KR20060102244A - Composition for cleaning semiconductor device - Google Patents

Composition for cleaning semiconductor device Download PDF

Info

Publication number
KR20060102244A
KR20060102244A KR1020050024227A KR20050024227A KR20060102244A KR 20060102244 A KR20060102244 A KR 20060102244A KR 1020050024227 A KR1020050024227 A KR 1020050024227A KR 20050024227 A KR20050024227 A KR 20050024227A KR 20060102244 A KR20060102244 A KR 20060102244A
Authority
KR
South Korea
Prior art keywords
cleaning
citric acid
ozone
ppm
composition
Prior art date
Application number
KR1020050024227A
Other languages
Korean (ko)
Other versions
KR100784938B1 (en
Inventor
유청
Original Assignee
에코리서치(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에코리서치(주) filed Critical 에코리서치(주)
Priority to KR1020050024227A priority Critical patent/KR100784938B1/en
Publication of KR20060102244A publication Critical patent/KR20060102244A/en
Application granted granted Critical
Publication of KR100784938B1 publication Critical patent/KR100784938B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/28Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/004Surface-active compounds containing F
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Detergent Compositions (AREA)

Abstract

본 발명은 반도체 장치(Device), 실리콘 웨이퍼(Si wafer), LCD 및 포토마스크(Photomask) 등을 포함하는 반도체 장치들의 세정을 위한 조성물에 관한 것으로 좀더 상세히는 반도체 기판(Device, Si wafer, LCD, Photo mask를 포함)의 금속불순물 세정과 금속배선의 부식방지를 위해 유기산인 구연산에 산화제와 초순수 및 계면활성제를 함유하는 반도체 소자의 세정용 조성물에 관한 것이다.The present invention relates to a composition for cleaning semiconductor devices, including semiconductor devices, silicon wafers, LCDs, photomasks, and the like, and more specifically, to semiconductor substrates (Devices, Si wafers, LCDs, The present invention relates to a cleaning composition for a semiconductor device containing an oxidizing agent, an ultrapure water, and a surfactant in citric acid, which is an organic acid, for cleaning metal impurities, including photo masks, and preventing corrosion of metal wires.

반도체소자, 파티클 흡착, 금속불순물 오염, 세정제  Semiconductor device, particle adsorption, metal impurity contamination, cleaner

Description

반도체소자 세정용 조성물{Composition for cleaning semiconductor device}Composition for cleaning semiconductor device

도 1은 실시예 1에서 계면활성제 첨가에 따른 파티클 재흡착 방지 효과 측정 그래프이다.FIG. 1 is a graph illustrating particle resorption prevention effect according to the addition of a surfactant in Example 1. FIG.

도 2는 실시예 2에서 불산의 첨가농도에 따른 파티클 세정효과를 측정한 그래프이다.Figure 2 is a graph measuring the particle cleaning effect according to the concentration of hydrofluoric acid in Example 2.

도 3은 실시예 3에서 구연산 내에서의 과산화수소와 오존의 산화력을 측정한 그래프이다.3 is a graph measuring the oxidizing power of hydrogen peroxide and ozone in citric acid in Example 3.

도 4는 실시예 3에서 초순수와 구연산에서 오존의 용해도를 측정한 그래프이다.Figure 4 is a graph measuring the solubility of ozone in ultrapure water and citric acid in Example 3.

도 5는 실시예 3에서 구연산에 의한 오존의 분해속도 지연효과를 측정한 그래프이다.Figure 5 is a graph measuring the delay rate of decomposition of ozone by citric acid in Example 3.

도 6은 실시에 3에서 오존에 의한 구연산의 분해가능성을 측정한 그래프이다.FIG. 6 is a graph measuring the degradability of citric acid by ozone in Example 3. FIG.

도 7은 실시예 3에서 오존함유 세정조성물의 금속산화물 세정효과를 측정한 그래프이다.FIG. 7 is a graph illustrating a metal oxide cleaning effect of an ozone-containing cleaning composition in Example 3. FIG.

도 8은 실시예 4에서 세정조성물의 금속산화물의 세정효과를 측정한 그래프이다.8 is a graph measuring the cleaning effect of the metal oxide of the cleaning composition in Example 4.

도 9는 실시예 4는 세정조성물의 파티클 재흡착 방지효과를 측정한 그래프이다.9 is a graph measuring the effect of preventing particle resorption of the cleaning composition of Example 4.

본 발명은 반도체 디바이스(Device), 실리콘 웨이퍼(Si wafer), LCD 및 포토마스크(Photomask) 등을 포함하는 반도체 장치들의 세정을 위한 조성물에 관한 것으로 좀더 상세히는 반도체 기판(Device, Si wafer, LCD, Photomask를 포함)의 금속불순물 세정과 금속배선의 부식방지를 위해 유기산인 구연산에 산화제와 초순수 및 계면활성제를 함유하는 반도체 소자의 세정용 조성물에 관한 것이다. The present invention relates to a composition for cleaning semiconductor devices including semiconductor devices, silicon wafers, LCDs, photomasks, and the like, and more specifically, to semiconductor substrates (Devices, Si wafers, LCDs, The present invention relates to a cleaning composition for semiconductor devices containing oxidizing agent, ultrapure water, and surfactant in citric acid, which is an organic acid, for the cleaning of metal impurities (including photomask) and the corrosion prevention of metal wiring.

반도체 산업에서 금속이온에 의한 오염과 입자(particle)오염, 유기물질에 의한 오염은 장치(device) 폴리실리콘 게이트의 피처 크기(feature sizes)가 감소하면서 생산수율(yield) 저하의 가장 주요한 요인으로 부각되고 있다. 또한, 디바이스의 집적도(pattern size)가 메가비이트급(Mbit)에서 기가비이트(Gbit) DRAM (dynamic random access memory)으로 높아지면서 그에 따른 오염 관리의 중요성과 관리비용은 지수함수적으로 증가하고 있다. 따라서, 회로패턴의 미세화에 따른 오염인자들에 의한 제품의 품질 악화나 수율 저하를 억제하기 위한 세정방법으로서 RCA 세정법이 가장 범용적으로 이용되고 있다. RCA 세정법은 제거 대상에 따라 파 티클 제거와 저분자 유기물 제거를 위한 암모니아와 과산화수소 수용액을 사용하는 SC1 공정과 금속 불순물 제거 목적의 염산과 과산화수소 수용액을 사용하는 SC2 공정으로 크게 나뉘는데, 각 공정에는 메가헤르츠(㎒)대의 주파수를 갖는 메가소닉이 세정효과를 높이기 위해 함께 사용되기도 한다. 그러나 보통 SC1의 후공정에서 사용되는 SC2 세정은 강산물질인 염산이 과산화수소와 함께 사용되므로 배선금속(구리, 텅스텐 등) 등에 대한 부식이 크기 때문에, 막 두께나 배선 폭이 변동하여, 설정된 크기의 패턴 형상을 얻을 수 없고, pH가 1 이하이므로 제타포텐셜의 관점에서 실리콘 표면으로 실리카나 알루미나, 기타 유기물성 파티클 등의 흡착이 쉽게 발생될 수 있어 미세화, 세선화가 진행되는 반도체 소자의 전기적 특성의 성능이나 품질 등에 악영향을 미치는 것이 문제가 되고 있다. 또한, 금속 불순물 제거의 요구 수준도 상승되고 있는 반면 상기 SC2 세정법으로는 알루미늄과 같이 실리콘 산화층 내에서 하나의 실리콘과 격자를 이루면서 존재하는 원소나 구리나 금, 백금 등과 같이 실리콘 원자와 치환반응을 통해 직접 결합되어 이들의 결합을 끊고 이온화시키기 위해서는 큰 산화에너지를 필요로 하는 금속이온들에 대해서는 그 요구 수준을 만족시킬 수 없다. 사용상의 문제점으로는 염산으로부터 발생되는 유해가스에 의해 작업자에 대한 건강상의 문제와 고가의 세정장비의 부식 등을 유발하고, 이들 세정장비의 부식은 2차적인 오염을 유발시킬 수 있다. 이의 예방을 위해서는 클린룸 내의 배기량을 늘릴 수밖에 없다.In the semiconductor industry, metal ion contamination, particle contamination, and organic material contamination have emerged as major factors in yield reduction, as feature sizes of device polysilicon gates decrease. It is becoming. In addition, as the pattern size of devices increases from megabits (Gbit) to gbit dynamic random access memory (DRAM), the importance of pollution management and management costs are exponentially increasing. . Therefore, the RCA cleaning method is most widely used as a cleaning method for suppressing deterioration of product quality and yield reduction due to contamination factors due to miniaturization of circuit patterns. The RCA cleaning method is divided into SC1 process using aqueous ammonia and hydrogen peroxide solution for removing particles and low molecular weight organic matter and SC2 process using aqueous hydrochloric acid and hydrogen peroxide solution for metal impurity removal. Megasonics with frequencies in the MHz range may be used together to enhance the cleaning effect. However, SC2 cleaning, which is usually used in the post-processing of SC1, is highly corrosive to wiring metals (copper, tungsten, etc.) because hydrochloric acid, which is a strong acid, is used together with hydrogen peroxide. Since the shape cannot be obtained and the pH is 1 or less, adsorption of silica, alumina, and other organic particles onto the silicon surface can be easily generated from the point of view of zeta potential. It is a problem to adversely affect the quality and quality. In addition, while the required level of metal impurity removal is rising, the SC2 cleaning method is performed through substitution reaction with an element existing while forming a lattice with one silicon in the silicon oxide layer, such as aluminum, or with silicon atoms such as copper, gold, and platinum. For metal ions that are directly bonded and require large oxidation energy in order to break and ionize them, the required level cannot be satisfied. Problems in use include harmful gases generated from hydrochloric acid, causing health problems for workers and corrosion of expensive cleaning equipment, and corrosion of these cleaning equipment may cause secondary contamination. To prevent this, it is inevitable to increase the displacement in the clean room.

본 발명의 목적은 기존의 SC2 세정용액(또는 "HPM"이라고도 함)이 갖는 환경적인 문제와 금속배선의 부식 문제를 해결하기 위해 유기산인 구연산을 기본적으로 도입하고 파티클의 재흡착 문제와 알루미늄과 귀금속류에 대한 세정력 부족문제를 해결하기 위해 불소계 계면활성제와 오존, 불산용액을 함유하는 반도체 소자 세정용 조성물을 제공하려는 것이다.The purpose of the present invention is to introduce citric acid, an organic acid, and to resorption of particles and aluminum and precious metals, basically to solve the environmental problems of the existing SC2 cleaning solution (also called "HPM") and corrosion of metal wiring. In order to solve the problem of lack of cleaning power for a semiconductor device cleaning composition containing a fluorine-based surfactant, ozone, hydrofluoric acid solution.

상기 목적을 달성하기 위하여 본 발명자는 현재 반도체 기판(반도체용 실리콘 기판 (Si wafer), 액정용 유리기판, 포토마스크용 석영기판을 포함)의 금속불순물 세정시에 사용하는 SC2 세정용액(염산/과산화수소/초순수의 혼합액)이 세정시 파티클의 흡착문제를 유발하고 염산 증기의 발생에 의해 고가의 세정장비를 부식시키는 문제를 야기하고, 염산과 과산화수소의 폐액 처리에 따른 비용적인 문제점 등을 해결하고 세정력을 더욱 강화시키기 위해 구연산을 함유하는 반도체 세정용 조성물을 개발하였다.In order to achieve the above object, the present inventors presently use a SC2 cleaning solution (hydrochloric acid / hydrogen peroxide) for cleaning metal impurities of semiconductor substrates (including semiconductor silicon substrates (Si wafer), liquid crystal glass substrates, and quartz substrates for photomasks). / Mixture of ultrapure water) causes problems of adsorption of particles during cleaning and corrosion of expensive cleaning equipment by the generation of hydrochloric acid vapors, and solves the problems of cost and cost due to the treatment of waste solution of hydrochloric acid and hydrogen peroxide. To further strengthen, a semiconductor cleaning composition containing citric acid was developed.

본 발명은 i) 유기산으로 10% 구연산 3~5부피%; ⅱ) 산화제로 31% 과산화수소 3~7부피% 또는 오존 1~150ppm; ⅲ) 입자들의 흡착을 방지하기 위한 불소계 음이온 계면활성제, 불산 및 불화암모늄으로 이루어진 그룹에서 선택된 1종 또는 2종 이상의 첨가제; 및 ⅳ) 잔량의 초순수; 를 함유하는 반도체소자 세정용 조성물에 관한 것이다.The present invention is i) 3 to 5% by volume 10% citric acid as organic acid; Ii) 3-7% by volume of 31% hydrogen peroxide or 1-150 ppm ozone as oxidizing agent; Iii) one or two or more additives selected from the group consisting of fluorine-based anionic surfactants, hydrofluoric acid and ammonium fluoride to prevent adsorption of particles; And iii) residual ultrapure water; It relates to a semiconductor device cleaning composition containing.

또한, 본 발명은 상기 불소계 음이온 계면활성제는 플루오르알킬술폰아미드계 화합물인 것을 특징으로 한다.In addition, the present invention is characterized in that the fluorine-based anionic surfactant is a fluoroalkylsulfonamide compound.

또한, 본 발명은 상기 첨가제로 불소계 음이온 계면활성제 10~1000ppm, 49% 불산 10ppm ~ 250ppm, 불화암모늄은 10~500ppm인 것을 특징으로 한다.In addition, the present invention is characterized in that the additive is a fluorine-based anionic surfactant 10 ~ 1000ppm, 49% hydrofluoric acid 10ppm ~ 250ppm, ammonium fluoride is 10 ~ 500ppm.

상기 불소계 계면활성제는 금속이온을 염으로 갖고 있지 않은 음이온 계면활성제는 모두 사용가능하며, 카르복시산염, 설폰산염, 황산에스테르염, 인산에스테르염이 바람직하다. 특히, 하기 화학식 1 및 화학식 2의 플루오르알킬술폰아미드 화합물이 더욱 바람직하다. 하기 화학식 1, 2에 나타난 계면활성제는 나트륨, 칼륨, 칼슘 등의 금속이 함유되어 있지 않다.As the fluorine-based surfactant, any anionic surfactant that does not have a metal ion as a salt can be used, and carboxylate, sulfonate, sulfate ester salt, and phosphate ester salt are preferable. In particular, the fluoroalkylsulfonamide compounds of the formulas (1) and (2) are more preferred. The surfactants represented by the following Chemical Formulas 1 and 2 do not contain metals such as sodium, potassium, and calcium.

RlSO2NR2-X-H R l SO 2 NR 2 -XH

RlSO3 -NR4 + R l SO 3 - NR 4 +

상기 식에서, R1은 플루오르알킬기이고, R2은 수소원자 또는 저급알킬기이며, X는 CH2COO 또는 (CH2CH2O)n이고, n는 1~20인 정수이다. 그리고, R4는 C1~C4인 알킬기이다. Wherein R 1 is a fluoroalkyl group, R 2 is a hydrogen atom or a lower alkyl group, X is CH 2 COO or (CH 2 CH 2 O) n , and n is an integer of 1 to 20. And R 4 is an alkyl group having 1 to 4 carbon atoms.

이하, 본 발명의 구성을 실시예를 통하여 상세히 설명하겠다. 그러나 본 발 명의 범위가 상기 실시예에 한정되는 것은 아니다. Hereinafter, the configuration of the present invention will be described in detail by examples. However, the scope of the present invention is not limited to the above embodiment.

사용용액Use solution

하기 실시예에서는 10% 구연산용액, 31% 과산화수소, 37% 염산, 49% 불산을 사용하였다.In the following examples, 10% citric acid solution, 31% hydrogen peroxide, 37% hydrochloric acid, 49% hydrofluoric acid was used.

실시예 1: 구연산/과산화수소/초순수/계면활성제 조성물Example 1 Citric Acid / Hydrogen Peroxide / Ultra Pure Water / Surfactant Composition

본 실시예는 구연산(10% 원액사용)/과산화수소(31% 원액사용)/초순수를 3/4/63의 부피비로 혼합한 용액 70ℓ에 계면활성제로 암모늄퍼플루오로알킬설포네이트를 100ppm 첨가하여 세정용 조성물을 제조하였다. 대조군으로 염산(37% 원액사용)/과산화수소(31% 원액사용)/초순수를 3/4/63의 부피비로 혼합한 HPM 용액 70ℓ를 제조하였다.In this example, 100 ppm of ammonium perfluoroalkylsulfonate was added to a 70 L solution of citric acid (10% stock solution) / hydrogen peroxide (31% stock solution) / ultra pure water at a volume ratio of 3/4/63. A composition for preparation was prepared. As a control, 70 L of HPM solution prepared by mixing hydrochloric acid (using 37% stock solution) / hydrogen peroxide (using 31% stock solution) / ultra pure water at a volume ratio of 3/4/63 was prepared.

상기 조성물이 각각 채워진 쿼츠(quartz)로 만든 70ℓ 용기에 1ml 부피당 파티클 개수가 30000개 수준이 되도록 0.08~0.11㎛ 크기의 파티클(실리카/알루미나=1/1 혼합한 파티클)을 첨가하고 10분간 8인치 웨이퍼를 침적시킨 후 별도의 70ℓ쿼츠용기에서 초순수로 6분간 린스(rinse)하고 스핀건조시킨 후 Tencor 6220을 이용해 0.11㎛ 크기 이상의 파티클만을 측정하여 그 결과를 도 1의 그래프에 나타냈다.To the 70-L container made of quartz filled with the composition, add 0.08 to 0.11 µm of particles (particles mixed with silica / alumina = 1/1) so that the number of particles per 1 ml volume is 30000, and 8 inches for 10 minutes. After depositing the wafer and rinsed with ultrapure water for 6 minutes in a separate 70 L quartz container and spin-dried, only particles of 0.11 μm or more were measured using Tencor 6220 and the results are shown in the graph of FIG. 1.

실시예 2: 구연산/과산화수소/초순수/불산 조성물Example 2: Citric Acid / Hydrogen Peroxide / Ultrapure Water / Hydrofluoric Acid Composition

2-1. HF의 첨가 농도에 따른 금속불순물 세정효율 측정2-1. Determination of Metal Impurities Cleaning Efficiency According to HF Addition Concentration

구연산/과산화수소/초순수(3/4/63, 부피비)의 혼합액 70ℓ를 각각 5개 제조하고 각각에 HF(49% 원액)를 0ppm, 60ppm, 120ppm, 250ppm, 300ppm, 350ppm을 각각 첨가한 세정 조성물을 제조하고 이를 이용하여 금속불순물에 대한 세정효율을 측정하였다.Five 70L mixtures of citric acid / hydrogen peroxide / ultra pure water (3/4/63, volume ratio) were prepared, respectively, and a cleaning composition was added with 0 ppm, 60 ppm, 120 ppm, 250 ppm, 300 ppm, and 350 ppm of HF (49% stock solution), respectively. It was prepared and used to measure the cleaning efficiency for the metallic impurities.

세정방법으로는 실리콘 웨이퍼 표면에 일정 수준을 유지하도록 인위적으로 오염시킨 8인치 실리콘 웨이퍼(초기웨이퍼)를 상기 각각 다른 농도의 HF를 함유하고 있는 구연산 세정 조성물을 이용해 쿼츠로 이루어진 70ℓ용기에서 6분간 침적 세정을 한 후 별도의 70ℓ의 쿼츠용기에서 초순수로 6분간 린스한 후 스핀건조하였다.In the cleaning method, an 8-inch silicon wafer (initial wafer) artificially contaminated to maintain a certain level on the surface of the silicon wafer was deposited for 6 minutes in a 70-liter container made of quartz using citric acid cleaning composition containing different concentrations of HF. After washing, the resultant was rinsed with ultrapure water for 6 minutes in a separate 70 L quartz container, followed by spin drying.

이를 분석하기 위하여 불산과 과산화수소 혼합액을 이용해 웨이퍼 표면의 금속이온을 추출 후 ICP-MS로 분석하여 그 결과를 표 1에 나타냈다.In order to analyze this, the metal ions on the wafer surface were extracted using a mixture of hydrofluoric acid and hydrogen peroxide and analyzed by ICP-MS. The results are shown in Table 1 below.

Figure 112005015304417-PAT00001
Figure 112005015304417-PAT00001

2-2. HF 첨가농도에 따른 파티클 세정효과 측정2-2. Measurement of Particle Cleaning Effect According to HF Addition Concentration

구연산/과산화수소/초순수(3/4/63, 부피비)의 혼합액 70ℓ를 각각 5개 제조하고 각각에 HF(49% 원액)를 0ppm, 60ppm, 120ppm, 250ppm, 300ppm, 350ppm을 각각 첨가한 세정 조성물을 제조하고 이를 이용하여 파티클 세정효과를 측정하였다.Five 70L mixtures of citric acid / hydrogen peroxide / ultra pure water (3/4/63, volume ratio) were prepared, respectively, and a cleaning composition was added with 0 ppm, 60 ppm, 120 ppm, 250 ppm, 300 ppm, and 350 ppm of HF (49% stock solution), respectively. It was prepared and the particle cleaning effect was measured using it.

파티클 유발확인 실험을 위하여 상기 각 농도의 HF를 첨가한 세정 조성물에 8인치 웨이퍼를 10분간 침적시킨 후 별도의 70ℓ쿼츠용기에서 초순수로 6분간 린스하고 스핀건조하였다.For the particle induction test, the 8-inch wafer was immersed for 10 minutes in the cleaning composition to which each concentration of HF was added, followed by rinsing with ultrapure water for 6 minutes in a separate 70 L quartz container and spin-drying.

상기 건조된 웨이퍼를 SP1을 이용해 0.065㎛ 크기 이상의 파티클을 측정하여 도 2에 나타냈다.The dried wafer was measured with particles having a size of 0.065 μm or more using SP1 and shown in FIG. 2.

본 실시예의 결과를 통하여 상기 세정 조성물은 구연산과 불산(HF)의 상호작용에 의해 금속불순물 세정력이 향상되었으며, 불산과 불화암모늄(NH4F와 NH4F.HF 를 포함)은 실리콘 또는 실리콘 산화막을 에칭할 수 있는 능력이 있어 산화막 내부에 존재하는 알루미늄과 구리 오염물에 대한 구연산의 세정력 부족 문제를 보완해 준다. 또한, 기존 불산 사용의 문제점인 파티클 발생을 유발시키는 문제점은 불산의 농도를 250ppm이하로 첨가함으로써 파티클 오염을 관리할 수 있었다. 따라서, 최종 세정액에서 불산은 250ppm 이하, NH4F와 NH4F.HF는 500pm 이하로 첨가하면 파티클 발생은 억제되고 금속불순물에 대한 세정효과는 극대화할 수 있었다.Through the results of the present embodiment, the cleaning composition has improved metal impurity cleaning power by the interaction of citric acid and hydrofluoric acid (HF), and the hydrofluoric acid and ammonium fluoride (including NH 4 F and NH 4 F.HF) are silicon or silicon oxide film. The ability to etch compensates for the lack of citric acid's detergency for aluminum and copper contaminants present in the oxide film. In addition, the problem of causing particle generation, which is a problem of using the existing hydrofluoric acid was able to manage the particle contamination by adding a concentration of hydrofluoric acid below 250ppm. Therefore, when the hydrofluoric acid was added at 250 ppm or less, and NH 4 F and NH 4 F.HF were added at 500 pm or less in the final cleaning solution, particle generation was suppressed and the cleaning effect on the metallic impurities could be maximized.

실시예 3: 산화제로 오존 함유한 세정 조성물Example 3: Cleaning Composition Containing Ozone as Oxidizer

본 실시예는 산화제로 오존을 사용하여 세정용 조성물을 제조하고 이의 특성을 조사하였다. 본 발명의 세정용 조성물은 과산화수소를 배제하고 산화제로 오존을 사용함으로써 금속이온에 대한 세정력을 HPM에 비해 현저히 향상시킨 환경 친화적인 배합이다.In this embodiment, ozone was used as an oxidizing agent to prepare a cleaning composition and its properties were investigated. The cleaning composition of the present invention is an environmentally friendly formulation that significantly improves the cleaning power of metal ions compared to HPM by removing ozone peroxide and using ozone as an oxidizing agent.

3-1. 구연산을 함유한 과산화수소와 오존수의 산화력 비교3-1. Comparison of Oxidation Capacity between Hydrogen Peroxide Containing Citric Acid and Ozone Water

구연산/초순수=3/67(부피비, 구연산: 10% 원액 사용)과 오존 16ppm을 용해시켰다. 대조군으로 구연산/과산화수소/초순수=3/4/63 부피비(구연산: 10%, 과산화수소: 31% 농도를 갖는 원액 사용) 용액을 제조하고, 각각에 대하여 ORP미터를 이용하여 산화력을 측정하여 그 결과를 도 3에 나타내었다. 도 3에서 확인할 수 있듯이 오존을 산화제로 사용한 용액의 산화도가 과산화수소를 사용한 것보다 산화력이 매우 높음을 알 수 있었다.Citric acid / ultra pure water = 3/67 (volume ratio, citric acid: 10% stock solution) and 16 ppm of ozone were dissolved. As a control, a solution of citric acid / hydrogen peroxide / ultra pure water = 3/4/63 vol. 3 is shown. As can be seen in FIG. 3, the oxidation degree of the solution using ozone as the oxidant was found to be much higher than that of hydrogen peroxide.

3-2. 구연산에 의한 오존 용해도 측정3-2. Ozone solubility measurement by citric acid

구연산/초순수=3/67의 부피비를 갖는 세정액을 제조하고 이에 버블링 방식으로 오존을 용해시켰다. 대조군으로 20ℓ 초순수에 오존을 버블링(bubbling) 방식으로 1시간 동안 용해시켰다.A washing liquid having a volume ratio of citric acid / ultra pure water = 3/67 was prepared and dissolved ozone in a bubbling manner. As a control, ozone was dissolved in 20 L ultrapure water for 1 hour by bubbling.

상기 두 용액 각각을 UV-vis 스펙트로미터를 이용하여 오존의 용해도를 측정하여 도 4에 나타내었다. 도 4에서 구연산에서 오존의 용해도가 훨씬 높음을 확인하였다.Each of the two solutions was shown in FIG. 4 by measuring the solubility of ozone using a UV-vis spectrometer. In Figure 4 it was confirmed that the solubility of ozone in citric acid is much higher.

3-3. 구연산에 의한 오존의 분해 속도지연효과3-3. Delayed Effect of Ozone Decomposition by Citric Acid

구연산에 의한 오존 용해도 실험을 위해 오존 20ppm을 함유하는 초순수 2개 군과 오존 20ppm을 함유하는 구연산 수용액(구연산/초순수=3/67 부피비) 2개 군을 제조하고 초순수용액과 구연산용액에서 각각의 1군은 외압없이 용기를 방치(static state) 하면서 시간에 따른 오존의 농도를 측정하였고, 나머지 1군은 교반기로 교반하면서 시간에 따른 오존의 농도를 측정하였다. 측정은 UV-vis를 이용하여 수행하고, 도 5에 그 결과를 나타내었다.For the ozone solubility experiment with citric acid, two groups of ultrapure water containing 20 ppm of ozone and two groups of citric acid aqueous solution containing citric acid (citric acid / ultra pure water = 3/67 volume ratio) were prepared and each of 1 group of ultrapure water and citric acid solution was used. The group measured the concentration of ozone over time while leaving the container without static pressure (static state), and the remaining group 1 measured the concentration of ozone over time while stirring with a stirrer. The measurement was carried out using UV-vis and the results are shown in FIG. 5.

도 5에서는 교반기를 사용한 군과 방치한 군 모두에서 구연산 용액에 용해된 오존의 용해도가 높음을 확인하였다. In FIG. 5, it was confirmed that the solubility of ozone dissolved in citric acid solution was high in both the group using the stirrer and the group left.

3-4. 오존에 의한 구연산의 분해 가능성 확인3-4. Confirm the possibility of decomposition of citric acid by ozone

6% 과산화수소와 100ppm 오존을 각각 함유한 구연산 수용액 내에서 구연산의 농도를 시간대별로 IC(Ion Chromatography)를 이용하여 측정하고, 결과를 도 6에 나타냈다. 그 결과 오존의 분해는 전혀 유발되지 않았음을 확인하였다.In the citric acid aqueous solution containing 6% hydrogen peroxide and 100ppm ozone, the concentration of citric acid was measured at each time period using IC (Ion Chromatography), and the results are shown in FIG. 6. As a result, it was confirmed that no decomposition of ozone occurred.

3-5. 금속불순물 세정력 측정3-5. Metal impurity cleaning power measurement

1) HPM의 조성: 염산/과산화수소/초순수=3/4/63 부피비(염산: 37%, 과산화수소: 31% 농도를 갖는 원액 사용)1) Composition of HPM: hydrochloric acid / hydrogen peroxide / ultra pure water = 3/4/63 volume ratio (using hydrochloric acid: 37%, hydrogen peroxide: 31% concentration)

2) 구연산/초순수=3/67 부피비(구연산: 10% 원액 사용), 오존 농도=20ppm2) citric acid / ultra pure water = 3/67 volume ratio (citric acid: 10% stock solution), ozone concentration = 20ppm

3) 구연산/과산화수소/초순수= 3/4/63 부피비3) citric acid / hydrogen peroxide / ultra pure water = 3/4/63 by volume

4) 세정방법: 실리콘 웨이퍼 표면에 일정 수준을 유지하도록 인위적으로 금속불순물을 오염시킨 8인치 실리콘 웨이퍼(초기웨이퍼)를 각각의 세정제를 이용해 쿼츠로 이루어진 70ℓ용기에서 6분간 침적 세정을 한 후 별도의 70ℓ의 쿼츠용기에서 초순수로 6분간 린스하고 스핀건조시켰다.4) Cleaning method: 8-inch silicon wafer (initial wafer), which artificially contaminated metal impurities to maintain a certain level on the surface of silicon wafer, was immersed and cleaned for 6 minutes in a 70-liter container made of quartz using each cleaner. Rinse with ultrapure water for 6 minutes in a 70 liter quartz vessel and spin-dry.

상기 웨이퍼는 불산과 과산화수소 혼합액을 이용해 웨이퍼 표면의 금속이온을 추출 후 ICP-MS로 분석하고 도 7에 나타냈다.The wafer was extracted with metal ions on the surface of the wafer using a mixture of hydrofluoric acid and hydrogen peroxide, and analyzed by ICP-MS and shown in FIG. 7.

구연산에 오존을 산화제로 사용한 금속 불순물 세정력 향상의 장점은 오존의 단순 버블링(Bubbling) 방식만으로도 포화 농도를 25ppm에서 110ppm 까지 최고 5배까지 향상시킬 수 있어 오존의 산화력을 최대한 활용할 수 있다는 점과 오존의 분해 속도를 지연시킬 수 있다는 점에 기인한다. 그러면서도 구연산 자체는 오존의 높은 산화력에 의해 분해되지 않았다.  The advantage of improving the cleaning ability of metal impurities using ozone as citric acid is that it can improve the saturation concentration up to 5 times from 25ppm to 110ppm only by simple bubbling of ozone, and it can make the most use of ozone oxidizing power. This is due to the fact that it can delay the decomposition rate. At the same time, citric acid itself was not decomposed by the high oxidizing power of ozone.

실시예 4: 구연산/오존/초순수/계면활성제/불산Example 4: citric acid / ozone / ultra pure water / surfactant / fluoric acid

구연산, 오존, 불산, 계면활성제 적용의 모든 효과를 기대할 수 있다.All effects of citric acid, ozone, hydrofluoric acid and surfactant applications can be expected.

4-1. 금속불순물 세정 실험4-1. Metal Impurity Cleaning Experiment

구연산/초순수를 부피비로 3//67 혼합한 혼합액 70ℓ에 대해 오존 20ppm, 불산 200ppm, 계면활성제로 암모늄퍼플루오로알킬설포네이트 100ppm를 첨가하여 세정 조성물을 제조하였다. 그리고 대조군으로는 염산/과산화수소/초순수를 부피비로 3/4/63(염산: 37%, 과산화수소: 31% 농도를 갖는 원액 사용, HRM 용액)로 혼합한 HPM의 조성물을 사용하였다.A cleaning composition was prepared by adding 20 ppm of ozone, 200 ppm of fluoric acid, and 100 ppm of ammonium perfluoroalkylsulfonate as a surfactant to 70 L of a mixed solution of citric acid / ultra pure water in a volume ratio of 3 // 67. As a control, HPM was mixed with hydrochloric acid / hydrogen peroxide / ultra pure water at a volume ratio of 3/4/63 (hydrochloric acid: 37%, hydrogen peroxide: 31% stock solution, HRM solution).

실리콘 웨이퍼 표면을 일정 수준을 유지하도록 인위적으로 오염시킨 8인치 실리콘 웨이퍼(초기웨이퍼)를 상기 각각의 세정제를 이용해 쿼츠로 이루어진 70ℓ 용기에서 6분간 침적 세정을 한 후 별도의 70ℓ쿼츠용기에 초순수로 6분간 린스하고 스핀건조시켰다.The 8-inch silicon wafer (initial wafer), which was artificially contaminated to maintain the surface of the silicon wafer, was immersed in a 70-liter container made of quartz for 6 minutes using the respective cleaners, and then placed in ultra-pure water in a separate 70-liter container. Rinse for minutes and spin dry.

상기 건조된 웨이퍼를 불산과 과산화수소 혼합액을 이용해 웨이퍼 표면의 금속이온을 추출 후 ICP-MS로 분석하고 도 8에 나타냈다.The dried wafer was extracted with metal ions on the surface of the wafer using a hydrofluoric acid and hydrogen peroxide mixture and analyzed by ICP-MS, and is shown in FIG. 8.

4-2. 파티클 재흡착 방지 효과측정4-2. Particle resorption prevention effect measurement

상기 4-1의 세정조성물을 이용하여 파티클 재흡착 방지효과를 측정하였다.The particle resorption prevention effect was measured using the cleaning composition of 4-1.

각각의 세정제가 채워진 쿼츠로 이루어진 70ℓ용기에 1㎖당 파티클 개수가 30000개 수준이 되도록 0.08~0.11㎛ 크기를 갖는 파티클(실리카/알루미나=1/1 혼합 파티클)을 첨가하고 10분간 8인치 웨이퍼를 침적시킨 후 별도의 70ℓ쿼츠용기에서 초순수로 6분간 린스한 후 스핀건조시켰다.Into a 70-liter container of quartz filled with each detergent, add particles (silica / alumina = 1/1 mixed particles) with a size of 0.08 to 0.11 μm so that the number of particles per ml is 30000. After immersion, the resultant was rinsed with ultrapure water for 6 minutes in a separate 70 L quartz container, followed by spin drying.

상기 건조된 웨이퍼를 Tencor 6220을 이용해 0.11㎛ 크기 이상의 파티클만을 측정하고 그 결과를 도 9에 나타냈다. 그 결과 대조군인 HRM용액에 비해 파티클 잔존율이 현저히 낮음을 확인하였다.The dried wafer was measured only with particles of 0.11 μm or larger using Tencor 6220, and the results are shown in FIG. 9. As a result, it was confirmed that the particle residual ratio is significantly lower than the control HRM solution.

본 발명의 반도체 세정용 조성물은 염산을 기본으로 하는 SC2(이하 "HPM"이라 명명, pH가 약 0.2~0.5)에 비해 제타포텐셜 측면에서 pH가 약 2.3 정도로 높기 때문에 파티클의 재흡착 문제가 상대적으로 적으며, 금속이온에 대한 세정효과는 유사한 장점이 있으며, 알루미늄과 텅스텐으로 이루어진 금속배선에 대한 침식율이 분당 3Å 이하로서 모두 100Å이상 되는 HPM의 그것보다 현저히 낮다.Compared to SC2 based on hydrochloric acid (hereinafter referred to as “HPM”, pH of about 0.2 to 0.5), the semiconductor cleaning composition of the present invention has a relatively high pH of about 2.3 in terms of zeta potential. The cleaning effect on the metal ions has a similar advantage, and the erosion rate for the metal wiring made of aluminum and tungsten is 3 kW / min or less, which is significantly lower than that of HPM.

또한, 본 발명은 전통적인 산화제인 과산화수소 대신 오존을 사용하여 금속이온에 대한 세정력을 현저히 향상시키고 환경친화적인 세정용 조성물을 제조하였다.In addition, the present invention by using ozone instead of hydrogen peroxide, which is a traditional oxidant significantly improved the cleaning power for metal ions and produced an environmentally friendly cleaning composition.

Claims (3)

i) 유기산으로 10% 구연산 3~5부피%; i) 3-5% by volume of 10% citric acid by organic acid; ⅱ) 산화제로 31% 과산화수소 3~7부피% 또는 오존 1~150ppm; Ii) 3-7% by volume of 31% hydrogen peroxide or 1-150 ppm ozone as oxidizing agent; ⅲ) 입자들의 흡착을 방지하기 위한 불소계 음이온 계면활성제, 불산 및 불화암모늄으로 이루어진 그룹에서 선택된 1종 또는 2종이상의 첨가제; 및 Iii) one or more additives selected from the group consisting of fluorine-based anionic surfactants, hydrofluoric acid and ammonium fluoride to prevent adsorption of particles; And ⅳ) 잔량의 초순수;Iii) residual ultrapure water; 를 함유하는 반도체 소자 세정용 조성물Semiconductor element cleaning composition containing 제1항에 있어서, 상기 불소계 음이온 계면활성제는 플루오르알킬술폰아미드 화합물인 것을 특징으로 하는 반도체 소자 세정용 조성물.The composition for cleaning a semiconductor device according to claim 1, wherein the fluorine-based anionic surfactant is a fluoroalkylsulfonamide compound. 제1항 또는 제2항에 있어서, 상기 조성물은 각 첨가제의 함량이 불소계 음이온 계면활성제 10~1000ppm, 49% 불산 10ppm ~ 250ppm, 불화암모늄 10~500ppm인 것을 특징으로 하는 반도체 소자 세정용 조성물.The composition for cleaning a semiconductor device according to claim 1 or 2, wherein the content of each additive is 10 to 1000 ppm of fluorine-based anionic surfactant, 10 ppm to 250 ppm of 49% hydrofluoric acid, and 10 to 500 ppm of ammonium fluoride.
KR1020050024227A 2005-03-23 2005-03-23 Composition for cleaning semiconductor device KR100784938B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050024227A KR100784938B1 (en) 2005-03-23 2005-03-23 Composition for cleaning semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050024227A KR100784938B1 (en) 2005-03-23 2005-03-23 Composition for cleaning semiconductor device

Publications (2)

Publication Number Publication Date
KR20060102244A true KR20060102244A (en) 2006-09-27
KR100784938B1 KR100784938B1 (en) 2007-12-11

Family

ID=37633149

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050024227A KR100784938B1 (en) 2005-03-23 2005-03-23 Composition for cleaning semiconductor device

Country Status (1)

Country Link
KR (1) KR100784938B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985297B2 (en) 2008-07-14 2011-07-26 Samsung Electronics Co., Ltd. Method of cleaning a quartz part
US9507255B2 (en) 2014-10-27 2016-11-29 Samsung Electronics Co., Ltd. Methods of manufacturing integrated circuit devices by using photomask cleaning compositions
KR20170078511A (en) * 2015-12-29 2017-07-07 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Method of using a surfactant-containing shrinkage material to prevent photoresist pattern collapse caused by capillary forces
US10121811B1 (en) 2017-08-25 2018-11-06 Taiwan Semiconductor Manufacturing Co., Ltd. Method of high-aspect ratio pattern formation with submicron pixel pitch
CN115992032A (en) * 2023-01-19 2023-04-21 通威太阳能(安徽)有限公司 Tank body cleaning agent of wool making cleaning equipment and tank body cleaning method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG129274A1 (en) * 2003-02-19 2007-02-26 Mitsubishi Gas Chemical Co Cleaaning solution and cleaning process using the solution

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7985297B2 (en) 2008-07-14 2011-07-26 Samsung Electronics Co., Ltd. Method of cleaning a quartz part
US9507255B2 (en) 2014-10-27 2016-11-29 Samsung Electronics Co., Ltd. Methods of manufacturing integrated circuit devices by using photomask cleaning compositions
KR20170078511A (en) * 2015-12-29 2017-07-07 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Method of using a surfactant-containing shrinkage material to prevent photoresist pattern collapse caused by capillary forces
CN106935487A (en) * 2015-12-29 2017-07-07 台湾积体电路制造股份有限公司 The method for manufacturing semiconductor device
US10090357B2 (en) 2015-12-29 2018-10-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method of using a surfactant-containing shrinkage material to prevent photoresist pattern collapse caused by capillary forces
CN106935487B (en) * 2015-12-29 2019-11-29 台湾积体电路制造股份有限公司 The method for manufacturing semiconductor device
US10734436B2 (en) 2015-12-29 2020-08-04 Taiwan Semiconductor Manufacturing Co., Ltd. Method of using a surfactant-containing shrinkage material to prevent photoresist pattern collapse caused by capillary forces
US11086221B2 (en) 2015-12-29 2021-08-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method of using a surfactant-containing shrinkage material to prevent photoresist pattern collapse caused by capillary forces
US10121811B1 (en) 2017-08-25 2018-11-06 Taiwan Semiconductor Manufacturing Co., Ltd. Method of high-aspect ratio pattern formation with submicron pixel pitch
US10546889B2 (en) 2017-08-25 2020-01-28 Taiwan Semiconductor Manufacturing Co., Ltd. Method of high-aspect ratio pattern formation with submicron pixel pitch
CN115992032A (en) * 2023-01-19 2023-04-21 通威太阳能(安徽)有限公司 Tank body cleaning agent of wool making cleaning equipment and tank body cleaning method

Also Published As

Publication number Publication date
KR100784938B1 (en) 2007-12-11

Similar Documents

Publication Publication Date Title
KR100746056B1 (en) Substrate surface cleaning liquid mediums and cleaning method
JP3061470B2 (en) Surface treatment method and treatment agent
TWI299885B (en) Post chemical-mechanical planarization (cmp) cleaning composition
EP1345848B1 (en) Composition comprising an oxidizing and complexing compound
WO2002094462A1 (en) Method for cleaning surface of substrate
US20060089280A1 (en) Semiconductor cleaning solution
JP2003289060A (en) Cleaning liquid for substrate for semiconductor device and cleaning method
EP1562225A1 (en) Cleaning composition and method of cleaning therewith
JPWO2009072529A1 (en) Semiconductor device substrate cleaning method and cleaning liquid
KR100250002B1 (en) Cleaning composition of low surface tension for semiconductor substrates
JP4498726B2 (en) Washing soap
KR100784938B1 (en) Composition for cleaning semiconductor device
KR101572639B1 (en) Post-cmp washiing liquid composition
US6147042A (en) Detergent for processes for producing semiconductor devices or producing liquid crystal devices
RU2329298C2 (en) Treatment of semiconductor surfaces and mixture used in process
EP1544284A1 (en) Composition and method for treating a semiconductor substrate
JP2003109930A (en) Cleaning solution and method of cleaning board of semiconductor device
JP3887846B2 (en) High-purity ethylenediaminedioltohydroxyphenylacetic acid and surface treatment composition using the same
JPH11340182A (en) Cleaning agent for semiconductor surface, and method for cleaning
JP3422117B2 (en) New surface treatment method and treatment agent
JP4179098B2 (en) Semiconductor wafer cleaning method
KR100679007B1 (en) Cleaning composition for semiconductor device
JP2003338484A (en) Cleaning solution for semiconductor substrate
JP3274834B2 (en) Surface treatment method and treatment agent
KR20230093245A (en) Amine oxides for etching, stripping and cleaning applications

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J501 Disposition of invalidation of trial
E90F Notification of reason for final refusal
B701 Decision to grant
GRNT Written decision to grant
G170 Publication of correction
FPAY Annual fee payment

Payment date: 20121031

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20131129

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20141106

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160113

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20161101

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170925

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180928

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20191023

Year of fee payment: 13