KR20060116281A - A resonator structure of sigma delta analog-digital converter - Google Patents

A resonator structure of sigma delta analog-digital converter Download PDF

Info

Publication number
KR20060116281A
KR20060116281A KR1020050038298A KR20050038298A KR20060116281A KR 20060116281 A KR20060116281 A KR 20060116281A KR 1020050038298 A KR1020050038298 A KR 1020050038298A KR 20050038298 A KR20050038298 A KR 20050038298A KR 20060116281 A KR20060116281 A KR 20060116281A
Authority
KR
South Korea
Prior art keywords
integrator
digital converter
resonator structure
input
sigma delta
Prior art date
Application number
KR1020050038298A
Other languages
Korean (ko)
Other versions
KR100850420B1 (en
Inventor
강영진
Original Assignee
(주)다빛다인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)다빛다인 filed Critical (주)다빛다인
Priority to KR1020050038298A priority Critical patent/KR100850420B1/en
Publication of KR20060116281A publication Critical patent/KR20060116281A/en
Application granted granted Critical
Publication of KR100850420B1 publication Critical patent/KR100850420B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

A resonator structure of a sigma delta analog-digital converter is provided to improve a signal to noise ratio by reducing an input constant number half and removing noise through feedback. In a resonator structure of a sigma delta analog-digital converter, an output of a first integrator(21) in a resonator structured integrator consisting two integrators is inputted to not a second integrator(22) but a third integrator(81).

Description

시그마델타 아날로그-디지털 변환기의 공진기 구조{A RESONATOR STRUCTURE OF SIGMA DELTA ANALOG-DIGITAL CONVERTER}Resonator structure of sigma delta analog-to-digital converter {A RESONATOR STRUCTURE OF SIGMA DELTA ANALOG-DIGITAL CONVERTER}

도 1은 기존의 공진기 구조의 구성도.1 is a block diagram of a conventional resonator structure.

도 2는 본 발명의 제안된 구조인 구성도.2 is a schematic view of the proposed structure of the present invention.

도 3는 본 발명의 실시예3 is an embodiment of the present invention

본 발명은 디지털오디오, 엠피3(MP3), 통신기기, 디지털앰프, 데이터변환기 등에 사용되는 아날로그-디지털 변환(Analog to digital converter) 에 필요한 기술로서 아날로그 신호를 디지털신호로 변환 시 아날로그신호를 샘플링(Sampling)하여 잘게 자르는 퀀타이징(Quantization)을 포함하는 OP-Amp 의 핵심기술로서 지금까지는 별개의 소자를 각각 큰 기판에 제작하여 만들어 왔다. 기존의 공진기 구조는 입력단이 여러개가 들어오므로 인해 잡음원천이 많아 지고 하드웨어를 많이 필요로 하며 잡음 출력이 바로 다음 단 입력으로 연속해서 연결 되는 직렬 구조로 되어 있어 신호대 잡음비가 떨어진다.The present invention is a technology required for analog-to-digital converters used in digital audio, MP3, communication devices, digital amplifiers, data converters, and the like. It is a core technology of OP-Amp that includes quantization by slicing and slicing. So far, separate devices have been manufactured on large substrates. Conventional resonator structure has many input stages, which results in more noise sources, requires more hardware, and noise-to-noise series.

본 발명은 첫번째 출력단이 다음단인 두번째 입력으로 연결되는 것이 아니라 첫 번째 출력단이 상수 입력단과 합해 져서 세 번째 입력단으로 연결 되므로 인해서 신호대 잡음비가 좋아 지며 상수 입력단이 2개단 만 들어오므로 하드웨어가 절약 될뿐만 아니라 잡음원천이 줄어든다. 본 발명은 중간 주파수를 통과시키는 밴드패스(Band pass) 필터의 역할을 하며 이 밴드패스의 구조를 위해 공진기 구조로 하고 있으며 또한 밴드패스의 위치를 프로그램을 할수 있는 프로그래밍이 가능하다.In the present invention, since the first output terminal is not connected to the second input, which is the next stage, the first output terminal is combined with the constant input terminal and connected to the third input terminal, so that the signal-to-noise ratio is improved, and the constant input terminal comes in only two stages, thereby saving hardware. In addition, the noise source is reduced. The present invention acts as a band pass filter for passing an intermediate frequency, has a resonator structure for the structure of the band pass, and can be programmed to program the position of the band pass.

본 발명은 보다 개선되고 진일보한 시그마델타 아날로그-디지털 변환기 구조를 목적으로 한다. 도 2 는 이러한 개선된 구성도를 나타낸다. 도 2에서와 같이 입력 A0(30) 는 덧셈기(70) 에 더해지며 B0(30) 는 입력과 빼어진다. 첫 번째 적분기(21) 과 두 번째 적분기(22)가 이루어져 첫 번째 공진기(20)를 구성한다. 또한 세 번째 공진기(81) 와 네 번째 공진기(82) 가 이루어져 두 번째 공진기(80)를 구성한다. 결론적으로 4개의 적분기로 이루어져 있으므로 4차인 시그마델타 아날로그-디지탈 변환기를 구성한다. 기존의 공진기 구조와는 달리 3번째 적분기(81) 입력으로 두 번째 적분기(22) 의 출력이 들어오는 것이 아니고 첫 번째(21) 적분기 출력이 가산기에 가해진 다음 들어온다. 이것 때문에 신호대 잡음비가 증가 한다. 이것은 잡음이 실린 두 번째 적분기(22) 의 출력이 다음단인 세 번째(81) 적분기에 가해지지 않고 잡음이 피디백(Feedback) 되어 가산기(70) 에 도착하여 삭제된다.  The present invention aims at a more advanced and advanced sigma delta analog-to-digital converter structure. 2 shows such an improved schematic. As in FIG. 2, input A0 30 is added to adder 70 and B0 30 is subtracted from the input. The first integrator 21 and the second integrator 22 constitute the first resonator 20. In addition, the third resonator 81 and the fourth resonator 82 are configured to constitute the second resonator 80. In conclusion, four integrators are used to construct the fourth-order sigma delta analogue-to-digital converter. Unlike the conventional resonator structure, the output of the second integrator 22 is not input to the third integrator 81, but the first (21) integrator output is applied to the adder. This increases the signal-to-noise ratio. This is not the output of the second integrator 22, which is noisy, is applied to the third 81 integrator, which is the next stage, and the noise is fed back to the adder 70 and deleted.

입력 상수 A1(30) 와 B1(30,) A0(30) 와 B0(30) 는 동일한 효과를 가진다. 세 번째(81) 출력이 아날로그-디지털 변환기(50) 로 가해 진다. 이 변환기는 출력으로 진폭이 다른 구현파 신호를 출력으로 내보낸다. 향후에 이 구형파 신호는 매시간 주파수가 다르므로 데시메시션(Decimation) 필터로 원래의 아날로그 신호를 복조 한다. 동시에 디지털-아날로그 변환기(40)는 아날로그 신호로 변환하여 이신호를 가산기(70) 에 빼어진다.The input constants A1 (30) and B1 (30,) A0 (30) and B0 (30) have the same effect. A third 81 output is applied to the analog to digital converter 50. This transducer outputs an embodied wave signal of different amplitude to the output. In the future, the square wave signal will be different every hour, demodulating the original analog signal with a decimation filter. At the same time, the digital-to-analog converter 40 converts it into an analog signal and subtracts this signal into the adder 70.

도 3은 실제 회로의 실시예를 나타낸다. Phi1 과 Phi2 는 비중첩 (Non-overlapping) 클럭킹 신호를 나타낸다. Phi1d 는 Phi1 이 조금 지연된 신호를 나타내며 Phi2d 는 Phi2 가 조금 지연된 것을 나타낸다. 도 3의 Ci0(20) 과 Ci1(20) 과 Ca01(10) 의 블록은 프로그래밍 구조에 필요한 요소를 나타낸다. 실제로 밴드패스의 위치를 프로그램 할때 이 블록들(10,20) 이 사용된다.3 shows an embodiment of an actual circuit. Phi1 and Phi2 represent non-overlapping clocking signals. Phi1d indicates that Phi1 is slightly delayed and Phi2d indicates that Phi2 is slightly delayed. Blocks of Ci0 (20), Ci1 (20), and Ca01 (10) in Fig. 3 represent elements necessary for the programming structure. In practice, these blocks 10 and 20 are used when programming the position of the bandpass.

이상 상술한 바와 같이 적분기의 출력위치를 변경 함으로써 잡음을 피드백 (Feedback) 하여 상쇄 시켰으며 입력 되어 들어오는 입력 상수를 기존 기술의 절반으로 감소 시켜 신호대 잡음비를 개선 하였음.As described above, the noise was fed back by changing the output position of the integrator, and the signal-to-noise ratio was improved by reducing the incoming input constant to half of the existing technology.

Claims (4)

아날로그-디지털 변환기에 사용되는 장치에 있어서,In the device used in the analog-to-digital converter, 적분기 두개로 이루어진 공진기 구조의 적분기가 첫 번째 적분기 출력이 두번째 적분기 입력이 아닌 세 번째 적분기 입력으로 가해지는 장치.Integrator with a two-integrator resonator structure where the first integrator output is applied to the third integrator input rather than the second integrator input. 제 1항에 있어서 공진기 구조가 첫 번째 적분기와 그다음단의 적분기 사이에 가산기가 없이 두개의 적분기가 직접 직렬 연결 되어 두 번째 적분기 출력은 첫 번째 적분기 입력 가산기로 피드백 되는 장치.2. The apparatus of claim 1, wherein the resonator structure is directly connected in series without two adders between the first integrator and the next integrator so that the second integrator output is fed back to the first integrator input adder. 제 2항 또는 제 3항에 있어서, 가산기로 들어오는 입력 신호가 첫 번째와 세 번째 적분기 입력에만 들어오는 장치 구조. 4. The device structure of claim 2 or 3, wherein the input signal to the adder enters only the first and third integrator inputs. 제 1항에 있어서 여러개의 밴드패스 위치를 프로그램밍이 가능하도록 사용하기 위해 적분기의 입력과 출력 사이에 추가된 커패시터 어레이(array) 장치.The capacitor array device of claim 1 added between the input and output of the integrator to enable programmable use of multiple bandpass positions.
KR1020050038298A 2005-05-09 2005-05-09 A resonator structure of sigma delta analog-digital converter KR100850420B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050038298A KR100850420B1 (en) 2005-05-09 2005-05-09 A resonator structure of sigma delta analog-digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050038298A KR100850420B1 (en) 2005-05-09 2005-05-09 A resonator structure of sigma delta analog-digital converter

Publications (2)

Publication Number Publication Date
KR20060116281A true KR20060116281A (en) 2006-11-15
KR100850420B1 KR100850420B1 (en) 2008-08-04

Family

ID=37653249

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050038298A KR100850420B1 (en) 2005-05-09 2005-05-09 A resonator structure of sigma delta analog-digital converter

Country Status (1)

Country Link
KR (1) KR100850420B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220091079A (en) 2020-12-23 2022-06-30 (주)다빛센스 Analog to digital converter
KR20230060265A (en) 2021-10-27 2023-05-04 (주)다빛센스 Analog to digital converter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5181032A (en) * 1991-09-09 1993-01-19 General Electric Company High-order, plural-bit-quantization sigma-delta modulators using single-bit digital-to-analog conversion feedback
US5392042A (en) * 1993-08-05 1995-02-21 Martin Marietta Corporation Sigma-delta analog-to-digital converter with filtration having controlled pole-zero locations, and apparatus therefor
US5673044A (en) * 1995-08-24 1997-09-30 Lockheed Martin Corporation Cascaded recursive transversal filter for sigma-delta modulators
US5982315A (en) 1997-09-12 1999-11-09 Qualcomm Incorporated Multi-loop Σ Δ analog to digital converter
DE60106070T2 (en) 2001-12-27 2005-10-13 Stmicroelectronics S.R.L., Agrate Brianza Method for self-calibrating a frequency of a modulator circuit, and this method applying circuit

Also Published As

Publication number Publication date
KR100850420B1 (en) 2008-08-04

Similar Documents

Publication Publication Date Title
JP3244597B2 (en) Sigma-delta analog-to-digital converter and filter with filtering with controlled pole-zero location
US6922161B2 (en) Delta-Sigma modulator for reducing quantization noise and oversampling ratio (OSR)
WO2015150334A4 (en) A transducer amplification circuit
US7034728B2 (en) Bandpass delta-sigma modulator with distributed feedforward paths
EP1727287A1 (en) Method of adding a dither signal in output to the last integrator of a sigma-delta converter and relative sigma-delta converter
WO2002065644A2 (en) Hybrid multi-stage circuit utilizing different types of sampling circuit
CN104579346A (en) Analogue to digital converter
US10868563B2 (en) Methods and apparatus for an analog-to-digital converter
CN107508600B (en) Method and apparatus for delta-sigma ADC with parallel coupled integrators
KR102514329B1 (en) Digital silicon microphone with interpolation
JP2010171484A (en) Semiconductor integrated circuit device
JP2008067181A (en) Delta-sigma modulator and its control method
KR101949580B1 (en) Analog to digital converter correcting frequency characteristic and semicondcutor device including the same
US9071263B2 (en) Multi-rate pipelined ADC structure
US20050162296A1 (en) Method and circuit for reducing quantizer input/output swing in a sigma-delta modulator
KR20060116281A (en) A resonator structure of sigma delta analog-digital converter
TW201924230A (en) Delta sigma modulator
WO2013053769A1 (en) Multi-level sigma-delta adc with reduced quantization levels
EP2582050B1 (en) Multi-level sigma-delta ADC with reduced quantization levels
Yao et al. A 90dB DR audio delta-sigma DAC with headphone driver for hearing aid
JP6316751B2 (en) converter
KR101559456B1 (en) A low-power·low-area third order sigma-delta modulator with delayed feed-forward path
Guni et al. Comparative study of sigma delta and nonuniform sampling A/D converters
Curtis et al. High performance signal acquisition systems for sonar applications
Billa et al. A 265μW Continuous-Time 1–2 MASH ADC Achieving 100.6 dB SNDR in a 24 kHz Bandwidth

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130509

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140604

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150820

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160719

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170725

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20180409

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190611

Year of fee payment: 12