KR20060112519A - The method to modify the structure of a carbon nanotube for hydrogen storage by atmospheric pressure plasma - Google Patents

The method to modify the structure of a carbon nanotube for hydrogen storage by atmospheric pressure plasma Download PDF

Info

Publication number
KR20060112519A
KR20060112519A KR1020050035061A KR20050035061A KR20060112519A KR 20060112519 A KR20060112519 A KR 20060112519A KR 1020050035061 A KR1020050035061 A KR 1020050035061A KR 20050035061 A KR20050035061 A KR 20050035061A KR 20060112519 A KR20060112519 A KR 20060112519A
Authority
KR
South Korea
Prior art keywords
hydrogen storage
atmospheric pressure
pressure plasma
carbon nanotubes
etching
Prior art date
Application number
KR1020050035061A
Other languages
Korean (ko)
Other versions
KR100738651B1 (en
Inventor
강정구
이재영
김윤기
한규성
김현석
송민상
박민식
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020050035061A priority Critical patent/KR100738651B1/en
Publication of KR20060112519A publication Critical patent/KR20060112519A/en
Application granted granted Critical
Publication of KR100738651B1 publication Critical patent/KR100738651B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

Provided is a method for modifying a structure of carbon nanotube for hydrogen storage by using atmospheric pressure plasma, wherein carbon nanotube useful for material for hydrogen storage is etched with atmospheric pressure plasma so as to increase a capacity for hydrogen storage. The method for modifying a structure of carbon nanotube for hydrogen storage by using atmospheric pressure comprises etching a carbon nanotube to be used as material for hydrogen storage with atmospheric plasma so as to increase a capacity for hydrogen storage. Helium and argon which are reaction gases, and 2-10%(based on air) of oxygen as etching gas are added, in order to increase an etching effect with the atmospheric plasma. A carbon nanotube manufactured by the method has open ends, flawed wall, and numerous nano-sized pores.

Description

상압 플라스마를 이용한 수소저장용 카본나노튜브의 구조 변화 방법{The method to modify the structure of a carbon nanotube for hydrogen storage by atmospheric pressure plasma}Method of modifying the structure of a carbon nanotube for hydrogen storage by atmospheric pressure plasma

도 1은 카본나노튜브의 상압에서의 수소방출특성을 나타낸 그래프로서 100K-120K 부근에서 4.9wt%의 수소가 방출되며 상온에서는 방출되는 수소가 없음을 확인할 수 있다. 1 is a graph showing the hydrogen emission characteristics at atmospheric pressure of carbon nanotubes, it can be seen that 4.9wt% of hydrogen is released in the vicinity of 100K-120K and there is no hydrogen released at room temperature.

도 2는 Thermal CVD를 이용하여 제조한 카본나노튜브와 제조된 카본나노튜브를 상압 플라스마로 에칭한 후의 전자현미경(SEM,TEM) 사진을 나타내고 있다. FIG. 2 shows electron microscope (SEM, TEM) photographs after etching carbon nanotubes prepared by thermal CVD and carbon nanotubes prepared using atmospheric pressure plasma.

도 2(a)는 제조된 직후의 수직으로 배향된 대량의 카본나노튜브 SEM 사진이고, 도 2(b) 제조된 직후의 카본나노튜브의 TEM 사진이고, 도 2(c) 10%의 산소를 첨가하여 상압 플라스마로 에칭한 후 카본나노튜브의 SEM 사진이고, 도 2(d) 5%의 산소를 첨가하여 상압 플라스마로 에칭한 후 카본나노튜브의 SEM 사진이고, 도 2(e) 2%의 산소를 첨가하여 상압 플라즈마로 에칭한 후 카본나노튜브의 SEM 사진이고, 도 2(f) 2%의 산소를 첨가하여 상압 플라즈마로 에칭한 후 카본나노튜브의 TEM 사진이다. FIG. 2 (a) is a SEM image of a large amount of vertically oriented carbon nanotubes immediately after preparation, and FIG. 2 (b) is a TEM photograph of carbon nanotubes immediately after preparation, and FIG. 2 (c) shows 10% oxygen. SEM image of carbon nanotubes after addition and etching with atmospheric pressure plasma. FIG. 2 (d) SEM image of carbon nanotubes after addition of 5% oxygen and etching with atmospheric pressure plasma. SEM image of carbon nanotubes after adding oxygen and etching with atmospheric pressure plasma. FIG. 2 (f) is a TEM image of carbon nanotubes after adding 2% oxygen and etching with atmospheric pressure plasma.

도 3은 2%의 산소가 첨가된 상압 플라스마로 에칭된 후의 카본나노튜브의 상압에서의 수소방출특성을 나타낸 그래프이다.3 is a graph showing hydrogen release characteristics at atmospheric pressure of carbon nanotubes after etching with an atmospheric pressure plasma to which 2% oxygen is added.

본 발명은 수소저장용 물질로 카본나노튜브를 사용하기 위하여 상압 플라스마로 카본나노튜브를 에칭함으로써 상온에서의 수소저장용량을 향상시키는 것이다. The present invention is to improve the hydrogen storage capacity at room temperature by etching the carbon nanotubes with atmospheric pressure plasma in order to use the carbon nanotubes as a hydrogen storage material.

석유, 석탄, 천연가스 등과 같은 화석연료는 현재 사용되는 에너지 수요의 90% 이상을 차지하고 있다. 그러나 이러한 화석연료는 사용 후 재생이 불가능하여 현재의 추세로 소모될 경우 50∼100년 이내에 매장량이 고갈될 것이다. Fossil fuels, such as petroleum, coal and natural gas, account for more than 90% of the energy demands currently in use. However, these fossil fuels cannot be recycled after use and will be depleted in 50 to 100 years if consumed by current trends.

그 뿐만 아니라 화석연료의 연소시 발생되는 각종 공해물질은 지구 온난화, 오존층 파괴, 산성비와 같은 심각한 환경오염 문제를 야기 시켜 인류의 생존을 위협하고 있다. 따라서 고갈되지 않으며, 깨끗하고 안전한 대체에너지의 개발이 이루어져야 하며, 궁극적으로는 석유와 같은 화석에너지의 의존에서 벗어나 새로운 에너지 시스템을 개발할 필요가 있다. In addition, various pollutants generated during the burning of fossil fuels pose serious environmental pollution problems such as global warming, ozone layer destruction, and acid rain, threatening human survival. Therefore, it is necessary to develop clean, safe alternative energy that is not depleted, and ultimately, it is necessary to develop a new energy system from the dependence of fossil energy such as petroleum.

이런 맥락에서 이상적인 대체에너지로서 가장 주목을 받고 있는 것이 수소에너지이다. 수소를 이용한 연료전지시스템의 경우 물로부터 무한의 수소가 생산 가능하여 자원고갈의 염려가 없으며 사용시 이산화탄소(CO2)와 같은 환경오염 물질을 전혀 배출하지 않는 장점을 가지고 있다. In this context, hydrogen energy has received the most attention as an ideal alternative energy. In the case of fuel cell system using hydrogen, infinite hydrogen can be produced from water, so there is no fear of depletion of resources, and it does not emit any environmental pollutants such as carbon dioxide (CO 2 ).

그러나 이러한 연료전지시스템은 수소를 이용하기 위하여 수소저장매체를 필요로 하며 이러한 수소저장매체로서 최근 카본나노튜브를 이용하기 위한 연구가 진행되고 있다. However, such a fuel cell system requires a hydrogen storage medium in order to use hydrogen, and research into using carbon nanotubes as a hydrogen storage medium has recently been conducted.

아직 까지 카본나노튜브의 수소저장 메커니즘은 명확하게 규명되어 있지 않은 상태이며, 상온에서의 수소저장용량이 매우 작으며 제조공정이나 그 처리 공정이 복잡하고 대량생산에는 적합하지 않다는 단점을 가지고 있다. So far, the hydrogen storage mechanism of carbon nanotubes is not clearly identified, and the hydrogen storage capacity at room temperature is very small, and the manufacturing process and its processing process are complicated and are not suitable for mass production.

미국의 H. Gao 등은 [Appl. Phys. Lett. 83 (2003) 3389] 등은 AAO template를 이용하여 제조한 카본나노튜브가 상온에서 수소저장용량이 향상되었다고 발표하였다. 하지만 이 방법으로는 대량의 카본나노튜브를 제조하는 데에는 무리가 있으며 실제 상용화를 위해서는 좀더 간단하면서도 대량의 시편을 처리하여 수소저장 특성을 향상시킬 수 있는 방법이 필요하다.H. Gao et al in the United States [Appl. Phys. Lett. 83 (2003) 3389 et al. Reported that carbon nanotubes prepared using AAO templates have improved hydrogen storage capacity at room temperature. However, this method is difficult to manufacture a large amount of carbon nanotubes, and for the actual commercialization, there is a need for a method that can improve hydrogen storage characteristics by processing a large amount of specimens.

본 발명자들은 수소·연료전지 시스템에 응용 가능한 수소저장 재료로서 상온에서 좋은 수소저장용량을 보이는 결함을 가지는 카본나노튜브를 상용화를 위해 좀더 간단하고 대량의 시편을 처리할 수 방법에 초점을 맞추었다. The present inventors focused on a method for processing a larger and simpler sample for commercialization of a carbon nanotube having a defect showing a good hydrogen storage capacity at room temperature as a hydrogen storage material applicable to a hydrogen fuel cell system.

따라서 본 발명은 수소저장용 재료로서 카본나노튜브를 제조한 뒤 상온에서의 수소저장용량의 향상을 위하여 상압 플라스마로 에칭하는 처리방법을 목적으로 한다. Accordingly, an object of the present invention is to prepare a carbon nanotube as a hydrogen storage material and to etch it with an atmospheric pressure plasma to improve the hydrogen storage capacity at room temperature.

본 발명은 수소저장용 재료로 사용할 카본나노튜브를 상압플라스마로 에칭하여 수소저장용량을 향상시키는 것을 특징으로 하는 상압 플라스마를 이용한 수소저장용 카본나노튜브의 구조 변화방법을 나타낸다.The present invention relates to a method for changing the structure of carbon nanotubes for hydrogen storage using atmospheric pressure plasma, characterized in that the hydrogen storage capacity is improved by etching carbon nanotubes to be used as hydrogen storage materials with atmospheric pressure plasma.

본 발명에서 상압 플라스마로 에칭시 효과를 증대시키기 위하여 반응가스인 헬륨, 아르곤, 공기 대비 에칭가스로 산소를 2%∼10%로 첨가할 수 있다.In the present invention, in order to increase the effect of etching with atmospheric pressure plasma, helium, argon, and the reaction gas may be added with oxygen as an etching gas of 2% to 10%.

한편 본 발명은 상기의 방법으로서 상압 플라스마 에칭에 의하여 튜브의 말단 부분이 열리고 벽에 결함과 나노 크기의 기공이 많이 형성된 카본나노튜브를 포함한다. Meanwhile, the present invention includes carbon nanotubes in which the terminal portion of the tube is opened by atmospheric pressure plasma etching, and many defects and nano-sized pores are formed on the wall.

본 발명에서 수소·연료전지용 수소저장재료로서 상압 플라스마로 에칭되어 많은 결함을 가지는 다중벽 카본나노튜브를 사용하였다.In the present invention, a multi-walled carbon nanotube having a large number of defects is used as a hydrogen storage material for a hydrogen fuel cell, which is etched with an atmospheric pressure plasma.

대량의 시편을 연속적이고 균일하게 처리하기 위하여 선형의 플라스마를 사용하였으며 시편을 이동함으로써 연속적인 에칭이 가능하였다. Linear plasma was used to process large quantities of specimens continuously and uniformly, and continuous etching was possible by moving the specimens.

카본나노튜브의 결정성을 부분적으로 파괴하기 위하여 에칭 가스로 산소를 사용하였으며 그 결과 카본나노튜브에 나노크기의 기공과 결함을 생성시킬 수 있었다. Oxygen was used as an etching gas to partially destroy the crystallinity of the carbon nanotubes, and as a result, it was possible to generate nano-sized pores and defects in the carbon nanotubes.

이하 본 발명의 내용을 실시예를 통하여 구체적으로 설명한다. 그러나, 이들은 본 발명을 보다 상세하게 설명하기 위한 것으로 본 발명의 권리범위가 이들에 의해 한정되는 것은 아니다.Hereinafter, the content of the present invention will be described in detail through examples. However, these are intended to explain the present invention in more detail, and the scope of the present invention is not limited thereto.

<실시예 1> <Example 1>

(1) 수소저장용 카본나노튜브의 제조 (1) Preparation of Carbon Nanotubes for Hydrogen Storage

기존 카본나노튜브는 열화학기상법(Thermal CVD)이나 플라스마 강화기상법(Plasma enhanced CVD), 레이저법(Laser ablation), 아크방전법(Arc discharge)등을 통하여 제조된다. 이중에서 간단한 공정으로 대량의 카본나노튜브를 생산할 수 있어 최근 상용화에 가장 적합하다고 판단되는 열화학기상법을 이용하여 카본나노튜브를 제조하였다. 플로팅 촉매(Floating catalyst) 방법을 이용하여 800℃의 증착조건으로 100∼760Torr의 압력범위에서 반응가스로 아르곤/수소(Ar/H2)를 사용하고 카본과 촉매의 공급은 페로센/자일렌(Ferrocene/Xylene)을 0.04g/ml로 하여 성장한 결과 수직배향된 100∼200㎛ 길이의 카본나노튜브를 얻을 수 있었으며 촉매제거나 정제(purification) 과정은 거치지 않았다. Existing carbon nanotubes are manufactured by thermal CVD, plasma enhanced CVD, laser ablation, arc discharge, and the like. Among them, carbon nanotubes were manufactured by using a thermochemical vapor method, which is considered to be most suitable for commercialization since a large amount of carbon nanotubes can be produced by a simple process. Using a floating catalyst method, argon / hydrogen (Ar / H 2 ) is used as a reaction gas at a pressure range of 100 to 760 Torr under a deposition condition of 800 ° C., and carbon and catalyst supply are ferrocene / xylene (Ferrocene). / Xylene) was grown to 0.04g / ml to obtain a vertically aligned carbon nanotubes of 100 ~ 200㎛ length was not catalyzed or purified (purification) process.

(2) 수소저장 용량 증대를 위한 상압 플라스마 처리(2) Atmospheric pressure plasma treatment to increase hydrogen storage capacity

열화학기상법으로 제조된 카본나노튜브는 다른 처리과정 없이 연속적으로 상압 플라스마로 에칭되었다. 3kV의 교류전원이 사용되었고 헬륨 가스에 2%의 산소가 에칭 가스로 첨가되어 15분 동안 처리되었다. 또한 선형의 플라스마를 사용함으로써 시편을 이동시키면서 연속적으로 대량의 시편을 균일하게 에칭할 수 있었다.Carbon nanotubes prepared by thermochemical vapor deposition were continuously etched with atmospheric plasma without any other treatment. An AC power source of 3 kV was used and 2% oxygen was added to the helium gas as the etching gas and treated for 15 minutes. In addition, by using a linear plasma, it was possible to uniformly etch a large number of specimens continuously while moving the specimens.

(3) 수소의 흡착, 방출 실험(3) Adsorption and release experiment of hydrogen

앞서 제조한 시편을 먼저 350℃, 진공(10-3 Torr.)에서 6시간 이상 탈개스(degassing)하여 나노튜브에 붙은 가스 등을 모두 제거한 후 상온에서 60기압의 수 소로 6시간 카본나노튜브에 수소를 흡착시킨 후 2시간 액체질소로 cryostat 상태로 -190℃의 온도에서 유지시켜 수소를 흡착시켰다. 이렇게 수소를 흡착시킨 시편에 대해서 수소방출 실험은 열분석법(Thermal desorption spectrum analysis, TCD)을 사용하여 행하였다. 시편은 -190℃에서 500℃까지의 온도범위에서 3℃/min으로 온도를 올려가면서 방출되는 수소를 가스 크로마토그래프(Gas Chromatograph, HP 5890)로 분석하였다. The previously prepared specimens were first degassed at 350 ° C. in a vacuum (10 −3 Torr.) For at least 6 hours to remove all the gases attached to the nanotubes, and then placed on carbon nanotubes for 6 hours at 60 atm. After adsorbing hydrogen, hydrogen was adsorbed by holding the liquid nitrogen at cryostat state at −190 ° C. for 2 hours. The hydrogen release experiment was carried out on a specimen adsorbed hydrogen using a thermal desorption spectrum analysis (TCD). The specimen was analyzed by gas chromatograph (Gas Chromatograph, HP 5890) while increasing the temperature at 3 ℃ / min in the temperature range from -190 ℃ to 500 ℃.

<실시예 2> <Example 2>

실시예 1과 동일한 방법으로 수소저장용 카본나노튜브의 제조 및 수소저장 용량 증대를 위한 상압 플라스마 처리를 위하여 첨가되는 산소를 5%로 하여 에칭한 결과를 도 2에 나타냈다. In the same manner as in Example 1, the result of etching the oxygen added at 5% for the production of carbon nanotubes for hydrogen storage and atmospheric pressure plasma treatment for increasing hydrogen storage capacity is shown in FIG. 2.

<실시예 3> <Example 3>

실시예 1과 동일한 방법으로 수소저장용 카본나노튜브의 제조 및 수소저장 용량 증대를 위한 상압 플라스마 처리를 위하여 첨가되는 산소를 10%로 하여 에칭한 결과를 도 2에 나타냈다.In the same manner as in Example 1, the result of etching the oxygen added for the production of carbon nanotubes for hydrogen storage and atmospheric pressure plasma treatment for increasing the hydrogen storage capacity as 10% is shown in FIG. 2.

도 1은 카본나노튜브의 상압에서의 수소방출특성을 나타낸 그래프로서 100K-120K 부근에서 4.9wt%의 수소가 방출되며 상온에서는 방출되는 수소가 없음을 확인할 수 있다. 1 is a graph showing the hydrogen emission characteristics at atmospheric pressure of carbon nanotubes, it can be seen that 4.9wt% of hydrogen is released in the vicinity of 100K-120K and there is no hydrogen released at room temperature.

도 2는 Thermal CVD를 이용하여 제조한 카본나노튜브와 제조된 카본나노튜브를 상압 플라스마로 에칭한 후의 전자현미경(SEM,TEM) 사진을 나타내고 있다. FIG. 2 shows electron microscope (SEM, TEM) photographs after etching carbon nanotubes prepared by thermal CVD and carbon nanotubes prepared using atmospheric pressure plasma.

도 2(a)는 제조된 직후의 수직으로 배향된 대량의 카본나노튜브 SEM 사진이고, 도 2(b) 제조된 직후의 카본나노튜브의 TEM 사진이고, 도 2(c) 10%의 산소를 첨가하여 상압 플라스마로 에칭한 후 카본나노튜브의 SEM 사진이고, 도 2(d) 5%의 산소를 첨가하여 상압 플라스마로 에칭한 후 카본나노튜브의 SEM 사진이고, 도 2(e) 2%의 산소를 첨가하여 상압 플라즈마로 에칭한 후 카본나노튜브의 SEM 사진이고, 도 2(f) 2%의 산소를 첨가하여 상압 플라즈마로 에칭한 후 카본나노튜브의 TEM 사진이다. FIG. 2 (a) is a SEM image of a large amount of vertically oriented carbon nanotubes immediately after preparation, and FIG. 2 (b) is a TEM photograph of carbon nanotubes immediately after preparation, and FIG. 2 (c) shows 10% oxygen. SEM image of carbon nanotubes after addition and etching with atmospheric pressure plasma. FIG. 2 (d) SEM image of carbon nanotubes after addition of 5% oxygen and etching with atmospheric pressure plasma. SEM image of carbon nanotubes after adding oxygen and etching with atmospheric pressure plasma. FIG. 2 (f) is a TEM image of carbon nanotubes after adding 2% oxygen and etching with atmospheric pressure plasma.

제조된 직후의 카본나노튜브의 경우 나노튜브의 끝부분이 막혀있고 비교적 기공이 없는 표면을 가진다. 하지만 10%의 산소를 첨가하여 상압 플라스마 에칭 후에는 카본나노튜브의 구조와 배향성이 심하게 파손되어 있고 에칭된 탄소 분자들이 비결정질 탄소를 생성하였다. 따라서 에칭 가스인 산소를 5%로 줄인 결과 그 정도가 훨씬 줄어들었으며, 2%의 산소를 첨가하여 에칭하였을 때 카본나노튜브의 구조가 크게 파괴되지 않으며 비결정질 탄소도 거의 생성되지 않으면서 카본나노튜브의 끝 부분이 열리고 TEM 사진의 결과 나노튜브의 벽도 플라스마에 의해 에칭되어 많은 기공과 결함이 생성되어 수소 저장에 적합한 구조로 변화 된 것을 살펴볼 수 있었다. In the case of carbon nanotubes immediately after the manufacture, the ends of the nanotubes are blocked and have a relatively pore-free surface. However, after addition of 10% oxygen, the structure and orientation of the carbon nanotubes were severely damaged after atmospheric plasma etching, and the etched carbon molecules produced amorphous carbon. As a result of reducing the etching gas of oxygen to 5%, the degree was much reduced, and when the etching was performed by adding 2% of oxygen, the structure of the carbon nanotubes was not largely destroyed, and almost no amorphous carbon was produced. The tip was opened and the TEM photograph showed that the walls of the nanotubes were also etched by the plasma, creating many pores and defects, and transforming them into structures suitable for hydrogen storage.

도 3은 2%의 산소가 첨가된 상압 플라스마로 에칭된 후의 카본나노튜브의 상압에서의 수소방출특성을 나타낸 그래프로서 100K-120K 부근에서 방출되는 수소 는 5.1wt%로 플라스마 처리 전과 비슷한 양을 보이나 이전에는 없던 300-330K 부근에서 0.6wt%의 수소가 방출되는 것을 확인할 수 있다.FIG. 3 is a graph showing hydrogen release characteristics at atmospheric pressure of carbon nanotubes after etching with an atmospheric pressure plasma containing 2% oxygen. The amount of hydrogen released near 100K-120K is 5.1wt%, similar to that before plasma treatment. It can be seen that 0.6wt% of hydrogen is released in the vicinity of 300-330K which was not existed before.

본 발명은 수소·연료전지 시스템을 위한 수소저장장치용 수소저장재료의 개발에 관한 것으로서 시편을 상압 플라스마 에칭에 의하여 튜브의 말단 부분이 열리고 벽에 결함과 나노 크기의 기공이 많이 형성된 카본나노튜브를 제조할 수 있어 상용화를 위해 실제 공정에 적용 가능한 방법을 제공한다. 또한 카본나노튜브의 수소저장용량을 향상시킴으로써 수소·연료전지 시스템, 특히 자동차용 수소·연료전지 시스템용 수소저장재료로서 사용될 수 있으며 수소·연료전지 자동차의 개발 및 보급을 앞당길 수 있다. The present invention relates to the development of a hydrogen storage material for a hydrogen storage device for a hydrogen fuel cell system, the carbon nanotube formed by opening the end portion of the tube by atmospheric plasma etching and a lot of defects and nano-sized pores on the wall It can be manufactured to provide a method applicable to the actual process for commercialization. In addition, by improving the hydrogen storage capacity of carbon nanotubes, it can be used as a hydrogen storage material for hydrogen fuel cell systems, especially automotive hydrogen fuel cell system, and can accelerate the development and diffusion of hydrogen fuel cell vehicles.

상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.   As described above, although described with reference to a preferred embodiment of the present invention, those skilled in the art will be variously modified and modified within the scope of the present invention without departing from the spirit and scope of the present invention described in the claims below. It will be appreciated that it can be changed.

Claims (3)

수소저장용 재료로 사용할 카본나노튜브를 상압플라스마로 에칭하여 수소저장용량을 향상시키는 것을 특징으로 하는 상압 플라스마를 이용한 수소저장용 카본나노튜브의 구조 변화방법. A method of changing the structure of carbon nanotubes for hydrogen storage using atmospheric pressure plasma, characterized by improving hydrogen storage capacity by etching carbon nanotubes to be used as hydrogen storage materials with atmospheric pressure plasma. 제 1항에 있어서, 상압 플라스마로 에칭시 효과를 증대시키기 위하여 반응가스인 헬륨, 아르곤, 공기 대비 에칭가스로 산소를 2%∼10%로 첨가하는 것을 특징으로 하는 상압 플라스마를 이용한 수소저장용 카본나노튜브의 구조 변화방법.2. The carbon for hydrogen storage using atmospheric pressure plasma according to claim 1, wherein oxygen is added in an amount of 2% to 10% as an etching gas relative to the reaction gas of helium, argon, and air in order to increase the effect of etching with the atmospheric pressure plasma. Method of changing the structure of nanotubes. 제 1항 또는 제 2항의 상압 플라스마 에칭에 의하여 튜브의 말단 부분이 열리고 벽에 결함과 나노 크기의 기공이 많이 형성된 카본나노튜브. The carbon nanotube of claim 1 or 2, wherein the end portion of the tube is opened by the atmospheric pressure plasma etching, and a large number of defects and nano-sized pores are formed on the wall.
KR1020050035061A 2005-04-27 2005-04-27 The method to modify the structure of a carbon nanotube for hydrogen storage by atmospheric pressure plasma KR100738651B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050035061A KR100738651B1 (en) 2005-04-27 2005-04-27 The method to modify the structure of a carbon nanotube for hydrogen storage by atmospheric pressure plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050035061A KR100738651B1 (en) 2005-04-27 2005-04-27 The method to modify the structure of a carbon nanotube for hydrogen storage by atmospheric pressure plasma

Publications (2)

Publication Number Publication Date
KR20060112519A true KR20060112519A (en) 2006-11-01
KR100738651B1 KR100738651B1 (en) 2007-07-11

Family

ID=37620789

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050035061A KR100738651B1 (en) 2005-04-27 2005-04-27 The method to modify the structure of a carbon nanotube for hydrogen storage by atmospheric pressure plasma

Country Status (1)

Country Link
KR (1) KR100738651B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101016524B1 (en) * 2008-08-11 2011-02-24 송기훈 Method and apparatus of manufacturing the nano-powder compounds and their solution
WO2014088556A1 (en) * 2012-12-04 2014-06-12 Empire Technology Development, Llc Graphene nanotube array for gas filtration

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101120574B1 (en) 2008-12-22 2012-03-09 한국전자통신연구원 gas storage structure and gas storage apparatus using thereof
KR101636907B1 (en) 2009-12-08 2016-07-07 삼성전자주식회사 Porous nano structure and Manufacturing Method of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000066907A (en) * 1999-04-21 2000-11-15 장진 Fabrication method of carbon nanotube
CN1378521A (en) * 1999-09-09 2002-11-06 索尼株式会社 Carbonaceous material for hydrogen storage and method for preparing the same, and cell and fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101016524B1 (en) * 2008-08-11 2011-02-24 송기훈 Method and apparatus of manufacturing the nano-powder compounds and their solution
WO2014088556A1 (en) * 2012-12-04 2014-06-12 Empire Technology Development, Llc Graphene nanotube array for gas filtration
US9278318B2 (en) 2012-12-04 2016-03-08 Empire Technology Development Llc Graphene nanotube array for gas filtration

Also Published As

Publication number Publication date
KR100738651B1 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
US7468097B2 (en) Method and apparatus for hydrogen production from greenhouse gas saturated carbon nanotubes and synthesis of carbon nanostructures therefrom
Pehrsson et al. Thermal fluorination and annealing of single-wall carbon nanotubes
JP2007169159A (en) Apparatus and method for forming nanoparticle and nanotube, and use therefor for gas storage
JP2006188393A (en) Method of processing carbon material
KR100738651B1 (en) The method to modify the structure of a carbon nanotube for hydrogen storage by atmospheric pressure plasma
Yoo et al. Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials
Hussain et al. Growth and plasma functionalization of carbon nanotubes
KR100745567B1 (en) Nano-sized Ni doped Carbon Nanotubes for hydrogen storage and its preparation method
EP2358631B1 (en) Fuel removal system for hydrogen implanted in a nanostructure material
KR20090006912A (en) Method and apparatus for modifying carbon nanotube using plasma
US6827748B2 (en) Fuel cell and method for preparation thereof
JP2007326751A (en) Manufacturing method of single-walled carbon nanotube
KR20040032964A (en) Substance occluding material and electrochemical device using it, and production method for substance occluding material
JP2005113361A (en) Fluorinated amorphous nano carbon fiber and process for producing the same, hydrogen storing material comprising fluorinated amorphous nano carbon fiber, and hydrogen storing apparatus and fuel cell system
US20080020248A1 (en) Hydrocarbon gas carbon nanotube storage media
JP2009132605A (en) Method for processing carbon nanotube, carbon nanotube and carbon nanotube device
Lee et al. Synthesis of aligned carbon nanofibers at 200 C
CN113061860B (en) Magnesium nanowire film and preparation method and application thereof
JP2005306681A (en) Method for removing catalyst metal
Sharon et al. Hydrogen adsorption by carbon nanomaterials from natural source
Liu et al. Effect of ambient gas on the catalytic properties of Au in single-walled carbon nanotube growth
JP2004230274A (en) Method for producing hydrogen occluding material, and hydrogen occluding material
JP2010194504A (en) System for treating exhaust gas by electron beam irradiation
BR102013026766A2 (en) Production process of carbon nanotubes, nanofibers and nanostructures
JP2005132701A (en) Purification method of halogenated nanocarbon material, halogenated nanocarbon material, substance storage and supply device, and fuel cell equipped with substance storage and supply device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20110701

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20120111

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee