)(DEF)]의 단결정을 모액(mother liquid)과 함께 유리 모세관에 밀봉하였다. 회절 데이터를 Enraf Nonius Kappa CCD diffractometer상에서 흑연-단파장 Mo-Kα방사(λ= 0.71073 Å)로부터 153K에서 수집하였다. 결정 구조는 SHELXS-97을 이용한 직접 방식(direct method)으로 풀었고, WinGX 프로그램 패키지에 포함된 SHELXL-97을 이용하여 full-matrix least-squares 법으로 정련하였다. 모든 수소 원자의 위치는 이상적인 위치에 위치시켰다. 정련 과정에서, 이방성 열 파라미터를 모든 수소 이외의 원자에 적용하였고, 등방성 열 파라미터를 수소 원자에 적용하였다. X-ray Crystallography : Single crystals of [Mn (NDC) (DEF)] were sealed in a glass capillary along with a mother liquid. Diffraction data were collected at 153K from graphite-short wavelength Mo-Kα radiation (λ = 0.71073 μs) on an Enraf Nonius Kappa CCD diffractometer. Crystal structure was solved by direct method using SHELXS-97, and refined by full-matrix least-squares method using SHELXL-97 included in WinGX program package. The positions of all hydrogen atoms were placed in ideal positions. In the refining process, anisotropic thermal parameters were applied to all non-hydrogen atoms and isotropic thermal parameters were applied to hydrogen atoms.
결정 데이터: MnC17H17NO5, Mr = 370.26, 단사정계(monoclinic), 공간 그룹 P21/a, a= 7.535(5), b = 21.513(5), c= 10.466(5) Å, β= 96.666(5), V = 1685.1(14)Å3 , Z = 4, T = 153 K, R 1 = 0.0457(I> 2σ(I)), wR 2(F 2) = 0.1108 (I > 2σ(I)), GOF = 0.995.Determination data: MnC 17 H 17 NO 5 , M r = 370.26, monoclinic,
<실시예 2> [Mn(NDC)]의 제조Example 2 Preparation of [Mn (NDC)]
[Mn(NDC)(DEF)]를 Schlenck 튜브에 넣고 220 ℃, 진공하에서 18시간 가열하였다. FT-IR (KBr 펠릿): ν = 3263 (s), 1603 (s), 1564 (s), 1538 (s), 1504 (s), 1385 (s), 1312 (s) cm-1; UV/vis (도 3, 확산 반사율, λmax): 357, 289 nm. 원소 분석: MnC12H6O4 (%), 이론값 C 53.56, H 2.25; 측정값 C 52.54, H 2.43.[Mn (NDC) (DEF)] was placed in a Schlenck tube and heated at 220 ° C. under vacuum for 18 hours. FT-IR (KBr pellets): ν = 3263 (s), 1603 (s), 1564 (s), 1538 (s), 1504 (s), 1385 (s), 1312 (s) cm −1 ; UV / vis (FIG. 3, diffuse reflectance, λ max ): 357, 289 nm. Elemental Analysis: MnC 12 H 6 O 4 (%), Theoretical Values C 53.56, H 2.25; Found C 52.54, H 2.43.
<실험예 1> X-ray 분말 회절 특성 측정Experimental Example 1 Measurement of X-ray Powder Diffraction Characteristics
[Mn(NDC)(DEF)]와 [Mn(NDC)]에 대한 X-ray 분말 회절 측정 특성 측정 결과를 도 2에 나타내었다. [Mn(NDC)(DEF)] 분말에 대한 XRPD 패턴(도 2(a))은 [Mn(NDC)(DEF)]의 단결정에 대한 X-ray 데이터에 기초한 시뮬레이션 데이터(도 2(b))와 일치한다. 이것은 벌크 시료가 단결정과 같은 구조를 가짐을 의미한다. 한편, 용매가 제거된 [Mn(NDC)]에 대한 XRPD 패턴(도 2(c))은 [Mn(NDC)(DEF)]의 XRPD 패턴과 다른 결과가 얻어진다. 이것은 배위결합하고 있던 DEF가 제거될 때 골격체의 구조 변화가 일어나기 때문이다. 다음으로, [Mn(NDC)]를 DEF에 24시간 동안 침지시킨 후에도 XRPD 패턴(도 2(d))은 변화하지 않았다. 이것은 금속에서 배위결합된 용매가 일단 제거되고 나면 용매에 침지되어도 원래 구조로 다시 복원되지 않는 것을 나타낸다. 또한, [Mn(NDC)]를 수증기에 3일 동안 노출시켰을 때의 XRPD 패턴(도 2(e))은 [Mn(NDC)(DEF)]와 [Mn(NDC)]의 XRPD 패턴 어느 것과도 다르다. 이것은 망간(II)의 빈 배위자리에 물 분자가 배위결합하여 골격체 구조가 변화된 것을 나타낸다.X-ray powder diffraction measurement characteristics measurement results for [Mn (NDC) (DEF)] and [Mn (NDC)] are shown in FIG. 2. The XRPD pattern (FIG. 2 (a)) for the [Mn (NDC) (DEF)] powder is simulated data based on X-ray data for the single crystal of [Mn (NDC) (DEF)] (FIG. 2 (b)). Matches This means that the bulk sample has a structure like a single crystal. On the other hand, the XRPD pattern (FIG. 2 (c)) for [Mn (NDC)] from which the solvent was removed is different from the XRPD pattern of [Mn (NDC) (DEF)]. This is because the structural change of the framework occurs when the DEF that is coordinated is removed. Next, even after immersing [Mn (NDC)] in DEF for 24 hours, the XRPD pattern (Fig. 2 (d)) did not change. This indicates that once the coordinating solvent in the metal has been removed it does not revert back to its original structure even when immersed in the solvent. In addition, the XRPD pattern (FIG. 2 (e)) when [Mn (NDC)] was exposed to water vapor for 3 days was different from the XRPD patterns of [Mn (NDC) (DEF)] and [Mn (NDC)]. different. This indicates that the skeletal structure changed due to the coordination of water molecules in the empty coordination site of manganese (II).
<실험예 2> TGA 및 DSC 분석Experimental Example 2 TGA and DSC Analysis
[Mn(NDC)(DEF)]에 대한 열중량분석법(Thermogravimetric analysis, TGA)과 미분주사열량측정법(Differential scanning calorimetry, DSC)에 의한 분석 결과를 도 4에 나타내었다. [Mn(NDC)(DEF)]을 250℃로 가열하면 모든 배위결합한 용매(이론값: 27.3 중량%, 측정값: 26.6 중량%)가 제거되었다. 용매가 제거된 [Mn(NDC)]는 450℃까지 열분해되지 않았다.The analysis results by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) for [Mn (NDC) (DEF)] are shown in FIG. 4. Heating [Mn (NDC) (DEF)] to 250 ° C. removed all coordinated solvents (theoretical value: 27.3 wt%, measured value: 26.6 wt%). Solvent free [Mn (NDC)] did not pyrolyze to 450 ° C.
<실험예 3> 기체 수착 특성 측정Experimental Example 3 Measurement of Gas Sorption Characteristics
기체 수착 특성은 Quantachrome Autosorb-1 기기로 측정하였다. 정확히 측정된 양의 [Mn(NDC)]를 기체 수착 기기 내로 도입하고, 230℃ 및 10-5 Torr에서 처리하여 배위결합한 모든 용매를 제거하였다. 탈용매된 고체의 N2 기체 수착 등온선을 정적법에 의해 각 평형압력 및 77K에서 측정하였다. 같은 방법으로 77K에서 탈용매된 고체의 H2 및 Ar 기체 수착 등온선을 측정하였다.Gas sorption characteristics were measured with a Quantachrome Autosorb-1 instrument. Accurately measured amounts of [Mn (NDC)] were introduced into the gas sorption apparatus and treated at 230 ° C. and 10 −5 Torr to remove all coordinating solvents. N 2 gas sorption isotherms of desolvated solids were measured by static method at each equilibrium pressure and at 77K. In the same manner, the H 2 and Ar gas sorption isotherms of the solids desolvated at 77K were measured.
[Mn(NDC)]에 대한 N2 기체 수착 특성을 도 5(a)에 나타내었다. [Mn(NDC)]는 N2 기체를 흡착하여 가역적인 유형 I의 등온선(isotherm)을 나타내었고, 이것은 [Mn(NDC)(DEF)]에서 DEF 분자가 제거되어 고체 내에 영구 다공성이 생성되었음을 암시한다. 상기 등온선으로부터 산정한 랭그뮈르 표면적은 191 m2/g이고, 이것은 Mn(HCO2)2·1/3C4H8O2의 약 240 m2/g에 상당한다. Dubinin-Radushkevich 식으로 산정한 다공의 부피는 0.07 cm3/g 이다. 또한, [Mn(NDC)]는 H2 기체를 77K에서 0.56 중량%까지 흡착하고(도 5(b)), 아르곤 기체도 흡착하였다(도 6).N 2 gas sorption characteristics for [Mn (NDC)] are shown in FIG. 5 (a). [Mn (NDC)] showed a reversible type I isotherm by adsorbing N 2 gas, suggesting the removal of DEF molecules in [Mn (NDC) (DEF)] resulting in permanent porosity in the solid. do. The Langurr surface area calculated from the isotherm is 191 m 2 / g, which corresponds to about 240 m 2 / g of Mn (HCO 2 ) 2 / 3C 4 H 8 O 2 . The pore volume calculated by the Dubinin-Radushkevich formula is 0.07 cm 3 / g. In addition, [Mn (NDC)] adsorbed H 2 gas up to 0.56 wt% at 77 K (FIG. 5 (b)), and also adsorbed argon gas (FIG. 6).
<실험예 4> 과산화수소 분해 촉매 작용 실험Experimental Example 4 Hydrogen Peroxide Decomposition Catalysis
과산화수소의 분해 반응에 대한 촉매작용을 알아보기 위하여, 실온에서 30%의 과산화수소 용액 5 mL를 [Mn(NDC)(DEF)] 44.4 mg(0.12 mmol)과 [Mn(NDC)] 33.2 mg(0.12 mmol)에 각각 가해 주었다.To investigate the catalysis of the decomposition reaction of hydrogen peroxide, 5 mL of 30% hydrogen peroxide solution was added to 44.4 mg (0.12 mmol) of [Mn (NDC) (DEF)] and 33.2 mg (0.12 mmol) of [Mn (NDC)] at room temperature. ) Respectively.
과산화수소를 [Mn(NDC)]에 가해주면 도 7과 같이 O2 기체가 격렬히 발생하였다. 그러나, [Mn(NDC)(DEF)]에 과산화수소를 가하면 아무런 반응도 일어나지 않았다. 또한, 과량의 과산화수소와의 분해반응이 일어나고 난 후, 회수한 [Mn(NDC)]에 다시 과산화수소를 가해주면 또다시 산소가 발생하는 과산화수소 분해반응이 일어났다. 그러므로, [Mn(NDC)]는 과산화수소 분해 반응에서 촉매로 작용함을 알 수 있다.When hydrogen peroxide was added to [Mn (NDC)], O 2 gas was violently generated as shown in FIG. 7. However, no reaction occurred when hydrogen peroxide was added to [Mn (NDC) (DEF)]. In addition, after the decomposition reaction with excess hydrogen peroxide occurred, hydrogen peroxide was added to the recovered [Mn (NDC)] again to cause hydrogen peroxide decomposition. Therefore, it can be seen that [Mn (NDC)] acts as a catalyst in the hydrogen peroxide decomposition reaction.
따라서, 본 발명의 망간(II)-나프탈렌디카복실레이트 다공성 금속-유기물 골격체는 빈 배위자리가 존재할 수 있으므로, 영구적인 다공성 성질을 갖고, 높은 온도에서도 그 구조를 안정적으로 유지하며, 촉매작용을 할 수 있어 분자 흡착, 분리 공정, 이온 교환, 불균일 촉매, 센서 분야 등 다양한 응용 범위를 갖는다.Accordingly, the manganese (II) -naphthalenedicarboxylate porous metal-organic framework of the present invention may have an empty coordination site, and thus have permanent porous properties, maintain its structure stably even at high temperatures, and catalyze It can be used in various fields such as molecular adsorption, separation process, ion exchange, heterogeneous catalyst, sensor.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050045646A KR100817537B1 (en) | 2005-05-30 | 2005-05-30 | Porous metal-organic framework with coordinatively unsaturated sites, preparation method thereof and its uses as a molecule adsorber and a catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050045646A KR100817537B1 (en) | 2005-05-30 | 2005-05-30 | Porous metal-organic framework with coordinatively unsaturated sites, preparation method thereof and its uses as a molecule adsorber and a catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060123970A KR20060123970A (en) | 2006-12-05 |
KR100817537B1 true KR100817537B1 (en) | 2008-04-01 |
Family
ID=37728770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050045646A KR100817537B1 (en) | 2005-05-30 | 2005-05-30 | Porous metal-organic framework with coordinatively unsaturated sites, preparation method thereof and its uses as a molecule adsorber and a catalyst |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100817537B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101707821B1 (en) * | 2015-08-13 | 2017-02-17 | 고려대학교 산학협력단 | Preparation of Mg-MOF and its amine-functionalization |
CN115746327A (en) * | 2022-12-27 | 2023-03-07 | 广东轻工职业技术学院 | Manganese (II) metal catalyst for silicon cyanation reaction of benzaldehyde derivative, and preparation method and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060085163A (en) * | 2005-01-21 | 2006-07-26 | 삼성에스디아이 주식회사 | Carbon-metal composite material and process for preparing the same |
-
2005
- 2005-05-30 KR KR1020050045646A patent/KR100817537B1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060085163A (en) * | 2005-01-21 | 2006-07-26 | 삼성에스디아이 주식회사 | Carbon-metal composite material and process for preparing the same |
Also Published As
Publication number | Publication date |
---|---|
KR20060123970A (en) | 2006-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Carlucci et al. | Heterometallic Modular Metal–Organic 3D Frameworks Assembled via New Tris‐β‐Diketonate Metalloligands: Nanoporous Materials for Anion Exchange and Scaffolding of Selected Anionic Guests | |
Li et al. | Microporous 2D indium metal–organic frameworks for selective CO 2 capture and their application in the catalytic CO 2-cycloaddition of epoxides | |
KR20120099204A (en) | Complex mixed ligand open framework materials | |
Almáši et al. | New members of MOF-76 family containing Ho (III) and Tm (III) ions: Characterization, stability and gas adsorption properties | |
Li et al. | A chiral salen-based MOF catalytic material with high thermal, aqueous and chemical stabilities | |
Reynolds et al. | Highly selective room temperature acetylene sorption by an unusual triacetylenic phosphine MOF | |
US9777029B2 (en) | Process for obtaining metal-organic materials with structure type MIL-101 (Cr) and MIL-101-Cr-MX+ | |
Saha et al. | A magnesium-based multifunctional metal–organic framework: Synthesis, thermally induced structural variation, selective gas adsorption, photoluminescence and heterogeneous catalytic study | |
Liu et al. | Facile synthesis of ZIF-8 nanocrystals in eutectic mixture | |
WO2010042948A2 (en) | Tetratopic phenyl compounds, related metal-organic framework materials and post-assembly elaboration | |
JP2012528860A (en) | Porous crystalline materials, their synthesis and use | |
Jiao et al. | A porous metal–organic framework based on an asymmetric angular diisophthalate for selective adsorption of C 2 H 2 and CO 2 over CH 4 | |
Gu et al. | Coordination polymers from an unexplored biphenyl-tricarboxylate linker: hydrothermal synthesis, structural traits and catalytic cyanosilylation | |
Marri et al. | Two novel 3D-MOFs (Ca-TATB and Co-HKUST): Synthesis, structure and characterization | |
US20090062498A1 (en) | Novel strategies, linkers and coordination polymers for high-performance sorbents | |
Zhang et al. | Effect of N-donor auxiliary ligands on the engineering of crystalline architectures of a series of lead (ii) complexes with 5-amino-2, 4, 6-triiodoisophthalic acid | |
KR20080080870A (en) | Porous metal-organic framework and method for preparing the same | |
Liu et al. | Flexible porous coordination polymers constructed from 1, 2-bis (4-pyridyl) hydrazine via solvothermal in situ reduction of 4, 4′-azopyridine | |
Chen et al. | Synthesis, crystal structures and vapor adsorption properties of Hg (II) and Cd (II) coordination polymers derived from two hydrazone Schiff base ligands | |
Ohmura et al. | Crystal structures and magnetic and gas-occlusion properties of microporous materials containing infinite chains of mononuclear metal (Cu (II), Zn (II), and Ni (II)) dicarboxylates unit | |
KR100817537B1 (en) | Porous metal-organic framework with coordinatively unsaturated sites, preparation method thereof and its uses as a molecule adsorber and a catalyst | |
KR20180008331A (en) | Pyrazolyl-Imidazolium Ligands, Metal Organic Frameworks Comprising the Same and Method of Preparing the Same | |
Li et al. | Controlling pore size and interlayer space by ring rotation and electron-withdrawing effects in a 2D MOF | |
KR101029326B1 (en) | Highly Porous Metal Organic Framework and its use for gas storage material and Method for Manufacturing Metal Organic Framework | |
Tian et al. | A series of microporous and robust Ln-MOFs showing luminescence properties and catalytic performances towards Knoevenagel reactions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130422 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20140318 Year of fee payment: 7 |
|
LAPS | Lapse due to unpaid annual fee |