KR20060017173A - Method of manufacturing dielectric layer of semiconductor devices - Google Patents

Method of manufacturing dielectric layer of semiconductor devices Download PDF

Info

Publication number
KR20060017173A
KR20060017173A KR1020040065743A KR20040065743A KR20060017173A KR 20060017173 A KR20060017173 A KR 20060017173A KR 1020040065743 A KR1020040065743 A KR 1020040065743A KR 20040065743 A KR20040065743 A KR 20040065743A KR 20060017173 A KR20060017173 A KR 20060017173A
Authority
KR
South Korea
Prior art keywords
film
pmd
forming
silicon rich
rich oxide
Prior art date
Application number
KR1020040065743A
Other languages
Korean (ko)
Other versions
KR100596277B1 (en
Inventor
김성래
Original Assignee
동부아남반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부아남반도체 주식회사 filed Critical 동부아남반도체 주식회사
Priority to KR1020040065743A priority Critical patent/KR100596277B1/en
Publication of KR20060017173A publication Critical patent/KR20060017173A/en
Application granted granted Critical
Publication of KR100596277B1 publication Critical patent/KR100596277B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02362Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment formation of intermediate layers, e.g. capping layers or diffusion barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 발명은 반도체 소자의 절연막 형성 방법에 관한 것으로, 보다 자세하게는 층간절연막인 PMD막의 불순물에 기인한 PMD막의 상부, 하부에 존재하는 다른 막의 손상 및 콘택홀 공정시의 불량 발생을 억제할 수 있는 반도체 소자의 절연막 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an insulating film of a semiconductor device, and more particularly, to a semiconductor capable of suppressing damage to other films existing on and under a PMD film due to impurities in a PMD film, which is an interlayer insulating film, and defects during contact hole processing. A method of forming an insulating film of a device.

본 발명의 상기목적은 게이트 전극, 소스/드레인 등을 포함한 소정의 구조물이 형성된 반도체 기판 상에 PMD 라이너막을 형성하는 단계; 상기 라이너 산화막 상에 제 1 실리콘 리치 산화막을 형성하는 단계; 상기 제 1 실리콘 리치 산화막 상에 PMD막을 형성하고 평탄화하는 단계; 및 상기 평탄화된 PMD막 상에 제 2 실리콘 리치 산화막을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 절연막 형성 방법에 의해 달성된다.The object of the present invention is to form a PMD liner film on a semiconductor substrate on which a predetermined structure including a gate electrode, a source / drain, etc. is formed; Forming a first silicon rich oxide film on the liner oxide film; Forming and planarizing a PMD film on the first silicon rich oxide film; And forming a second silicon rich oxide film on the planarized PMD film.

따라서, 본 발명의 반도체 소자의 절연막 형성 방법은 PMD막의 상부 및 하부에 실리콘 리치 산화막을 형성하고 콘택 금속 매립 전에 플라즈마 처리를 함으로써 PMD막의 불순물에 의해 야기될 수 있는 반도체 소자의 불량을 방지하여 수율을 향상시키고 소자의 전기적 특성 및 신뢰성을 향상시키는 효과가 있다.Therefore, the method for forming an insulating film of the semiconductor device of the present invention by forming a silicon rich oxide film on the upper and lower portions of the PMD film and performing a plasma treatment before filling the contact metal to prevent the defect of the semiconductor device that may be caused by impurities in the PMD film to improve the yield There is an effect to improve and improve the electrical characteristics and reliability of the device.

실리콘 리치 산화막(SRO), PMD, BPSG, 불순물 확산, 콘택홀, 플라즈마 처리Silicon Rich Oxide (SRO), PMD, BPSG, Impurity Diffusion, Contact Hole, Plasma Treatment

Description

반도체 소자의 절연막 형성 방법{Method of manufacturing dielectric layer of semiconductor devices} A method of forming an insulating film of a semiconductor device {Method of manufacturing dielectric layer of semiconductor devices}             

도 1은 종래 기술에 의한 반도체 소자의 절연막 형성시 나타난 불량 사진.1 is a bad photograph when the insulating film formed of a semiconductor device according to the prior art.

도 2는 본 발명에 의한 반도체 소자의 절연막 형성 방법의 흐름도.2 is a flowchart of a method for forming an insulating film of a semiconductor device according to the present invention;

도 3 및 도 4는 본 발명에 의한 반도체 소자의 절연막 형성 공정의 단면도.3 and 4 are cross-sectional views of the insulating film forming process of the semiconductor device according to the present invention.

본 발명은 반도체 소자의 절연막 형성 방법에 관한 것으로, 보다 자세하게는 층간절연막인 PMD막의 불순물에 기인한 PMD막의 상부, 하부에 존재하는 다른 막의 손상 및 콘택홀 공정시의 불량 발생을 억제할 수 있는 반도체 소자의 절연막 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an insulating film of a semiconductor device, and more particularly, to a semiconductor capable of suppressing damage to other films existing on and under a PMD film due to impurities in a PMD film, which is an interlayer insulating film, and defects during contact hole processing. A method of forming an insulating film of a device.

근래에 컴퓨터와 같은 정보 매체의 급속한 발전에 따라 반도체 소자 제조 기술도 비약적으로 발전하고 있다. 상기 반도체 소자는 집적도, 미세화, 동작속도 등을 향상시키는 방향으로 기술이 발전하고 있으며, 흔히 무어의 법칙(Moore's Law) 으로 알려진 것처럼, 반도체 소자의 집접도는 2년마다 약 2배가 증가하고 있다. 이에 따라 칩 사이즈 및 회로 선폭이 갈수록 작아지고 이로 인해 이전에 존재하지 않던 새로운 문제가 발생하고 있다.In recent years, with the rapid development of information media such as computers, semiconductor device manufacturing technology is also rapidly developing. The semiconductor device has been developed in the direction of improving the degree of integration, miniaturization, operating speed, and the like, and as commonly known as Moore's Law, the degree of integration of the semiconductor device is increasing about two times every two years. As a result, chip size and circuit line width become smaller and smaller, which presents new problems that did not exist previously.

피엠디(Premetal Dielectric, 이하 PMD)막은 폴리실리콘 게이트와 금속배선간을 분리하는 층간절연막으로서, 갭필(Gap fill) 성능, 개더링(Gathering) 성능이 우수하고 평탄화가 용이해야 한다.Premetal Dielectric (PMD) film is an interlayer insulating film that separates a polysilicon gate from a metal wiring, and has to be excellent in gap fill performance, gathering performance, and easy to planarize.

갭필 성능이란 반도체 소자의 패턴에 의한 단차를 메울 수 있는 능력을 의미하며, 개더링 성능은 디바이스의 특성을 저하시키는 모바일 이온(mobile ion), 예를 들어 나트륨 이온 또는 기타 금속 이온을 트랩(trap)하는 능력을 의미한다.Gap fill performance refers to the ability to fill a step due to a pattern of a semiconductor device, and gathering performance is used to trap mobile ions, such as sodium ions or other metal ions, which degrade device characteristics. It means ability.

절연막으로 많이 사용되는 실리콘 산화막(SiO2)은 폴리실리콘 게이트에 의해 형성되는 단차를 메우는 능력이 부족하다. 따라서, 상기 실리콘 산화막으로 형성된 PMD막에는 보이드(void)가 형성되기 때문에 피엠디막이 치밀하지 못하여 소자의 특성을 저하시킬 뿐만 아니라 콘택을 형성하기 위한 이후 공정에서 도전성 물질의 증착시 상기 보이드에도 도전성 물질이 형성됨에 따라 콘택 간에 쇼트(short) 현상이 발생되어 반도체 소자의 생산 수율을 저하시키는 원인이 되고 있다.Silicon oxide film (SiO 2 ), which is frequently used as an insulating film, lacks the ability to fill in the steps formed by the polysilicon gate. Therefore, since voids are formed in the PMD film formed of the silicon oxide film, the PMD film is not dense, thereby degrading the characteristics of the device, and in the subsequent process for forming a contact, the conductive material is also formed on the void during deposition of the conductive material. As a result of this formation, a short phenomenon occurs between the contacts, which causes a decrease in the production yield of the semiconductor device.

따라서, 상기 실리콘 산화막을 대신하는 PMD막용 물질로 갭필 성능이 우수한 보로포스포실리케이트 글래스(Borophosphosilicate Glass, 이하 BPSG)막을 이용한다. 일반적으로, BPSG막은 실리콘 산화막을 형성할 때 도입하는 실리콘, 산소 소스(source)와 더불어 반응 챔버(chamber)에 붕소(B)와 인(P) 소스를 같이 도입하 여 형성한다. 여기서, 붕소는 갭필 성능 향상을 위해서, 인은 모바일 이온의 개더링 성능 향상을 위해서 도핑한다.Therefore, a borophosphosilicate glass (BPSG) film having excellent gap fill performance is used as a material for the PMD film instead of the silicon oxide film. In general, a BPSG film is formed by introducing a boron (B) and a phosphorus (P) source together in a reaction chamber together with a silicon and an oxygen source introduced when a silicon oxide film is formed. Here, boron is doped to improve gap fill performance and phosphorus to improve gathering performance of mobile ions.

그런데 도핑된 붕소 또는 인이 열처리 공정과 같은 후속 공정 진행시 상부 또는 하부로 확산하여 반도체 소자의 전기적 특성을 열화시키고 있다. 또한 증착 장비의 에러 또는 기타 원인에 의해 BPSG막의 불순물 첨가량이 불안정하여 붕소 및 인이 고농도로 함유되어 과포화 상태가 될 수 있다. 이 경우 콘택홀(Contact hole) 공정과 같은 후속 공정 진행시 농도 차이에 의한 식각의 불균형에 의해 반도체 소자의 쇼트(Short) 불량이 발생하거나 콘택홀 공정 이후에도 상기 불순물에 의해 콘택 금속의 손상이 발생할 수도 있다. 도 1은 SRAM(Static Ramdom Access Memeory) 반도체 소자의 단면 SEM(Scanning Electron Microscope) 사진으로서, PMD막(10)에 형성된 고농도의 불순물 영역(12) 및 그로 인한 식각 불균형에 의해 발생한 콘택 금속(14)과 측벽 질화막(16)의 쇼트 불량(18)을 확인할 수 있다.However, doped boron or phosphorus diffuses to the upper or lower portion during the subsequent process such as heat treatment process, thereby deteriorating the electrical characteristics of the semiconductor device. In addition, the amount of impurity added to the BPSG film may be unstable due to an error or other cause of the deposition equipment, so that boron and phosphorus may be contained in high concentrations, resulting in a supersaturated state. In this case, short defects in the semiconductor device may occur due to an imbalance in etching due to a difference in concentration during a subsequent process such as a contact hole process, or damage of the contact metal may occur due to the impurities even after the contact hole process. have. FIG. 1 is a scanning electron microscope (SEM) photograph of a cross-section of a static ramdom access mechanism (SRAM) semiconductor device, and the contact metal 14 generated by a high concentration of impurity regions 12 formed in the PMD film 10 and the resulting etching imbalance. And the short defect 18 of the sidewall nitride film 16 can be confirmed.

상기와 같은 문제를 해결하기 위해 대한민국 공개특허공보 특허 제2001-26808호, 대한민국 공개특허공보 제1997-77328호는 BPSG막의 하부에 실리콘 리치 산화막을 형성하여 반도체 소자의 열화를 방지하는 절연막 형성 방법을 개시하고 있다. 그러나 이와 같은 종래의 절연막 형성 방법은 BPSG막의 불순물에 의해 BPSG막 상부의 금속막 또는 절연막이 손상되는 현상을 방지하지 못하고 있으며 콘택홀 공정시 불순물의 확산에 의한 불량 발생 원인을 제거하지 못하고 있다.In order to solve the above problems, Korean Patent Laid-Open Publication No. 2001-26808 and Korean Patent Laid-Open Publication No. 1997-77328 provide a method of forming an insulating film to prevent deterioration of a semiconductor device by forming a silicon rich oxide film under a BPSG film. It is starting. However, the conventional method of forming an insulating film does not prevent the metal film or the insulating film on the BPSG film from being damaged by the impurities of the BPSG film, and does not eliminate the cause of defects caused by the diffusion of impurities during the contact hole process.

따라서, 본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 층간절연막인 BPSG막의 상부 및 하부에 실리콘 리치 산화막을 형성하고 콘택홀 공정시 콘택 금속 매립 전에 콘택홀을 플라즈마 처리하여 BPSG막의 불순물에 의한 상부 및 하부 막의 손상 및 콘택홀 공정시의 불량 발생을 억제할 수 있는 반도체 소자의 절연막 형성 방법을 제공함에 본 발명의 목적이 있다.
Accordingly, the present invention is to solve the problems of the prior art as described above, by forming a silicon rich oxide film on the upper and lower portions of the BPSG film which is an interlayer insulating film and plasma treatment of the contact hole before contact metal buried in the contact hole process impurities of the BPSG film SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming an insulating film of a semiconductor device capable of suppressing damage to upper and lower films caused by defects and defects during a contact hole process.

본 발명의 상기목적은 게이트 전극, 소스/드레인 등을 포함한 소정의 구조물이 형성된 반도체 기판 상에 PMD 라이너막을 형성하는 단계; 상기 PMD 라이너막 상에 제 1 실리콘 리치 산화막을 형성하는 단계; 상기 제 1 실리콘 리치 산화막 상에 PMD막을 형성하고 평탄화하는 단계; 및 상기 평탄화된 PMD막 상에 제 2 실리콘 리치 산화막을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 절연막 형성 방법에 의해 달성된다.The object of the present invention is to form a PMD liner film on a semiconductor substrate on which a predetermined structure including a gate electrode, a source / drain, etc. is formed; Forming a first silicon rich oxide film on the PMD liner film; Forming and planarizing a PMD film on the first silicon rich oxide film; And forming a second silicon rich oxide film on the planarized PMD film.

본 발명의 상기 목적과 기술적 구성 및 그에 따른 작용효과에 관한 자세한 사항은 본 발명의 바람직한 실시예를 도시하고 있는 도면을 참조한 이하 상세한 설명에 의해 보다 명확하게 이해될 것이다.Details of the above object and technical configuration of the present invention and the effects thereof according to the present invention will be more clearly understood by the following detailed description with reference to the drawings showing preferred embodiments of the present invention.

이하에서는 본 발명에 의한 반도체 소자의 절연막 형성 방법의 흐름도인 도 2와 본 발명에 의한 반도체 소자의 절연막 형성 공정의 단면도인 도 3 및 도 4를 참조하여 설명하도록 한다.Hereinafter, with reference to FIG. 2 which is a flowchart of the insulating film forming method of the semiconductor element by this invention, and FIG. 3 and FIG. 4 which is sectional drawing of the insulating film formation process of the semiconductor element by this invention.

먼저, 반도체 기판(100) 상에 STI(Shallow Trench Isolation) 또는 LOCOS(Local Oxidation of Silicon) 공정을 사용한 소자분리막(102), 게이트 산화막(104), 폴리 실리콘 게이트 전극(106), 소스/드레인(도시하지 않음), 측벽 질화막(Side wall nitride, 108) 및 실리사이드(110)를 포함한 반도체 소자를 공지의 반도체 공정 기술을 사용하여 완성한다.First, the device isolation layer 102, the gate oxide layer 104, the polysilicon gate electrode 106, and the source / drain (STI) or shallow oxide isolation (LOCOS) processes on the semiconductor substrate 100 using a shallow trench isolation (STI) or local oxide of silicon (LOCOS) process. Not shown), a semiconductor device including side wall nitride film 108 and silicide 110 is completed using known semiconductor processing techniques.

다음, 상기 반도체 기판 상에 PMD 라이너(Liner)막(112)을 형성한다(S100). 상기 PMD 라이너막(112)은 질화막 또는 플라즈마 인핸스드 TEOS(Plasma Enhanced Tetraethyl Ortho Silicate, 이하 PETEOS) 산화막으로 형성하는 것이 바람직하다. 상기 PETEOS막은 예를 들어, PPECVD 공정을 통해 TEOS 전구체(Precursor)를 산소와 반응시켜 10 내지 200nm 정도의 두께로 형성한다. 이와 같이 형성된 PETEOS막은 이후에 형성되는 제 1 실리콘 리치 산화(SRO: Silicon Rich Oxide)막과 더불어 PMD막(116)에 존재하는 불순물이 하부로 확산하여 반도체 소자를 열화시키는 것을 방지하는 역할을 한다.Next, a PMD liner film 112 is formed on the semiconductor substrate (S100). The PMD liner layer 112 may be formed of a nitride layer or a plasma enhanced tetraethyl ortho silicate (PETOS) oxide layer. The PETEOS film is formed to a thickness of about 10 to 200 nm by, for example, reacting a TEOS precursor (Precursor) with oxygen through a PPECVD process. The PETEOS film formed as described above serves to prevent an impurity present in the PMD film 116 from being diffused downward along with a first silicon rich oxide (SRO) film formed thereafter to deteriorate the semiconductor device.

다음, 화학기상증착(Chemical Vapor Deposition, 이하 CVD)법을 통해 제 1 실리콘 리치 산화막(114)을 형성한다(S101). 상기 제 1 실리콘 리치 산화막의 형성은 PECVD(Plasma Enhanced CVD) 공정을 통해 200 내지 450℃의 온도 범위에서 SiH4와 O2 또는 N2O 가스를 챔버 내에서 반응시켜 형성할 수도 있으며 LPCVD(Low Pressure CVD) 공정을 통해 700 내지 800℃의 온도 범위에서 SiH4와 N2O 가스를 반응시켜 형성할 수도 있다.Next, a first silicon rich oxide film 114 is formed through chemical vapor deposition (CVD) (S101). The first silicon rich oxide film may be formed by reacting SiH 4 with O 2 or N 2 O gas in a chamber at a temperature in a range of 200 to 450 ° C. through a PECVD (Plasma Enhanced CVD) process. It may be formed by reacting SiH 4 and N 2 O gas in a temperature range of 700 to 800 ℃ through a CVD process.

다음, PMD막(116)을 형성한다(S102). 상기 PMD막(116)으로는 BPSG막, 포스포 실리케이트 글래스(Phosphosilicate Glass, 이하 PSG)막 또는 보로실리케이트 글래스(Borosilicate Glass, 이하 BSG)막을 사용할 수 있으나 BPSG막이 보다 바람직하다.Next, a PMD film 116 is formed (S102). As the PMD film 116, a BPSG film, a phosphosilicate glass (PSG) film, or a borosilicate glass (BSG) film may be used, but a BPSG film is more preferable.

BPSG막은 PECVD, APCVD(Atmospheric Pressure CVD), SACVD(Sub-Atmospheric Pressure CVD), LPCVD와 같은 CVD 공정을 통해 형성하며 전구체로는 SiH4 또는 TEOS를 사용할 수 있다. BPSG막 내의 붕소는 갭필 능력 및 모바일 이온의 개더링 능력등을 고려하여 붕소(B)의 경우 3 내지 5 wt%, 인(P)의 경우 5 내지 7 wt%가 되도록 하는 것이 바람직하다.The BPSG film is formed through a CVD process such as PECVD, Atmospheric Pressure CVD (APCVD), Sub-Atmospheric Pressure CVD (SACVD), and LPCVD. SiH 4 or TEOS may be used as a precursor. Boron in the BPSG film is preferably 3 to 5 wt% for boron (B) and 5 to 7 wt% for phosphorus (P) in consideration of the gapfill ability and the gathering ability of mobile ions.

PSG막은 PECVD, APCVD 또는 고밀도 플라즈마(HDP : High Density Plasma) CVD를 이용하여 형성할 수 있다. 예들 들어, 반응 챔버에 SiH4, PH3, 산소 및 아르곤을 도입한 후, 온도를 400℃ 내지 650℃, 압력을 1 mTorr 내지 10 mTorr로 유지하고 기판에 고밀도 플라즈마 바이어스(bias)를 인가하는 HDP CVD 방법을 통해 형성하는 것이 가능하다.The PSG film can be formed using PECVD, APCVD or High Density Plasma (HDP) CVD. For example, after introducing SiH 4 , PH 3 , oxygen and argon into the reaction chamber, the HDP maintains the temperature at 400 ° C. to 650 ° C., the pressure at 1 mTorr to 10 mTorr and applies a high density plasma bias to the substrate. It is possible to form through the CVD method.

상기 PMD막(116) 내에 형성된 보이드(도시하지 않음)는 PMD막의 치밀화를 방해하고 이후의 도전성 물질 형성시 도전성 물질이 매입되어 불량을 유발하는 원인이 된다. 이를 방지하기 위해 상기 PMD막을 열처리하여 치밀화한다. 상기 열처리 공정은, 예를 들어 급속 열공정(RTP : Rapid Thermal Process)로 700℃ 내지 1100℃로 20초 내지 60초 동안 진행하거나 노(furnace)를 이용하여 700℃ 내지 1100℃로 20분 내지 60분간 어닐링한다.Voids (not shown) formed in the PMD film 116 may interfere with the densification of the PMD film and cause a defect by embedding the conductive material in the subsequent formation of the conductive material. In order to prevent this, the PMD film is heat-treated and densified. For example, the heat treatment process may be performed at a rapid thermal process (RTP) for 20 seconds to 60 seconds at 700 ° C. to 1100 ° C., or 20 minutes to 60 ° C. at 700 ° C. to 1100 ° C. using a furnace. Anneal for minutes.

다음, 화학적 기계적 연마(CMP: Chemical Mechanical Polishing) 공정을 통해 PMD막(116)을 평탄화하고(S103) 제 2 실리콘 리치 산화막(118)을 형성한다(S104). 상기 제 2 실리콘 리치 산화막(118)의 형성 방법은 제 1 실리콘 리치 산화막(114)의 형성 방법과 동일하다.Next, the PMD film 116 is planarized through a chemical mechanical polishing (CMP) process (S103), and a second silicon rich oxide film 118 is formed (S104). The method of forming the second silicon rich oxide film 118 is the same as the method of forming the first silicon rich oxide film 114.

다음, 포토레지스트를 코팅하고 노광 및 현상하여 콘택홀(120)을 형성하기 위한 부분을 노출시킨 후 PMD 라이너막(112), 제 1 실리콘 리치 산화막(114), PMD막(116) 및 제 2 실리콘 리치 산화막(118)을 식각하여 콘택홀(120)을 형성한다(S105).Next, after the photoresist is coated, exposed, and developed to expose a portion for forming the contact hole 120, the PMD liner film 112, the first silicon rich oxide film 114, the PMD film 116, and the second silicon are exposed. The rich oxide layer 118 is etched to form the contact hole 120 (S105).

다음, 상기 콘택홀(120)에 의해 노출된 PMD막(116)의 측면을 플라즈마 처리하여 불순물이 없는 얇은 버퍼막(122)을 형성한다(S106). 상기 플라즈마 처리를 위해 N2O 가스 또는 NH3와 N2 혼합가스에 의한 플라즈마를 사용할 수 있으며 N2O 가스를 사용한 플라즈마 처리가 보다 바람직하다. 상기 N2O 플라즈마 처리에 의해 콘택홀 형성시 노출된 PMD막(116)의 표면에 존재하는 Si-H기를 SiO2로 변화시킴으로써 표면에 얇은 버퍼막(122)을 형성할 수 있다. 이와 같은 플라즈마 처리에 의해 PMD막 내의 국부적인 불순물 농도의 불균일에 의한 식각 속도의 차이, 불순물 확산에 의한 쇼트 불량 등을 방지할 수 있다.Next, a side surface of the PMD film 116 exposed by the contact hole 120 is plasma treated to form a thin buffer film 122 free of impurities (S106). For the plasma treatment, plasma using N 2 O gas or NH 3 and N 2 mixed gas may be used, and plasma treatment using N 2 O gas is more preferable. A thin buffer film 122 may be formed on the surface by changing the Si—H group present in the surface of the PMD film 116 exposed during the formation of the contact hole by the N 2 O plasma process into SiO 2 . By such a plasma treatment, it is possible to prevent the difference in the etching rate due to the nonuniformity of the local impurity concentration in the PMD film, the short defect due to the impurity diffusion, and the like.

이후, Ti/TiN과 같은 배리어 메탈과 텅스텐(W)과 같은 콘택 전극을 증착한 후 공지의 반도체 공정 기술을 이용하여 SRAM, DRAM과 같은 반도체 소자를 완성한다.Thereafter, a barrier metal such as Ti / TiN and a contact electrode such as tungsten (W) are deposited, and then a semiconductor device such as SRAM or DRAM is completed using a known semiconductor process technology.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.Although the present invention has been shown and described with reference to preferred embodiments as described above, it is not limited to the above-described embodiments and those skilled in the art without departing from the spirit of the present invention. Various changes and modifications will be possible.

따라서, 본 발명의 반도체 소자의 절연막 형성 방법은 PMD막의 상부 및 하부에 실리콘 리치 산화막을 형성하고 콘택 금속 매립 전에 플라즈마 처리를 함으로써 PMD막의 불순물에 의해 야기될 수 있는 반도체 소자의 불량을 방지하여 수율을 향상시키고 소자의 전기적 특성 및 신뢰성을 향상시키는 효과가 있다.Therefore, the method for forming an insulating film of the semiconductor device of the present invention by forming a silicon rich oxide film on the upper and lower portions of the PMD film and performing a plasma treatment before filling the contact metal to prevent the defect of the semiconductor device that may be caused by impurities in the PMD film to improve the yield There is an effect to improve and improve the electrical characteristics and reliability of the device.

Claims (5)

반도체 소자의 절연막 형성 방법에 있어서,In the insulating film formation method of a semiconductor element, 게이트 전극, 소스/드레인 등을 포함한 소정의 구조물이 형성된 반도체 기판 상에 PMD 라이너막을 형성하는 단계;Forming a PMD liner film on a semiconductor substrate having a predetermined structure including a gate electrode, a source / drain, or the like; 상기 PMD 라이너막 상에 제 1 실리콘 리치 산화막을 형성하는 단계;Forming a first silicon rich oxide film on the PMD liner film; 상기 제 1 실리콘 리치 산화막 상에 PMD막을 형성하고 평탄화하는 단계; 및Forming and planarizing a PMD film on the first silicon rich oxide film; And 상기 평탄화된 PMD막 상에 제 2 실리콘 리치 산화막을 형성하는 단계Forming a second silicon rich oxide film on the planarized PMD film 를 포함하는 것을 특징으로 하는 반도체 소자의 절연막 형성 방법.Method for forming an insulating film of a semiconductor device comprising a. 제 1 항에 있어서,The method of claim 1, 상기 제 2 실리콘 리치 산화막을 형성하는 단계 후 상기 PMD 라이너막, 제 1 실리콘 리치 산화막, PMD막, 제 2 실리콘 리치 산화막의 소정 부분을 식각하여 콘택홀을 형성한 후 플라즈마 처리하는 단계Forming a contact hole by etching a predetermined portion of the PMD liner layer, the first silicon rich oxide layer, the PMD layer, and the second silicon rich oxide layer after forming the second silicon rich oxide layer, and then performing plasma treatment 를 더 포함하는 것을 특징으로 하는 반도체 소자의 절연막 형성 방법.Method for forming an insulating film of a semiconductor device further comprising. 제 2 항에 있어서,The method of claim 2, 상기 플라즈마 처리는 N2O 플라즈마 처리임을 특징으로 하는 반도체 소자의 절연막 형성 방법.And the plasma treatment is N 2 O plasma treatment. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 PMD 라이너막은 PETEOS임을 특징으로 하는 반도체 소자의 절연막 형성 방법.And the PMD liner film is PETEOS. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,The method according to any one of claims 1 to 3, 상기 PMD막은 BPSG막, BSG막 또는 PSG막임을 특징으로 하는 반도체 소자의 절연막 형성 방법.And the PMD film is a BPSG film, a BSG film, or a PSG film.
KR1020040065743A 2004-08-20 2004-08-20 Semiconductor device and method of manufacturing dielectric layer thereof KR100596277B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040065743A KR100596277B1 (en) 2004-08-20 2004-08-20 Semiconductor device and method of manufacturing dielectric layer thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040065743A KR100596277B1 (en) 2004-08-20 2004-08-20 Semiconductor device and method of manufacturing dielectric layer thereof

Publications (2)

Publication Number Publication Date
KR20060017173A true KR20060017173A (en) 2006-02-23
KR100596277B1 KR100596277B1 (en) 2006-07-03

Family

ID=37125289

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040065743A KR100596277B1 (en) 2004-08-20 2004-08-20 Semiconductor device and method of manufacturing dielectric layer thereof

Country Status (1)

Country Link
KR (1) KR100596277B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100763691B1 (en) * 2006-08-30 2007-10-04 동부일렉트로닉스 주식회사 Method for forming pmd-psg thin layer using apcvd
KR100821481B1 (en) * 2006-12-27 2008-04-11 동부일렉트로닉스 주식회사 Method for manufacturing semiconductor device
KR100881510B1 (en) * 2006-12-27 2009-02-05 동부일렉트로닉스 주식회사 Method for forming of BPSG liner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100763691B1 (en) * 2006-08-30 2007-10-04 동부일렉트로닉스 주식회사 Method for forming pmd-psg thin layer using apcvd
KR100821481B1 (en) * 2006-12-27 2008-04-11 동부일렉트로닉스 주식회사 Method for manufacturing semiconductor device
KR100881510B1 (en) * 2006-12-27 2009-02-05 동부일렉트로닉스 주식회사 Method for forming of BPSG liner

Also Published As

Publication number Publication date
KR100596277B1 (en) 2006-07-03

Similar Documents

Publication Publication Date Title
US6297126B1 (en) Silicon nitride capped shallow trench isolation method for fabricating sub-micron devices with borderless contacts
US6265302B1 (en) Partially recessed shallow trench isolation method for fabricating borderless contacts
KR20030077929A (en) Semiconductor device and manufacturing method thereof
KR100596277B1 (en) Semiconductor device and method of manufacturing dielectric layer thereof
US6727160B1 (en) Method of forming a shallow trench isolation structure
US6013559A (en) Method of forming trench isolation
JP2953447B2 (en) Manufacturing method of groove-separated semiconductor device
EP1039524A2 (en) Silicon nitride composite HDP/CVD process
KR100609980B1 (en) Method for preventing overetch of PMD layer
KR100646524B1 (en) Method of making semiconductor device
US6492214B2 (en) Method of fabricating an insulating layer
KR100228348B1 (en) Semiconductor apparatus and its fabricating method
KR100855285B1 (en) Method of manufacturing semiconductor device
KR20020092682A (en) Method of Forming Dielectric layer in Semiconductor Device
KR20050003010A (en) Fabricating method of semiconductor device with good compactness of flow dielectrics
KR100532770B1 (en) Method for manufacturing the semiconductor device
KR100935189B1 (en) Method for planarization intermediate layer of semicoductor device
KR20040013776A (en) Method of forming interlayer for insulating in semiconductor device processing
KR101033981B1 (en) Method for fabricating semiconductor device
KR100643567B1 (en) Method for fabricating of Landing Plug Contact
KR100680953B1 (en) Method for forming conductive plug in semiconductor device
KR100533646B1 (en) Method of fabricating PMD layer
KR20050002439A (en) Manufacturing method for semiconductor device
KR20020011472A (en) Method of fabricating shallow-trench-isolation utilized the characteristics of base material
KR20100073413A (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120521

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee