KR100679007B1 - Cleaning composition for semiconductor device - Google Patents
Cleaning composition for semiconductor device Download PDFInfo
- Publication number
- KR100679007B1 KR100679007B1 KR1020050027260A KR20050027260A KR100679007B1 KR 100679007 B1 KR100679007 B1 KR 100679007B1 KR 1020050027260 A KR1020050027260 A KR 1020050027260A KR 20050027260 A KR20050027260 A KR 20050027260A KR 100679007 B1 KR100679007 B1 KR 100679007B1
- Authority
- KR
- South Korea
- Prior art keywords
- composition
- cleaning
- hydrogen peroxide
- radical
- particles
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 101
- 238000004140 cleaning Methods 0.000 title claims abstract description 85
- 239000004065 semiconductor Substances 0.000 title claims abstract description 23
- 239000002738 chelating agent Substances 0.000 claims abstract description 11
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 89
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 claims description 40
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 25
- 239000012498 ultrapure water Substances 0.000 claims description 25
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 21
- DUYCTCQXNHFCSJ-UHFFFAOYSA-N dtpmp Chemical compound OP(=O)(O)CN(CP(O)(O)=O)CCN(CP(O)(=O)O)CCN(CP(O)(O)=O)CP(O)(O)=O DUYCTCQXNHFCSJ-UHFFFAOYSA-N 0.000 claims description 18
- 239000002736 nonionic surfactant Substances 0.000 claims description 10
- 229910021529 ammonia Inorganic materials 0.000 claims description 9
- 239000003999 initiator Substances 0.000 claims description 9
- 125000001931 aliphatic group Chemical group 0.000 claims description 8
- 150000005846 sugar alcohols Polymers 0.000 claims description 8
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 7
- XESZUVZBAMCAEJ-UHFFFAOYSA-N 4-tert-butylcatechol Chemical compound CC(C)(C)C1=CC=C(O)C(O)=C1 XESZUVZBAMCAEJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 239000011259 mixed solution Substances 0.000 claims description 4
- RXMMQRXWFIZSTR-UHFFFAOYSA-N OC1=CC2=CC=CC=C2C=C1O.OC1=CC2=CC=CC=C2C=C1O Chemical compound OC1=CC2=CC=CC=C2C=C1O.OC1=CC2=CC=CC=C2C=C1O RXMMQRXWFIZSTR-UHFFFAOYSA-N 0.000 claims description 2
- AFTJNIKGLUJJPI-NDSUJOINSA-N acetic acid (1R,2R)-cyclohexane-1,2-diamine Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O.N[C@@H]1CCCC[C@H]1N AFTJNIKGLUJJPI-NDSUJOINSA-N 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 150000002978 peroxides Chemical class 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 52
- 235000012431 wafers Nutrition 0.000 abstract description 35
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 14
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 14
- 229910052710 silicon Inorganic materials 0.000 abstract description 14
- 239000010703 silicon Substances 0.000 abstract description 14
- 229910052751 metal Inorganic materials 0.000 abstract description 12
- 239000002184 metal Substances 0.000 abstract description 12
- 239000004094 surface-active agent Substances 0.000 abstract description 8
- 239000012535 impurity Substances 0.000 abstract description 7
- 229910052742 iron Inorganic materials 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 abstract description 7
- 229910052791 calcium Inorganic materials 0.000 abstract description 5
- 239000011575 calcium Substances 0.000 abstract description 5
- 238000011109 contamination Methods 0.000 abstract description 5
- 238000001179 sorption measurement Methods 0.000 abstract description 5
- 229910052725 zinc Inorganic materials 0.000 abstract description 5
- 239000011701 zinc Substances 0.000 abstract description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 abstract description 4
- -1 devices Substances 0.000 abstract description 4
- 239000000654 additive Substances 0.000 abstract description 3
- 229910021645 metal ion Inorganic materials 0.000 description 24
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 22
- 235000011114 ammonium hydroxide Nutrition 0.000 description 22
- 230000008569 process Effects 0.000 description 18
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 15
- 230000000694 effects Effects 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 10
- 238000000354 decomposition reaction Methods 0.000 description 10
- 229910052782 aluminium Inorganic materials 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000010453 quartz Substances 0.000 description 7
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 239000010937 tungsten Substances 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000003513 alkali Substances 0.000 description 5
- 238000003795 desorption Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical group N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 230000009920 chelation Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 229920002959 polymer blend Polymers 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 150000005206 1,2-dihydroxybenzenes Chemical class 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000000356 contaminant Substances 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- JRNGUTKWMSBIBF-UHFFFAOYSA-N naphthalene-2,3-diol Chemical compound C1=CC=C2C=C(O)C(O)=CC2=C1 JRNGUTKWMSBIBF-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/36—Organic compounds containing phosphorus
- C11D3/364—Organic compounds containing phosphorus containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0036—Soil deposition preventing compositions; Antiredeposition agents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0073—Anticorrosion compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/044—Hydroxides or bases
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2003—Alcohols; Phenols
- C11D3/2041—Dihydric alcohols
- C11D3/2058—Dihydric alcohols aromatic
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3942—Inorganic per-compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D2111/00—Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
- C11D2111/10—Objects to be cleaned
- C11D2111/14—Hard surfaces
- C11D2111/22—Electronic devices, e.g. PCBs or semiconductors
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Detergent Compositions (AREA)
Abstract
본 발명은 반도체 기판(device, 실리콘 웨이퍼(Si wafer), LCD 및 포토마스크(Photomask) 등을 포함) 및 기타 반도체 소자의 세정을 위한 조성물에 관한 것으로 좀더 상세히는 반도체 기판(Device, Si wafer, LCD, Photomask를 포함)의 파티클 세정을 위해 사용되고 있는 알칼리 세정제 SC1(standard clean 1; APM)에 킬레이트제 또는 계면활성제 등의 기타의 첨가제를 일정 조성으로 혼합하여 파티클 세정 이외에 세정과정에서 특정 금속불순물(알루미늄과 칼슘, 철, 아연 등)의 오염을 방지할 수 있는 반도체 소자의 세정용 조성물에 관한 것이다.The present invention relates to a composition for cleaning semiconductor substrates (including devices, silicon wafers, LCDs, photomasks, etc.) and other semiconductor devices. And other additives, such as chelating agents or surfactants, are mixed with the alkaline cleaner SC1 (standard clean 1; APM), which is used to clean particles, including photomasks. And calcium, iron, zinc, etc.).
반도체소자, 파티클 흡착, 금속불순물 오염, SC1, 세정제 Semiconductor Device, Particle Adsorption, Metal Impurity Contamination, SC1, Cleaner
Description
도 1은 본 발명에서 사용한 계면활성제의 흡착메커니즘을 도시화한 것이다.1 illustrates the adsorption mechanism of the surfactant used in the present invention.
도 2는 실험예 1-1에서 카테콜의 파티클 재흡착 방지능력 측정 결과이다.Figure 2 is a measurement result of the particle resorption prevention ability of the catechol in Experimental Example 1-1.
a)는 알루미늄 파티클에 대한 재흡착 실험결과이다.a) shows resorption test results for aluminum particles.
b)는 실리카 파티클에 대한 재흡착 실험결과이다.b) shows the results of the resorption experiment on silica particles.
c)는 PSL(polystyren latex)파티클에 대한 재흡착 실험결과이다.c) shows the results of resorption experiments on PSL (polystyren latex) particles.
도 3은 실험예 1-2에서 DTPMP의 과산화수소 분해 방지능력 측정 결과이다.3 is a measurement result of the hydrogen peroxide decomposition prevention capacity of DTPMP in Experimental Example 1-2.
도 4는 실험예 1-3에서 킬레이트제의 텅스텐 부식방지 효과 측정 결과이다.4 is a result of measuring the tungsten corrosion protection effect of the chelating agent in Experimental Example 1-3.
a)는 카테콜의 농도증가에 따른 부식방지효과를 측정한 것이다.a) is a measure of the corrosion protection effect of increasing catechol concentrations.
b)는 DTPMP의 농도증가에 따른 부식방지효과를 측정한 것이다.b) measures the corrosion protection effect of increasing concentration of DTPMP.
도 5는 실시예 1 조성물의 금속이온 재흡착량 측정 결과이다.5 is a measurement result of the metal ion resorption amount of the composition of Example 1.
도 6은 실시예 1 조성물의 금속이온 세정력 측정 결과이다.6 is a measurement result of the metal ion cleaning power of the composition of Example 1.
도 7은 실시예 2 조성물의 파티클 세정력 측정 결과이다.7 is a particle cleaning power measurement results of the composition of Example 2.
도 8은 실시예 2 조성물의 세정력 측정 결과이다.8 is a result of measuring cleaning power of the composition of Example 2.
도 9는 실시예 3 및 4의 금속이온 세정력 측정 결과이다.9 is a measurement result of the metal ion cleaning power of Examples 3 and 4.
도 10은 실시예 3, 4 조성물의 파티클 세정력 측정결과이다.10 shows particle cleaning power measurement results of Examples 3 and 4 compositions.
도 11은 실시예 5 조성물의 금속이온 세정력을 측정한 결과이다.11 is a result of measuring the metal ion cleaning power of the composition of Example 5.
도 12는 실시예 5 조성물의 파티클 세정력을 측정한 결과이다.12 is a result of measuring particle cleaning power of a composition of Example 5.
본 발명은 반도체 디바이스(Device)용 실리콘웨이퍼, 실리콘 웨이퍼(Si wafer), LCD 및 포토마스크(Photomask) 등을 포함하는 반도체 장치들의 세정을 위한 조성물에 관한 것으로 좀더 상세히는 반도체 기판(Device, Si wafer, LCD, Photomask를 포함)의 파티클 세정을 위해 사용되고 있는 알칼리 세정제 SC1(standard clean 1; APM)에 킬레이트제 및 계면활성제 또는 기타의 첨가제를 일정 조성으로 혼합하여 파티클 세정 이외에 세정과정에서 특정 금속불순물(알루미늄과 칼슘, 철, 아연 등)의 오염을 방지할 수 있는 반도체 소자의 세정용 조성물에 관한 것이다.BACKGROUND OF THE
반도체 집적회로의 집적도가 메가비트(Mbit)급에서 기가비트(Gbit) DRAM (dynamic random access memory)으로 높아져 감에 따라 여러 종류의 반도체 박막이 다층으로 적층된 구조의 미세 패턴을 가공해야 할 필요성이 점차 증가되고 있다. 이에 따라 반도체 소자 제조시 발생되는 공정 불량을 줄이기 위하여 각 단위 공정이 완료될 때마다 여러 차례에 걸친 기판 세정 공정(예컨대, 산화공정, 확산공정, 사진공정, 식각공정 전·후에 웨이퍼 표면의 오염물 제거를 위하여 실시하는 세정 공정)이 필수적으로 요구됨으로 인해 오염 관리의 중요성과 관리 비용은 지수 함수적으로 증가하고 있다.As the degree of integration of semiconductor integrated circuits increases from megabit (Gbit) to gigabit dynamic random access memory (DRAM), the necessity of processing a fine pattern of a structure in which several kinds of semiconductor thin films are stacked in multiple layers is gradually increased. It is increasing. Accordingly, in order to reduce process defects generated during semiconductor device manufacturing, each substrate process is completed, and substrate cleaning processes (eg, oxidation process, diffusion process, photo process, etching process, etc.) are removed from the wafer surface before and after each process. Due to the necessity of the cleaning process to be carried out for the purpose of cleaning, the importance of the pollution control and the management cost are increasing exponentially.
반도체 기판 세정시 널리 이용되고 있는 세정공정의 대표적인 예로는 1970년 미국 RCA사가 개발한 암모니아수(NH4OH)와 과산화수소(H2O2)에 근거한 RCA 세정 방법 중 하나인 SC1에 메가소닉(megasonic)을 결합한 세정공정을 들 수 있다. SC1 세정공정은 암모니아와 과산화수소, 초순수(H2O)가 부피비로 1:1:5 또는 1:4:20으로 혼합한 65 ~ 95℃의 혼합액을 세정액으로 이용하는 것으로, 통상 과산화수소에 의한 웨이퍼 표면의 산화와 암모니아에 의한 실리콘 표면의 미세 식각이 동시에 이루어지는 방식으로 기판 표면의 오염물 제거가 이루어지게 된다. SC1 용액이 갖는 pH 10~11 사이의 값은 실리콘 기판과 실리카, 알루미나, PSL같은 파티클들이 같은 부호의 제타포텐셜 값을 띠게 하므로 암모니아수에서 해리된 수산기 이온에 의한 실리콘 또는 실리콘 산화층의 식각에 의해 탈착된 파티클들이 웨이퍼 표면으로 재흡착되지 않도록 하며, 이때 함께 조사된 메가소닉은 탈착된 파티클을 웨이퍼 표면으로부터 멀리 이동, 제거시키는 기능을 하게 된다. 그러나 이 세정 공정을 적용하여 웨이퍼 표면의 오염물 제거 작업을 진행할 경우에는 파티클 제거 측면에서는 높은 효율을 얻을 수 있으나 세정 작업시 다음과 같은 몇 가지의 문제가 발생하게 된다.A representative example of a cleaning process widely used for cleaning semiconductor substrates is megasonic in SC1, one of RCA cleaning methods based on ammonia water (NH 4 OH) and hydrogen peroxide (H 2 O 2 ), developed by RCA in 1970. The washing | cleaning process which combined these is mentioned. The SC1 cleaning process uses a mixture of 65-95 ° C. in which ammonia, hydrogen peroxide and ultrapure water (H 2 O) are mixed at a volume ratio of 1: 1: 5 or 1: 4: 20 as a cleaning liquid. Contaminants are removed from the surface of the substrate in such a manner that oxidation and fine etching of the silicon surface by ammonia are simultaneously performed. The value between
첫째, 장치의 패턴이 미세화됨에 따라 관리되어야 할 파티클의 크기도 함께 감소해 가는 반면, 기존의 SC1은 0.10 마이크론 이하의 미세 파티클에 대한 제거 효율에 문제점을 안고 있다. 이는 0.10 마이크론 이하의 파티클은 그 이상의 파티 클에 비해 SC1의 산화, 환원작용과 기존의 1KHz 대의 Frequency를 갖는 초음파 방식으로는 실리콘 웨이퍼 표면으로부터 쉽게 탈착되지 않는 반면, 쉽게 재오염되는 특성을 안고 있기 때문이다.First, as the pattern of the device becomes finer, the size of particles to be managed also decreases, while the conventional SC1 has a problem in removal efficiency for fine particles of 0.10 microns or less. This is because particles smaller than 0.10 micron are easily decontaminated from silicon wafer surface by the oxidation and reduction of SC1 and the ultrasonic method with the frequency of 1KHz compared to the larger particles. to be.
둘째, 세정액 내에 산화제인 과산화수소는 세정액 내에 지속적으로 유입되는 철과 니켈, 구리와 같은 3d 전이원소들의 축적에 의해 분해가 가속화될 수밖에 없어, 과산화수소 분해시 생성된 물로 인해 세정액의 농도가 희석되어 세정 효율과 세정액의 수명이 감소하게 된다. 아울러 과산화수소의 분해과정에서 발생되는 다량의 기포는 메가소닉에 의한 파티클의 세정효과를 감소시키게 된다. 뿐만 아니라 이로 인해 세정 작업시 다량의 과산화수소와 암모니아가 요구되게 되므로 화학액의 비용 상승이 뒤따르게 된다.Second, since hydrogen peroxide, an oxidant in the cleaning solution, can be accelerated by accumulation of 3d transition elements such as iron, nickel, and copper continuously flowing into the cleaning solution, the concentration of the cleaning solution is diluted due to the water generated during decomposition of hydrogen peroxide. And the lifetime of the cleaning liquid is reduced. In addition, a large amount of bubbles generated during the decomposition of hydrogen peroxide reduces the cleaning effect of the particles by megasonic. In addition, this requires a large amount of hydrogen peroxide and ammonia in the cleaning operation, which leads to an increase in the cost of the chemical solution.
셋째, 알칼리 수용액 상에서 철과 알루미늄과 같은 금속은 수산화철과 산화알루미늄과 같은 극세 파티클의 형태로 존재하므로 웨이퍼 표면으로의 재흡착이 발생하기 쉽고, 앞서 기술한 SC1에서의 반응 중 과산화수소에 의한 산화층의 형성시 산화층내로 금속오염물이 포함되는 이유 등으로 인해 필연적으로 금속오염을 유발시킬 수밖에 없으며, 이는 SC2 세정과정을 도입할 수밖에 없는 이유를 제공한다.Third, in the aqueous alkali solution, metals such as iron and aluminum are present in the form of ultrafine particles such as iron hydroxide and aluminum oxide, so that they are easily resorbed to the wafer surface, and formation of an oxide layer by hydrogen peroxide during the reaction in SC1 described above. Metal contamination is inevitably caused by the reason that metal contamination is contained in the oxide layer, which provides a reason for introducing an SC2 cleaning process.
넷째, SC1은 알루미늄과 텅스텐 같은 디바이스의 금속배선 물질에 대해 화학적 침식을 유발하여 디바이스 불량의 원인을 제공한다. 이는 특히나 과산화수소의 분해 과정에 의해 더욱 촉진된다.Fourth, SC1 causes chemical erosion of metallization materials of devices such as aluminum and tungsten to provide a cause of device failure. This is particularly facilitated by the decomposition process of hydrogen peroxide.
다시 말하면, 파티클 세정을 위해 사용되고 있는 알칼리 세정제인 SC1(암모 니아수/과산화수소/초순수)의 세정용액은 0.10㎛ 이하 파티클 세정이 취약하고. 세정과정에서 특정 금속불순물(알루미늄, 칼슘, 철, 아연 등)의 오염을 유발하므로 필연적으로 SC2에 의한 2차 세정과정을 사용할 수밖에 없으며, 과산화수소가 특정 금속이온 (특히 3d 전이 원소들)과 유기물에 의해 급격히 분해되어 세정력 또한 급격히 감소되는 문제점과 알루미늄과 텅스텐에 대한 과도한 침식을 야기하는 문제점을 안고 있다. In other words, the cleaning solution of SC1 (ammonia water / hydrogen peroxide / ultra pure water), which is an alkali cleaner used for particle cleaning, is vulnerable to particle cleaning of 0.10 μm or less. Since the cleaning process causes contamination of certain metal impurities (aluminum, calcium, iron, zinc, etc.), it is inevitable to use a secondary cleaning process by SC2, and hydrogen peroxide is applied to certain metal ions (particularly 3d transition elements) and organics. Due to its rapid decomposition, the cleaning power is also drastically reduced, and there is a problem of causing excessive erosion of aluminum and tungsten.
그러므로 상기 이러한 문제점을 해결할 수 있는 새로운 반도체 소자 세정용액의 개발이 시급한 실정이다.Therefore, it is urgent to develop a new semiconductor element cleaning solution that can solve the above problems.
따라서 본 발명은 기존의 SC1이 갖는 위에서 언급한 근본적인 문제점들을 해결하기 위한 고분자 유기 알코올 화합물과 킬레이션 물질, 라디칼 물질의 조합물을 첨가제로 하는 새로운 개념의 세정제로서 SC1에 미세 파티클 세정력의 강화뿐만 아니라 금속이온에 대한 세정 능력을 부여하는 개념의 세정제이다.Therefore, the present invention is a new concept of a detergent which is a combination of a polymer organic alcohol compound, a chelation substance, and a radical substance to solve the above-mentioned fundamental problems of the existing SC1. It is a cleaning agent of the concept that gives cleaning ability to metal ions.
본 발명의 목적은 기존의 반도체 소자 세정공정에서 SC1 세정 후 SC2 세정을 수행하는 번거로움을 없애, 한 번의 세정으로 파티클과 금속불순물을 한꺼번에 제거할 수 있는 반도체 세정용 조성물을 제공하려는 것이다.An object of the present invention is to provide a semiconductor cleaning composition that can remove particles and metal impurities at a time by eliminating the hassle of performing SC2 cleaning after SC1 cleaning in the conventional semiconductor device cleaning process.
또한, 본 발명의 목적은 기존의 SC1 세정용액의 조성에 킬레이팅제 및 계면활성제를 첨가하여 파티클과 금속불순물을 한꺼번에 제거할 수 있는 반도체 세정용 조성물을 제공하려는 것이다.In addition, an object of the present invention is to provide a semiconductor cleaning composition that can remove particles and metal impurities all at once by adding a chelating agent and a surfactant to the composition of the existing SC1 cleaning solution.
상기 목적을 달성하기 위하여, 본 발명자는 기존 반도체소자(Device, Si wafer, LCD, Photomask를 포함)의 파티클 세정을 위해 사용되고 있는 알칼리 세정제인 SC1 세정용액에 킬레이트제 및 계면활성제 또는 기타 첨가제들을 첨가하여 알루미늄, 칼슘, 철, 아연 등의 금속 불순물 오염을 한꺼번에 제거할 수 있도록 하는 반도체소자 세정용 조성물을 개발하였다.In order to achieve the above object, the present inventors add a chelating agent and a surfactant or other additives to the SC1 cleaning solution, which is an alkaline cleaner used for particle cleaning of existing semiconductor devices (including devices, Si wafers, LCDs, and photomasks). A semiconductor device cleaning composition has been developed to remove metal impurities such as aluminum, calcium, iron, and zinc at once.
본 발명은 29중량% 암모니아, 31중량% 과산화수소, 초순수를 부피비로 1:1~4:5~20 혼합한 혼합액과 DTPMP(Diethylenetriamine- N,N,N',N",N"- Pentakis (methylenephosphonic acid)) 또는 CDTA(Trans-1,2-diaminocyclohexane tetraacetic acid) 중 1종과 카테콜(catechol), 4-tert-부틸카테콜(4-tert-butylcatechol) 또는 2,3-나프탈렌다이올(2,3-naphthalenediol) 중에서 선택된 1종을 2:0.1~2의 몰비로 혼합한 킬레이트제가 최종 조성물에 대하여 10~10000㎎/L 함유되는 반도체 소자 세정용 조성물에 관한 것이다.The present invention is a mixture of 29wt% ammonia, 31wt% hydrogen peroxide, ultrapure water in a volume ratio of 1: 1 to 4: 5-20 and DTPMP (Diethylenetriamine-N, N, N ', N ", N" -Pentakis (methylenephosphonic acid)) or CDTA (Trans-1,2-diaminocyclohexane tetraacetic acid) and catechol, 4-tert-butylcatechol or 2,3-naphthalenediol (2 , 3-naphthalenediol) relates to a semiconductor device cleaning composition containing 10 to 10000 mg / L of the chelating agent mixed with one selected from a molar ratio of 2: 0.1-2.
상기 킬레이트제는 DTPMP와 카테콜이 2:0.1~2의 몰비로 혼합하고, 최종 세정액 기준으로 10~10000㎎/L의 농도로 첨가한다. 10㎎/L 미만을 첨가하면 효과가 미미하고 10000㎎/L을 초과하면 경제적이지 못하다.The chelating agent is mixed with DTPMP and catechol in a molar ratio of 2: 0.1-2, and added at a concentration of 10-10000 mg / L based on the final cleaning solution. The addition of less than 10 mg / L is insignificant, if more than 10000 mg / L is not economical.
또한, 본 발명은 상기 세정용 조성물에 추가로 비이온성 계면활성제, 라디칼 개시제 및 라디칼 분해제로 이루어지는 그룹에서 1종 또는 2종 이상을 첨가하는 것을 특징으로 한다.In addition, the present invention is characterized by adding one or two or more of the above-described cleaning compositions in the group consisting of nonionic surfactants, radical initiators and radical decomposers.
또한, 본 발명은 상기 비이온성 계면활성제, 라디칼 개시제 및 라디칼 분해제가 최종세정용 조성물에 대하여 각각 1~1000㎎/L, 10~100000㎎/L, 10~100000㎎/L 로 함유되는 것을 특징으로 한다. In addition, the present invention is characterized in that the nonionic surfactant, the radical initiator and the radical decomposing agent are contained in 1 ~ 1000mg / L, 10 ~ 100000mg / L, 10 ~ 100000mg / L, respectively, with respect to the final cleaning composition do.
상기 비이온성 계면활성제의 최종 세정액 조성물에 대하여 1~1000㎎/L 농도로 첨가한다. 1㎎/L 미만의 양을 첨가하면 효과가 미미하고 1000㎎/L을 초과하는 양의 첨가는 경제적이지 못하다. It is added at a concentration of 1 to 1000 mg / L relative to the final cleaning liquid composition of the nonionic surfactant. Adding an amount less than 1 mg / L is ineffective and adding an amount exceeding 1000 mg / L is not economical.
그리고, 라디칼 개시제 및 라디칼 분해제는 최종 세정액 조성물에 대하여 각각 10㎎/L~100000㎎/L을 첨가한다. 10㎎/L 미만의 양을 첨가하면 효과가 미미하고 100000㎎/L을 초과하는 양의 첨가는 경제적이지 못하다. The radical initiator and the radical decomposer add 10 mg / L to 100000 mg / L, respectively, to the final washing liquid composition. Adding an amount less than 10 mg / L is ineffective and adding an amount exceeding 100000 mg / L is not economical.
또한, 본 발명은 상기 비이온성 계면활성제가 지방족 폴리하이드릭 알코올(aliphatic polyhydric alcohol)계인 것을 특징으로 한다.In addition, the present invention is characterized in that the nonionic surfactant is an aliphatic polyhydric alcohol.
또한, 본 발명은 상기 라디칼개시제가 상기 라디칼개시제는 2,2-아조비스(2-메틸프로피오니트릴)(2,2-azobis(2-methylpropionitrile)) 또는 2,2-아조비스 염화수소(2,2-azobis hydrochloride)인 것을 특징으로 한다.In addition, the radical initiator is the radical initiator is 2,2-azobis (2-methylpropionitrile) (2,2-azobis (2-methylpropionitrile)) or 2,2-azobis hydrogen chloride (2, 2-azobis hydrochloride).
또한, 본 발명은 상기 라디칼 분해제가 tert-부틸하이드로겐퍼옥사이드( tert-butyl hydrogen peroxide)인 것을 특징으로 한다.In addition, the present invention is characterized in that the radical decomposition agent is tert-butyl hydrogen peroxide (tert-butyl hydrogen peroxide).
본 발명은 DTPMP 또는 DTPPH(Diethylenetriamine-N,N,N',N",N"- Pentakis (methylene-phosphonic acid)와 카테콜(catechol)의 혼합물 형태의 킬레이션제의 첨가하여 SC1의 단점인 금속불순물의 재흡착 문제를 해결하였다. 상기 두 킬레이션 물질들은 단독으로 사용할 때보다 혼합하여 사용할 때 금속이온과 파티클에 대해 좀더 우수한 세정효과를 갖음을 확인하였다. The present invention is a metal that is a disadvantage of SC1 by adding a chelating agent in the form of a mixture of DTPMP or DTPPH (Diethylenetriamine-N, N, N ', N ", N" -Pentakis (methylene-phosphonic acid) and catechol). The problem of re-adsorption of impurities was solved The two chelation materials were found to have a better cleaning effect on metal ions and particles when used in combination than when used alone.
금속이온에 대한 세정효과의 향상은 DTPMP와 카테콜 개개의 물질들이 금속이온 개개에 대해 갖는 킬레이션 능력(stability constant value)이 서로 차이가 있고, 이러한 킬레이션의 차이를 DTPMP와 카테콜들이 서로 상호 보완작용을 해 주기 때문이다. The improvement of the cleaning effect on metal ions is different from each other in the stability constant value of the DTPMP and the catechols with respect to the individual metal ions, and the difference in the chelation between the DTPMP and the catechols is mutually different. Because it complements.
파티클에 대한 세정효과의 향상 또한 카테콜이 갖는 파티클의 재흡착 방지능력과 DTPMP가 카테콜의 파티클 탈착능력 저하문제를 보완해 줄 수 있기 때문에 이루어지는 것이다. 이때, 카테콜 대신 그 유도체인 4-tert-부틸카테콜(4-tert butyl catechol) 또는 2,3-나프탈렌다이올이 같은 양으로 쓰일 수도 있다.Improving the cleaning effect on the particles is also achieved because catechol's ability to prevent resorption of particles and DTPMP can compensate for the problem of particle desorption of catechol. At this time, instead of the catechol, 4-tert-butyl catechol (4-tert butyl catechol) or 2,3-naphthalenediol may be used in the same amount.
비이온 계면활성제로는 폴리하이드릭알콜(aliphatic polyhydric alcohol)계를 사용하며, 본 발명에서는 비이온성 계면활성제로 주로 Drynon-C(상표명, NIKKA-SEICO사의 제품)를 사용하였으며, 이는 지방족 폴리하이드릭알콜(aliphatic polyhydric alcohol)과 글리콜 타입 용매(Glycol type solvent), 순수의 고분자 혼합물로 일반적인 계면활성제와 같이 탈착된 입자물질의 표면에 배위하는 형태를 취하지 않고 실리콘 기판과 입자 사이에 침투하여 파티클을 고분자 물질이 완전히 감싸는 형태를 취함으로써 파티클의 탈착과 재흡착 방지효과를 나타낸다.As the nonionic surfactant, a polyhydric alcohol (aliphatic polyhydric alcohol) system is used, and in the present invention, a nonionic surfactant mainly uses Drynon-C (trade name, manufactured by NIKKA-SEICO), which is an aliphatic polyhydric. A polymer mixture of alcoholic (aliphatic polyhydric alcohol), glycol type solvent, and pure water, which penetrates between the silicon substrate and particles without coordinating to the surface of desorbed particulate matter like a common surfactant. The material completely encloses the particles, thus preventing particle desorption and resorption.
즉, 본 발명은 DTPMP/카테콜 혼합물의 첨가는 몇몇 이온(알루미늄, 구리)에 대해 SC2(standard clean-2; HPM) 보다 우월한 세정효과를 기대할 수 있고 세정 조성물의 수명을 연장하고, 금속배선 부식방지 및 SC1이 가지는 고유한 기능인 파티 클 세정력에도 개선을 기대할 수 있다.That is, the present invention is the addition of the DTPMP / catechol mixture For some ions (aluminum, copper), superior cleaning effects can be expected over SC2 (standard clean-2; HPM), which extends the life of cleaning compositions, prevents corrosion of metal wiring and particle cleaning, which is a unique feature of SC1. You can expect.
비이온성 계면활성제 특히, Drynon-C의 첨가는 파티클의 탈착과 재흡착 방지 효과를 통해 파티클 세정효과를 기대할 수 있고 일반적인 계면활성제의 첨가와 유사하게 실리콘 웨이퍼의 표면에 대한 피트 발생 등의 손상도 억제할 수가 있다. The addition of nonionic surfactants, especially Drynon-C, is expected to clean particles by preventing particle desorption and resorption, and also suppresses damage such as pitting on the surface of the silicon wafer, similar to the addition of surfactants. You can do it.
또한, 라디칼 개시제 또는 라디칼분해제는 SC1 세정제에 의한 금속 이온의 탈착과 파티클의 탈착능력을 좀더 향상시킬 수 있다. 안정한 상태의 라디칼 개시 또는 분해물질은 금속이온의 촉매작용에 의해 자신은 라디칼 물질로 분해되고 그 과정에서 산화, 환원반응에 의해 금속이온과 파티클의 탈착이 촉진된다. 라디칼 물질과 킬레이션 물질과의 동시 사용은 라디칼 물질의 분해를 지연시켜 주는 효과가 있어 라디칼 물질에 의한 과산화수소의 급격한 분해는 관찰되지 않고 SC1의 수명은 기존 SC1과 차이가 없었다.In addition, the radical initiator or the radical decomposing agent can further improve the desorption capacity of the metal ions and the particles by the SC1 cleaner. Radical initiation or decomposition products in a stable state are decomposed into radical materials by the catalysis of metal ions, and in the process, desorption of metal ions and particles is promoted by oxidation and reduction reactions. Simultaneous use of radicals and chelating materials has the effect of delaying the decomposition of radicals, so the rapid decomposition of hydrogen peroxide by radicals is not observed and the lifetime of SC1 was not different from the existing SC1.
이하, 본 발명의 구성을 실시예를 통하여 자세히 살펴본다. 그러나 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, the configuration of the present invention will be described in detail through examples. However, the scope of the present invention is not limited to the following examples.
실시예 1Example 1
암모니아수/과산화수소/초순수=1/4/20(부피비; 암모니아수: 29중량%, 과산화수소: 31중량% 농도를 갖는 수용액 사용)의 혼합액에 최종 조성물 기준으로 DTPMP/카테콜=2/1(몰비) 혼합물을 200㎎/L 첨가하여 세정용 조성물 70ℓ를 제조하였다.A mixture of ammonia water / hydrogen peroxide / ultra pure water = 1/4/20 (volume ratio; aqueous solution having a concentration of 29% by weight ammonia water and 31% by weight hydrogen peroxide) mixture of DTPMP / catechol = 2/1 (molar ratio) based on the
실시예 2Example 2
암모니아수/과산화수소/초순수=1/4/20(부피비; 암모니아수: 29중량%, 과산화수소: 31중량% 농도를 갖는 수용액 사용)의 혼합액에 제조하고 최종 조성물 기준으로 DTPMP/카테콜=2/1(몰비) 혼합물 200㎎/L와 Drynon-C(Aliphatic polyhydric alcohol, Glycol type solvent 및 Pure water의 고분자 혼합물; NIKKA-SEICO사)를 50㎎/L 첨가하여 세정용 조성물 70ℓ를 제조하였다.Prepared in a mixture of ammonia water / hydrogen peroxide / ultra pure water = 1/4/20 (volume ratio; aqueous solution having a concentration of 29% by weight ammonia and hydrogen peroxide: 31% by weight) and based on the final composition, DTPMP / catechol = 2/1 (molar ratio) ) 200 mg / L mixture and 50 mg / L of drynon-C (Aliphatic polyhydric alcohol, a polymer mixture of Glycol type solvent and Pure water; NIKKA-SEICO) were added to prepare 70 l of the cleaning composition.
실시예 3Example 3
암모니아수/과산화수소/초순수=1/4/20(부피비; 암모니아수: 29중량%, 과산화수소: 31중량% 농도를 갖는 수용액 사용)의 혼합액에 최종 조성물 기준으로 DTPMP/카테콜=2/1(몰비) 혼합물 200㎎/L와 라디칼개시제로 2,2-아조비스(2-메틸프로피오니트릴(2,2-azobis (2-methylpropionitrile) 50㎎/L를 첨가하여 세정용 조성물 70ℓ를 제조하였다.A mixture of ammonia water / hydrogen peroxide / ultra pure water = 1/4/20 (volume ratio; aqueous solution having a concentration of 29% by weight ammonia water and 31% by weight hydrogen peroxide) mixture of DTPMP / catechol = 2/1 (molar ratio) based on the final composition 70 L of a cleaning composition was prepared by adding 200 mg / L and 50 mg / L of 2,2-azobis (2-methylpropionitrile) as a radical initiator.
실시예 4Example 4
암모니아수/과산화수소/초순수=1/4/20(부피비; 암모니아수: 29중량%, 과산화수소: 31중량% 농도를 갖는 수용액 사용)의 혼합액에 최종 조성물 기준으로 DTPMP/카테콜=2/1(몰비) 혼합물 200㎎/L와 라디칼분해제로 tert-부틸하이드로겐퍼옥사이드(tert-butylhydrogenperoxide) 200㎎/L를 첨가하여 세정용 조성물 70ℓ를 제조하였다.A mixture of ammonia water / hydrogen peroxide / ultra pure water = 1/4/20 (volume ratio; aqueous solution having a concentration of 29% by weight ammonia water and 31% by weight hydrogen peroxide) mixture of DTPMP / catechol = 2/1 (molar ratio) based on the
실시예 5Example 5
암모니아수/과산화수소/초순수=1/4/20(부피비; 암모니아수: 29중량%, 과산화수소: 31중량% 농도를 갖는 수용액 사용) 혼합액에 최종 조성물 기준으로 DTPMP/카테콜=2/1(몰비) 혼합물 200㎎/L, Drynon-C(aliphatic polyhydric alcohol, Glycol type solvent 및 Pure water의 고분자 혼합물; NIKKA-SEICO사) 50㎎/L, 라디칼분해제로 TBHP(tert-butylhydrogenperoxide) 200㎎/L을 첨가하여 세정용 조성물 70ℓ를 제조하였다.Ammonia water / hydrogen peroxide / ultra pure water = 1/4/20 (volume ratio; using aqueous solution having a concentration of 29% by weight ammonia water and 31% by weight hydrogen peroxide) DTPMP / catechol = 2/1 (molar ratio)
비교예 1Comparative Example 1
암모니아수/과산화수소/초순수=1/4/20(부피비; 암모니아수: 29중량%, 과산화수소: 31중량% 농도를 갖는 수용액 사용) 혼합액 70ℓ를 제조하였다.70 L of a mixed solution of aqueous ammonia / hydrogen peroxide / ultra pure water = 1/4/20 (volume ratio; aqueous ammonia: 29 wt%, hydrogen peroxide: 31 wt%) was prepared.
비교예 2Comparative Example 2
암모니아수/과산화수소/초순수=1/4/20(부피비; 암모니아수: 29중량%, 과산화수소: 31중량% 농도를 갖는 수용액 사용) 혼합액에 최종 조성물 기준으로 DTPMP 200㎎/L을 첨가한 조성물을 제조하였다.Ammonia water / hydrogen peroxide / ultra pure water = 1/4/20 (volume ratio; aqueous solution having a concentration of 29% by weight of ammonia and 31% by weight of hydrogen peroxide) was added to the mixed solution to prepare a composition in which
비교예 3Comparative Example 3
암모니아수/과산화수소/초순수=1/4/20(부피비; 암모니아수: 29중량%, 과산화수소: 31중량% 농도를 갖는 수용액 사용) 혼합액에 최종 조성물 기준으로 카테콜(catechol) 200㎎/L을 첨가한 조성물을 제조하였다.Aqueous ammonia / hydrogen peroxide / ultra pure water = 1/4/20 (volume ratio; aqueous solution having a concentration of 29% by weight of ammonia and 31% by weight of hydrogen peroxide) to the mixed solution was added 200 mg / L of catechol based on the final composition Was prepared.
실험예 1: 킬레이트제의 특성 확인 Experimental Example 1: Confirmation of properties of the chelating agent
1-1. 카테콜의1-1. Catechol 파티클 재흡착 방지 효과 Particle resorption prevention effect
암모니아수/과산화수소/초순수=1/4/20 부피비(암모니아수: 29중량%, 과산화수소: 31중량% 농도를 갖는 수용액 사용)의 혼합물을 대조군으로 하고, 상기 대조군과 동일 조건의 혼합물에 최종 조성물에 대비 카테콜 200㎎/L과 CDTA 200㎎/L을 각각 포함하는 70ℓ씩의 조성물을 제조하였다.A mixture of ammonia water / hydrogen peroxide / ultra pure water = 1/4/20 volume ratio (aqueous ammonia: 29% by weight, hydrogen peroxide: 31% by weight) was used as a control, and the mixture was prepared in the same conditions as the control. 70 L of a composition containing 200 mg / L of call and 200 mg / L of CDTA, respectively, were prepared.
대조군과 각각의 조성물이 채워진 70ℓ쿼츠 용기에 1ml 부피당 파티클 개수가 30000개 수준이 되도록 0.08~0.11㎛ 크기를 갖는 파티클(실리카/알루미나/폴리스틸렌라텍스=1/1/1 혼합 파티클)을 첨가하고 10분간 8인치 웨이퍼를 침적시키고 메가소닉(955 KHz.360 Watt)을 병행한 후 별도의 70ℓ 쿼츠용기에서 초순수로 6분간 린스한 후 스핀건조시켰다.To the 70 liter quartz container filled with the control and each composition, add particles (silica / alumina / polystyrene latex = 1/1/1 mixed particles) having a size of 0.08 to 0.11 μm so that the number of particles per 1 ml volume is 30000. The 8-inch wafer was deposited and megasonic (955 KHz.360 Watt) was added in parallel, followed by rinsing with ultrapure water for 6 minutes in a separate 70 L quartz vessel, followed by spin drying.
상기 건조된 웨이퍼를 Tencor 6220을 이용해 0.11㎛ 크기 이상의 파티클만을 측정하여 도 2에 나타냈다.The dried wafer was measured using only Tencor 6220 particles of 0.11㎛ size is shown in Figure 2.
1-2. DTPMP에 의한 과산화수소 분해 방지력 비교1-2. Comparison of prevention of hydrogen peroxide decomposition by DTPMP
암모니아수/과산화수소/초순수=1/4/20 부피비(암모니아수: 29중량%, 과산화수소: 31중량% 농도를 갖는 수용액 사용)의 혼합물을 대조군으로 하고, 상기 대조군과 동일한 조건의 혼합물에 각각 DTPMP, CDTA, 카테콜을 200㎎/L씩 첨가하여 70ℓ의 세정용 조성물을 각각 제조하였다.A mixture of ammonia water / hydrogen peroxide / ultra pure water = 1/4/20 volume ratio (aqueous ammonia: 29% by weight, hydrogen peroxide: 31% by weight) was used as a control, and DTPMP, CDTA, Catechol was added 200 mg / L each to prepare 70 L of cleaning composition, respectively.
상기 각 조성물에 Fe 이온을 조성물 기준 10㎍/L로 첨가하고. 65℃에서 10분마다 각 조성물에서의 과산화수소의 농도 측정하여 도 3에 기재하였다.Fe ions were added to each composition at 10 μg / L based on the composition. The concentration of hydrogen peroxide in each composition was measured in 10 minutes at 65 ° C. and shown in FIG. 3.
1-3. 텅스텐 금속배선에 대한 에칭률 비교1-3. Comparison of Etch Rate for Tungsten Metallization
본 실험예에서는 세정조성물에서 킬리이트제의 농도변화에 따른 텅스텐의 에 칭률을 측정한 것이다.In this experimental example, the etching rate of tungsten was measured according to the concentration change of the chelating agent in the cleaning composition.
암모니아수/과산화수소/초순수=1/4/20 부피비(암모니아수: 29중량%, 과산화수소: 31중량% 농도를 갖는 수용액 사용) 혼합물에 최종 조성물을 기준으로 카테콜이 0, 250, 500, 1000, 2000, 3000㎎/L 함유하는 조성물을 1ℓ씩 제조하였다.Aqueous ammonia / hydrogen peroxide / ultra pure water = 1/4/20 volume ratio (using an aqueous solution having a concentration of 29% by weight of ammonia water and 31% by weight of hydrogen peroxide) in the mixture with
그리고 암모니아수/과산화수소/초순수=1/4/20 부피비(암모니아수: 29중량%, 과산화수소: 31중량% 농도를 갖는 수용액 사용) 혼합물에 최종 조성물을 기준으로 카테콜이 0, 250, 500, 1000, 1500, 2000㎎/L 함유하는 조성물을 1ℓ씩 제조하였다.And in the mixture of ammonia water / hydrogen peroxide / ultra pure water = 1/4/20 volume ratio (using an aqueous solution having a concentration of 29% by weight of ammonia and 31% by weight of hydrogen peroxide) in the mixture,
상기 각각의 60℃로 가열된 조성물이 채워진 1 리터 용기에 텅스텐 금속막대를 각각 10분간 침적시키고 텅스텐을 분석하여 도 4a, b에 기재하였다.Tungsten metal rods were deposited for 10 minutes in a 1 liter container filled with the respective composition heated to 60 ° C. and tungsten was analyzed and described in FIGS. 4A and 4B.
실험예 2: 실시예 1 조성물의 금속이온의 재흡착량 측정Experimental Example 2: Measurement of resorption amount of metal ions of Example 1 composition
본 실험예는 실시예 1 조성물과 비교예 1 내지 3의 조성물을 이용하여 금속이온의 재흡착량을 측정하였다.In this Experimental Example, the amount of resorption of metal ions was measured using the composition of Example 1 and Comparative Examples 1 to 3.
상기 각각의 조성물을 Na, Al, Ca, Cr, Fe, Ni, Cu, Zn의 원소들 각각에 대해 1ppb 농도로 인위적으로 오염시키고 깨끗한 8인치 실리콘 웨이퍼를 70℃에서 메가소닉과 함께 6분간 침적 세정한 후 별도의 70ℓ 쿼츠 용기에서 초순수로 6분간 린스한 후 스핀건조하였다.Each composition was artificially contaminated at a concentration of 1 ppb for each of the elements of Na, Al, Ca, Cr, Fe, Ni, Cu, and Zn, and a clean 8-inch silicon wafer was immersed and cleaned for 6 minutes with megasonic at 70 ° C. After rinsing for 6 minutes with ultrapure water in a separate 70 L quartz vessel and spin-dried.
상기 건조된 웨이퍼를 불산과 과산화수소 혼합액을 이용해 웨이퍼 표면의 금속이온을 추출하고 ICP-MS로 분석하여 웨이퍼에 흡착된 금속이온의 양을 확인하였다. 도 5에 상기 각각의 원소들에 대한 흡착량을 그래프로 나타냈다.The dried wafer was extracted with metal ions on the surface of the wafer using a mixture of hydrofluoric acid and hydrogen peroxide and analyzed by ICP-MS to determine the amount of metal ions adsorbed on the wafer. 5 shows the adsorption amount for each of the above elements graphically.
실험예 3: 실시예 1 조성물의 금속이온의 세정력 비교Experimental Example 3: Comparison of cleaning power of metal ions of Example 1 composition
표면을 일정 수준을 유지하도록 인위적으로 오염시킨 8인치 실리콘 웨이퍼를 실시예 1 및 비교예 1 내지 3의 조성물을 이용해 70ℓ 쿼츠용기에서 6분간 침적하고 세정한 후 별도의 70ℓ쿼츠용기에서 초순수로 6분간 린스하고 스핀건조하였다.The 8-inch silicon wafer, which was artificially contaminated to maintain a constant level, was deposited and cleaned for 6 minutes in a 70 L quartz container using the compositions of Examples 1 and Comparative Examples 1 to 3, followed by 6 minutes of ultrapure water in a separate 70 L quartz container. Rinse and spin dry.
상기 건조된 웨이퍼는 불산과 과산화수소 혼합액을 이용해 웨이퍼 표면의 금속이온을 추출 후 ICP-MS로 분석하여 그 결과를 도 6에 나타냈다.The dried wafer was extracted with metal ions on the wafer surface using a mixture of hydrofluoric acid and hydrogen peroxide, and analyzed by ICP-MS. The results are shown in FIG. 6.
실험예 4: 실시예 2 조성물의 파티클 세정력 비교Experimental Example 4: Comparison of Particle Cleaning Strength of the Composition of Example 2
본 실험예는 파티클 세정력을 측정하는 것으로 실리카 파티클과 유기물을 주 성분으로 하는 알칼리 슬러리를 이용해 CMP를 진행한 웨이퍼를 비교예 1 및 실시예 1 내지 2의 조성물을 이용하여 70℃에서 메가소닉(955kHz, 300Watt)을 조사하면서 10분간 세정한 후 초순수로 6분간 린스하고 스핀건조한 후 SP1을 이용해 0.065㎛ 크기 이상의 파티클만을 측정하여 도 7에 나타냈다.In this Experimental Example, the particle cleaning power was measured. Megasonic (955 kHz) was carried out at 70 ° C. using the composition of Comparative Examples 1 and 1 and 2 on a wafer subjected to CMP using an alkali slurry composed mainly of silica particles and organics. , 300Watt) was irradiated for 10 minutes, rinsed with ultrapure water for 6 minutes, spin-dried and only particles of 0.065 μm or more were measured using SP1, and are shown in FIG. 7.
실험예 5: 실시예 2 조성물의 세정력 비교Experimental Example 5: Comparison of cleaning power of the composition of Example 2
본 실험예는 표면에 일정 수준을 유지하도록 인위적으로 오염시킨 8인치 실리콘 웨이퍼를 HPM(hydrochloric acid peroxide mixture: SC2), FPM(불산과수, HF/H2O2) 세정조성물과 실시예 2의 세정조성물 70℃에서 메가소닉(955kHz, 300Watt) 을 조사하면서 6분간 침적 세정을 한 후 초순수로 6분간 린스한 후 스핀건조하였다. In this experiment, the 8-inch silicon wafer, which was artificially contaminated to maintain a certain level on the surface, was washed with HPM (hydrochloric acid peroxide mixture (SC2), FPM (HF / H 2 O 2 ) cleaning composition and The cleaning composition was irradiated with megasonic (955 kHz, 300 Watts) at 70 ° C. for 6 minutes, then rinsed with ultrapure water for 6 minutes and spin-dried.
상기 건조된 웨이퍼를 불산과 과산화수소 혼합액을 이용해 웨이퍼 표면의 금속이온을 추출하여 각각의 함량을 측정하고 결과를 도 8에 나타냈다.The dried wafer was extracted with metal ions on the surface of the wafer using a mixture of hydrofluoric acid and hydrogen peroxide to measure the respective contents thereof, and the results are shown in FIG. 8.
실험예 6: 실시예 3 및 4 조성물의 금속이온 세정력 비교Experimental Example 6: Comparison of metal ion cleaning power of the compositions of Examples 3 and 4
실리콘 웨이퍼 표면에 일정 수준을 유지하도록 인위적으로 오염시킨 8인치 실리콘 웨이퍼를 실시예 1, 3, 4의 70℃ 조성물 각각에 메가소닉(955kHz, 300Watt)을 조사하면서 6분간 침적세정한 후 별도의 70ℓ 쿼츠용기에 초순수로 6분간 린스하고 스핀건조하였다.An 8-inch silicon wafer that was artificially contaminated to maintain a certain level on the surface of the silicon wafer was immersed for 6 minutes while irradiating megasonic (955 kHz, 300 Watts) to each of the 70 ° C. compositions of Examples 1, 3, and 4, followed by a separate 70L. Rinse with ultrapure water for 6 minutes in a quartz container and spin-dry.
상기 건조된 웨이퍼를 불산과 과산화수소 혼합액을 이용해 웨이퍼 표면의 금속이온을 추출 후 ICP-MS로 분석하고 그 결과를 도 9에 나타냈다.The dried wafer was extracted with metal ions on the wafer surface using a mixture of hydrofluoric acid and hydrogen peroxide, and analyzed by ICP-MS, and the results are shown in FIG. 9.
실험예 7: 실시예 3 및 4 조성물의 파티클 세정력 비교Experimental Example 7: Comparison of Particle Cleaning Strength of Examples 3 and 4 Compositions
파티클 세정력을 비교하기 위하여 실리카 파티클과 유기물을 주성분으로 하는 알칼리 슬러리를 이용해 CMP를 진행한 웨이퍼를 실시예 1, 실시예 3. 실시예 4의 70℃ 세정조성물에 메가소닉(955kHz, 300Watt)을 조사하면서 10분간 세정한 후 초순수로 6분간 린스한 후 스핀건조하였다. 상기 건조된 웨이퍼는 SP1을 이용해 0.065㎛ 크기 이상의 파티클만을 측정하고 그 결과를 도 10에 나타냈다.In order to compare the particle cleaning power, megasonic (955 kHz, 300 Watts) was irradiated to the 70 ° C. cleaning composition of Example 1 and Example 3. The wafer was subjected to CMP using an alkali slurry composed mainly of silica particles and organic materials. After washing for 10 minutes while rinsing with ultrapure water for 6 minutes and spin-dried. The dried wafer was measured only particles of 0.065 ㎛ size or more using SP1 and the results are shown in FIG.
실험예 8: 실시예 5 조성물의 금속이온 세정력 비교Experimental Example 8: Comparison of metal ion cleaning power of Example 5 composition
본 실험예는 실시예 5의 조성물의 금석 세정력을 측정하기 위하여 일정 수준으로 인위적으로 오염시킨 8인치 실리콘 웨이퍼를 70℃의 실시예 5의 조성물에 메가소닉(955kHz, 300Watt)을 조사하면서 6분간 침적 세정을 한 후 별도의 70ℓ 쿼츠용기에서 초순수로 6분간 린스한 후 스핀건조하였다. 상기 건조된 웨이퍼는 불산과 과산화수소 혼합액을 이용해 웨이퍼 표면의 금속이온을 추출한 후 ICP-MS로 분석하고 그 결과를 도 11에 나타냈다.In this experimental example, an 8-inch silicon wafer which was artificially contaminated to a certain level to measure the gold cleaning power of the composition of Example 5 was deposited for 6 minutes while irradiating the composition of Example 5 to the composition of Example 5 at megasonic (955 kHz, 300 Watt). After washing, the resultant was rinsed with ultrapure water for 6 minutes in a separate 70 L quartz container, followed by spin drying. The dried wafer was extracted with metal ions on the wafer surface using a mixture of hydrofluoric acid and hydrogen peroxide, and analyzed by ICP-MS, and the results are shown in FIG. 11.
실험예 9: 실시예 5 조성물의 파티클 세정력 비교Experimental Example 9: Comparison of Particle Cleaning Strength of the Composition of Example 5
본 실험예는 파티클 세정력을 측정하기 위하여, 실리카 파티클과 유기물을 주 성분으로 하는 알칼리 슬러리를 이용해 CMP를 진행한 웨이퍼를 각각 비교예 1의 조성물과 실시예 5의 세정용 조성물에서 메가소닉(955kHz, 300Watt)을 조사하면서 10분간 세정한 후 초순수로 6분간 린스하고 스핀건조한 후 SP1을 이용해 0.065㎛ 크기 이상의 파티클만을 측정하고 그 결과를 도 12에 나타냈다.In this experimental example, in order to measure the particle cleaning power, the wafers subjected to CMP using an alkali slurry containing silica particles and organic substances as main components were each prepared in megasonic (955 kHz, 300Watt) was irradiated for 10 minutes, rinsed with ultrapure water for 6 minutes, spin-dried and only particles of 0.065 μm or more were measured using SP1, and the results are shown in FIG. 12.
기존의 SC1 조성물에 비하여 실시예 5의 조성물에서 세정한 웨이퍼의 잔류 파티클의 개수가 훨씬 적음을 알 수 있었다.It was found that the number of particles remaining in the wafer cleaned in the composition of Example 5 was much smaller than that of the conventional SC1 composition.
본 발명은 킬레이트 혼합물과 계면활성제 또는 라디칼 물질을 혼합하여 파티클 재흡착을 방지하고 금속불순물 이온의 제거효과가 향상된 반도체 소자 세정용 조성물을 제공할 수 있다.The present invention may provide a composition for cleaning a semiconductor device in which a chelate mixture and a surfactant or a radical material are mixed to prevent particle resorption and the metal impurities are removed.
또한, 본 발명의 세정용 조성물은 반복 세정공정이 없이 한 번의 세정으로 파티클 제거와 파티클 재흡착 방지, 금속이온 제거의 효과를 거둘 수 있어 경제적이다.In addition, the cleaning composition of the present invention is economical because it can achieve the effect of removing particles, preventing re-adsorption of particles, and removing metal ions by one washing without a repeated washing process.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050027260A KR100679007B1 (en) | 2005-03-31 | 2005-03-31 | Cleaning composition for semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050027260A KR100679007B1 (en) | 2005-03-31 | 2005-03-31 | Cleaning composition for semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060104810A KR20060104810A (en) | 2006-10-09 |
KR100679007B1 true KR100679007B1 (en) | 2007-02-06 |
Family
ID=37634811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050027260A KR100679007B1 (en) | 2005-03-31 | 2005-03-31 | Cleaning composition for semiconductor device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100679007B1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09111224A (en) * | 1995-08-17 | 1997-04-28 | Mitsubishi Chem Corp | Surface-treating composition and surface-treatment of substrate using the composition |
KR20040077805A (en) * | 2002-01-28 | 2004-09-06 | 미쓰비시 가가꾸 가부시키가이샤 | Liquid detergent for semiconductor device substrate and method of cleaning |
-
2005
- 2005-03-31 KR KR1020050027260A patent/KR100679007B1/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09111224A (en) * | 1995-08-17 | 1997-04-28 | Mitsubishi Chem Corp | Surface-treating composition and surface-treatment of substrate using the composition |
KR20040077805A (en) * | 2002-01-28 | 2004-09-06 | 미쓰비시 가가꾸 가부시키가이샤 | Liquid detergent for semiconductor device substrate and method of cleaning |
Also Published As
Publication number | Publication date |
---|---|
KR20060104810A (en) | 2006-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101331747B1 (en) | Compositions for processing of semiconductor substrates | |
KR101097073B1 (en) | Substrate cleaning solution for semiconductor device and method for manufacturing semiconductor device | |
CN100379837C (en) | Supercritical carbon dioxide/chemical formulation for ashed and unashed aluminum post-etch residue removal | |
JP6066552B2 (en) | Cleaning composition for electronic devices | |
US6030491A (en) | Processing compositions and methods of using same | |
JPH0426120A (en) | Treating method for semiconductor substrate | |
KR20100100841A (en) | Method and solution for washing substrate for semiconductor device | |
KR20040014168A (en) | Post-CMP washing liquid composition | |
JP4744228B2 (en) | Semiconductor substrate cleaning liquid and semiconductor substrate cleaning method | |
JP2005194294A (en) | Cleaning liquid and method for producing semiconductor device | |
JP3957264B2 (en) | Semiconductor substrate cleaning method | |
KR100784938B1 (en) | Composition for cleaning semiconductor device | |
TWI333975B (en) | Semiconductor surface treatment and mixture used therein | |
JP3174823B2 (en) | Silicon wafer cleaning method | |
KR100679007B1 (en) | Cleaning composition for semiconductor device | |
JP2003068696A (en) | Method for cleaning substrate surface | |
JPH0817776A (en) | Method for washing silicon wafer | |
KR20100049856A (en) | Method for cleaning a substrate | |
Lee et al. | Effect of organic acids in dilute HF solutions on removal of metal contaminants on silicon wafer | |
JP3449474B2 (en) | Composition for surface treatment of semiconductor substrate and surface treatment method | |
JP4179098B2 (en) | Semiconductor wafer cleaning method | |
JPH0831781A (en) | Washing chemicals | |
Wang et al. | A modified multi-chemicals spray cleaning process for post-CMP cleaning application | |
JP2688293B2 (en) | Wafer surface cleaning method | |
TW492102B (en) | Wet processing methods for the manufacture of electronic components using liquids of varying density |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20110228 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |