KR20060042036A - High strength cold rolled steel sheet and method for manufacturing the same - Google Patents

High strength cold rolled steel sheet and method for manufacturing the same Download PDF

Info

Publication number
KR20060042036A
KR20060042036A KR1020050013073A KR20050013073A KR20060042036A KR 20060042036 A KR20060042036 A KR 20060042036A KR 1020050013073 A KR1020050013073 A KR 1020050013073A KR 20050013073 A KR20050013073 A KR 20050013073A KR 20060042036 A KR20060042036 A KR 20060042036A
Authority
KR
South Korea
Prior art keywords
steel sheet
rolled steel
cold rolled
mass
high strength
Prior art date
Application number
KR1020050013073A
Other languages
Korean (ko)
Inventor
요시히코 오노
후사토 키타노
야수노부 나가타키
야수시 타나카
히사노리 안도
Original Assignee
제이에프이 스틸 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이에프이 스틸 가부시키가이샤 filed Critical 제이에프이 스틸 가부시키가이샤
Publication of KR20060042036A publication Critical patent/KR20060042036A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment

Abstract

본 발명은, 질량%로, C: 0.015% 이하, Si: 1.5% 이하, Mn: 0.4~3%, P; 0.15% 이하, S; 0.02% 이하, sol.Al; 0.1~1%, N; 0.01% 이하, Ti; 0.2% 이하와, 잔부가 Fe 및 불가피한 불순물로 이루어지며, 동시에 1≤([Ti]/48)/([C]/12 + [N]/14)을 만족하는 고강도냉연강판에 관한 것이다. 여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다. 본 발명의 고강도냉연강판은, TS가 340~590MPa에서, 우수한 딥드로잉성형성을 가지므로, 사이드아우터패널이나 도어이너패널과 같은 성형이 어려운 자동차부품에 적합하다.The present invention is, in mass%, C: 0.015% or less, Si: 1.5% or less, Mn: 0.4 to 3%, P; 0.15% or less, S; 0.02% or less, sol.Al; 0.1-1%, N; 0.01% or less, Ti; It relates to a high strength cold rolled steel sheet having 0.2% or less and the balance made of Fe and unavoidable impurities, and at the same time satisfying 1≤ ([Ti] / 48) / ([C] / 12 + [N] / 14). Here, [M] represents content (mass%) of the element M. The high strength cold rolled steel sheet of the present invention has excellent deep drawing property at TS of 340 to 590 MPa, and therefore is suitable for automobile parts that are difficult to form, such as side outer panels and door inner panels.

Description

고강도냉연강판 및 그 제조방법{HIGH STRENGTH COLD ROLLED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME}High strength cold rolled steel sheet and its manufacturing method {HIGH STRENGTH COLD ROLLED STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME}

도1은, sol.Al량과 r값, TS와의 관계를 나타낸 도면이다.Fig. 1 is a diagram showing the relationship between the amount of sol.Al, the r value, and TS.

도2는, [Si]+10×[P]와 r값의 관계를 나타낸 도면이다.Fig. 2 is a diagram showing the relationship between [Si] + 10 × [P] and the r value.

본 발명은, 자동차, 가전제품 등에 사용되는 고강도냉연강판, 특히 340~590MPa의 인장강도(TS)를 가지는 딥드로잉성형성이 우수한 고강도냉연강판 및 그 제조방법에 관한 것이다.The present invention relates to a high strength cold rolled steel sheet used in automobiles, home appliances, and the like, in particular, a high strength cold rolled steel sheet having excellent deep drawing moldability having a tensile strength (TS) of 340 to 590 MPa and a method of manufacturing the same.

종래부터, 사이드아우터패널(side outer panel)이나 도어이너패널(door inner panel)과 같은 성형이 어려운 자동차부품에는, TS가 270MPa 정도이고 r값이 1.8~2.0의 우수한 딥드로잉성형성을 가지는 IF(Interstitial Free) 연질냉연강판(SPC270E, F)이 사용되어 왔다. 근래, 자동차 차체의 경량화에 대한 수요층이 증가함에 따라, 이러한 난(難)성형품에도 340~590MPa의 TS를 가지는 IF 고강도 냉연강판의 적용이 진행되어 왔다. 그러나, 이들 부품을, 현재 양산되고 있는 TS가 340~390MPa이고 r값이 1.7 정도인 고강도냉연강판, TS가 440MPa 전후이고 r값이 1.5 정도인 고강도냉연강판, 및 TS가 590MPa 전후이고 r값이 1.0 정도인 고강도냉연강판을 사용하여 성형하도록 하면, 드로잉부위에서 크랙이 발생하기 쉽기 때문에, 어떠한 고강도냉연강판도 비교적 낮은 정도의 드로잉부품에밖에 적용되지 못한 것이 실정이다. 따라서, TS가 340~590MPa에서, 보다 높은 r값을 가지는 고강도냉연강판이 요구되고 있다. 구체적으로는, TS가 340~400MPa이고 1.8 이상의 r값, TS가 400~590MPa이고 1.6 이상, 바람직하게는 1.7 이상의 r값이 요망되고 있다.Conventionally, in automobile parts such as side outer panels or door inner panels, which are difficult to form, IFs having excellent deep drawing moldability with TS of about 270 MPa and r values of 1.8 to 2.0 are known. Interstitial Free Soft Cold Rolled Steel Sheets (SPC270E, F) have been used. In recent years, as the demand for automobile body weight has increased, the application of IF high strength cold rolled steel sheet having a TS of 340 to 590 MPa has been advanced. However, these parts are produced in high-strength cold-rolled steel sheets with TS of 340 to 390 MPa and r value of about 1.7, high-strength cold rolled steel of TS around 440 MPa and r value of about 1.5, and TS of about 590 MPa and r value of When forming using a high strength cold rolled steel sheet of about 1.0, since cracks are likely to occur at the drawing portion, any high strength cold rolled steel sheet has been applied only to a drawing component having a relatively low degree. Accordingly, a high strength cold rolled steel sheet having a higher r value at TS of 340 to 590 MPa is required. Specifically, an r value of TS of 340 to 400 MPa and 1.8 or more and a TS of 400 to 590 MPa and 1.6 or more, preferably 1.7 or more are desired.

이제까지, r값을 높이기 위한 방법으로서는, C나 N을 극력 저감하고, Ti나 Nb을 다량으로 첨가한 IF강을 사용하여, 열간압연후 680℃ 이상의 온도로 권취하고, 고용(固溶) C나 N을 극력 저감함과 동시에 석출물을 조대화시키며, 소둔 시에 r값에 유리한 집합조직(texture)을 가지는 재결정립의 생성과 성장을 촉진하는 방법이 알려져 있다. 마찬가지의 방법으로서, 특개평6-108155호공보나 특허3291639호공보에는, C나 N을 극력 저감하고, Ti첨가한 IF강을 사용하여, Ti(C,S)를 생성시켜 소둔시에 r값에 유리한 집합조직을 발달시키는 방법이 개시되어 있다.Until now, as a method for increasing the r value, C or N is reduced as much as possible, and it is wound up at a temperature of 680 ° C. or higher after hot rolling using an IF steel in which Ti or Nb is added in a large amount. It is known to reduce N as much as possible, to coarsen precipitates, and to promote the formation and growth of recrystallized grains having a texture favorable for r value upon annealing. As a similar method, Japanese Patent Application Laid-Open No. Hei 6-108155 and Japanese Patent No. 3291639 reduce C and N as much as possible, form Ti (C, S) by using Ti-added IF steel to produce an r value at annealing. A method of developing advantageous aggregates is disclosed.

그러나, 특개평6-108155호공보에 개시된 방법에서는, 260~300MPa의 TS를 가지는 연질냉연강판을 대상으로 하고 있어, 기존의 P나 Mn이 다량으로 첨가된 340MPa 이상의 TS를 가지는 IF의 고강도냉연강판에 적용시키면, 열간압연후의 권취시에 Fe-Ti-P, Fe-Nb-P라고 하는 P화물(phosphorous compounds)이 입계에 다량으로 생성하기 때문에, 또한 다량의 Mn 자신 때문에 r값이 현저하게 저하한다. 또한, 특허3291639호공보에 개시된 방법에서는, P가 다량으로 첨가된 340MPa 이상의 TS를 가지는 딥드로잉용 고강도냉연강판이 제안되어 있지만, 프레스성형시에 P의 주조편 석에 기인한 판두께방향의 불균일조직에 의한 크랙이 생기는 경우가 있다.However, in the method disclosed in Japanese Patent Laid-Open No. 6-108155, a soft cold-rolled steel sheet having a TS of 260 to 300 MPa is used, and a high strength cold rolled steel sheet of IF having a TS of 340 MPa or more in which a large amount of P or Mn is added. When applied to, the r value decreases significantly due to the large amount of Pn (phosphorous compounds) such as Fe-Ti-P and Fe-Nb-P at the grain boundary during winding after hot rolling. do. In addition, in the method disclosed in Japanese Patent No. 3291639, a high strength cold rolled steel sheet for deep drawing having a TS of 340 MPa or more in which P is added in a large amount is proposed, but the non-uniformity in the plate thickness direction due to casting segregation of P during press forming Cracks due to tissues may occur.

한편, 제조방법에 연구를 집중하여 r값을 향상시키는 방법도 제안되어 있다. 예컨대, 특개평7-188776호공보에는 열간압연시에 α영역에서 윤활하면서 사상압연을 행하는 방법이 개시되어 있다. 특개평9-279249호공보에는 소둔 시에 550~750℃의 온도영역에서 1~50%의 압연을 가하는 방법이 개시되어 있다. 특개평2001-131643호공보에는 Nb, B첨가강의 Si, Mn, P량을 제어하고, 산세, 냉연, 소둔 후에 0.3~5%의 압연을 가하며, 다시 산세을 행하여 용융아연도금라인으로 보내는 방법이 개시되어 있다.On the other hand, a method of improving the r value by focusing research on the manufacturing method has also been proposed. For example, Japanese Patent Laid-Open No. Hei 7-188776 discloses a method of performing filamentous rolling while lubricating in the α region during hot rolling. Japanese Patent Laid-Open No. 9-279249 discloses a method of applying 1 to 50% of rolling in a temperature range of 550 to 750 ° C during annealing. Japanese Unexamined Patent Publication No. 2001-131643 discloses a method of controlling the amount of Si, Mn, and P of Nb and B additive steel, adding 0.3 ~ 5% rolling after pickling, cold rolling, and annealing, and then pickling again and sending it to a hot dip galvanizing line. It is.

그러나, 이러한 방법은 어느 것도 특수한 제조공정을 필요로 하여, 제조코스트의 증가나 생산성의 저하를 초래한다. 즉, 특개평7-188776호공보의 방법에서는, α영역에서 사상압연된 열연강판의 재결정소둔이 필요하게 된다. 특개평9-279249호공보의 방법에서는, 소둔로 속에 고온에 견딜 수 있는 압연설비가 필요하게 된다. 특개평2001-131643호공보의 방법에서는, 산세, 소둔, 조질압연을 각각 2회 실시한 필요가 있다.However, none of these methods require special manufacturing processes, resulting in an increase in manufacturing cost and a decrease in productivity. That is, in the method of Japanese Patent Laid-Open No. Hei 7-188776, recrystallization annealing of hot-rolled steel sheet rolled in α region is required. In the method of Japanese Patent Laid-Open No. 9-279249, a rolling facility capable of withstanding high temperatures in an annealing furnace is required. In the method of Unexamined-Japanese-Patent No. 2001-131643, it is necessary to carry out pickling, annealing, and temper rolling twice each.

본 발명의 목적은, 특수한 제조공정을 필요로 함이 없이, TS가 340~400MPa이고 r값이 1.8 이상인, TS가 400~590MPa이고 r값이 1.6 이상, 바람직하게는 1.7 이상인 고강도냉연강판 및 그 제조방법을 제공하는 것에 있다.An object of the present invention is a high strength cold rolled steel sheet having a TS of 340 to 400 MPa and an r value of 1.8 or more, a TS of 400 to 590 MPa and an r value of 1.6 or more, preferably 1.7 or more, without requiring a special manufacturing process, and its It is to provide a manufacturing method.

상기 목적은, 질량%로, C: 0.015% 이하, Si: 1.5% 이하, Mn: 0.4~3%, P; 0.15% 이하, S; 0.02% 이하, sol.Al; 0.1~1%, N; 0.01% 이하, Ti; 0.2% 이하와, 잔부가 Fe 및 불가피한 불순물로 이루어지며, 동시에 하기의 식(1)을 만족하는 고강도냉연강판에 의하여 달성된다.The said objective is mass%, C: 0.015% or less, Si: 1.5% or less, Mn: 0.4-3%, P; 0.15% or less, S; 0.02% or less, sol.Al; 0.1-1%, N; 0.01% or less, Ti; 0.2% or less and the balance are made of Fe and unavoidable impurities, and at the same time achieved by a high strength cold rolled steel sheet satisfying the following formula (1).

1≤([Ti]/48)/([C]/12 + [N]/14) …(1)1? ([Ti] / 48) / ([C] / 12 + [N] / 14)... (One)

여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M.

또한, 상기 고강도냉연강판은, 상기 조성을 가지는 강 슬래브를, 1080~1350℃로 가열하는 공정과, 가열후의 강 슬래브를 (Ar3변태점-20) ~ (Ar3변태점+150)℃의 사상온도로 열간압연하여 열연강판으로 하는 공정과, 열연강판을 하기의 식(5) 를 만족하는 권취온도 CT(coiling temperature)로 권취하는 공정과, 권취후의 열연강판을 50~90%의 압하율로 냉간압연하여 냉연강판으로 하는 공정과, 냉연강판을 750~870℃로 연속소둔하는, 또는 600~750℃로 상소둔(box annealing)하는 공정을 가지는 제조방법에 의하여 제조할 수 있다.In addition, the high strength cold rolled steel sheet is a steel slab having the above composition, a step of heating after the steel slab is heated to 1080 ~ 1350 ℃ to a record temperature of (Ar 3 transformation point -20) ~ (Ar 3 transformation point +150) ℃ The process of hot rolling to form a hot rolled steel sheet, the process of winding the hot rolled steel sheet at a coiling temperature CT (coiling temperature) that satisfies Equation (5) below, and the cold rolled hot rolled steel sheet at 50 to 90% rolling rate To form a cold rolled steel sheet and a continuous annealing of the cold rolled steel sheet at 750 to 870 ° C, or a box annealing at 600 to 750 ° C.

480 ≤ CT ≤ 580 + 0.17/{([Ti] + 0.08 × [sol.Al]) × [P]} …(5)480 ≤ CT ≤ 580 + 0.17 / {([Ti] + 0.08 × [sol. Al]) × [P]}. (5)

여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M.

본 발명자등은, IF 고강도냉연강판의 r값에 미치는 여러 가지 합금원소의 영향을 조사하여, 이하의 지견(知見)을 얻었다.The present inventors investigated the influence of various alloying elements on the r value of an IF high strength cold rolled steel sheet, and obtained the following knowledge.

ⅰ) sol.Al량을, 종래의 고강도냉연강판의 경우에 비하여, 보다 다량으로 첨가하면 r값이 현저하게 향상한다. 특히, 이 효과는 Mn을 0.4% 이상 첨가한 경우에 현저하다.I) If the amount of sol.Al is added in a larger amount than in the case of the conventional high strength cold rolled steel sheet, the r value is remarkably improved. In particular, this effect is remarkable when 0.4% or more of Mn is added.

ⅱ) Si, P의 첨가는 r값의 향상에 유효하다.Ii) Addition of Si and P is effective for improving r value.

ⅲ)P, sol.Al. Ti 및 필요에 따라서 Nb의 양과 열간압연후의 권취온도를 적정화함에 의하여 높은 r값이 얻어진다.Iii) P, sol.Al. A high r value is obtained by optimizing the amount of Ti and, if necessary, Nb and the coiling temperature after hot rolling.

본 발명은, 이와 같은 지견에 기초하여 행해진 것으로, 이하에 그 상세를 설명한다.The present invention has been made based on such knowledge, and details thereof will be described below.

1)sol. Al량과 r값1) sol. Al amount and r value

sol.Al량과 r값의 관계를 조사하기 위하여, 이하의 시험을 행하였다.In order to investigate the relationship between the sol.Al amount and the r value, the following test was conducted.

C: 0.002%, Si: 0.25%, P: 0.08%, S: 0.007%, Nb: 0.015%, Ti: 0.03%, N: 0.002%, B: 0.001%로 일정하게 하고, sol.Al량을 0.01~1.2%, Mn량을 0.6~1.8%로 변화시킨 강(鋼) 슬래브를 1250℃로 가열하고, 그 후 열간압연을 실시하여 판두께 3mm의 열연강판으로 하며, 580℃로 1시간 권취를 모의(模擬;simulation)한 열처리를 실시하였다. 이 열연강판을 냉간압연하여 판두께 0.75mm의 냉연강판으로 하고, 820℃에서 60초의 연속소둔을 실시하여 신장율 0.7%의 조질압연을 실시하였다. 그리고, r값과 TS를 이하의 방법으로 측정하였다.C: 0.002%, Si: 0.25%, P: 0.08%, S: 0.007%, Nb: 0.015%, Ti: 0.03%, N: 0.002%, B: 0.001%, and the amount of sol.Al is 0.01 Steel slab with 1.2% of Mn and 0.6% to 1.8% was heated to 1250 ° C, followed by hot rolling to form a hot rolled steel sheet with a thickness of 3mm, and simulation of winding at 580 ° C for 1 hour. Simulated heat treatment was performed. The hot rolled steel sheet was cold rolled to form a cold rolled steel sheet having a thickness of 0.75 mm, followed by continuous annealing at 820 ° C. for 60 seconds to perform temper rolling with 0.7% elongation. And r value and TS were measured by the following method.

JIS5호 시험편을 압연방향, 압연방향에 대하여 45°방향, 압연방향에 대하여 90°방향에서 채취하고, 각각의 방향에 대한 r값, TS를 측정하여 이하의 식으로 표시되는 강판 면(面)내의 평균값을 구하였다.A JIS 5 test piece was taken in a rolling direction, in a 45 ° direction with respect to the rolling direction, in a 90 ° direction with respect to the rolling direction, and the r value and TS of each direction were measured and in the surface of the steel sheet represented by the following equation. The average value was calculated | required.

평균값=([T0]+2[T45]+[T90])/4Mean = ([T 0 ] +2 [T 45 ] + [T 90 ]) / 4

여기서, [T0]는 압연방향에서의, [T45]는 압연방향에 대하여 45°방향에서의, [T90]은 압연방향에 대하여 90°방향에서의 r값 또는 TS이다.Here, [T 0 ] in the rolling direction, [T 45 ] in the 45 ° direction with respect to the rolling direction, and [T 90 ] is the r value or TS in the 90 ° direction with respect to the rolling direction.

도1에, sol.Al량과 r값, TS와의 관계를 나타낸다. 도면에서, 검은 동그라미는 Mn량이 1.8%인 때의 결과, 흰 동그라미는 sol.Al과 Mn의 총량이 1.8%인 때의 결과이다.1 shows the relationship between the amount of sol.Al, the r value, and TS. In the figure, black circles are the result when the Mn amount is 1.8%, and white circles are the result when the total amount of sol.Al and Mn is 1.8%.

Mn량이 1.8%인 때, r값은 sol.Al이 0.1% 이상에서 1.6 이상이 되고, 0.2~0.7%에서 1.7 이상이 되며, 0.7%를 초과하면 저하한다. TS는, sol.Al이 0.1% 이상에서 460MPa을 초과하며, sol. Al량과 함께 단조롭게 증가한다.When the Mn amount is 1.8%, the r value becomes 1.6 or more at 0.1% or more, and is 1.7 or more at 0.2 to 0.7%, and decreases when it exceeds 0.7%. TS has a sol.Al of more than 460 MPa at 0.1% or more and sol. It increases monotonously with Al amount.

이 때. sol.Al량 1% 당 TS의 증가량은 35MPa이다. 이것은 Mn의 고용강화능과 거의 동등한 것으로, sol.Al과 Mn의 총량을 1.8%로 하면, 흰 동그라미와 같은 강도를 일정하게 유지한 때의 TS나 r값의 관계가 얻어진다. 이로부터, sol.Al을 첨가하고 Mn을 삭감함으로써, 동일강도에서 한층 더 높은 r값을 얻을 수 있다는 것을 알 수 있다. At this time. The increase in TS per 1% of sol.Al amount is 35MPa. This is almost equivalent to the solid solution strengthening ability of Mn. When the total amount of sol.Al and Mn is 1.8%, the relationship between the TS and r values is obtained when the intensity like the white circle is kept constant. From this, it can be seen that by adding sol.Al and reducing Mn, a higher r value can be obtained at the same intensity.

또한, sol.Al이 1%를 초과하면, 슬래브의 연속주조시에 미세한 AlN이 오스테나이트입계로 석출하여 입계를 취화시켜, 슬래브의 굽힘 교정시나 그 후의 조압연시에 슬래브 표면에 크랙이 발생하기 쉽게 된다. 그리고, 이와 같은 슬래브 표면의 크랙에 의하여 스케일(scale)성(性)의 표면결함이 발생하기 쉽게 되며, 최종제품의 표면품질이 현저하게 저하한다.In addition, when sol.Al exceeds 1%, fine AlN precipitates at the austenite grain boundary during continuous casting of the slab to embrittle grain boundaries, and cracks are generated on the surface of the slab during bending correction of the slab or subsequent rough rolling. It becomes easy. As a result of such cracks on the surface of the slab, surface defects of scale property tend to occur, and the surface quality of the final product is significantly reduced.

이상의 결과로부터, TS가 400MPa를 초과하여도, sol.Al량을 0.1~1%, 바람직하게는 0.2~0.7%로 하면, 1.6 이상, 바람직하게는, 1.7 이상의 높은 r값을 얻을 수 있게 된다.From the above results, even if TS exceeds 400 MPa, when the amount of sol.Al is set to 0.1 to 1%, preferably 0.2 to 0.7%, a high r value of 1.6 or more, preferably 1.7 or more can be obtained.

sol.Al량을 0.1~1%로 한 때에 높은 r값을 얻을 수 있는 이유는, 다음과 같은 것으로 생각된다. 즉, Al은 Ar3변태점을 상승시키는 원소이므로, 열간압연시에 오스테나이트로부터 페라이트로 변태한 후, 고온의 α영역에 있어서 탄화물의 석출이 촉진되고, 고용 C가 감소함과 동시에 탄화물이 조대화하기 때문에, 소둔시에 r값에 바람직한 재결정 집합조직이 형성되며, r값이 향상한다. 또한, 그 이외에, Al에 의한 냉간압연조직의 변화 등도, r값의 향상에 기여하고 있다고 추찰(推察)된다.The reason why a high r value can be obtained when the amount of sol.Al is set to 0.1 to 1% is considered to be as follows. That is, since Al is an element that raises the Ar 3 transformation point, after the transformation from austenite to ferrite during hot rolling, the precipitation of carbides is promoted in the high temperature α region, the solid solution C decreases and the carbides coarsen. Therefore, at the time of annealing, a preferable recrystallized texture is formed for the r value, and the r value is improved. In addition, it is estimated that the change of the cold rolling structure by Al also contributes to the improvement of r value.

2)Si, P량과 r값2) Si, P amount and r value

Si, P량과 r값과의 관계를 조사하기 위하여, C: 0.002%, Mn: 1%, S: 0.007%, sol.Al: 0.25%, Nb: 0.02%, Ti: 0.01%, N: 0.002%, B: 0.001%로 일정하게 하고, Si량을 0.005~1.5%, P량을 0.003~0.15%로 변화시킨 강 슬래브를 사용하여, 1)의 경우와 동일한 시험을 행하였다.In order to investigate the relationship between Si and P amount and r value, C: 0.002%, Mn: 1%, S: 0.007%, sol.Al: 0.25%, Nb: 0.02%, Ti: 0.01%, N: 0.002 %, B: The same test as in the case of 1) was carried out using a steel slab made constant at 0.001%, Si amount of 0.005 to 1.5%, and P amount of 0.003 to 0.15%.

도2에, [Si]+10×[P]와 r값의 관계를 나타내었다. 또, 도면중의 숫자는 Si량을 표시한다. 2 shows the relationship between [Si] + 10 × [P] and the r value. In addition, the number in a figure shows Si amount.

sol.Al량이 0.25%인 본 발명강에서는, 하기의 식(2)를 만족시키면 1.7 이상의 높은 r값이 얻어진다는 것을 알 수 있다.In the present invention steel having an amount of sol.Al of 0.25%, it can be seen that a high r value of 1.7 or more is obtained when the following formula (2) is satisfied.

0.3≤[Si] + 10 × [P]≤1.4 …(2)0.3? [Si] + 10 x [P]? (2)

여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M.

그러나, Si, 10×P 공히 그 양이 1.5%를 초과하면, r값의 열화가 크므로, Si, P량은 각각 1.5% 이하, 0.15% 이하로 한다.However, since the amount of Si and 10xP exceeds 1.5% and the value of r is largely deteriorated, the amount of Si and P is made 1.5% or less and 0.15% or less, respectively.

또, 본 발명의 고강도냉연강판에 합금화용융아연도금을 실시한 경우에는, 이들 원소는 도금의 밀착불량을 일으키기 쉬우므로, Si량은 0.5% 이하, P량은 0.08% 이하로 하는 것이 바람직하다. 또한, Si,P는 페라이트의 고용강화에 유효한 원소이므로, Si량은 0.003% 이상, P량은 0.01% 이상으로 하는 것이 바람직하다.In the case where hot-dip galvanizing is applied to the high-strength cold-rolled steel sheet of the present invention, these elements are likely to cause poor adhesion of plating. Therefore, the Si content is preferably 0.5% or less and the P content is 0.08% or less. In addition, since Si and P are effective elements for solid solution strengthening of ferrite, it is preferable to make Si amount 0.003% or more and P amount 0.01% or more.

3) 그 외의 성분3) Other ingredients

C; C는 Ti나 Nb와 결합하여 탄화물을 형성한다. 그 양이 0.015%를 초과하면, 이 탄화물의 양이 많아져서 r값이 현저하게 저하하므로, C량은 0.015% 이하, 바람직하게는 0.008% 이하, 보다 바람직하게는 0.004% 미만으로 한다. 다만, C는 TiC, NbC로 하여 석출강화에 의하여 강도를 증가시키는 효과가 있으므로, 예컨대 TS가 440MPa 전후의 강(鋼)에서는 0.004% 이상 함유시키는 것이 효과적이다. 즉, C량을 0.004~0.008%로 하고, Ti, Nb를 C와의 원자비로 1.0 이상 첨가하면, r값의 저하를 억제하고 강도상승을 도모할 수 있다. 또, C량이 0.0005% 미만의 경우에는, 소둔시에 페라이트입자가 조대화하여, 프레스성형시에 표면 거칠어짐(orange peel)이 발생하기 쉬워지기 때문에, C량은 0.0005% 이상으로 하는 것이 바람직하다.C; C combines with Ti or Nb to form carbides. If the amount exceeds 0.015%, the amount of this carbide increases and the r value is significantly lowered. Therefore, the amount of C is 0.015% or less, preferably 0.008% or less, and more preferably less than 0.004%. However, since C is TiC and NbC, it is effective to increase the strength by precipitation strengthening. Therefore, it is effective to contain at least 0.004% of TS in steel before and after 440 MPa. That is, when the amount of C is made 0.004 to 0.008% and Ti and Nb are added 1.0 or more in the atomic ratio with C, the fall of r value can be suppressed and the strength can be increased. In the case where the amount of C is less than 0.0005%, the ferrite grains coarsen at the time of annealing, so that surface peeling tends to occur at the time of press molding, so the amount of C is preferably 0.0005% or more. .

Mn: Mn은 고용강화에 의하여 강도를 증가시키는 원소로서, IF의 고강도냉연강판에는 불가결한 원소이다. 340MPa 이상의 TS를 얻기 위해서는, Mn량은 0.4% 이상으로 할 필요가 있다. 한편, 그 양이 3%를 초과하면 r값이 현저하게 저하하므로, Mn량은 3% 이하, 바람직하게는 2% 이하, 보다 바람직하게는 1.5% 이하로 한다.Mn: Mn is an element that increases strength by solid solution strengthening, and is indispensable for high strength cold rolled steel sheet of IF. In order to obtain TS of 340 MPa or more, the amount of Mn needs to be 0.4% or more. On the other hand, if the amount exceeds 3%, the r value is remarkably lowered, so the Mn amount is 3% or less, preferably 2% or less, and more preferably 1.5% or less.

Mn량이 많아지면 r값이 저하하는 원인은 반드시 명확하지는 않지만, Mn이 고용 C와 상호작용하여 r값을 저하시킨다고 생각된다. 또, Mn은 Ar3 변태점을 저하시키므로, 열간압연시에 석출하는 탄화물을 미세화시키거나, 탄화물의 석출을 지연시켜 고용 C를 증가시키기 때문에, 소둔시에 r값에 바람직한 재결정 집합조직이 형성되지 않아, r값이 저하한다고 추찰된다.The reason why the r value decreases when the amount of Mn increases is not necessarily clear, but it is thought that Mn interacts with the solid solution C to lower the r value. In addition, since Mn lowers the Ar 3 transformation point, the carbide precipitated at the time of hot rolling is refined, or the precipitation of carbide is delayed to increase the solid solution C. Therefore, a preferable recrystallization texture for r value is not formed during annealing. , r value is inferred.

S: S는 황화물로서 강 중에 존재한다. 그 양이 0.02%를 초과하면 연성의 열화를 초래하므로, S량은 0.02% 이하, 바람직하게는 0.01% 이하로 한다. 또, 디스케일(descale)성(性)의 관점에서는 S량은 0.004% 이상으로 하는 것이 바람직하다.S: S is present in steel as a sulfide. If the amount exceeds 0.02%, ductile deterioration is caused, so the amount of S is made 0.02% or less, preferably 0.01% or less. Moreover, it is preferable to make S amount into 0.004% or more from a viewpoint of descale property.

N; N량이 0.01%를 초과하면, 슬래브의 연속주조시에 미세한 AlN, NbN, Nb(C,N)이 오스테나이트입계에 석출하여, 입계를 취화시키고, 슬래브주조시나 그 후의 조압연시에 슬래브표면에 크랙이 발생하기 쉽게 된다. 이 때문에, N량은 0.01% 이하로 한다. 또, N량은 적을 수록 바람직하지만, 현재의 제강기술에서는 0.001% 정도가 한계이다.N; When the amount of N exceeds 0.01%, fine AlN, NbN, and Nb (C, N) precipitate at the austenite grain boundary during continuous casting of the slab, embrittle the grain boundary, and at the slab surface at the time of slab casting or subsequent rough rolling Cracks are likely to occur. For this reason, N amount may be 0.01% or less. The smaller the amount of N, the better. However, in the current steelmaking technology, the limit is about 0.001%.

Ti: Ti는 열간압연후의 결정입을 미세화하거나, C나 N과 석출물을 형성하여 고용 C, N을 감소시켜 r값을 향상시키는 효과를 가진다. 이러한 Ti의 효과를 충분하게 발휘시키는데는, 하기의 식(1)을 만족하도록 Ti을 첨가할 필요가 있다.Ti: Ti has an effect of refining grains after hot rolling, or forming precipitates with C or N to reduce solid solution C and N to improve r value. In order to fully exhibit such an effect of Ti, it is necessary to add Ti so that following formula (1) may be satisfied.

1≤([Ti]/48)/([C]/12 + [N]/14) …(1)1? ([Ti] / 48) / ([C] / 12 + [N] / 14)... (One)

여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M.

그러나, Ti량이 0.2%를 초과하여도 r값의 상승은 적으므로, Ti량은 0.2% 이하로 한다. 또, 본 발명의 고강도냉연강판에 합금화용융아연도금을 실시한 경우에는, 도금 불균일을 방지하는 관점에서 Ti량은 0.04% 이하로 하는 것이 바람직하다. 또한, Ti첨가에 따른 높은 r값을 확실하게 얻기 위해서는, Ti량을 0.005% 이상으로 하는 것이 바람직하다.However, even if the amount of Ti exceeds 0.2%, there is little increase in the r value, so the amount of Ti is made 0.2% or less. Moreover, when alloying hot dip galvanizing is performed on the high strength cold rolled steel sheet of this invention, it is preferable to make Ti amount into 0.04% or less from a viewpoint of preventing plating nonuniformity. In addition, in order to reliably obtain the high r value by Ti addition, it is preferable to make Ti amount into 0.005% or more.

잔부는, Fe 및 불가피한 불순물이다.The balance is Fe and unavoidable impurities.

상기 성분에 부가하여, 추가적으로 Nb를 0.002% 이상 첨가하는 것이 보다 높은 r값을 얻는 데에 바람직하다. 또, 이 때는, 하기의 식(3)을 만족하도록 Nb, Ti, C, N의 양을 조정할 필요가 있다.In addition to the above components, addition of 0.002% or more of Nb is preferable for obtaining a higher r value. In this case, it is necessary to adjust the amounts of Nb, Ti, C, and N so as to satisfy the following formula (3).

1≤([Nb]/93 + [Ti]/48)/([C]/12 + [N]/14) …(3) 1≤ ([Nb] / 93 + [Ti] / 48) / ([C] / 12 + [N] / 14)... (3)

여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M.

그러나, Nb량이 0.02%를 초과하면, 슬래브의 연속주조시에 미세한 NbN, Nb(C,N)이 오스테나이트입계에 석출하여, 입계를 취화시키고, 슬래브주조시나 그 후의 조압연시에 슬래브표면에 크랙이 발생하기 쉽게 된다. 그 때문에, Nb량은 0.02% 이하로 한다.However, when the amount of Nb exceeds 0.02%, fine NbN and Nb (C, N) precipitate at the austenite grain boundary during continuous casting of the slab, embrittle grain boundaries, and at the slab surface during slab casting and subsequent rough rolling. Cracks are likely to occur. Therefore, Nb amount is made into 0.02% or less.

또, B를 0.0001% 이상 첨가하면 내(耐)이차가공취성이 향상한다. 그러나, B양이 0.003%를 초과하면 내이차가공취성의 개선효과는 작고, 반대로 r값의 저하나 압연부하의 증대를 초래한다. 그 때문에, B량은 0.003% 이하로 한다.In addition, if B is added in an amount of 0.0001% or more, the secondary workability resistance is improved. However, when the amount of B exceeds 0.003%, the effect of improving secondary work brittleness is small, on the contrary, the r value is lowered and the rolling load is increased. Therefore, the amount of B is made into 0.003% or less.

그 외, 추가적인 고강도화, 내이차가공취성의 개선, r값의 향상을 도모하기 위해서, Cu: 0.03~0.5%, Ni: 0.03~0.5%, Cr: 0.03~0.5%, Mo: 0.05~0.3%, 및 V: 0.005~0.5% 중으로부터 선택되는 적어도 1종의 원소를 첨가할 수 있다. 이 때, Cu, Cr은 표면품질을 열화시키므로, 이들의 양은 0.5% 이하로 한다. Ni의 첨가는 대폭 코스트증가가 되므로, 그 양은 0.5% 이하로 한다. Mo은 내이차가공취성에 악영향이 작으면서 고강도화에 유효하지만, 항복점을 증가시켜 프레스부품의 면(面)정밀도를 저하시키므로, 그 양은 0.3% 이하로 한다. V도 내이차가공취성의 악영향이 작고 고강도화에 유효하지만, 0.5%를 초과하면 대폭 코스트증가가 되므로, 그 양은 0.5% 이하로 한다. 또, Cu를 첨가하는 경우는 Ni을 Cu와 당량(當量) 함유시키는 것이 바람직하다.In addition, Cu: 0.03 to 0.5%, Ni: 0.03 to 0.5%, Cr: 0.03 to 0.5%, Mo: 0.05 to 0.3%, in order to further increase the strength, improve the secondary processing brittleness, and improve the r value. And V: at least one element selected from 0.005 to 0.5% can be added. At this time, Cu and Cr deteriorate the surface quality, so the amount thereof is 0.5% or less. Since addition of Ni will increase cost significantly, the quantity shall be 0.5% or less. Mo is effective in increasing the strength while having a low adverse effect on the secondary workability, but the yield is increased to decrease the surface precision of the press part, so the amount is 0.3% or less. V also has a small adverse effect of secondary processing brittleness and is effective for high strength, but if it exceeds 0.5%, the cost increases significantly, so the amount is made 0.5% or less. Moreover, when Cu is added, it is preferable to contain Ni and Cu equivalent.

아연도금 외관, 아연도금 밀착성, 피로특성, 프레스성형시의 드로잉부 인성 등을 향상시키는 데는, Sb: 0.002~0.2% 및 Sn: 0.002~0.2% 중에서 선택된 적어도 1종의 원소를 함유시키고, 동시에 하기의 식(4)를 만족시키는 것이 효과적이다.In order to improve the appearance of zinc plating, the adhesion of zinc plating, the fatigue properties, the toughness of the drawing part during press molding, and the like, at least one element selected from Sb: 0.002 to 0.2% and Sn: 0.002 to 0.2% is contained. It is effective to satisfy Eq. (4).

0.002≤[Sb] + [Sn]/2≤0.2 …(4)0.002 ≦ Sb + Sn / 2 ≦ 0.2... (4)

여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M.

Sb, Sn의 첨가에 의하여, 슬래브 가열시, 권취시, 상소둔로(BAF), 연속소둔라인(CAL), 연속용융아연도금라인(CGL) 등에 의한 소둔시에 있어서의 표층 질화(窒化)나 산화가 방지되며, 도금 불균일이나 도금밀착성의 열화가 개선된다. 또한, 아연욕 중에서의 아연산화물의 부착이 방지되어, 도금외관이 향상한다. 또, Sb, Sn에는 표면산화를 경감하여 피로특성의 열화나 드로잉성형후의 인성의 열화를 억제한다.By adding Sb and Sn, surface nitriding during slab heating, coiling, annealing with an annealing furnace (BAF), a continuous annealing line (CAL), a continuous hot dip galvanizing line (CGL), and the like Oxidation is prevented and plating nonuniformity and deterioration of plating adhesiveness are improved. In addition, adhesion of zinc oxide in the zinc bath is prevented, and the appearance of plating is improved. In addition, surface oxidation is reduced in Sb and Sn to suppress deterioration of fatigue characteristics and toughness after drawing molding.

그러나, Sb, Sn 공히 그 양이 0.2%를 초과하면, 아연도금밀착성이나 인성을 열화시킨다.However, if the amount exceeds 0.2% for both Sb and Sn, the galvanized adhesiveness and toughness deteriorate.

4)제조방법4) Manufacturing method

본 발명의 고강도냉연강판은, 상기 성분을 가지는 강 슬래브를 1080~1350℃로 가열하는 공정과, 가열후의 강 슬래브를 (Ar3변태점-20) ~ (Ar3변태점+150)℃의 사상온도로 열간압연하여 열연강판으로 하는 공정과, 열연강판을 Nb가 무첨가된 경우는 하기의 식(5)를, Nb가 첨가되는 경우는 하기 식(6)을 만족하는 권취온도 CT로 권취하는 공정과, 권취후의 열연강판을 50~90%의 압하율로 냉간압연하여 냉연강판으로 하는 공정과, 냉연강판을 750~870℃로 연속소둔하는, 또는 600~750℃로 상소둔하는 공정을 가지는 제조방법에 의하여 제조된다.The high strength cold rolled steel sheet of the present invention, the step of heating a steel slab having the component in the 1080 ~ 1350 ℃, a steel slab after heating to a temperature history of (Ar 3 transformation point -20) ~ (Ar 3 transformation point +150) ℃ A process of hot rolling to form a hot rolled steel sheet; a process of winding the hot rolled steel sheet with a coiling temperature CT that satisfies Equation (5) below when Nb is added, and when Nb is added; In the manufacturing method having a process of cold rolling the hot rolled steel sheet after winding at a reduction ratio of 50 to 90% to form a cold rolled steel sheet; Is manufactured.

480 ≤CT ≤ 580 + 0.17/{([TI] + 0.08 × [sol.Al]) × [P]} …(5)480 ≦ CT ≦ 580 + 0.17 / {([TI] + 0.08 × [sol.Al]) × [P]}. (5)

480 ≤CT ≤ 580 + 0.17/{(0.6 × [Nb] + [Ti] + 0.08 × [sol.Al]) × [P]} …(6)480 ≤ CT ≤ 580 + 0.17 / {(0.6 × [Nb] + [Ti] + 0.08 × [sol.Al]) × [P]}. (6)

여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M.

강 슬래브는, 슬래브 중에 생성한 Fe-Ti-P, Fe-Nb-P의 P화물을 충분히 고용시키기 위해서, 열간압연전의 가열온도 SRT는 1080℃ 이상으로 할 필요가 있다. 그러나, 1350℃를 초과하면 표면품질이 열화하므로, SRT는 1350℃ 이하로 할 필요가 있다.The steel slab needs to have a heating temperature SRT before hot rolling of 1080 ° C or more in order to sufficiently solidify the P-containing Fe-Ti-P and Fe-Nb-P produced in the slab. However, the surface quality deteriorates when it exceeds 1350 degreeC, and SRT needs to be 1350 degreeC or less.

우수한 외관을 얻기 위해서는, 1차스케일 뿐만 아니라, 열간압연시에 생성하는 2차스케일에 대하여도 충분하게 제거하는 것이 바람직하다. 또, 열간압연중에 있어서는, 바히터(bar heater)에 의하여 가열을 행하는 것도 가능하다.In order to obtain an excellent appearance, it is preferable to sufficiently remove not only the primary scale but also the secondary scale generated during hot rolling. In hot rolling, it is also possible to perform heating by a bar heater.

열간압연의 사상온도 FDT는, 열간압연후의 조직을 미세화하기 위하여 (Ar3변태점-20) ~ (Ar3변태점+150)℃로 할 필요가 있다. Spirit temperature FDT of hot rolling, it is necessary to in order to refine the structure after hot rolling (Ar 3 transformation point -20) ~ (Ar 3 transformation point +150) ℃.

열간압연후의 권취온도는, Al, P, Ti 및 필요에 따라서 Nb를 복합첨가하는 본 발명의 냉연강판의 r값에 다대한 영향을 미친다. 이것은 P첨가한 IF강에서는, 상술한 바와 같은 r값에는 바람직하지 않은 Fe-Ti-P, Fe-Nb-P의 P화물이 생성하기 쉽게 되기 때문이다. 일반적으로, r값은 권취온도를 고온으로 하여 석출물을 조대화하고, 동시에 고용 C를 감소시키면 현저하게 향상한다. 그러나, 권취온도를 적정온도를 초과하여 고온으로 하면, 상기한 것과 같은 P화물이 생성하여 r값을 현저하게 저하시킨다.The winding temperature after hot rolling has a great influence on the r value of the cold rolled steel sheet of this invention which adds Al, P, Ti, and Nb as needed. This is because, in the P-added IF steel, undesirable P-types of Fe-Ti-P and Fe-Nb-P are easily formed in the r-value as described above. In general, the r value is remarkably improved when the winding temperature is set to a high temperature to coarsen the precipitate and at the same time reduce the solid solution C. However, when the coiling temperature is set to a high temperature exceeding the proper temperature, the above-mentioned P fluoride is formed, and the r value is significantly lowered.

따라서, 여러 가지의 Al, P, Ti 및 필요에 따라서 Nb를 첨가하는 강에 대하여 최적인 권취온도를 조사한 결과, 권취온도 CT가 Nb 무첨가된 경우에는 580 + 0.17/{([TI] + 0.08 × [sol.Al]) × [P]}를, Nb가 첨가된 경우는 580 + 0.17/{(0.6 × [Nb] + [Ti] + 0.08 × [sol.Al]) × [P]}를, 초과하면 P화물이 생성하여 r값이 현저하게 저하하는 것이 판명되었다. 또한, 권취온도 CT가 480℃를 하회하면, P화물이 생성하지 않더라도 권취시의 탄화물의 석출이 불충분하게 되어, r값은 열화한다. 따라서, 권취온도 CT는 상기의 식(5) 또는 (6)을 만족시킬 필요가 있다.Therefore, as a result of investigating the optimum winding temperature for various Al, P, Ti and steel to which Nb is added as needed, when the winding temperature CT is Nb free, 580 + 0.17 / {([TI] + 0.08 × [sol.Al]) × [P]}, or 580 + 0.17 / {(0.6 × [Nb] + [Ti] + 0.08 × [sol.Al]) × [P]} when Nb is added, When exceeded, it turned out that a pide produces | generates and r value falls remarkably. On the other hand, if the coiling temperature CT is lower than 480 ° C, even if P carbide is not produced, precipitation of carbides at the time of winding will be insufficient, and the r value will deteriorate. Therefore, the coiling temperature CT needs to satisfy the above formula (5) or (6).

또, 상기 식(5)와 (6)의 (상한치-40)~(상한치)℃의 온도범위에서 권취하는 것이 바람직하다.Moreover, it is preferable to wind up in the temperature range of (upper limit -40)-(upper limit) degreeC of said Formula (5) and (6).

열간압연에서는, r값 향상의 관점에서, 압하율을 50~90%, 바람직하게는 65~80%로 할 필요가 있다.In hot rolling, it is necessary to make the reduction ratio 50 to 90%, preferably 65 to 80% from the viewpoint of improving the r value.

소둔온도 AT는, CAL이나 CGL에서 연속소둔하는 경우에는, 750~870℃으로 할 필요가 있다. 750℃보다 낮은 온도에서는, 재결정이 불충분하게 되고, 높은 r값이 안정하게 얻어지지 않는다. 또한, 연신율 등의 특성이 현저하게 열화한다. 870℃를 초과하는 온도에서는, Mn량이 많은 강판에서는 Ar3변태점을 초과하여 소둔하는 것으로 되어, 강도가 극단적으로 증가하여 연신율, n값이 현저하게 열화한다. 보다 높은 r값, 높은 연신율을 안정하게 얻기 위해서는 820℃ 이상의 온도에서 소둔하는 것이 바람직하다. 또한, BAF에서 소둔하는 경우에는, 소둔시간이 길므로, 소둔온도 AT는 600~750℃로 할 필요가 있다.When annealing temperature AT is continuously annealed by CAL or CGL, it is necessary to set it as 750-870 degreeC. At temperatures lower than 750 ° C, recrystallization becomes insufficient, and a high r value is not obtained stably. Moreover, characteristics, such as elongation, remarkably deteriorate. At temperatures exceeding 870 ° C, the steel sheet having a large amount of Mn is annealed beyond the Ar 3 transformation point, and the strength is extremely increased, and the elongation and n value are significantly deteriorated. In order to acquire higher r value and high elongation stably, it is preferable to anneal at the temperature of 820 degreeC or more. In the case of annealing in BAF, the annealing time is long, so the annealing temperature AT needs to be 600 to 750 ° C.

소둔후의 냉연강판에는, 필요에 따라서 전기도금 또는 용융도금에 의해서 아연을 함유하는 도금을 실시할 수 있다. 아연을 함유한 도금으로서는, 아연도금, 합금화아연도금, 아연-니켈합금도금 등을 들 수 있다. 또한, 도금후에 유기피막처리를 부여하는 것도 가능하다.The cold-rolled steel sheet after annealing can be plated with zinc by electroplating or hot-dip plating, if necessary. Examples of the plating containing zinc include zinc plating, zinc alloyed plating, and zinc-nickel alloy plating. It is also possible to give an organic coating treatment after plating.

실시예Example

표1에 나타낸 강 No. A~X의 강을 용제후, 230mm 두께의 슬래브로 연속주조하였다. 이 슬래브를 표2에 도시한 가열온도 SRT로 재가열후, 표2에 도시한 사상온도 FDT로 판두께 3.2mm 까지 열간압연하고 표2에 도시한 권취온도 CT로 권취하였다. 이 열연판을 판 두께 0.8mm까지 냉간압연후, 표2에 도시한 소둔온도 AT로 CAL, CGL, BAF에 의하여 소둔을 행하고, 신장율 0.8%의 조질압연을 행하여 강판 No. 1~34을 제작하였다. 또, CGL에서는, 소둔후의 강판을 460℃의 용융아연도금욕에 침지하고, 그 후 인라인(in-line) 합금화처리로에서 500℃로 합금화처리를 행하였다. 일측면당 도금량은 일측당 45g/m2이었다.Steel No. shown in Table 1 A-X steels were continuously cast into a slab of 230 mm thickness after solvent. After reheating the slab with the heating temperature SRT shown in Table 2, the slab was hot rolled to a plate thickness of 3.2 mm with the finishing temperature FDT shown in Table 2, and wound up with the coiling temperature CT shown in Table 2. The hot rolled sheet was cold rolled to a plate thickness of 0.8 mm and then annealed by CAL, CGL, and BAF at the annealing temperature AT shown in Table 2, and tempered by 0.8% elongation. 1 to 34 were produced. In CGL, the steel sheet after annealing was immersed in a hot dip galvanizing bath at 460 ° C, and then alloyed at 500 ° C in an in-line alloying furnace. The plating amount per side was 45 g / m 2 per side.

그리고, 상기한 방법으로 r값 및 TS를 측정하였다. 또한, 표면결함을 육안으로 검사하여 표면품질을 조사하였다.And r value and TS were measured by the method mentioned above. In addition, surface defects were visually inspected to investigate surface quality.

결과를 표2에 나타낸다.The results are shown in Table 2.

표1, 표2 공히, 최상단에 있는 식중의 [Nb]는, Nb무첨가의 경우, 0으로 한다.In Table 1 and Table 2, [Nb] in the uppermost formula is 0 when Nb is not added.

본 발명예인 강판 No.1~24에서는, TS가 340~400MPa이고 1.8이상의 r값, TS가 400~590MPa이고 1.6 이상의 r값이 얻어지고, 표면품질도 양호하다. 또한, 동일강도의 비교예와 비교하면, 본 발명예의 r값이 현저하게 높은 것을 알 수 있다. 특히, Mn량이 1%를 초과하면 그 효과가 현저하게 나타난다.In the steel sheets No. 1 to 24 which are examples of the present invention, an r value of TS of 340 to 400 MPa and 1.8 or more, an r value of 1.6 or more of TS of 400 to 590 MPa is obtained, and the surface quality is also good. In addition, it can be seen that the r value of the example of the present invention is remarkably high as compared with the comparative example of the same strength. In particular, the effect is remarkable when the Mn amount exceeds 1%.

한편, 비교예인 강판 No.25~34에서는, TS가 340~400MPa이고 1.8 이상의 r값, TS가 400~590MPa이고 1.6 이상의 r값이 얻어지지 않는다. Mn량이 높은 종래의 고강도냉연강판에 상당하는 강판 No. 27,28,29에서는 r값이 낮다. 또한, 강판 No.30,31,32,33,34에서는, (Nb+Ti)/(C+N)비, C, Si, Mn, P, sol.Al, Nb가 각각 본 발명범위외로서 r값이 낮다. 그 중에서도 C량, (Nb+Ti)/(C+N)비가 적정화되지 않고, 고용 C, Mn이 공존하고 있는 종래의 저탄소고강도냉연강판에 상당하는 강판 No.30에서는, so.Al을 높이더라도 높은 r값을 얻을 수 없다. 또한, Nb나 Nb 및 sol.Al이 본 발명범위외에 있는 강판 No. 31, 34에서는 표면품질이 열화한다.On the other hand, in steel sheets Nos. 25 to 34 that are comparative examples, r values of TS of 340 to 400 MPa and 1.8 or more, and r values of TS of 400 to 590 MPa and 1.6 or more are not obtained. Steel plate No. corresponding to the conventional high strength cold rolled steel sheet with high Mn amount. The r value is low at 27, 28, and 29. In addition, in steel plate No. 30, 31, 32, 33, 34, (Nb + Ti) / (C + N) ratio, C, Si, Mn, P, sol.Al, Nb are respectively r as outside the scope of this invention. The value is low. Among them, in the steel sheet No. 30 corresponding to the conventional low carbon high strength cold rolled steel sheet in which the amount of C and the (Nb + Ti) / (C + N) ratio are not optimized and the solid solution C and Mn coexist, even if so.Al is increased. You cannot get a high r value. In addition, the steel sheet No. which Nb, Nb, and sol.Al are outside the scope of the present invention. At 31 and 34, surface quality deteriorates.

또, 종래의 연질냉연강판 SPC270F에 상당하는 강판 No. 25와 이에 sol.Al량을 다량으로 첨가한 강판 No.26과 비교하면, Mn, P량이 낮으면 sol.Al을 첨가하여도 r값 향상 효과가 작은 것을 알 수 있다.Moreover, the steel plate No. corresponded to the conventional soft cold rolled steel sheet SPC270F. Compared with 25 and steel plate No. 26 to which a large amount of sol.Al was added, it turns out that r value improvement effect is small even if sol.Al is added when Mn and P amount are low.

Figure 112005008334962-PAT00001
Figure 112005008334962-PAT00001

Figure 112005008334962-PAT00002
Figure 112005008334962-PAT00002

본 발명에 의하면, 특수한 제조공정을 필요로 함이 없이, TS가 340~400MPa이고 r값이 1.8 이상인, TS가 400~590MPa이고 r값이 1.6 이상, 바람직하게는 1.7 이상의 고강도냉연강판을 얻을 수 있다. 상기 고강도냉연강판은, TS가 340~590MPa에서, 우수한 딥드로잉성형성을 가지므로, 사이드아우터패널이나 도어이너패널과 같은 성형이 어려운 자동차부품에 적합하다.According to the present invention, a high strength cold rolled steel sheet having a TS of 340 to 400 MPa and an r value of 1.8 or more and a TS of 400 to 590 MPa and an r value of 1.6 or more, preferably 1.7 or more can be obtained without requiring a special manufacturing process. have. Since the high strength cold rolled steel sheet has excellent deep drawing property at TS of 340 to 590 MPa, it is suitable for automobile parts that are difficult to form, such as side outer panels and door inner panels.

Claims (13)

질량%로, C: 0.015% 이하, Si: 1.5% 이하, Mn: 0.4~3%, P; 0.15% 이하, S; 0.02% 이하, sol.Al; 0.1~1%, N; 0.01% 이하, Ti; 0.2% 이하와, 잔부가 Fe 및 불가피한 불순물로 이루어지며, 동시에 하기의 식(1)을 만족하는 고강도냉연강판;By mass%, C: 0.015% or less, Si: 1.5% or less, Mn: 0.4-3%, P; 0.15% or less, S; 0.02% or less, sol.Al; 0.1-1%, N; 0.01% or less, Ti; A high strength cold rolled steel sheet having 0.2% or less and the balance made of Fe and unavoidable impurities and at the same time satisfying the following formula (1); 1≤([Ti]/48)/([C]/12 + [N]/14) …(1)1? ([Ti] / 48) / ([C] / 12 + [N] / 14)... (One) 여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M. 제1항에 있어서,The method of claim 1, 질량%로, sol.Al: 0.2~0.7%인 것을 특징으로 하는 고강도냉연강판.High-strength cold rolled steel sheet, characterized in that by mass%, sol.Al: 0.2-0.7%. 제1항에 있어서,The method of claim 1, 하기의 식(2)를 만족하는 것을 특징으로 하는 고강도냉연강판;High strength cold rolled steel sheet characterized by satisfying the following formula (2); 0.3≤[Si] + 10 × [P]≤1.4 …(2)0.3? [Si] + 10 x [P]? (2) 여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M. 제2항에 있어서,The method of claim 2, 하기의 식(2)를 만족하는 것을 특징으로 하는 고강도냉연강판;High strength cold rolled steel sheet characterized by satisfying the following formula (2); 0.3≤[Si] + 10 × [P]≤1.4 …(2)0.3? [Si] + 10 x [P]? (2) 여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M. 제1항에 있어서,The method of claim 1, 질량%로 Nb: 0.002~0.02%를 함유하고, 동시에 하기의 식(3)을 만족하는 것을 특징으로 하는 고강도냉연강판;A high strength cold rolled steel sheet containing Nb: 0.002 to 0.02% by mass and satisfying the following formula (3); 1≤([Nb]/93 + [Ti]/48)/([C]/12 + [N]/14) …(3)1≤ ([Nb] / 93 + [Ti] / 48) / ([C] / 12 + [N] / 14)... (3) 여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M. 제4항에 있어서,The method of claim 4, wherein 질량%로 Nb: 0.002~0.02%를 함유하고, 동시에 하기의 식(3)을 만족하는 것을 특징으로 하는 고강도냉연강판;A high strength cold rolled steel sheet containing Nb: 0.002 to 0.02% by mass and satisfying the following formula (3); 1≤([Nb]/93 + [Ti]/48)/([C]/12 + [N]/14) …(3)1≤ ([Nb] / 93 + [Ti] / 48) / ([C] / 12 + [N] / 14)... (3) 여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M. 제1항에 있어서,The method of claim 1, 질량%로, B: 0.0001~0.003%를 더 포함하는 것을 특징으로 하는 고강도냉연강판.A high strength cold rolled steel sheet, characterized by further comprising B: 0.0001 to 0.003% by mass. 제6항에 있어서,The method of claim 6, 질량%로, B: 0.0001~0.003%를 더 포함하는 것을 특징으로 하는 고강도냉연강판.A high strength cold rolled steel sheet, characterized by further comprising B: 0.0001 to 0.003% by mass. 제1항에 있어서,The method of claim 1, 질량%로, Cu: 0.03~0.5%, Ni: 0.03~0.5%, Cr: 0.03~0.5%, Mo: 0.05~0.3%, 및 V: 0.005~0.5% 중으로부터 선택되는 적어도 1종의 원소를 더 함유하는 것을 특징으로 하는 고강도냉연강판.In mass%, at least one element selected from Cu: 0.03-0.5%, Ni: 0.03-0.5%, Cr: 0.03-0.5%, Mo: 0.05-0.3%, and V: 0.005-0.5% is further added. High strength cold rolled steel sheet, characterized in that it contains. 제8항에 있어서,The method of claim 8, 질량%로, Cu: 0.03~0.5%, Ni: 0.03~0.5%, Cr: 0.03~0.5%, Mo: 0.05~0.3%, 및 V: 0.005~0.5% 중으로부터 선택되는 적어도 1종의 원소를 더 함유하는 것을 특징으로 하는 고강도냉연강판.In mass%, at least one element selected from Cu: 0.03-0.5%, Ni: 0.03-0.5%, Cr: 0.03-0.5%, Mo: 0.05-0.3%, and V: 0.005-0.5% is further added. High strength cold rolled steel sheet, characterized in that it contains. 제1항에 있어서,The method of claim 1, 질량%로, Sb: 0.002~0.2%, Sn: 0.002~0.2% 중에서 선택된 적어도 1종의 원소를 함유하고, 동시에 하기의 식(4)를 만족하는 것을 특징으로 하는 고강도냉연강판;A high strength cold rolled steel sheet containing at least one element selected from Sb: 0.002 to 0.2% and Sn: 0.002 to 0.2% by mass and simultaneously satisfying the following formula (4); 0.002≤[Sb] + [Sn]/2≤0.2 …(4)0.002 ≦ Sb + Sn / 2 ≦ 0.2... (4) 여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M. 제10항에 있어서,The method of claim 10, 질량%로, Sb: 0.002~0.2%, Sn: 0.002~0.2% 중에서 선택된 적어도 1종의 원소 를 함유하고, 동시에 하기의 식(4)를 만족하는 것을 특징으로 하는 고강도냉연강판;A high strength cold rolled steel sheet containing at least one element selected from Sb: 0.002 to 0.2% and Sn: 0.002 to 0.2% by mass and simultaneously satisfying the following formula (4); 0.002≤[Sb] + [Sn]/2≤0.2 …(4)0.002 ≦ Sb + Sn / 2 ≦ 0.2... (4) 여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M. 제1항 내지 제12항에 기재된 어느 하나의 조성을 가지는 강 슬래브를, 1080~1350℃로 가열하는 공정과,The process of heating the steel slab which has a composition of any one of Claims 1-12 to 1080-1350 degreeC, 상기 가열후의 강 슬래브를, (Ar3변태점-20) ~ (Ar3변태점+150)℃의 사상온도로 열간압연하여 열연강판으로 하는 공정과,The process of the steel slab after said heating, (Ar 3 transformation point -20) ~ (Ar 3 transformation point + 150) hot rolling the hot-rolled steel sheet to a temperature history of ℃ and, 상기 열연강판을, 하기의 식(5) 또는 (6)을 만족하는 권취온도 CT로 권취하는 공정과,Winding the hot rolled steel sheet with a winding temperature CT that satisfies the following formula (5) or (6); 상기 권취후의 열연강판을, 50~90%의 압하율로 냉간압연하여 냉연강판으로 하는 공정과,Cold rolling the hot rolled steel sheet after the winding at a reduction ratio of 50 to 90% to form a cold rolled steel sheet, 상기 냉연강판을, 750~870℃로 연속소둔하는, 또는 600~750℃로 상소둔하는 공정을 가지는 고강도냉연강판의 제조방법;A method for producing a high strength cold rolled steel sheet having a step of continuously annealing the cold rolled steel sheet at 750 ° C. to 870 ° C. or annealing at 600 ° C. to 750 ° C .; 480 ≤CT ≤ 580 + 0.17/{([Ti] + 0.08 × [sol.Al]) × [P]} …(5)480 ≤ CT ≤ 580 + 0.17 / {([Ti] + 0.08 x [sol. Al]) x [P]}. (5) 480 ≤CT ≤ 580 + 0.17/{(0.6 × [Nb] + [Ti] + 0.08 × [sol.Al]) × [P]} …(6)480 ≤ CT ≤ 580 + 0.17 / {(0.6 × [Nb] + [Ti] + 0.08 × [sol.Al]) × [P]}. (6) 여기서, [M]은 원소 M의 함유량(질량%)을 나타낸다.Here, [M] represents content (mass%) of the element M.
KR1020050013073A 2004-02-25 2005-02-17 High strength cold rolled steel sheet and method for manufacturing the same KR20060042036A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2004-00049034 2004-02-25
JP2004049034 2004-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020070082656A Division KR20070089670A (en) 2004-02-25 2007-08-17 High strength cold rolled steel sheet and method for manufacturing the same

Publications (1)

Publication Number Publication Date
KR20060042036A true KR20060042036A (en) 2006-05-12

Family

ID=34747463

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020050013073A KR20060042036A (en) 2004-02-25 2005-02-17 High strength cold rolled steel sheet and method for manufacturing the same
KR1020070082656A KR20070089670A (en) 2004-02-25 2007-08-17 High strength cold rolled steel sheet and method for manufacturing the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020070082656A KR20070089670A (en) 2004-02-25 2007-08-17 High strength cold rolled steel sheet and method for manufacturing the same

Country Status (6)

Country Link
US (1) US20060037677A1 (en)
EP (1) EP1568791A1 (en)
KR (2) KR20060042036A (en)
CN (1) CN100439544C (en)
CA (1) CA2496212C (en)
TW (1) TWI276692B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2700730A3 (en) 2004-07-27 2017-08-09 Nippon Steel & Sumitomo Metal Corporation Steel sheet having high Young's modulus, hot-dip galvanized steel sheet using the same, alloyed hot-dip galvanized steel sheet, steel pipe having high Young's modulus, and methods for manufacturing these
EP1960562B1 (en) * 2005-12-09 2015-08-26 Posco High strenght cold rolled steel sheet having excellent formability and coating property, zinc-based metal plated steel sheet made of it and the method for manufacturing thereof
JP5228447B2 (en) 2006-11-07 2013-07-03 新日鐵住金株式会社 High Young's modulus steel plate and method for producing the same
DE102009053260B4 (en) * 2009-11-05 2011-09-01 Salzgitter Flachstahl Gmbh Process for coating steel strips and coated steel strip
JP5786316B2 (en) * 2010-01-22 2015-09-30 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP5786318B2 (en) * 2010-01-22 2015-09-30 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent fatigue characteristics and hole expansibility and method for producing the same
JP6111522B2 (en) * 2012-03-02 2017-04-12 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR101647224B1 (en) * 2014-12-23 2016-08-10 주식회사 포스코 High strength galvanized steel sheet having excellent surface qualities, plating adhesion and formability and method for manufacturing the same
KR102058601B1 (en) * 2015-08-24 2019-12-23 닛폰세이테츠 가부시키가이샤 Alloyed hot dip galvanized steel sheet and its manufacturing method
CN106119495B (en) * 2016-08-19 2019-02-01 武汉钢铁有限公司 A kind of manufacturing method of cold rolling medium high carbon structural steel
CN111926252B (en) * 2020-07-31 2022-01-18 马鞍山钢铁股份有限公司 Hot-rolled pickled steel plate for deep drawing and production method thereof
CN115558858A (en) * 2022-10-08 2023-01-03 北京首钢股份有限公司 Steel strip, preparation method thereof and automobile outer plate

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317627A (en) * 1987-06-18 1988-12-26 Kawasaki Steel Corp Semiprocessing non-oriented silicon steel sheet combining low iron loss with high magnetic permeability and its production
CA2097900C (en) * 1992-06-08 1997-09-16 Saiji Matsuoka High-strength cold-rolled steel sheet excelling in deep drawability and method of producing the same
JP2671726B2 (en) * 1992-09-30 1997-10-29 日本鋼管株式会社 Manufacturing method of cold rolled steel sheet for ultra deep drawing
US5542996A (en) * 1993-01-14 1996-08-06 Nkk Corporation Method for manufacturing an ultra-high strength cold-rolled steel sheet with desirable delayed fracture resistance
US5470529A (en) * 1994-03-08 1995-11-28 Sumitomo Metal Industries, Ltd. High tensile strength steel sheet having improved formability
US5853903A (en) * 1996-05-07 1998-12-29 Nkk Corporation Steel sheet for excellent panel appearance and dent resistance after panel-forming
TW515847B (en) * 1997-04-09 2003-01-01 Kawasaki Steel Co Coating/baking curable type cold rolled steel sheet with excellent strain aging resistance and method for producing the same
JP2000199031A (en) * 1998-10-29 2000-07-18 Sumitomo Metal Ind Ltd Cold rolled steel sheet excellent in workability and its production
CN1223695C (en) * 1998-12-07 2005-10-19 杰富意钢铁株式会社 High strength cold rolled steel plate and its producing method
JP3740875B2 (en) * 1998-12-28 2006-02-01 Jfeスチール株式会社 Cold-rolled thin steel sheet for deep drawing with excellent impact resistance
KR100433248B1 (en) * 1999-12-28 2004-05-27 주식회사 포스코 a cold-rolled steel with good formability and anti-dent property and the method of manufacturing the same
JP3968964B2 (en) * 2000-06-30 2007-08-29 Jfeスチール株式会社 Steel plate for heat shrink band
DE60138204D1 (en) * 2000-09-12 2009-05-14 Jfe Steel Corp ULTRA HIGH-RESISTANT COLD-ROLLED STEEL PLATE AND ITS MANUFACTURING METHOD
US20030129444A1 (en) * 2000-11-28 2003-07-10 Saiji Matsuoka Composite structure type high tensile strength steel plate, plated plate of composite structure type high tensile strength steel and method for their production
US6786981B2 (en) * 2000-12-22 2004-09-07 Jfe Steel Corporation Ferritic stainless steel sheet for fuel tank and fuel pipe
KR100530073B1 (en) * 2001-12-20 2005-11-22 주식회사 포스코 High strength steel sheet having superior workability and method for manufacturing there of
KR100530077B1 (en) * 2001-12-21 2005-11-22 주식회사 포스코 Deep Drawing High Strength Steel Sheet With Secondary Working Brittleness Resistance and Formability and A Method for Manufacturing Thereof
JP2003193189A (en) * 2001-12-25 2003-07-09 Jfe Steel Kk High tensile strength galvanized steel sheet with composite structure having excellent deep drawability and production method therefor
JP4414883B2 (en) * 2002-06-28 2010-02-10 ポスコ High-strength cold-rolled steel sheet for ultra-deep drawing excellent in formability and weldability and its manufacturing method

Also Published As

Publication number Publication date
CN1661127A (en) 2005-08-31
KR20070089670A (en) 2007-08-31
EP1568791A1 (en) 2005-08-31
CN100439544C (en) 2008-12-03
TWI276692B (en) 2007-03-21
TW200532032A (en) 2005-10-01
CA2496212A1 (en) 2005-08-25
CA2496212C (en) 2010-01-12
US20060037677A1 (en) 2006-02-23

Similar Documents

Publication Publication Date Title
KR100485659B1 (en) Cold rolled steel sheet and hot rolled steel sheet excellent in bake hardenability and resistance to ordinary temperature aging and method for their production
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
KR20060042036A (en) High strength cold rolled steel sheet and method for manufacturing the same
JP5310919B2 (en) Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability
US7608156B2 (en) High strength cold rolled steel sheet and method for manufacturing the same
KR0121737B1 (en) Cold rolled sheet and hot-galvanized, cold-rolled sheet, both excellent in bake hardening, cold nonaging and forming
KR20080052637A (en) Cold-rolled steel sheet excellent in coating curability in baking and cold slow-aging property and process for producing the same
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP4613618B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and its manufacturing method
JP2011080126A (en) Hot-dip galvannealed steel sheet and method for manufacturing the same
JP5151390B2 (en) High-tensile cold-rolled steel sheet, high-tensile galvanized steel sheet, and methods for producing them
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP3745496B2 (en) Manufacturing method of cold-rolled steel sheet and alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance
JP2013076132A (en) High strength thin steel sheet having excellent bake hardenability and formability and method for manufacturing the same
JP5151227B2 (en) High strength steel plate and manufacturing method thereof
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method
JP2565054B2 (en) Method for producing galvannealed steel sheet with excellent deep drawability and plating adhesion
JP3716439B2 (en) Manufacturing method of high-tensile alloyed hot-dip galvanized steel sheet with excellent plating characteristics
JP3399748B2 (en) Cold rolled steel sheet with excellent press formability and chemical conversion treatment and alloyed hot-dip galvanized steel sheet with excellent press workability and powdering resistance
JP2549539B2 (en) Method for producing hot dip galvanized steel sheet for ultra deep drawing
JP2004256893A (en) High strength hot dip galvanized steel sheet having excellent secondary working brittleness resistance
JP2000144261A (en) Production of hot rolled base hot dip galvanized and hot dip galvannealed high tensile strength steel sheet excellent in ductility
JP4218598B2 (en) High tensile alloyed hot dip galvanized steel sheet with excellent plating characteristics
JP2515139B2 (en) Method for manufacturing alloyed hot-dip galvanized steel sheet for ultra deep drawing
JPH0756056B2 (en) Method for producing high strength galvanized steel sheet having high r value

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
A107 Divisional application of patent
AMND Amendment
J201 Request for trial against refusal decision
B601 Maintenance of original decision after re-examination before a trial
E801 Decision on dismissal of amendment
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20070817

Effective date: 20080429