KR20060035078A - 미세전자기계적 스위치 및 그 제조 방법 - Google Patents

미세전자기계적 스위치 및 그 제조 방법 Download PDF

Info

Publication number
KR20060035078A
KR20060035078A KR1020040084407A KR20040084407A KR20060035078A KR 20060035078 A KR20060035078 A KR 20060035078A KR 1020040084407 A KR1020040084407 A KR 1020040084407A KR 20040084407 A KR20040084407 A KR 20040084407A KR 20060035078 A KR20060035078 A KR 20060035078A
Authority
KR
South Korea
Prior art keywords
moving plate
support
signal line
substrate
forming
Prior art date
Application number
KR1020040084407A
Other languages
English (en)
Other versions
KR100619110B1 (ko
Inventor
이재우
제창한
강성원
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to KR1020040084407A priority Critical patent/KR100619110B1/ko
Priority to US11/086,320 priority patent/US7283025B2/en
Publication of KR20060035078A publication Critical patent/KR20060035078A/ko
Application granted granted Critical
Publication of KR100619110B1 publication Critical patent/KR100619110B1/ko
Priority to US11/898,002 priority patent/US7546677B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G5/00Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
    • H01G5/16Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
    • H01G5/18Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes due to change in inclination, e.g. by flexing, by spiral wrapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/12Auxiliary devices for switching or interrupting by mechanical chopper
    • H01P1/127Strip line switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • H01H2059/0072Electrostatic relays; Electro-adhesion relays making use of micromechanics with stoppers or protrusions for maintaining a gap, reducing the contact area or for preventing stiction between the movable and the fixed electrode in the attracted position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49105Switch making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49208Contact or terminal manufacturing by assembling plural parts

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Micromachines (AREA)

Abstract

본 발명은 고주파 대역의 무선통신 또는 고주파(RF) 시스템에서 신호의 전달을 제어하기 위해 사용되는 미세전자기계적(Micro-electro Mechanical Systems; MEMS) 스위치에 관한 것으로, 기판 상에 형성되며 소정 부분이 개방된 신호선, 상기 신호선 양측의 기판에 각각 형성된 적어도 하나의 지지대, 지지대와 신호선 사이의 기판에 형성된 접지선, 지지대에 양측부가 고정되며 상, 하 이동이 가능한 이동판, 이동판에 위치되며 개방된 신호선을 연결시키기 위한 접촉수단를 구비하는 스위칭부, 이동판과 스위칭부를 지지하며, 기판과의 간격 유지를 위한 지지돌출부를 구비하는 지지층을 포함한다.
미세전자기계적 스위치, 신호선, 스위칭부, 중앙지지층, 지지돌출부

Description

미세전자기계적 스위치 및 그 제조 방법 {Micro-electro mechanical systems switch and a method of fabricating the same}
도 1a는 종래 켄틸레버 형태 미세전자기계적 스위치의 평면도.
도 1b는 도 1a의 A1-A2 부분을 절취한 단면도.
도 2a 및 도 2b는 종래 켄틸레버 형태 미세전자기계적 스위치의 동작을 설명하기 위한 단면도.
도 3은 종래 멤브레인 형태 미세전자기계적 스위치의 평면도.
도 4는 본 발명의 일 실시예에 따른 미세전자기계적 스위치를 설명하기 위한 평면도.
도 5a 및 도 5b는 도 4의 A11-A12 부분을 절취한 단면도.
도 6은 도 4의 B11-B12 부분을 절취한 단면도.
도 7a는 본 발명의 일 실시예에 따른 미세전자기계적 스위치의 구현예를 설명하기 위한 전자현미경 사진.
도 7b는 본 발명의 일 실시예에 따른 미세전자기계적 스위치의 3차원 표면 관찰기(3D profiler) 측정 결과도.
도 8a 내지 8h는 본 발명의 일 실시예에 따른 미세전자기계적 스위치의 제조방법을 설명하기 위한 단면도.
<도면의 주요 부분에 대한 부호의 설명>
1, 12, 100: 기판 2, 14: 하부전극
3, 18: 신호선 4: 지지부
5: 켄티레버 암 6, 16: 상부전극
7, 155a, 155b: 접촉부 20, 140: 이동판
22: 스프링 24: 지지대
34: 연결대 110a, 110b: 입/출력 신호선
115: 개방부 120a, 120b: 접지선
125a, 125b: 절연막 130a, 130b: 지지대
150: 스위칭부 160: 중앙지지층
165: 지지돌출부 170: 홈
180: 절연체
본 발명은 고주파 대역의 무선통신, 고주파(RF) 시스템 등에서 신호의 전달을 제어하는 스위치에 관한 것으로, 보다 상세하게는 정전기력(electrostatic force)으로 구동되는 미세전자기계적 스위치 및 그 제조 방법에 관한 것이다.
일반적으로 고주파 대역의 통신 시스템에서는 신호의 전달을 제어하는 스위칭 소자로서, FET(Field Effect Transistor)나 핀 다이오드(PIN diode) 등을 사용 한다. 그러나 이러한 반도체 스위치들은 집적화가 용이한 반면, 삽입손실(insertion loss)이 높고, 신호분리(low isolation loss) 특성이 좋지 않으며, 신호왜곡(signal distortion)이 발생되는 등 많은 문제점을 가지기 때문에 최근에는 이러한 문제점을 해결할 수 있는 미세전자기계적(Micro-electro Mechanical Systems; MEMS) 스위치에 대해 널리 연구하고 있다.
미세전자기계적 스위치는 일반적으로 기판에 대해 상대적으로 운동하는 미소의 운동요소와 운동요소를 구동시키는 구동요소로 이루어진다. 구동요소는 서로 대향하도록 위치된 두 개의 전극을 가지며, 운동요소는 구동요소의 전극을 통해 인가되는 전압에 의해 발생되는 정전기력에 의해 구동한다. 즉, 운동요소는 기판에 대해 평행한 방향 또는 수직인 방향으로 운동하거나, 기판에 대해 소정의 각도 범위 내에서 회전 운동하도록 구성된다.
도 1a 및 도 1b는 종래 켄틸레버 형태 미세전자기계적 스위치의 일 예를 도시한다. 도 1a는 종래 켄틸레버 형태 미세전자기계적 스위치의 평면도이고, 도 1b는 도 1a의 A1-A2 부분을 절취한 단면도이다.
기판(1) 상에 하부전극(2) 및 신호선(3)이 형성되고, 지지부(4)에 의해 기판(1)에 고정된 켄틸레버 암(cantilever arm; 5)이 하부전극(2) 및 신호선(3)의 상부에 위치된다. 켄틸레버 암(5)의 상부에는 상부전극(6)이 형성되고, 종단 하부에는 신호선(3)의 끊어진 부분을 연결시키기 위한 접촉부(7)가 형성된다. 켄틸레버 암(5)과 상부전극(6)은 중간 부분이 다른 부분보다 좁게 형성되어 켄틸레버 암(5)의 종단부가 일정한 탄성을 가진다.
상부전극(6) 및 하부전극(2)에 소정의 정전압을 인가하면 상부전극(6)과 하부전극(2)의 중첩에 의한 캐패시터 구조(capacitor structure) 부분(8)에서 발생되는 정전기력에 의해 켄틸레버 암(5)이 하부로 휘어지고, 이에 따라 접촉부(7)가 신호선(3)의 끊어진 부분을 연결시켜 스위칭 동작을 이룬다(미국특허 제5,578,976호(1996. 11. 26) 참조).
도 1a 및 도1b와 같은 켄틸레버 구조는 입력부 및 출력부에 각각 연결된 신호선(내부배선)(3)과 접촉부(단락바)(7)가 서로 직각으로 위치되며, 켄틸레버 암(유전막)(5)이 일측에서만 지지된다. 그러므로 제조 공정 혹은 동작 과정에서 켄틸레버 암(5)이나 상부전극(6)이 열팽창에 의해 변형되는 경우 도 2a에 도시된 바와 같이 수직 운동을 이루지 못하고, 도 2b에 도시된 바와 같이 뒤틀린 상태로 운동하기 때문에 신호선(3)과 접촉부(7)의 접촉이 불량해진다. 이러한 접촉 불량은 신호선(3)의 접촉저항을 증가시키거나, 신호의 전달을 불안정하게 하여 신뢰성을 저하시킨다.
도 3은 종래 멤브레인 형태 미세전자기계적 스위치의 일 예를 도시한다.
기판(12) 상에 지지대(24)와 하부전극(14), 그리고 개방된 신호선(18)이 형성되고, 하부전극(14)과 신호선(18) 상부에는 일정 간격을 두고 상부전극(16)을 구성하는 이동판(20)이 위치된다. 또한, 신호선(18)의 양측에는 이동판(20)이 일정한 탄성을 갖도록 하기 위한 스프링(22)이 지지대(24)에 의해 지지된다.
하부전극(14)에 소정의 구동전압을 인가하면 하부전극(14)과 상부전극(16) 간에 발생되는 정전기력에 의해 상부전극(16)의 이동판(20)이 하부로 이동하고, 이 에 따라 이동판(20) 내에 위치한 연결대(34)가 신호선(18)의 끊어진 부분을 연결시켜 스위칭 동작을 이룬다(미국특허 제6,307,452호(2001. 10. 23) 참조).
도 3과 같은 멤브레인 구조는 신호선(18)과 지지대(24)가 상당한 간격을 두고 위치한다. 그러므로 제조 공정 혹은 동작 과정에서 열팽창에 의해 금속으로 이루어진 상부전극(16)의 표면이 변형될 경우 이동판(20)이 신호선(18)과 완전히 접촉하지 못하고 영구적으로 개방(open)되는 문제를 일으킬 수 있으며, 상부전극(16)과 하부전극(14) 사이의 간격이 좁아 상부전극(16)과 하부전극(14)이 들어붙는 스틱션(stiction) 문제가 발생되어 스위치의 안정성 및 신뢰성이 저하된다.
또한, 이동판 (20)과 스프링(22)이 열팽창에 의해 변형되면 이동판(20)이 움직일 때 기판(12)에 대해 평행하게 운동하지 못한다. 이는 지지대(24)가 이동판(20)에 비해 열팽창률이 매우 작은 기판(12)에 고정되기 때문에 지지대(24)들 간의 거리가 거의 변하지 않는 상태에서 이동판(20)이 크게 열팽창됨으로써 야기된다. 열팽창에 의해 이동판(20)과 스프링(22)의 연결 부분에는 큰 응력이 발생되는데, 이 부분에서 영구 변형이 일어나게 된다. 결국, 이동판(20)의 변형에 따라 기판(12)으로부터 이동판(20)이 비정상적으로 멀어지거나 한쪽으로 기울어져 정상적인 스위칭 동작을 이룰 수 없게 되며, 이동판(20)이 기판(12)에 가깝게 내려앉은 경우에는 이동판(20)의 연결대(34)가 신호선(18)에 영구 접촉되는 문제점이 있다.
또한, 정전기력을 발생시키기 위한 전압이 인가되는 양 전극이 수 마이크로미터 정도로 매우 가깝게 유지되기 때문에 이동판(20) 혹은 스프링(22)이 인접하는 다른 고정요소에 들어붙는 스틱션 문제가 유발되기 쉬우며, 이는 스위치의 동작 및 신뢰성에 있어 매우 중요한 결함으로 작용한다.
상술한 바와 같이 켄틸레버 혹은 멤브레인 형태의 미세전자기계적 스위치는 기존의 반도체 스위치가 갖는 높은 삽입손실, 낮은 신호차단, 신호왜곡 등의 문제를 개선하기 위해 제안되었으나, 열적 변형, 스틱션 문제 등과 같은 구조적인 문제점들로 인해 낮은 신뢰성 및 신호분리 특성을 가진다. 그러므로 이러한 문제점을 해소할 수 있는 새로운 형태의 미세전자기계적 스위치 개발이 요구되는 실정이다.
본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 종래 미세전자기계적 스위치의 구조적인 문제점으로 인해 발생되는 열적 변형과 스틱션 문제를 해결할 수 있는 정전기력으로 구동되는 미세전자기계적 스위치 및 그 제조 방법을 제공하는 데 있다.
본 발명의 다른 목적은 쇄기 형상의 홈을 갖는 지지돌출부를 형성하여 제조공정과 동작 과정에서 발생하는 이동판의 열적 변형을 억제시킴으로써 안정성과 신뢰성이 향상된 정전기력으로 구동되는 미세전자기계적 스위치 및 그 제조 방법을 제공하는 데 있다.
상기한 목적을 달성하기 위한 본 발명에 따른 미세전자기계적 스위치는 기판, 상기 기판 상에 형성되며 소정 부분이 개방된 신호선, 상기 신호선 양측의 상기 기판에 각각 형성된 적어도 하나의 지지대, 상기 지지대와 상기 신호선 사이의 상기 기판에 형성된 접지선, 상기 지지대에 양측부가 고정되며 상, 하 이동이 가능한 이동판, 상기 이동판에 위치되며 상기 개방된 신호선을 연결시키기 위한 접촉수 단를 구비하는 스위칭부, 상기 이동판과 상기 스위칭부를 지지하며, 상기 기판과의 간격 유지를 위한 지지돌출부를 구비하는 지지층을 포함하는 것을 특징으로 한다.
또한, 상기한 목적을 달성하기 위한 본 발명에 따른 미세전자기계적 스위치의 제조 방법은 a) 기판 상에 소정 부분이 개방된 신호선, 상기 신호선 양측에 위치되는 지지대, 상기 지지대와 상기 신호선 사이에 위치되는 접지선을 각각 형성하는 단계, b) 전체면에 소정 두께의 희생층을 형성하는 단계, c) 상기 신호선의 종단과 일치되는 부분의 상기 희생층에 홈을 각각 형성한 후 상기 홈에 접촉부를 형성하는 단계, d) 상기 개방된 신호선 사이의 상기 기판이 노출되도록 상기 희생층에 홀을 형성한 후 상기 홀에는 지지돌출부가 형성되고, 상기 접촉부를 제외한 상기 희생층 상에 지지층이 형성되도록 하는 단계, e) 상기 지지대 및 상기 희생층의 상부 및 상기 지지층 상부에 이동판을 형성하는 단계, f) 상기 이동판 내측의 상기 접촉부 및 상기 지지층 상에 스위칭부를 형성하는 단계, g) 상기 희생층을 제거하는 단계를 포함하는 것을 특징으로 한다.
본 발명은 켄틸레버 형태 및 멤브레인 형태의 구조적 문제점이 보안된 미세전자기계적 스위치 및 그 제조 방법을 제공한다. 본 발명의 미세전자기계적 스위치는 제조 공정 또는 동작 과정에서 발생하는 열적 변형에 덜 민감하고, 멤브레인 구조에서의 스틱션 문제가 해결되어 안정적으로 동작한다.
그러면 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이하의 실시예는 이 기술 분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서, 여러가지 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다.
도 4는 본 발명의 일 실시예에 따른 미세전자기계적 스위치를 설명하기 위한 평면도로서, 도 5a, 도 5b 및 도 6을 참조하여 설명하면 다음과 같다.
반도체 또는 유전체 기판(100) 상에 신호 전송을 위한 입/출력 신호선(110a 및 110b)이 형성된다. 상기 입/출력 신호선(110a 및 110b)은 소정 부분에서 서로 이격(단선)되어 개방부(115)를 갖는다. 상기 입/출력 신호선(110a 및 110b) 양측의 기판(100) 상에는 입/출력 신호선(110a 및 110b)과 평행하도록 한 쌍의 접지선(120a 및 120b)이 형성되며, 상기 접지선(120a 및 120b) 외측의 기판(100) 상에는 일정한 간격으로 적어도 하나의 지지대(130a 및 130b)가 형성된다. 상기 입/출력 신호선(110a 및 110b)이나 상기 접지선(120a 및 120b)보다 높게 형성된 상기 지지대(130a 및 130b)에는 탄성복원력을 가지는 물질로 이루어진 이동판(140)의 양측부가 각각 고정된다. 이 때 상기 이동판(140)은 상기 입/출력 신호선(110a 및 110b) 및 접지선(120a 및 120b)과 일부 중첩되며, 상기 입/출력 신호선(110a 및 110b)의 개방부(115)가 노출되도록 중앙부에 개구부가 형성된다. 상기 이동판(140)은 양측부가 상기 지지대(130a 및 130b)에 고정되기 때문에 중앙부가 정전기력에 의해 상, 하로 이동될 수 있다.
상기 개방부(115)가 노출되는 상기 이동판(140)의 개구부에는 샵(#) 형상과 같이 중앙에 개구부가 형성되며 양측부가 ㄷ 자 형태로 이루어진 사각 형태의 스위칭부(150)가 형성된다. 상기 스위칭부(150)는 도 5a 및 도 5b에 도시된 바와 같이 중앙지지층(160) 및 절연체(180)에 의해 이동판(140)에 고정된다. 고주파(RF) 신호의 반사에 의한 손실을 방지하기 위해서는 상기 이동판(140) 내에 존재하는 스위칭부(150)가 이동판(140)과 절연을 유지하면서 상기 입/출력 신호선(110a 및 110b)의 모양과 일치하는 것이 바람직하다.
상기와 같이 스위칭부(150)를 구성하면 다음과 같이 동작 특성을 개선시킬 수 있다. 첫째, 고주파(RF) 신호를 감쇄시키지 않는 범위(표면효과: Skin Effect) 내에서 도전체로 이루어진 스위칭부(150)에 개구부를 형성하면 탄성도를 나타내는 스프링 상수를 감소시킬 수 있다. 스프링 상수가 감소되면 스위칭부(150)가 이동판(140)에 의해 빠르고 정확하게 제어되므로 신뢰성이 크게 향상된다. 둘째, 입/출력 신호선(110a 및 110b)이 끊어진 상태에서 신호분리 특성은 두 신호선(110a 및 110b)의 커플링 캐패시턴스에 따라 결정되며, 커플링 캐패시턴스가 낮을수록 우수한 신호분리 특성을 나타낸다. 직사각형의 접촉부(155a 및 155b)와 신호선(110a 및 110b)은 많은 부분이 중첩되기 때문에 커플링 캐패시턴스가 크고, 이로 인해 낮은 신호분리 특성을 나타낸다. 그러므로 고주파(RF) 신호를 감쇄시키지 않는 범위 내에서 스위칭부(150)의 양측부를 ㄷ 자 형태로 형성하면 신호분리 특성을 향상시킬 수 있다.
상기 스위칭부(150)의 하부에는 상기 입/출력 신호선(110a 및 110b)을 전기적으로 연결하기 위해 상기 개방부(115)의 입/출력 신호선(110a 및 110b) 종단부와 일치되도록 접촉부(155a 및 155b)가 돌출된다. 그리고 상기 이동판(140)의 중앙 하부 및 상기 스위칭부(150)의 하부에는 이동판(140)과 스위칭부(150)의 일부를 지탱 하기 위한 중앙지지층(160)이 형성되고, 상기 중앙지지층(160)의 중앙부 즉, 상기 개방부(115)의 중앙에 위치되는 부분에는 기판(100)으로부터 일정한 간격을 유지하기 위해 기판(100)과 맞닿도록 수직으로 연장된 지지돌출부(165)가 형성된다. 상기 지지돌출부(165)는 내부에 간극이 일정한 쇄기(Wedge) 형상의 홈(170)이 형성된다. 상기 지지돌출부(165)에 형성된 홈(170)은 간극이 일정한 쇄기 형상 뿐만 아니라 상부로 갈수록 넓어지거나 좁아지는 형태일 수도 있다.
상기 지지대(130a 및 130b)에 의해 지지되는 이동판(140)은 넓은 면적을 가진다. 그러므로 상기 지지대(130a 및 130b)에서 상대적으로 먼 거리에 위치하는 중심 부분은 정전압이 가해지지 않은 상태에서도 쉽게 변형될 수 있다. 따라서 이동판(140)의 고유 스프링 상수를 변형시키지 않으며 이동판(140)의 변형을 억제하기 위해 본 발명은 이동판(140)의 중앙 부분에 쇄기 형상의 홈(170)을 가지는 지지돌출부(165)를 형성한다. 상기 지지돌출부(165)는 스위칭부(150)의 이동이 최대화되도록 이동판(140)의 중앙부에 형성하며, 상기 홈(170)은 스위칭부(150)와 독립적으로 구성한다.
또한, 상기 입/출력 신호선(110a 및 110b)을 통한 고주파(RF) 신호의 흐름을 제어하기 위해서는 상기 스위칭부(150)와 이동판(140)의 구동 방향이 일치되어야 한다. 그러므로 상기 이동판(140)과 스위칭부(150)를 동일 평면상에 위치시키고, 전기적으로는 절연시키기 위해 상기 이동판(140)과 스위칭부(150)를 절연체로 이루어진 중앙지지층(160)으로 연결하여 이동판(140)과 스위칭부(150)를 지지하는 동시에 상기 이동판(140)에 정전압이 인가될 때 상기 스위칭부(150)가 전기적으로 절연 되도록 한다.
한편, 상기 접지선(120a 및 120b)의 표면에 상기 접지선(120a 및 120b)과 이동판(140)의 단락을 방지하기 위해 소정 두께의 절연막(125a 및 125b)을 형성할 수 있으며, 상기 스위칭부(150)와 이동판(140)의 상부에 상기 스위칭부(150)와 이동판(140)를 보다 견고하게 결합시키기 위해 소정 두께의 절연체(180)를 형성할 수 있다.
그러면 상기와 같이 구성된 본 발명에 따른 미세전자기계적 스위치의 동작을 설명하기로 한다.
상부전극으로 이용되는 이동판(140)과 하부전극으로 이용되는 접지선(120a 및 120b)에 소정의 직류(DC) 구동전압을 인가하면 정전기력에 의해 상기 이동판(140)과 접지선(120a 및 120b) 간에 인력이 발생된다. 이 때 상기 접지선(120a 및 120b)은 기판(100)에 고정되어 있기 때문에 탄성을 갖는 이동판(140)이 접지선(120a 및 120b) 방향으로 휘어지고, 이와 같은 이동판(140)의 휨에 의해 상기 스위칭부(150)의 접촉부(155a 및 155b)가 도 5b와 같이 입/출력 신호선(110a 및 110b)을 연결시켜줌으로써 신호의 흐름이 이루어진다. 이 때 상기 이동판(140)과 접지선(120a 및 120b) 사이에 절연막(125a 및 125b)이 형성되어 있기 때문에 상기 접지선(120a 및 120b)과 이동판(140)의 전기적 단락이 방지된다.
상기 이동판(140)과 접지선(120a 및 120b)에 인가되는 직류(DC) 구동전압이 제거되면 상기 이동판(140)이 가지는 스프링 상수에 의한 복원력으로 도 5a와 같이 상기 스위칭부(150)의 접촉부(155a 및 155b)가 상부로 이동하여 상기 입/출력 신호 선(110a 및 110b)이 개방되므로 신호의 흐름이 차단된다.
이와 같이 동작되는 미세전자기계적 스위치의 신호분리 특성은 입/출력 신호선(110a 및 110b)의 간격에 의한 커플링 캐패시턴스와 입/출력 신호선(110a 및 110b)과 접촉부(155a 및 155b)의 중첩에 의한 커플링 캐패시턴스의 합에 의해 결정된다. 그러므로 우수한 신호분리 특성을 얻기 위해서는 입/출력 신호선(110a 및 110b)과 접촉부(155a 및 155b)의 간격과 입/출력 신호선(110a 및 110b)의 간격이 모두 고려되어야 한다.
도 6에 도시한 바와 같이, 상기 중앙지지층(160)이 구비된 본 발명의 미세전자기계적 스위치는 입/출력 신호선(110a 및 110b) 간의 간격 즉, 개방부(115)의 크기를 기존의 미세전자기계적 스위치에서보다 훨씬 크게 할 수 있기 때문에 입/출력 신호선(110a 및 110b)과 접촉부(155a 및 155b)의 간격을 일정하게 유지시키면 상대적으로 매우 우수한 신호분리 특성을 얻을 수 있다. 또한, 상기 지지대(130a 및 130b)와 쇄기 형상의 홈(170) 사이에 형성된 이동판(140)의 스프링 상수가 기존의 미세전자기계적 스위치에 비해 상대적으로 크기 때문에 기존의 미세전자기계적 스위치보다 낮은 구동전압으로 동작될 수 있다.
기존의 미세전자기계적 스위치는 이동판이 양쪽에서 고정되기 때문에 이동판이 쉽게 열적으로 변형되고, 이동판과 접지선 간의 간격이 작아 상부전극으로 이용되는 이동판이 다른 고정요소에 들어붙는 스틱션 문제가 쉽게 발생된다. 이러한 스틱션 문제는 수 마이크로미터의 간격으로 위지되는 이동판과 기판 사이에 습기나 제조 공정 시 발생된 이물질 등이 존재함으로써 발생되는데, 스위치의 동작 특성을 불안정하게 만드는 요인으로 작용한다. 따라서 본 발명은 쇄기 형상의 홈(170)이 형성된 중앙지지층(160)을 이동판(140)의 중앙부에 형성함으로써 동작전압을 일정하게 유지하면서 스틱션을 방지하고 안정하게 동작할 수 있도록 한다.
도 7a는 본 발명의 일 실시예에 따른 미세전자기계적 스위치의 구현예를 설명하기 위한 전자현미경 사진이고, 도 7b는 본 발명의 일 실시예에 따른 미세전자기계적 스위치의 3차원 표면 관찰기(3D profiler) 측정 결과도이다.
도 7a를 참조하면, 접지선(120a 및 120b)의 형상을 변형시킨 예로서, 도 4에 도시된 접지선(120a 및 120b)과 다른 형상으로 다양하게 변형시켜 적용할 수 있다. 또한, 도 4의 실시예는 SPST(Single Pole Single Throw) 구조를 나타낸 것으로, 하나의 입/출력 신호선(110a 및 110b)의 경우를 예를들어 설명하였으나, 이에 국한하지 않고 하나의 입력 신호선과 둘 이상의 출력 신호선으로 구성되는 SPMT(Single Pole Multi Throw) 구조에도 확장하여 적용할 수 있다.
도 7b를 참조하면, 기판(100)을 약 200℃ 정도의 온도로 가열하고 측정한 결과로서, 쇄기 형상의 홈(170)을 갖는 중앙지지층(160)에 의해 이동판(140)과 스위칭부(150)가 기판(100)과 일정한 간격으로 지지 및 유지됨으로써 이동판(140)의 열적 변형이 억제됨을 알 수 있다. 또한, 입/출력 신호선(110a 및 110b) 및 접지선(120a 및 120b) 상에 일정한 높이로 위치하는 이동판(140)이 기판(100)을 기준값 '0'으로 정하였을 때 도 7b의 우측에 나타난 지시표처럼 약 6 정도에 모두 위치하는 것으로 나타나 열적 변형이 거의 일어나지 않음을 보여주고 있다.
그러면 상기와 같이 구성된 본 발명의 미세전자기계적 스위치의 제조 방법을 도 8 내지 도 15를 통해 설명하기로 한다. 도 8a 내지 도 15a는 도 4의 A11-A12 부분을 절취한 단면을 도시하며, 도 8b 내지 도 15b는 도 4의 B11-B12 부분을 절취한 단면을 도시한다.
도 8a 및 도 8b를 참조하면, 반도체 또는 유전체 기판(100) 상에 박막 증착(deposition) 및 패터닝 공정 혹은 전기도금(electro-plating)법으로 입/출력 신호선(110a 및 110b) 및 접지선(120a 및 120b)을 형성함과 동시에 적어도 하나의 지지대(130a 및 130b)를 형성한다. 이 때 신호 전송을 위한 상기 입/출력 신호선(110a 및 110b)은 개방부(115)를 갖도록 소정 간격 이격되어 형성되며, 상기 접지선(120a 및 120b)은 상기 입/출력 신호선(110a 및 110b) 양측에 입/출력 신호선(110a 및 110b)과 평행한 띠(strip) 모양으로 각각 형성되고, 상기 지지대(130a 및 130b)는 상기 접지선(120a 및 120b) 외측에 일정한 간격으로 형성된다. 상기 입/출력 신호선(110a 및 110b) 및 접지선(120a 및 120b)은 금(Au)과 같은 귀금속(noble metal)으로 형성하는 것이 바람직하다.
도 9a 및 도 9b를 참조하면, 상기 접지선(120a 및 120b)을 감싸도록 소정 두께의 절연막(125a 및 125b)을 형성한다. 상기 절연체(125a 및 125b)에 의해 하부전극으로 이용되는 접지선(120a 및 120b)과 상부전극으로 이용되는 이동판(140)의 전기적 단락이 방지된다.
도 10a 및 도 10b를 참조하면, 상기 입/출력 신호선(110a 및 110b), 접지선(120a 및 120b) 및 지지대(130a 및 130b)를 포함하는 전체 상부면에 소정 두께의 희생층(190)을 형성한다.
도 11a 및 도 11b를 참조하면, 소정의 감광제를 사용한 마스크 공정을 통해 상기 입/출력 신호선(110a 및 110b)의 종단과 일치되는 부분의 상기 희생층(190)에 홈을 각각 형성한 후 상기 홈에 접촉부(155a 및 155b)를 형성한다.
도 12a 및 도 12b를 참조하면, 상기 개방된 입/출력 신호선(110a 및 110b) 사이의 상기 기판이 노출되도록 상기 희생층(190)에 홀을 형성한 후 상기 접촉부(155a 및 155b)를 제외한 전체면에 소정 두께의 중앙지지층(160)을 형성한다. 상기 홀에 의해 상기 중앙지지층(160)의 중앙부 즉, 상기 개방부(115)의 중앙에 위치되는 부분에는 기판(100)으로부터 일정한 간격을 유지하기 위해 기판(100)과 맞닿도록 수직으로 연장된 지지돌출부(165)가 형성되고, 상기 지지돌출부(165)의 두께가 얇기 때문에 중앙에는 간극이 일정한 쇄기 형상의 홈(170)이 형성된다.
상기 중앙지지층(160)은 예컨대, 플라즈마 화학기상증착법(Plasma Enhanced Chemical Vapor Deposition; PECVD)으로 형성된 실리콘 질화막 또는 스핀 코팅법(Spin coating)으로 형성된 폴리이미드로 이루어지는 것이 바람직하다.
도 13a 및 도 13b를 참조하면, 상기 지지대(130a 및 130b)와 희생층(190)의 상부 및 상기 중앙지지층(160)의 일측 상부에 이동판(140)을 형성하는 동시에 상기 이동판(140) 내측의 상기 접촉부(155a 및 155b) 및 중앙지지층(160) 상에 상기 입/출력 신호선(110a 및 110b)의 종단부와 일치되도록 샵(#) 형상과 같이 중앙에 개구부가 형성되며 양측부가 ㄷ 자 형태로 이루어진 사각 형태의 스위칭부(150)를 형성한다.
도 14a 및 도 14b를 참조하면, 상기 스위칭부(150)와 노출된 중앙지지층(160)의 표면에 소정 두께의 절연체(180)를 형성한다. 상기 절연체(170)는 예컨대, 플라즈마 화학기상증착법(PECVD)으로 형성된 실리콘 질화막 또는 스핀 코팅법(Spin coating)으로 형성된 폴리이미드로 이루어지는 것이 바람직하다. 상기 절연체(180)에 의해 상기 스위칭부(150)와 중앙지지층(160)이 보다 견고하게 결합된다.
도 15a 및 도 15b를 참조하면, 상기 이동판(140)과 입/출력 신호선(110a 및 110b) 사이에 형성된 상기 희생층(190)을 예컨대, 반응성 이온 식각(Reactive Ion Etching, RIE) 또는 습식 식각(Wet Etching) 방법으로 제거하면 본 발명의 미세전자기계적 스위치가 완성된다.
본 발명의 미세전자기계적 스위치 제조 방법에 따르면 이동판의 중앙부에 기판과의 간격을 유지하기 위해 지지돌출부를 구비하는 중앙지지층을 형성함으로써 제조 공정 및 동작 과정에서 발생되는 열에 의한 변형을 방지할 수 있으며, 접촉부와 신호선의 접촉이 안정적으로 이루어져 스틱션 문제가 방지되고 동작전압을 일정하게 유지할 수 있고 삽입손실 및 신호차단 특성이 향상된다.
이상에서와 같이 상세한 설명과 도면을 통해 본 발명의 최적 실시예를 개시하였다. 용어들은 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이 다.
이상에서 설명한 바와 같이 종래의 켄틸레버 혹은 멤브레인 형태의 구조적인 문제점을 보완한 본 발명의 미세전자기계적 스위치는 접촉부가 신호선과 동일한 방향으로 형성되며, 이동판의 중앙부에 기판과의 간격을 유지하기 위해 지지돌출부를 구비하는 중앙지지층이 형성되기 때문에 접촉부와 신호선의 접촉이 안정적으로 이루어져 신뢰성이 향상된다. 또한, 상기와 같은 안정적인 구조로 인해 제조 과정에서 발생되는 불량을 최소화할 수 있으며, 제조 공정이 비교적 간단하고 용이하여 제조 수율을 증대시킬 수 있다.

Claims (15)

  1. 기판,
    상기 기판 상에 형성되며 소정 부분이 개방된 신호선,
    상기 신호선 양측의 상기 기판에 각각 형성된 적어도 하나의 지지대,
    상기 지지대와 상기 신호선 사이의 상기 기판에 형성된 접지선,
    상기 지지대에 양측부가 고정되며 상, 하 이동이 가능한 이동판,
    상기 이동판에 위치되며 상기 개방된 신호선을 연결시키기 위한 접촉수단를 구비하는 스위칭부,
    상기 이동판과 상기 스위칭부를 지지하며, 상기 기판과의 간격 유지를 위한 지지돌출부를 구비하는 지지층을 포함하는 것을 특징으로 하는 미세전자기계적 스위치.
  2. 제 1 항에 있어서, 상기 접지선의 표면에 절연막이 형성된 것을 특징으로 하는 미세전자기계적 스위치.
  3. 제 1 항에 있어서, 상기 이동판은 탄성복원력을 갖는 물질로 이루어진 것을 특징으로 하는 미세전자기계적 스위치.
  4. 제 1 항에 있어서, 상기 스위칭부는 중앙에 개구부가 형성된 사각 형태로 이 루어진 것을 특징으로 하는 미세전자기계적 스위치.
  5. 제 1 항에 있어서, 상기 지지돌출부는 상기 접촉수단이 상기 신호선에 접촉할 때 상기 기판과 맞닿는 높이로 형성된 것을 특징으로 하는 미세전자기계적 스위치.
  6. 제 1 항에 있어서, 상기 지지돌출부의 내부에 쇄기 형상의 홈이 형성된 것을 특징으로 하는 미세전자기계적 스위치.
  7. 제 1 항에 있어서, 상기 스위칭부와 상기 이동판의 표면에 소정 두께의 절연체가 형성된 것을 특징으로 하는 미세전자기계적 스위치.
  8. 제 1 항에 있어서, 정전기력을 발생시키기 위해 상기 이동판과 상기 접지선에 구동전압이 인가되는 것을 특징으로 하는 미세전자기계적 스위치.
  9. a) 기판 상에 소정 부분이 개방된 신호선, 상기 신호선 양측에 위치되는 지지대, 상기 지지대와 상기 신호선 사이에 위치되는 접지선을 각각 형성하는 단계,
    b) 전체면에 소정 두께의 희생층을 형성하는 단계,
    c) 상기 신호선의 종단과 일치되는 부분의 상기 희생층에 홈을 각각 형성한 후 상기 홈에 접촉부를 형성하는 단계,
    d) 상기 개방된 신호선 사이의 상기 기판이 노출되도록 상기 희생층에 홀을 형성한 후 상기 홀에는 지지돌출부가 형성되고, 상기 접촉부를 제외한 상기 희생층 상에 지지층이 형성되도록 하는 단계,
    e) 상기 지지대 및 상기 희생층의 상부 및 상기 지지층 상부에 이동판을 형성하는 단계,
    f) 상기 이동판 내측의 상기 접촉부 및 상기 지지층 상에 스위칭부를 형성하는 단계,
    g) 상기 희생층을 제거하는 단계를 포함하는 것을 특징으로 하는 미세전자기계적 스위치의 제조 방법.
  10. 제 9 항에 있어서, 상기 단계 (a)를 진행한 후 상기 접지선의 표면에 절연막을 형성하는 단계를 더 포함하는 것을 특징으로 하는 미세전자기계적 스위치의 제조 방법.
  11. 제 9 항에 있어서, 상기 신호선, 상기 접지선 및 상기 지지대는 박막 증착 및 패터닝 공정 혹은 전기도금법으로 형성하는 것을 특징으로 하는 미세전자기계적 스위치의 제조 방법.
  12. 제 9 항에 있어서, 상기 스위칭부는 중앙에 개구부가 형성된 사각 형태로 형성하는 것을 특징으로 하는 미세전자기계적 스위치의 제조 방법.
  13. 제 9 항에 있어서, 상기 단계 (g)를 진행한 후 상기 스위칭부와 노출된 지지층의 표면에 절연체를 형성하는 단계를 더 포함하는 것을 특징으로 미세전자기계적 스위치의 제조 방법.
  14. 제 13 항에 있어서, 상기 지지층은 실리콘 질화막으로 형성하고, 상기 절연체는 폴리이미드로 형성하며, 상기 실리콘 질화막은 플라즈마 화학기상증착법으로 형성하고, 상기 폴리이미드는 스핀 코팅법으로 형성하는 것을 특징으로 미세전자기계적 스위치의 제조 방법.
  15. 제 9 항에 있어서, 상기 희생층은 반응성 이온 식각 또는 습식 식각으로 제거하는 것을 특징으로 미세전자기계적 스위치의 제조 방법.
KR1020040084407A 2004-10-21 2004-10-21 미세전자기계적 스위치 및 그 제조 방법 KR100619110B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020040084407A KR100619110B1 (ko) 2004-10-21 2004-10-21 미세전자기계적 스위치 및 그 제조 방법
US11/086,320 US7283025B2 (en) 2004-10-21 2005-03-23 Micro-electromechanical systems switch and method of fabricating the same
US11/898,002 US7546677B2 (en) 2004-10-21 2007-09-07 Method for fabricating a micro-electromechanical system switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040084407A KR100619110B1 (ko) 2004-10-21 2004-10-21 미세전자기계적 스위치 및 그 제조 방법

Publications (2)

Publication Number Publication Date
KR20060035078A true KR20060035078A (ko) 2006-04-26
KR100619110B1 KR100619110B1 (ko) 2006-09-04

Family

ID=36205193

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040084407A KR100619110B1 (ko) 2004-10-21 2004-10-21 미세전자기계적 스위치 및 그 제조 방법

Country Status (2)

Country Link
US (2) US7283025B2 (ko)
KR (1) KR100619110B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705254B2 (en) 2006-12-29 2010-04-27 Samsung Electronics Co., Ltd. Micro switch device and manufacturing method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2901781B1 (fr) * 2006-05-31 2008-07-04 Thales Sa Structure de micro-commutateurs radiofrequence ou hyperfrequence et procede de fabrication d'une telle structure
JP2009021227A (ja) * 2007-06-14 2009-01-29 Panasonic Corp 電気機械スイッチ、それを用いたフィルタ、および通信機器
JP5363005B2 (ja) * 2008-02-20 2013-12-11 富士通株式会社 可変容量素子、整合回路素子、および携帯端末装置
DE102008011175B4 (de) * 2008-02-26 2010-05-12 Nb Technologies Gmbh Mikromechanischer Aktuator und Verfahren zu seiner Herstellung
EP2484001B1 (en) * 2009-10-01 2014-01-29 Cavendish Kinetics Inc. Micromechanical digital capacitor with improved rf hot switching performance and reliability
US8581679B2 (en) * 2010-02-26 2013-11-12 Stmicroelectronics Asia Pacific Pte. Ltd. Switch with increased magnetic sensitivity
KR20140002243A (ko) * 2012-06-28 2014-01-08 삼성디스플레이 주식회사 플렉시블 디스플레이 장치
US9748048B2 (en) 2014-04-25 2017-08-29 Analog Devices Global MEMS switch
CN104150434B (zh) * 2014-08-19 2016-09-21 中国电子科技集团公司第五十四研究所 一种毫米波rf mems开关的制备方法
WO2017134518A1 (en) 2016-02-04 2017-08-10 Analog Devices Global Active opening mems switch device
CN111740187B (zh) * 2019-03-25 2021-10-19 华为技术有限公司 一种射频开关和天线

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5479042A (en) * 1993-02-01 1995-12-26 Brooktree Corporation Micromachined relay and method of forming the relay
US5578976A (en) * 1995-06-22 1996-11-26 Rockwell International Corporation Micro electromechanical RF switch
ATE227882T1 (de) * 1998-06-04 2002-11-15 Cavendish Kinetics Ltd Mikro-mechanischer elementen
US6040611A (en) 1998-09-10 2000-03-21 Hughes Electonics Corporation Microelectromechanical device
KR100532991B1 (ko) * 1999-05-17 2005-12-02 엘지전자 주식회사 고주파 스위치 제조방법
US6307452B1 (en) * 1999-09-16 2001-10-23 Motorola, Inc. Folded spring based micro electromechanical (MEM) RF switch
WO2002024466A1 (en) 2000-09-25 2002-03-28 California Institute Of Technology Freestanding polymer mems structures with anti stiction
US6535091B2 (en) * 2000-11-07 2003-03-18 Sarnoff Corporation Microelectronic mechanical systems (MEMS) switch and method of fabrication
US6621387B1 (en) * 2001-02-23 2003-09-16 Analatom Incorporated Micro-electro-mechanical systems switch
KR100738064B1 (ko) * 2001-02-27 2007-07-12 삼성전자주식회사 비선형적 복원력의 스프링을 가지는 mems 소자
SE0101182D0 (sv) 2001-04-02 2001-04-02 Ericsson Telefon Ab L M Micro electromechanical switches
KR100378356B1 (ko) * 2001-04-09 2003-03-29 삼성전자주식회사 Rf 차단 레지스터를 이용한 mems 스위치
KR100387241B1 (ko) * 2001-05-24 2003-06-12 삼성전자주식회사 Rf mems 스위치
ATE412611T1 (de) * 2001-11-09 2008-11-15 Wispry Inc Dreischichtige strahl-mems-einrichtung und diesbezügliche verfahren
EP1343190A3 (en) * 2002-03-08 2005-04-20 Murata Manufacturing Co., Ltd. Variable capacitance element
US6657525B1 (en) 2002-05-31 2003-12-02 Northrop Grumman Corporation Microelectromechanical RF switch
KR100492004B1 (ko) * 2002-11-01 2005-05-30 한국전자통신연구원 미세전자기계적 시스템 기술을 이용한 고주파 소자
KR100513723B1 (ko) * 2002-11-18 2005-09-08 삼성전자주식회사 Mems스위치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7705254B2 (en) 2006-12-29 2010-04-27 Samsung Electronics Co., Ltd. Micro switch device and manufacturing method

Also Published As

Publication number Publication date
US7546677B2 (en) 2009-06-16
US7283025B2 (en) 2007-10-16
US20080034578A1 (en) 2008-02-14
US20060086597A1 (en) 2006-04-27
KR100619110B1 (ko) 2006-09-04

Similar Documents

Publication Publication Date Title
US7283025B2 (en) Micro-electromechanical systems switch and method of fabricating the same
KR101538169B1 (ko) 도전성 기계적 스토퍼를 갖는 mems 마이크로스위치
US6307169B1 (en) Micro-electromechanical switch
CN101147223B (zh) 具有挠性和自由开关膜的rf mems开关
US8570705B2 (en) MEMS sprung cantilever tunable capacitors and methods
US20050189204A1 (en) Microengineered broadband electrical switches
US7312678B2 (en) Micro-electromechanical relay
KR20010030305A (ko) 접이식 스프링을 구비한 초소형 전기 기계 고주파 스위치및 그 제조 방법
KR101745722B1 (ko) 마이크로 전기기계 시스템 스위치
JP4879760B2 (ja) マイクロスイッチング素子およびマイクロスイッチング素子製造方法
CN101983412A (zh) Mems开关及其制造方法
US20070122074A1 (en) MEMS switch
US7373717B2 (en) Method of manufacturing a self-sustaining center-anchor microelectromechanical switch
KR100744543B1 (ko) 미세전자기계적 구조 스위치 및 그 제조방법
KR100554468B1 (ko) 자기유지 중앙지지대를 갖는 미세 전자기계적 스위치 및그의 제조방법
JP4628275B2 (ja) マイクロスイッチング素子およびマイクロスイッチング素子製造方法
KR100476313B1 (ko) 정전기력으로 구동되는 미세전자기계적 스위치 및 그의제작 방법
JP2007026726A (ja) Memsスイッチ
KR20050023144A (ko) 정전식 양방향 미세기전 액추에이터
CN101465242A (zh) 具有改进的关态电压控制的mems开关

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee