KR20060016978A - Method for manufacturing a tungsten contact electrode of semiconductor device - Google Patents

Method for manufacturing a tungsten contact electrode of semiconductor device Download PDF

Info

Publication number
KR20060016978A
KR20060016978A KR1020040065465A KR20040065465A KR20060016978A KR 20060016978 A KR20060016978 A KR 20060016978A KR 1020040065465 A KR1020040065465 A KR 1020040065465A KR 20040065465 A KR20040065465 A KR 20040065465A KR 20060016978 A KR20060016978 A KR 20060016978A
Authority
KR
South Korea
Prior art keywords
tungsten
titanium nitride
barrier metal
soaking
contact electrode
Prior art date
Application number
KR1020040065465A
Other languages
Korean (ko)
Other versions
KR100607756B1 (en
Inventor
석가문
Original Assignee
동부아남반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부아남반도체 주식회사 filed Critical 동부아남반도체 주식회사
Priority to KR1020040065465A priority Critical patent/KR100607756B1/en
Publication of KR20060016978A publication Critical patent/KR20060016978A/en
Application granted granted Critical
Publication of KR100607756B1 publication Critical patent/KR100607756B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 발명은 반도체 소자의 텅스텐 콘택 전극 제조 방법에 관한 것으로, 특히 텅스텐 증착에 의해 콘택홀을 갭필하여 텅스텐 콘택 전극을 제조하는 방법은 장벽 금속막을 질소 가스에 의해 소킹하여 장벽 금속막의 티타늄 질화막 표면을 활성화시키는 단계와, 활성화된 티타늄 질화막을 사일렌 가스에 의해 소킹하여 티타늄 질화막 표면에 실리콘 모노층을 형성하는 단계와, 장벽 금속막의 티타늄 질화막 상부에 텅스텐 핵을 생성하는 단계와, 텅스텐 핵이 형성된 반도체 기판에 텅스텐을 증착하여 콘택홀을 갭필하는 단계를 포함한다. 그러므로 본 발명은 콘택홀에 텅스텐을 화학기상증착법으로 증착할 때 사일렌 가스에 의한 소킹 공정 이전에 질소 가스에 의한 소킹 공정을 추가함으로써 티타늄질화막의 표면을 활성화시켜 텅스텐 헥사플로라이트의 플루오린이 티타늄으로 침투되는 것을 막으면서 콘택홀로의 텅스텐 갭필 능력을 향상시킬 수 있다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a tungsten contact electrode of a semiconductor device. In particular, a method of manufacturing a tungsten contact electrode by gap-filling a contact hole by tungsten deposition activates the titanium nitride film surface of the barrier metal film by soaking the barrier metal film with nitrogen gas. Forming a silicon monolayer on the surface of the titanium nitride film by soaking the activated titanium nitride film with a xylene gas, generating a tungsten nucleus on the titanium nitride film of the barrier metal film, and forming a semiconductor substrate on which the tungsten nucleus is formed. Depositing tungsten in to gapfill the contact holes. Therefore, the present invention activates the surface of the titanium nitride film by adding a nitrogen gas soaking process prior to the sonic gas soaking process when depositing tungsten by chemical vapor deposition into the contact hole, thereby infiltrating the fluorine of tungsten hexaflolite into titanium. It is possible to improve the tungsten gapfill ability to the contact hole while preventing the contact.

텅스텐 콘택 전극, 질소 가스, 흡수 Tungsten contact electrode, nitrogen gas, absorption

Description

반도체 소자의 텅스텐 콘택 전극 제조 방법{METHOD FOR MANUFACTURING A TUNGSTEN CONTACT ELECTRODE OF SEMICONDUCTOR DEVICE}Tungsten contact electrode manufacturing method of semiconductor device {METHOD FOR MANUFACTURING A TUNGSTEN CONTACT ELECTRODE OF SEMICONDUCTOR DEVICE}

도 1a 내지 도 1e는 종래 기술에 의한 반도체 소자의 텅스텐 콘택 전극 제조 방법을 순차적으로 나타낸 공정 순서도,1A to 1E are process flowcharts sequentially illustrating a method for manufacturing a tungsten contact electrode of a semiconductor device according to the prior art;

도 2는 종래 기술에 의한 콘택 전극의 텅스텐 증착 과정을 나타낸 흐름도,2 is a flowchart illustrating a tungsten deposition process of a contact electrode according to the prior art;

도 3a 내지 도 3e는 본 발명에 따른 반도체 소자의 텅스텐 콘택 전극 제조 방법을 순차적으로 나타낸 공정 순서도,3A to 3E are process flowcharts sequentially illustrating a method of manufacturing a tungsten contact electrode of a semiconductor device according to the present invention;

도 4는 본 발명에 따른 콘택 전극의 텅스텐 증착 과정을 나타낸 흐름도.4 is a flowchart illustrating a tungsten deposition process of a contact electrode according to the present invention.

본 발명은 반도체 소자의 제조 방법에 관한 것으로서, 특히 텅스텐 콘택(contact) 전극을 형성할 때 콘택 전극내 빈 공간(void) 생성을 미연에 방지할 수 있는 반도체 소자의 텅스텐 콘택 전극 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a tungsten contact electrode of a semiconductor device capable of preventing generation of voids in a contact electrode when forming a tungsten contact electrode. .

현재 반도체 소자가 고집적화에 따라 디자인 룰이 감소되고 이에 따라 반도체 소자의 배선 사이 또는 기판과 배선을 수직으로 연결하는 콘택 전극의 면적이 축소되는 추세이다. 따라서 반도체 소자의 고집적화에 따른 미세한 콘택 전극은 반도체 소자의 제조 공정에 있어서 매우 중요하다.As the semiconductor devices are highly integrated, design rules are reduced, and accordingly, the area of contact electrodes that vertically connect the wirings of the semiconductor devices or between the substrates and the wirings is reduced. Therefore, the fine contact electrode according to the high integration of the semiconductor device is very important in the manufacturing process of the semiconductor device.

도 1a 내지 도 1e는 종래 기술에 의한 반도체 소자의 텅스텐 콘택 전극 제조 방법을 순차적으로 나타낸 공정 순서도로서, 이들 도면들을 참조하여 종래 반도체 배선 사이를 수직으로 연결하기 위한 텅스텐 콘택 전극의 제조 과정에 대해 설명한다.1A through 1E are process flowcharts sequentially illustrating a method of manufacturing a tungsten contact electrode of a semiconductor device according to the prior art, and a process of manufacturing a tungsten contact electrode for vertically connecting conventional semiconductor wires will be described with reference to these drawings. do.

우선 도 1a에 도시된 바와 같이, 반도체 기판으로서 실리콘 기판에 반도체 소자, 예를 들어 MOSFET 제조 공정을 실시한다. 그리고 그 위에 층간 절연막(10)을 형성하고 층간 절연막(10) 상부에 하부 MOSFET와 수직으로 연결되기 위한 하부 금속 배선(12)을 형성한다. 이때 층간 절연막(10)은 BPSG(Boro Pospho Silicate Glass), PSG(Pospho Silicate Glass), BSG(Boro Silicate Glass), HDP(High Density Plasma) 산화막 등의 절연 물질로 형성하고, 하부 금속 배선(12)은 알루미늄 등의 금속 물질, 이의 합금 물질 등으로 형성한다. 그리고 층간 절연막(10) 상부에 다시 층간 절연막(14), 예를 들어 HDP 산화막으로 증착하고, 그 표면을 화학기계적연마(CMP : Chemical Mechanical Polishing) 공정으로 평탄화한다.First, as shown in FIG. 1A, a semiconductor device, for example, a MOSFET manufacturing process is performed on a silicon substrate as a semiconductor substrate. An interlayer insulating film 10 is formed thereon, and a lower metal wiring 12 is formed on the interlayer insulating film 10 to be vertically connected to the lower MOSFET. In this case, the interlayer insulating film 10 is formed of an insulating material such as BPSG (Boro Pospho Silicate Glass), PSG (Pospho Silicate Glass), BSG (Boro Silicate Glass), or HDP (High Density Plasma) oxide film, and the lower metal wiring 12 It is formed from a metal material such as silver aluminum, an alloy material thereof, and the like. Then, the interlayer insulating film 14 is deposited on the interlayer insulating film 10 again, for example, an HDP oxide film, and the surface thereof is planarized by a chemical mechanical polishing (CMP) process.

도 1b에 도시된 바와 같이, 층간 절연막(14) 상부에 포토레지스트를 도포하고 콘택홀 영역을 정의하는 마스크로 포토레지스트를 노광한 후에 이를 현상함으로써 포토레지스트 패턴(16)을 형성한다. 계속해서 포토레지스트 패턴(16)에 의해 드러난 층간 절연막(14)을 건식 식각 공정으로 식각하여 하부 금속 배선(12)이 노출되는 콘택홀(18)을 형성한 후에 에슁(ashing) 공정으로 포토레지스트 패턴(16)을 제거한다.As shown in FIG. 1B, the photoresist pattern 16 is formed by applying a photoresist on the interlayer insulating layer 14 and exposing the photoresist with a mask defining a contact hole region and then developing the photoresist. Subsequently, the interlayer insulating film 14 exposed by the photoresist pattern 16 is etched by a dry etching process to form a contact hole 18 through which the lower metal wiring 12 is exposed, and then the photoresist pattern by an ashing process. Remove (16).

도 1c에 도시된 바와 같이, 콘택홀이 형성된 층간 절연막(14) 상부에 장벽 금속막(barrier metal)(20)으로서 티타늄(Ti) 및 티타늄질화막(TiN)을 순차적으로 적층하여 형성한다. 이때 장벽 금속막(20)은 물리기상증착(PVD : Physical Vapor Deposition) 공정 또는 화학기상증착(CVD : Chemical Vapor Deposition) 공정으로 진행될 수 있으나 대개 PVD인 스퍼터링(sputtering) 방식으로 증착된다. 예를 들어, 티타늄(Ti)의 두께를 200Å∼500Å, 티타늄질화막(TiN)의 두께를 100Å∼500Å으로 한다.As illustrated in FIG. 1C, titanium (Ti) and titanium nitride (TiN) are sequentially formed as a barrier metal 20 on the interlayer insulating layer 14 on which contact holes are formed. In this case, the barrier metal film 20 may be formed by a physical vapor deposition (PVD) process or a chemical vapor deposition (CVD) process, but is usually deposited by a sputtering method, which is PVD. For example, the thickness of titanium (Ti) is 200 kPa to 500 kPa and the thickness of the titanium nitride film (TiN) is 100 kPa to 500 kPa.

계속해서 도 1d에 도시된 바와 같이, 장벽 금속막(20)이 형성된 콘택홀에 도전체 물질로서 텅스텐(W)(22)을 화학기상증착(CVD) 공정으로 약 3000Å∼7000Å 두께로 증착하여 콘택홀을 완전히 갭필(gap-fill)한다. 이에 대한 텅스텐 갭필 공정은 도 2를 참조하여 추후에 보다 상세하게 설명한다.Subsequently, as shown in FIG. 1D, the contact is formed by depositing tungsten (W) 22 as a conductive material in a chemical vapor deposition (CVD) process to a thickness of about 3000 kPa to 7000 kPa in the contact hole where the barrier metal film 20 is formed. Gap-fill the hole completely. The tungsten gapfill process for this will be described in more detail later with reference to FIG. 2.

그리고나서 도 1e에 도시된 바와 같이, 화학기계적연마(CMP) 공정으로 텅스텐(W) 및 장벽 금속막(20)을 층간 절연막(14) 표면이 드러날 때까지 평탄화하여 장벽 금속막(20)에 의해 하부 금속 배선(12)과 수직으로 연결되며 표면이 평탄화된 텅스텐 콘택 전극(22')을 형성한다.Then, as shown in FIG. 1E, the tungsten (W) and the barrier metal film 20 are planarized by the barrier metal film 20 by the chemical mechanical polishing (CMP) process until the surface of the interlayer insulating film 14 is exposed. The tungsten contact electrode 22 'is formed to be perpendicular to the lower metal wire 12 and to have a flattened surface.

그런데 종래 기술에 의한 콘택홀의 텅스텐(22) 증착 공정은 대개 화학기상증착(CVD) 공정으로 진행하는데, 대개 도 2와 같이 텅스텐 증착 전 공정과 텅스텐 증착 공정으로 구분된다. However, the tungsten (22) deposition process of the contact hole according to the prior art generally proceeds to a chemical vapor deposition (CVD) process, and is generally divided into a tungsten deposition process and a tungsten deposition process as shown in FIG.

예를 들어, 화학기상증착(CVD) 챔버내 압력을 설정된 압력인 90Torr 이상으로 올려주고 챔버내 온도를 380℃ 이상으로 히팅한다(S10). For example, the pressure in the chemical vapor deposition (CVD) chamber is raised to a set pressure of 90 Torr or more and the temperature in the chamber is heated to 380 ° C. or more (S10).

그리고 화학기상증착(CVD) 챔버에 사일렌(SiH4) 가스를 주입하여 사일렌 가스에 의한 소킹(soaking) 공정을 진행하여 장벽 금속막 표면에 실리콘 모노층을 형성시킨다(S12). 이때 실리콘 모노층은 이후 텅스텐 헥사플로라이트(WF6)의 플루오린(F)과 실리콘을 반응해서 장벽 금속막에 미치는 영향을 줄이는 역할을 한다.In addition, a silicon monolayer is formed on the surface of the barrier metal film by injecting a silica (SiH 4) gas into a chemical vapor deposition (CVD) chamber and performing a soaking process using the siylene gas (S12). At this time, the silicon monolayer serves to reduce the influence on the barrier metal film by reacting silicon with fluorine (F) of tungsten hexaflolite (WF6).

그 다음 화학기상증착(CVD) 챔버내 압력을 약 30Torr 정도 낮추고 수소(H), 사일렌(SiH4)의 가스를 주입하면서 텅스텐 헥사플로라이드(WF6) 가스를 소량(예를 들어 50sccm) 주입하여 수소(H), 사일렌(SiH4) 및 텅스텐 헥사플로라이트(WF6)의 반응으로 텅스텐 핵을 생성한다(S14). 이때 텅스텐 핵의 생성 두께는 예를 들어 500Å이하로 형성될 수 있으며 이는 콘택 전극의 프로파일에 따라 그 두께를 다르게 할 수 있다.Then, lower the pressure in the chemical vapor deposition (CVD) chamber by about 30 Torr and inject a small amount of tungsten hexafluoride (WF6) gas (for example, 50 sccm) while injecting hydrogen (H) and xylene (SiH4) gas. Tungsten nuclei are generated by the reaction of (H), xylene (SiH 4) and tungsten hexaflolite (WF 6) (S14). At this time, the production thickness of the tungsten nucleus may be formed, for example, 500 Å or less, which may vary the thickness according to the profile of the contact electrode.

계속해서 화학기상증착(CVD) 챔버내 압력을 다시 설정된 90Torr 이상으로 올려준다(S16).Subsequently, the pressure in the chemical vapor deposition (CVD) chamber is raised to above 90 Torr (S16).

그리고 나서 화학기상증착(CVD) 챔버에 사일렌(SiH4) 가스의 주입을 차단하고 수소(H) 가스를 주입하고 텅스텐 헥사플로라이트(WF6) 가스를 다량(예를 들어 90sccm) 주입하여 수소(H) 및 텅스텐 헥사플로라이트(WF6)의 반응으로 텅스텐(W)을 증착함으로써 콘택홀 내부를 텅스텐(W)으로 완전히 갭필한다(S18).Then, the injection of the silicide (SiH4) gas into the chemical vapor deposition (CVD) chamber is blocked, the hydrogen (H) gas is injected, and a large amount (for example, 90 sccm) of tungsten hexaflorite (WF6) gas is injected to the hydrogen (H). And depositing tungsten (W) by the reaction of tungsten hexaflolite (WF6) to completely fill the contact hole with tungsten (W) (S18).

그런데 이와 같은 종래 기술에 의해 콘택홀 내부를 갭필하는 텅스텐(W)을 화학기상증착(CVD) 공정으로 증착할 경우 텅스텐 헥사플로라이트(WF6)에 함유되어 있는 플루오린(F)이 실리콘 모노층의 실리콘과 반응하는 사일렌(SiH4) 가스에 의한 소킹 공정에 의해 완전히 제거되지 않고 장벽 금속막의 티타늄(Ti)과 반응하게 된 다. 이에 따라 콘택홀에 반응 생성물(TiF3, TiF4, SiFx 및 WSix 등)이 형성되어 콘택 전극의 콘택 저항을 증가시키거나 후속 열공정시 팽창해서 콘택 전극이 오픈되는 등의 문제점을 야기시키게 된다.However, in the case of depositing tungsten (W) which gap-fills the inside of a contact hole by a chemical vapor deposition (CVD) process according to the related art, fluorine (F) contained in tungsten hexaflolite (WF6) is silicon of a silicon monolayer. It is not completely removed by the soaking process using a silylene (SiH 4) gas which reacts with the titanium oxide, and reacts with titanium (Ti) of the barrier metal film. As a result, reaction products (TiF3, TiF4, SiFx, WSix, etc.) are formed in the contact holes, which causes problems such as increasing the contact resistance of the contact electrodes or expanding during the subsequent thermal process to open the contact electrodes.

또한 종래 기술에 의한 반도체 소자의 콘택 전극 제조 방법은 반도체 소자의 고집적화에 따른 스텝커버리지(step coverage)가 큰 콘택홀 내에 도 2와 같은 화학기상증착(CVD)법으로 텅스텐(W)을 증착할 경우 텅스텐이 완전히 갭필되지 못하고 빈 공간이 형성되어 콘택 전극의 전기적 특성 및 신뢰성을 저하시키는 문제점이 있었다.In addition, according to the related art, a method of manufacturing a contact electrode of a semiconductor device is obtained by depositing tungsten (W) in a chemical vapor deposition (CVD) method as shown in FIG. 2 in a contact hole having large step coverage due to high integration of a semiconductor device. Tungsten is not completely gapfilled and an empty space is formed, thereby degrading electrical characteristics and reliability of the contact electrode.

본 발명의 목적은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 콘택홀에 텅스텐(W)을 화학기상증착법으로 증착할 때 사일렌(SiH4) 가스에 의한 소킹 공정 이전에 질소(N2) 가스에 의한 소킹 공정을 진행하여 티타늄질화막(TiN)의 표면을 활성화시켜 텅스텐 헥사플로라이트(WF6)의 플루오린(F)이 티타늄으로 침투되는 것을 막으면서 텅스텐의 갭필 능력을 향상시킬 수 있는 반도체 소자의 텅스텐 콘택 전극 제조 방법을 제공하는데 있다.An object of the present invention is to solve the problems of the prior art as described above by the nitrogen (N2) gas before the soaking process by using a silica (SiH4) gas when depositing tungsten (W) in the chemical vapor deposition method in the contact hole Tungsten contact electrode of a semiconductor device capable of improving the gap fill capability of tungsten while preventing the penetration of fluorine (F) of tungsten hexaflolite (WF6) into titanium by activating the surface of the titanium nitride film (TiN) by performing a soaking process. It is to provide a manufacturing method.

상기 목적을 달성하기 위하여 본 발명은 반도체 기판의 층간 절연막에 콘택홀을 형성하고 콘택홀이 형성된 층간 절연막 상부에 티타늄막과 티타늄 질화막이 적층된 장벽 금속막을 형성하고, 장벽 금속막이 형성된 반도체 기판에 텅스텐을 증착하여 콘택홀을 갭필하는 반도체 소자의 텅스텐 콘택 전극 제조 방법에 있어서, 텅스텐 증착에 의해 콘택홀을 갭필하는 단계는, 장벽 금속막을 질소 가스에 의해 소킹하여 티타늄 질화막 표면을 활성화시키는 단계와, 활성화된 티타늄 질화막을 사일렌 가스에 의해 소킹하여 티타늄 질화막 표면에 실리콘 모노층을 형성하는 단계와, 장벽 금속막 상부에 텅스텐 핵을 형성하는 단계와, 텅스텐 핵이 형성된 반도체 기판에 텅스텐을 증착하여 콘택홀을 갭필하는 단계를 포함한다.In order to achieve the above object, the present invention forms a contact hole in the interlayer insulating film of the semiconductor substrate and forms a barrier metal film in which a titanium film and a titanium nitride film are stacked on the interlayer insulating film on which the contact hole is formed, and a tungsten on the semiconductor substrate on which the barrier metal film is formed. In the method for manufacturing a tungsten contact electrode of a semiconductor device, which deposits a gap and fills a contact hole, the step of gapfilling a contact hole by tungsten deposition may include: activating a titanium nitride film surface by soaking a barrier metal film with nitrogen gas; Soaking the titanium nitride film with a xylene gas to form a silicon monolayer on the surface of the titanium nitride film, forming a tungsten nucleus on the barrier metal film, and depositing tungsten on the semiconductor substrate on which the tungsten nucleus is formed. Gap-filling.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대해 설명하고자 한다.Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.

도 3a 내지 도 3e는 본 발명에 따른 반도체 소자의 텅스텐 콘택 전극 제조 방법을 순차적으로 나타낸 공정 순서도이다. 이들 도면을 참조하면 본 발명의 일 실시예에 따른 텅스텐 콘택 전극 제조 방법을 설명하면 다음과 같다.3A to 3E are process flowcharts sequentially illustrating a method of manufacturing a tungsten contact electrode of a semiconductor device according to the present invention. Referring to these drawings, a tungsten contact electrode manufacturing method according to an embodiment of the present invention will be described.

우선 도 3a에 도시된 바와 같이, 반도체 기판으로서 실리콘 기판에 반도체 소자, 예를 들어 MOSFET 제조 공정을 실시한다. 그리고 그 위에 BPSG, PSG, BSG, HDP 산화막 등의 절연 물질로 층간 절연막(100)을 형성하고 층간 절연막(100) 상부에 하부 MOSFET와 수직으로 연결하기 위한 하부 금속 배선(102)을 형성한다. 이때 하부 금속 배선(102)은 알루미늄 등의 금속 물질, 이의 합금 물질로 형성한다. 그리고 층간 절연막(100) 상부에 다시 층간 절연막(104), 예를 들어 HDP 산화막으로 증착하고, 그 표면을 화학기계적연마(CMP) 공정으로 평탄화한다.First, as shown in FIG. 3A, a semiconductor device, for example, a MOSFET manufacturing process is performed on a silicon substrate as a semiconductor substrate. An interlayer insulating film 100 is formed of an insulating material such as BPSG, PSG, BSG, or HDP oxide film thereon, and a lower metal wiring 102 is formed on the interlayer insulating film 100 to vertically connect the lower MOSFET. In this case, the lower metal wire 102 is formed of a metal material such as aluminum, or an alloy material thereof. Then, the interlayer insulating film 104 is deposited on the interlayer insulating film 100 again, for example, an HDP oxide film, and the surface thereof is planarized by a chemical mechanical polishing (CMP) process.

계속해서 도 3b에 도시된 바와 같이, 평탄화된 층간 절연막(104) 상부에 포토레지스트를 도포하고 콘택홀 영역을 정의하는 마스크로 포토레지스트를 노광한 후에 이를 현상함으로써 포토레지스트 패턴(106)을 형성한다. 이어서 포토레지스 트 패턴(106)에 의해 드러난 층간 절연막(104)을 건식 식각 공정으로 식각하여 하부 금속 배선(102)이 노출되는 콘택홀(108)을 형성한 후에 에슁 공정으로 포토레지스트 패턴(106)을 제거한다.Subsequently, as shown in FIG. 3B, the photoresist pattern 106 is formed by applying a photoresist on the planarized interlayer insulating film 104 and exposing the photoresist with a mask defining a contact hole region and then developing the photoresist. . Subsequently, the interlayer insulating layer 104 exposed by the photoresist pattern 106 is etched by a dry etching process to form a contact hole 108 through which the lower metal wiring 102 is exposed, and then the photoresist pattern 106 is subjected to an etching process. Remove it.

도 3c에 도시된 바와 같이, 콘택홀이 형성된 층간 절연막(104) 상부에 장벽 금속막(110)으로서 티타늄(Ti) 및 티타늄질화막(TiN)을 순차적으로 형성한다. 이때 장벽 금속막(110)은 물리기상증착(PVD) 또는 화학기상증착(CVD) 공정으로 증착하고, 예를 들어 티타늄(Ti)의 두께를 200Å∼500Å, 티타늄질화막(TiN)의 두께를 100Å∼500Å으로 증착한다. 만약 물리기상증착(PVD) 공정 중에서 플라즈마 방식으로 장벽 금속막(110)을 형성할 경우 챔버 안에 아르곤(Ar)을 넣어주며 DC 전원을 걸어주고 티타늄 소스를 주입함으로써 플라즈마에 의해 티타늄(Ti)을 증착한 후에, 티타늄질화막(TiN)의 소스인 TDMAT(또는 TiCl4)을 챔버 안에 주입하면 플라즈마에 의하 티타늄질화막(TiN)을 증착하게 된다. As shown in FIG. 3C, titanium (Ti) and titanium nitride (TiN) are sequentially formed as the barrier metal layer 110 on the interlayer insulating layer 104 on which the contact holes are formed. At this time, the barrier metal film 110 is deposited by physical vapor deposition (PVD) or chemical vapor deposition (CVD) process, for example, the thickness of titanium (Ti) is 200 kPa-500 kPa, the thickness of the titanium nitride film (TiN) is 100 kPa- Deposit at 500 Hz. If the barrier metal film 110 is formed in a plasma method during a physical vapor deposition (PVD) process, titanium (Ti) is deposited by plasma by argon (Ar) in a chamber, a DC power source, and a titanium source is injected. After that, when TDMAT (or TiCl 4), which is a source of titanium nitride (TiN), is injected into the chamber, the titanium nitride (TiN) is deposited by plasma.

이어서 도 3d에 도시된 바와 같이, 장벽 금속막(110)이 형성된 콘택홀에 도전체 물질로서 텅스텐(W)(112)을 본 발명의 화학기상증착(CVD) 공정 조건에 따라 약 3000Å∼7000Å 두께로 증착하여 콘택홀을 완전히 갭필한다. 이에 대한 텅스텐 화학기상증착 공정은 추후에 보다 상세하게 설명한다.As shown in FIG. 3D, tungsten (W) 112 is used as a conductive material in the contact hole in which the barrier metal film 110 is formed, and has a thickness of about 3000 kPa to 7000 kPa according to the chemical vapor deposition (CVD) process conditions of the present invention. Vapor deposition to fully gapfill the contact holes. The tungsten chemical vapor deposition process for this will be described in more detail later.

그리고나서 도 3e에 도시된 바와 같이, 화학기계적연마(CMP) 공정으로 텅스텐(W) 및 장벽 금속막(110)을 층간 절연막(104) 표면이 드러날 때까지 평탄화하여 장벽 금속막(110)에 의해 하부 금속 배선(102)과 수직으로 연결되며 표면이 평탄화된 텅스텐 콘택 전극(112')을 형성한다.Then, as shown in FIG. 3E, the tungsten (W) and the barrier metal film 110 are flattened by the barrier metal film 110 by the chemical mechanical polishing (CMP) process until the surface of the interlayer insulating film 104 is exposed. The tungsten contact electrode 112 ′ connected to the lower metal wire 102 and perpendicular to the lower metal wire 102 is formed.

상술한 본 발명에 따른 콘택홀의 텅스텐 화학기상증착(CVD) 공정은 도 4를 참조하여 설명하고자 한다.The above-described tungsten chemical vapor deposition (CVD) process of the contact hole according to the present invention will be described with reference to FIG. 4.

우선, 화학기상증착(CVD) 챔버내 압력을 설정된 압력인 90Torr 이상으로 올려주고 챔버내 온도를 380℃ 이상으로 히팅한다(S100).First, the pressure in the chemical vapor deposition (CVD) chamber is raised to a set pressure of 90 Torr or more and the temperature in the chamber is heated to 380 ° C. or more (S100).

그리고 화학기상증착(CVD) 챔버내 온도를 380℃ 이상으로 계속 유지하고 챔버 압력을 10Torr 이상으로 설정한 상태에서 질소(N2) 가스를 공급하여 질소 가스에 의한 소킹 공정을 진행함으로써 장벽 금속막의 티타늄 질화막(TiN) 표면이 질소 이온과의 반응 및 확산하여 활성화된다(S102). 이때 질소(N2) 가스에 의한 소킹 공정은 30초이상 진행하는 것이 바람직하다.The titanium nitride film of the barrier metal film is subjected to a soaking process by supplying nitrogen (N2) gas while maintaining the temperature in the chemical vapor deposition (CVD) chamber at 380 ° C or higher and setting the chamber pressure to 10 Torr or higher. The (TiN) surface is activated by reaction and diffusion with nitrogen ions (S102). At this time, the soaking process by nitrogen (N2) gas is preferably proceed for 30 seconds or more.

그 다음 화학기상증착(CVD) 챔버에 사일렌(SiH4) 가스를 공급하여 사일렌(SiH4) 가스에 의한 소킹 공정을 진행하여 장벽 금속막 표면에 실리콘 모노층을 형성시킨다(S104). 이때 실리콘 모노층은 이후 텅스텐 헥사플로라이트(WF6)의 플루오린(F)과 실리콘을 반응해서 장벽 금속막에 미치는 영향을 줄이는 역할을 한다.Next, a silicon monolayer is formed on the surface of the barrier metal film by supplying a silica (SiH 4) gas to a chemical vapor deposition (CVD) chamber and proceeding a soaking process using a silica (SiH 4) gas (S104). At this time, the silicon monolayer serves to reduce the influence on the barrier metal film by reacting silicon with fluorine (F) of tungsten hexaflolite (WF6).

그 다음 화학기상증착(CVD) 챔버내 압력을 약 30Torr 정도로 낮추고 수소(H), 사일렌(SiH4)의 가스를 주입하면서 텅스텐 헥사플로라이드(WF6) 가스를 소량, 예를 들어 50sccm 이하로 주입하여 수소(H), 사일렌(SiH4) 및 텅스텐 헥사플로라이트(WF6)의 화학적 반응으로 텅스텐 핵을 생성한다(S106). 이때 텅스텐 핵의 생성 두께는 예를 들어 500Å이하로 형성될 수 있으며 이는 콘택 전극의 프로파일에 따라 그 두께를 다르게 할 수 있다.Then, the pressure in the chemical vapor deposition (CVD) chamber was lowered to about 30 Torr, and a small amount of tungsten hexafluoride (WF6) gas was injected, for example, 50 sccm or less while injecting hydrogen (H) and xylene (SiH4) gas. Tungsten nuclei are generated by chemical reaction of hydrogen (H), xylene (SiH 4) and tungsten hexaflolite (WF 6) (S106). At this time, the production thickness of the tungsten nucleus may be formed, for example, 500 Å or less, which may vary the thickness according to the profile of the contact electrode.

계속해서 화학기상증착(CVD) 챔버내 압력을 다시 설정된 90Torr 이상으로 올 려준다(S108).Subsequently, the pressure in the chemical vapor deposition (CVD) chamber is increased again to a set value of 90 Torr or more (S108).

그리고나서 화학기상증착(CVD) 챔버에 사일렌(SiH4) 가스의 주입을 차단하고 수소(H) 가스를 주입하고 텅스텐 헥사플로라이트(WF6) 가스를 다량, 예를 들어 90sccm 이상으로 주입하여 수소(H) 및 텅스텐 헥사플로라이트(WF6)의 화학적 반응으로 텅스텐(W)을 증착함으로써 콘택홀 내부를 텅스텐(W)으로 완전히 갭필한다(S110).Then, the injection of the SiH4 gas into the chemical vapor deposition (CVD) chamber is blocked, the hydrogen (H) gas is injected, and the tungsten hexaflorite (WF6) gas is injected at a large amount, for example, 90 sccm or more, to inject hydrogen (H). ) And tungsten (W) by chemical reaction of tungsten hexaflolite (WF6) to completely gapfill the inside of the contact hole with tungsten (W) (S110).

따라서 본 발명에 따라 콘택홀 내부를 갭필하는 텅스텐(W)을 화학기상증착(CVD) 공정으로 증착할 경우 사일렌(SiH4) 가스에 의한 소킹 공정 이전에 질소(N2) 가스에 의한 소킹 공정을 진행하여 장벽 금속막의 티타늄 질화막(TiN)을 활성화함으로써 이후 텅스텐 증착시 텅스텐 헥사플로라이트(WF6)에 함유되어 있는 플루오린(F)이 장벽 금속막의 티타늄(Ti)과 반응하는 것을 효과적으로 차단할 수 있다. Therefore, in the case of depositing tungsten (W) which gap-fills the inside of the contact hole by chemical vapor deposition (CVD) process, the soaking process by nitrogen (N2) gas is performed before the soaking process by siren (SiH4) gas. By activating the titanium nitride layer (TiN) of the barrier metal layer, it is possible to effectively block the reaction of fluorine (F) contained in the tungsten hexaflorite (WF6) with titanium (Ti) of the barrier metal layer during tungsten deposition .

이에 따라 콘택홀에 반응 생성물(TiF3, TiF4, SiFx 및 WSix 등)이 형성되지 않게 되어 결국 콘택 전극의 콘택 저항이 감소하게 되면서 콘택홀에서의 텅스텐 증착이 용이하게 되어 빈 공간없이 텅스텐을 완전히 갭필할 수 있다.As a result, reaction products (TiF3, TiF4, SiFx, WSix, etc.) are not formed in the contact holes, and thus the contact resistance of the contact electrodes is reduced, thereby easily depositing tungsten in the contact holes, thereby completely gapfilling tungsten without empty space. Can be.

이상 설명한 바와 같이, 본 발명은 콘택홀에 텅스텐(W)을 화학기상증착법으로 증착할 때 사일렌(SiH4) 가스에 의한 소킹 공정 이전에 질소(N2) 가스에 의한 소킹 공정을 추가함으로써 티타늄질화막(TiN)의 표면을 활성화시켜 텅스텐 헥사플로라이트(WF6)의 플루오린(F)이 티타늄으로 침투되는 것을 막으면서 콘택홀로의 텅스텐 갭필 능력을 향상시킬 수 있는 효과가 있다. As described above, the present invention provides a titanium nitride film (N2) by adding a soaking process using nitrogen (N2) gas before the soaking process by using a silicide (SiH4) gas when depositing tungsten (W) into a contact hole. By activating the surface of TiN), the fluorine (F) of tungsten hexaflolite (WF6) is prevented from penetrating into titanium, thereby improving the tungsten gapfill ability to the contact hole.                     

한편, 본 발명은 상술한 실시예에 국한되는 것이 아니라 후술되는 청구범위에 기재된 본 발명의 기술적 사상과 범주내에서 당업자에 의해 여러 가지 변형이 가능하다.On the other hand, the present invention is not limited to the above-described embodiment, various modifications are possible by those skilled in the art within the spirit and scope of the present invention described in the claims to be described later.

Claims (4)

반도체 기판의 층간 절연막에 콘택홀을 형성하고 상기 콘택홀이 형성된 층간 절연막 상부에 티타늄막과 티타늄 질화막이 적층된 장벽 금속막을 형성하고, 상기 장벽 금속막이 형성된 반도체 기판에 텅스텐을 증착하여 상기 콘택홀을 갭필하는 반도체 소자의 텅스텐 콘택 전극 제조 방법에 있어서, 상기 텅스텐 증착에 의해 상기 콘택홀을 갭필하는 단계는,Forming a contact hole in the interlayer insulating film of the semiconductor substrate, forming a barrier metal film in which a titanium film and a titanium nitride film are stacked on the interlayer insulating film on which the contact hole is formed, and depositing tungsten on the semiconductor substrate on which the barrier metal film is formed. In the method of manufacturing a tungsten contact electrode of a gap-filling semiconductor device, the step of gap-filling the contact hole by the tungsten deposition, 상기 장벽 금속막을 질소 가스에 의해 소킹하여 상기 티타늄 질화막 표면을 활성화시키는 단계와,Soaking the barrier metal film with nitrogen gas to activate the titanium nitride film surface; 상기 활성화된 티타늄 질화막을 사일렌 가스에 의해 소킹하여 상기 티타늄 질화막 표면에 실리콘 모노층을 형성하는 단계와,Soaking the activated titanium nitride film with a xylene gas to form a silicon monolayer on the titanium nitride film surface; 상기 장벽 금속막 상부에 텅스텐 핵을 형성하는 단계와,Forming a tungsten nucleus on the barrier metal film; 상기 텅스텐 핵이 형성된 반도체 기판에 텅스텐을 증착하여 상기 콘택홀을 갭필하는 단계Depositing tungsten on the semiconductor substrate on which the tungsten nucleus is formed to gapfill the contact hole 를 더 포함하는 반도체 소자의 텅스텐 콘택 전극 제조 방법.Tungsten contact electrode manufacturing method of a semiconductor device further comprising. 제 1항에 있어서,The method of claim 1, 상기 질소 가스에 의한 소킹은 30초이상 실시하는 것을 특징으로 하는 반도체 소자의 텅스텐 콘택 전극 제조 방법.The soaking with nitrogen gas is carried out for 30 seconds or more. 제 1항에 있어서,The method of claim 1, 상기 질소 가스에 의한 소킹은 10Torr 이상의 압력하에서 실시하는 것을 특징으로 하는 반도체 소자의 텅스텐 콘택 전극 제조 방법.The soaking with nitrogen gas is performed under a pressure of 10 Torr or more. 제 1항에 있어서,The method of claim 1, 상기 질소 가스에 의한 소킹은 380℃ 이상의 온도에서 실시하는 것을 특징으로 하는 반도체 소자의 텅스텐 콘택 전극 제조 방법.The soaking by nitrogen gas is performed at the temperature of 380 degreeC or more, The manufacturing method of the tungsten contact electrode of a semiconductor element.
KR1020040065465A 2004-08-19 2004-08-19 Method for manufacturing a tungsten contact electrode of semiconductor device KR100607756B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040065465A KR100607756B1 (en) 2004-08-19 2004-08-19 Method for manufacturing a tungsten contact electrode of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040065465A KR100607756B1 (en) 2004-08-19 2004-08-19 Method for manufacturing a tungsten contact electrode of semiconductor device

Publications (2)

Publication Number Publication Date
KR20060016978A true KR20060016978A (en) 2006-02-23
KR100607756B1 KR100607756B1 (en) 2006-08-01

Family

ID=37125122

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040065465A KR100607756B1 (en) 2004-08-19 2004-08-19 Method for manufacturing a tungsten contact electrode of semiconductor device

Country Status (1)

Country Link
KR (1) KR100607756B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210094663A (en) * 2018-12-20 2021-07-29 어플라이드 머티어리얼스, 인코포레이티드 Method of Growing Doped Group IV Materials

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578963A (en) * 2012-08-02 2014-02-12 中国科学院微电子研究所 Semiconductor device and manufacturing method thereof
CN103794502A (en) * 2012-10-30 2014-05-14 中国科学院微电子研究所 Semiconductor device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210094663A (en) * 2018-12-20 2021-07-29 어플라이드 머티어리얼스, 인코포레이티드 Method of Growing Doped Group IV Materials

Also Published As

Publication number Publication date
KR100607756B1 (en) 2006-08-01

Similar Documents

Publication Publication Date Title
US6787461B2 (en) Method for forming a plug metal layer
US6927163B2 (en) Method and apparatus for manufacturing a barrier layer of semiconductor device
KR100599434B1 (en) Method of forming metal interconnection line for semiconductor device
US20020135071A1 (en) Integrated circuit device contact plugs having a liner layer that exerts compressive stress thereon and methods of manufacturing same
US20060246714A1 (en) Method of forming a conductive contact
US20050186787A1 (en) Semiconductor devices and methods to form a contact in a semiconductor device
US6696368B2 (en) Titanium boronitride layer for high aspect ratio semiconductor devices
US5977636A (en) Method of forming an electrically conductive contact plug, method of forming a reactive or diffusion barrier layer over a substrate, integrated circuitry, and method of forming a layer of titanium boride
JP2000058650A (en) Semiconductor device, and method and device for manufacturing the device
US7259092B2 (en) Semiconductor device and method for fabricating the same
KR100607756B1 (en) Method for manufacturing a tungsten contact electrode of semiconductor device
US6596629B2 (en) Method for forming wire in semiconductor device
US20070037378A1 (en) Method for forming metal pad in semiconductor device
KR100629961B1 (en) Method for forming a metal contact in semiconductor device
KR100875073B1 (en) Metal wiring formation method of semiconductor device
KR100827521B1 (en) Capacitor of semiconductor device and method for manufacturing the same
JP3129251B2 (en) Contact plug formation method
JP4052623B2 (en) Manufacturing method of semiconductor device
KR100325597B1 (en) Method for forming contact hole in semiconductor device
KR100587594B1 (en) Method for forming metal wiring semiconductor device
KR20000000846A (en) Method for forming semiconductor devices having multi-wiring
KR20040060005A (en) Method for forming barrier metal layer in semiconductor device
KR20070003063A (en) Method for fabricating metal interconnect in semiconductor device
KR20020046436A (en) Method for fabricating semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120619

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee