KR20060003925A - Methed of manufacturing artificial leather with excellent elasticity - Google Patents

Methed of manufacturing artificial leather with excellent elasticity Download PDF

Info

Publication number
KR20060003925A
KR20060003925A KR1020040051836A KR20040051836A KR20060003925A KR 20060003925 A KR20060003925 A KR 20060003925A KR 1020040051836 A KR1020040051836 A KR 1020040051836A KR 20040051836 A KR20040051836 A KR 20040051836A KR 20060003925 A KR20060003925 A KR 20060003925A
Authority
KR
South Korea
Prior art keywords
artificial leather
fiber
nonwoven fabric
fibers
excellent elasticity
Prior art date
Application number
KR1020040051836A
Other languages
Korean (ko)
Other versions
KR100931955B1 (en
Inventor
김원준
황영남
이상윤
Original Assignee
주식회사 코오롱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 코오롱 filed Critical 주식회사 코오롱
Priority to KR1020040051836A priority Critical patent/KR100931955B1/en
Publication of KR20060003925A publication Critical patent/KR20060003925A/en
Application granted granted Critical
Publication of KR100931955B1 publication Critical patent/KR100931955B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/16Properties of the materials having other properties
    • D06N2209/1635Elasticity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/061Load-responsive characteristics elastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/904Artificial leather

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)

Abstract

본 발명은 신축성이 우수한 인공피혁의 제조방법에 관한 것으로, 극세사들이 3차원적으로 교락되어 있는 부직포를 제조시 이(易)용해성 섬유와 2성분 복합섬유를 혼용하는 것을 특징으로 한다.The present invention relates to a method of manufacturing artificial leather with excellent elasticity, characterized in that the microfibers are mixed with bi-soluble fibers and bicomponent composite fibers when manufacturing nonwoven fabrics interwoven in three dimensions.

본 발명의 인공피혁은 이(易)용해성을 갖는 용해섬유를 부직포 전체 중량대비 5~50중량% 사용하고 추출성분과 섬유형성성 성분으로 구성된 2성분 복합섬유를 부직포 전체 중량대비 95~50중량% 사용하여 부직포를 제조한 다음, 상기 부직포에 폴리우레탄 탄성체를 함침 한 후 부직포 내 용해섬유와 2성분 복합섬유중의 추출 성분을 용출한 다음, 버핑하여 제조 할 수 있다.The artificial leather of the present invention uses the dissolving fibers having dissolvability of 5 to 50% by weight relative to the total weight of the nonwoven fabric and 95 to 50% by weight of the bicomponent composite fiber composed of the extracting component and the fiber forming component to the total weight of the nonwoven fabric. After preparing the nonwoven fabric, the impregnated polyurethane elastic body to the nonwoven fabric may be prepared by eluting the extraction components of the dissolved fibers and bicomponent composite fibers in the nonwoven fabric, and then buffing.

본 발명의 인공피혁은 신축성이 우수하여 의복용, 장갑용 및 부츠용 소재등으로 유용하다.
Artificial leather of the present invention is excellent in elasticity is useful as a material for clothing, gloves and boots.

인공피혁, 신축성, 장갑용, 폴리우레탄, 탄성체, 함량, 신장회복율.Artificial leather, elasticity, gloves, polyurethane, elastomer, content, elongation recovery.

Description

신축성이 우수한 인공피혁의 제조방법 {Methed of manufacturing artificial leather with excellent elasticity} Method of manufacturing artificial leather with excellent elasticity {Methed of manufacturing artificial leather with excellent elasticity}             

도 1은 폭방향 신장회복율 계산시 적용하는 각종 길이 단위를 나타내는 개략도
1 is a schematic diagram showing various length units applied in calculating the width recovery rate;

본 발명은 신축성이 우수한 인공피혁의 제조방법에 관한 것으로서, 보다 구체적으로는 신축성이 우수하여 의복용, 장갑용 및 부츠용 등의 소재로 유용한 인공피혁의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing artificial leather excellent in elasticity, and more particularly to a method of manufacturing artificial leather useful in materials such as clothing, gloves and boots for excellent elasticity.

극세사들이 3차원적으로 교락되어 있는 부직포와 상기 부직포에 함침 되어 있는 폴리우레탄 수지(폴리우레탄 탄성체)로 이루어진 인공피혁은 천연피혁과 유사한 부드러운 질감과 독특한 외관을 갖고 있어서 의류용이나 장갑용 소재로 널리 사용되고 있다.Artificial leather composed of a nonwoven fabric in which microfibers are intertwined in three dimensions and a polyurethane resin (polyurethane elastomer) impregnated in the nonwoven fabric has a soft texture and unique appearance similar to that of natural leather, and thus is widely used as a material for clothing or gloves. have.

최근에는 기존의 천연피혁 특유의 부드러운 질감과 독특한 외관을 모방하는 단계를 넘어서서 고기능성을 구비한 인공피혁의 개발이 활발하게 진행되고있다. 특히 착용감을 좋게하고, 굴곡이 많은 부위에 사용되는 용도로 적합 할 수 있도록 사용중에 신축성(신장회복성)이 우수한 인공피혁이 요구되고 있다.Recently, the development of artificial leather with high functionality has been actively progressed beyond the steps of imitating the soft texture and unique appearance peculiar to the existing natural leather. In particular, there is a demand for artificial leather having excellent elasticity (stretch recovery) during use so as to improve the fit and to be suitable for use in areas with a large number of bends.

인공피혁이 갖는 신장회복력은 폴리우레탄 탄성체에 기인하여 폴리우레탄은 완전 연속상인 경우 그 특성상 수 백 퍼센트까지는 쉽게 늘어나고 거의 완전 회복할 수 있는 특성이 있다. 하지만 인공피혁인 경우 폴리우레탄은 극세섬유 사이의 충진재로서의 역할을 하여 미세하고 불균일한 구멍이 많이 뚫린 스폰지 형태로 존재한다. 이러한 구조로 인하여 신장 변형시에 폴리우레탄의 가늘고 약한 부위에 힘이 집중되고 일부 파단이 일어나거나 혹은 파단이 일어나지는 않더라도 늘어난 부직포 섬유를 다시 회복시키기에는 신장회복력이 모자라기 때문에 완전히 회복하기에는 한계가 있다. 또한 폴리우레탄의 충진량이 작을수록 시트의 가늘고 약한 부위가 많아지므로 신장회복력이 작아지게 된다. 따라서 신장회복력을 좋게 하기 위해서는 폴리우레탄의 함량을 되도록 많고도 연속적인 구조로 충진하는 것이 바람직하다.The stretch recovery force of artificial leather is due to the polyurethane elastomer, and thus, when the polyurethane is in a completely continuous phase, it is easily stretched up to several hundred percent due to its characteristics and can be almost completely recovered. However, in the case of artificial leather, polyurethane serves as a filler between the ultrafine fibers and exists in the form of a sponge with many fine and uneven holes. Due to this structure, strength is concentrated in the thin and weak areas of the polyurethane during elongation deformation and there is a limit to full recovery because the recovery of the stretched nonwoven fabric is insufficient to recover the stretched nonwoven fabric even if some breakage or breakage does not occur. . In addition, the smaller the filling amount of polyurethane, the thinner and weaker the area of the sheet, so the resilience of recovery becomes smaller. Therefore, in order to improve the stretch recovery power, it is preferable to fill the polyurethane content in as many and continuous structures as possible.

인공피혁에 신축성을 부여하는 종래 기술로는 (ⅰ)스크림(scrim) 직물을 인공피혁에 삽입 또는 삽입 후 제거하는 방법과, (ⅱ)인공피혁에 수지를 코팅하는 방법과, (ⅲ)부직포 제조시 폴리우레탄사(스판덱스 원사)등의 탄성섬유를 혼용하는 방법과, (ⅳ)부직포 제조시 부직포의 밀도를 낮게 설정하여 부직포 내부의 공극을 증가시키고 폴리우레탄 함침액의 농도를 증가시켜 폴리우레탄 탄성체의 함침량을 증가시키는 방법들이 알려져 있다. Conventional techniques for imparting elasticity to artificial leather include (i) a method of inserting or removing a scrim fabric into artificial leather, (ii) a method of coating a resin on artificial leather, and (i) manufacturing a nonwoven fabric. Polyurethane fibers (spandex yarn), etc., and a method of mixing elastic fibers, and (i) low density of the nonwoven fabric when manufacturing the nonwoven fabric to increase the voids in the nonwoven fabric and increase the concentration of the polyurethane impregnation solution to increase the polyurethane elastomer. Methods of increasing the impregnation amount of are known.                         

구체적으로, 스크림(Scrim) 직물을 인공피혁에 삽입 또는 삽입 후 제거하는 첫번째 방법으로 일본 공개특허 제2000-54250호에서는 위사본수의 적어도 1/4이상이 폴리우레탄 탄성섬유인 직물을 0.5데니어 이하의 극세섬유와 3차원 교락시켜 만든 시트에 수계폴리우레탄을 함침시켜 신축성이 높은 인공피혁을 제조하는 방법을 제안하고 있으며, 일본공개특허 제2000-336581호에서는 0.8데니어 이하이고 길이가 20mm 이상인 극세섬유 웹과 길이 및/또는 폭 방향으로 적어도 20%이상의 신축성을 갖는 폴리에스테르 잠재형 권축가공사로 구성된 강연 직편물을 교락하여 고분자 바인더를 함침시켜 신축성 인공피혁을 제조하는 방법을 게재하고 있다. 또한, 일본공개특허 제2003-13368호에서는 0.9데시텍스 이하의 섬유 웹과 강연사와 고수축사로 구성된 직편물을 함께 교락하여 극세화, 고분자 탄성체 부여, 입모처리하여 시트를 제조하고, 상기 시트를 길이 및/또는 폭 방향으로 수축시킨 후 직편물을 연삭하여 제거시켜 신축성이 우수한 인공피혁을 제조하는 방법을 게재하고 있다. 또한 일본공개특허 제2003-89984호에서는 0.9데시텍스 이하의 극세섬유 웹과 700 T/M 이상인 직편물을 교락하여 벤질알콜 또는 페닐에틸알콜 유화액에서 수축하고 폴리우레탄을 함침시킨 후 직편물을 버핑 또는 슬라이싱하여 길이 및/또는 폭 방향의 신장율이 15% 이상이며 신장회복율이 80% 이상인 신축성이 우수한 인공피혁을 제조하는 방법을 게재하고 있다.Specifically, as a first method of inserting or removing a scrim fabric into artificial leather, Japanese Patent Laid-Open No. 2000-54250 discloses a fabric in which at least one quarter or more of the weft yarn is a polyurethane elastic fiber is 0.5 denier or less. Proposes a method of manufacturing artificial leather having high elasticity by impregnating a water-based polyurethane on a sheet made by microscopic fibers and three-dimensional entangled fibers. Japanese Unexamined Patent Publication No. 2000-336581 discloses an ultrafine fiber having a length of 0.8 denier or less and a length of 20 mm or more. A method of fabricating stretchable artificial leather by impregnating a polymer binder by entangled a woven web composed of a web and a polyester latent crimping fabric having a stretch potential of at least 20% in length and / or width direction. In addition, Japanese Patent Application Laid-Open No. 2003-13368 discloses a sheet made by interweaving a textile web of 0.9 decitex or less and a knitted fabric composed of lecture yarns and high shrink yarns together to give an ultra-fine, polymer elastomer, and hair treatment process, and to produce the sheet. And / or a method for producing an artificial leather having excellent elasticity by grinding and removing the knitted fabric after shrinking in the width direction. In Japanese Patent Laid-Open No. 2003-89984, a microfiber web of 0.9 decitex or less and a knitted fabric of 700 T / M or more are interwoven to shrink in a benzyl alcohol or phenylethyl alcohol emulsion, impregnated with polyurethane, and then buffing the knitted fabric. Slicing method discloses a method for producing artificial leather having excellent elasticity of 15% or more in elongation and / or width direction and 80% or more in elongation recovery.

그러나, 스크림(Scrim)직물을 인공피혁에 삽입 또는 삽입 후 제거시키는 상기의 종래 기술은 탄성이 우수한 직편물과 부직포 웹을 균일하게 교락하는 기술이 어렵고, 스크림 직물의 탄성회복율이 우수하더라도 인공피혁 기재에 삽입되어 있기 때문에 우수한 신장회복율을 발휘하는데 한계가 있고, 특히 후도가 높은 인공피혁인 경우 더욱 그렇다. 스크림을 삽입 후 열처리 또는 유화액 처리 후 제거하는 방법은 직편물과 부직포 웹을 균일하게 교락하는 것이 어렵다는 문제점외에도 수축 효과가 충분하지 못하고, 스크림을 삽입, 제거하는 공정비 및 스크림 제조비가 추가되므로 제품 원가 부담이 큰 단점이 있다.However, the above-described conventional technique of inserting or removing a scrim fabric into artificial leather is difficult to uniformly entangle the knitted fabric and the nonwoven web with excellent elasticity, and even though the elastic recovery rate of the scrim fabric is excellent, the artificial leather substrate Since it is inserted into the resin, there is a limit in exerting an excellent recovery rate, especially in high artificial leather. The method of removing the scrim after the heat treatment or emulsion treatment after inserting the scrim does not have sufficient shrinkage effect in addition to the difficulty of uniformly interwoven the woven fabric and the nonwoven web, and the cost of inserting and removing the scrim and the manufacturing cost of the scrim are added. There is a big disadvantage.

인공피혁에 수지를 코팅하는 두번째 방법으로 일본공개특허 제2002-348784호에서는 0.9데시텍스 이하의 극세섬유 교락체와 고분자 탄성체로 구성된 인공피혁의 적어도 한면에 고분자 탄성체로 코팅한 후 파단강력의 20~90%의 강력으로 길이 및/또는 폭 방향으로 연신처리하는 방법을 게재하고 있고, 일본특개평 제11-100779호에서는 중량이 50∼200g/㎡이고 구성섬유가 폴리트리메틸렌테레프탈레이트인 섬유기포의 적어도 한면에 합성수지를 코팅하는 합성피혁의 제조방법을 게재하고 있다.As a second method of coating a resin on artificial leather, Japanese Laid-Open Patent Publication No. 2002-348784 discloses coating of at least one surface of artificial leather composed of ultrafine fiber entangled body of less than 0.9 decitex and a polymer elastomer with a polymer elastomer and then 20 ~ 20% of breaking strength. A method of stretching in the length and / or width direction with 90% strength is disclosed. In Japanese Patent Laid-Open No. 11-100779, a fiber bubble having a weight of 50 to 200 g / m 2 and a constituent fiber of polytrimethylene terephthalate is disclosed. It discloses a method for producing synthetic leather coating at least one side of synthetic resin.

그러나, 인공피혁의 적어도 한면에 수지를 코팅하는 상기의 종래 기술은 스웨드 타입 인공피혁이 아니라는 점과 인공피혁 코팅제품인 경우 대부분 코팅 수지에 의해 신축성이 발현될 수 있다는 보편적인 관념에서 기술의 특이성이 부족하다.However, the above-mentioned conventional technique of coating a resin on at least one side of artificial leather is not suede-type artificial leather and lacks the specificity of the technology in the general concept that elastic coating can be expressed by coating resin in the case of artificial leather coating products. Do.

부직포 제조시 탄성 섬유를 혼용하는 세번째 방법으로 미국특허 제4,835,012호 및 한국 공개 특허 제1999-76034호 등에서는 폴리우레탄사를 혼용하여 부직포를 제조한 다음, 이를 이용하여 신축성 인공피혁을 제조하는 방법을 게재하고 있다.As a third method of mixing elastic fibers when manufacturing nonwoven fabrics, U.S. Patent No. 4,835,012 and Korean Laid-Open Patent Publication No. 1999-76034 produce a nonwoven fabric using a mixture of polyurethane yarn, and then use the same to manufacture a stretchable artificial leather. We publish.

그러나, 상기 방법은 고가의 탄성섬유를 사용하기 때문에 제조원가가 상승하는 문제가 있었고, 신축성의 상승 효과도 불충분한 문제가 있었다.However, since the method uses expensive elastic fibers, there is a problem in that the manufacturing cost is increased, and the synergistic effect is insufficient.

한편, 한국 특허 출원 제2003-71668호에서는 부직포 제조 단계에서 저밀도로 섬유 배향 구조를 심화시켜 폴리우레탄의 충진량을 높임으로서 인공피혁에 신축성을 부여하는 네번째 방법을 게재하고 있다.Meanwhile, Korean Patent Application No. 2003-71668 discloses a fourth method of providing elasticity to artificial leather by increasing the amount of polyurethane filling by deepening the fiber orientation structure at low density in the nonwoven fabric manufacturing step.

그러나, 상기 네번째 방법은 저밀도 부직포인 경우 섬유간 교락이 정상 또는 고밀도 부직포에 비해 상대적으로 약하기 때문에 부직포 후도 및 중량 등이 불균일해지고, 부직포 이후의 공정중에 받는 장력에 의해 쉽게 변형될 수 있으며, 제조설비 특성상 부직포 밀도를 낮추는 데도 한계가 있다. 또한, 폴리우레탄 함침액의 농도를 높여서 폴리우레탄 충진량을 증가시키는 방법은 함침액의 농도가 높아질수록 점도가 급격히 상승하여 공급펌프등의 설비에 무리가 갈 수 있으며 정규 생산 중 폴리우레탄 농도가 다른 데 따른 함침액의 교체로 생산수율이 저하되는 단점이 있다.However, in the fourth method, since inter-fiber entanglement is relatively weak compared to normal or high-density nonwoven fabrics in the case of low-density nonwoven fabrics, non-woven fabrics and weights become non-uniform, and may be easily deformed by tension received during the process after the nonwoven fabric. There is a limit to lowering the density of nonwoven fabrics due to the characteristics of the facility. In addition, the method of increasing the amount of polyurethane filling by increasing the concentration of the polyurethane impregnation liquid may increase the viscosity rapidly as the concentration of the impregnating liquid increases, which may be unreasonable to facilities such as a supply pump, and the polyurethane concentration is different during regular production. According to the replacement of the impregnation solution, there is a disadvantage that the production yield is lowered.

본 발명의 목적은 부직포 제조시 이(易)용해성 섬유를 혼용하여 상기의 저밀도 부직포 제조에 따른 문제점을 해결하여 부직포의 형태 안정성을 향상시켜 통상의 폴리우레탄 함침 조건에도 인공피혁 내 폴리우레탄 함량을 높혀 신축성이 종래 제품보다 현저하게 향상된 인공피혁을 제조하기 위한 것이다.
The purpose of the present invention is to solve the problems caused by the low density nonwoven fabric by using a mixture of dissolving fibers when manufacturing nonwoven fabric to improve the form stability of the nonwoven fabric to increase the polyurethane content in artificial leather even under ordinary polyurethane impregnation conditions The elasticity is to produce an artificial leather significantly improved than the conventional product.

본 발명은 인공피혁을 구성하는 부직포를 이(易)용해섬유와 2성분 복합사로 제조하여 인공피혁의 신축성을 크게 향상 시키고자 한다.The present invention is to manufacture a non-woven fabric constituting artificial leather by dissolving fibers and two-component composite yarns to greatly improve the elasticity of artificial leather.

본 발명은 부직포를 제조하는데 있어서 기존 방법의 단점을 보완하고자 기존의 인공피혁 제조공정중 하나인 해성분 용출공정에서 알칼리 수용액으로 용해가 가 능한 이(易)용해성 용해섬유인 공중합 폴리에스테르 섬유(이하"용해섬유"라고 한다)와 0.5 데니어 이하인 극세섬유를 부직포 제조 단계에서 혼합하여 웹을 형성하고 니들펀칭하여 부직포를 제조함으로서, 저밀도 부직포의 단점인 부직포 후도 및 중량의 불균일과 후공정에서의 변형을 감소시키고 부직포 제조설비의 한계에 제한받지 않으며, 또한 용해섬유가 포함되어 있기 때문에 부직포 밀도가 낮지 않아 형태 안정성이 있고, 폴리우레탄 함침액의 농도를 높여 충진량을 증가시킬 필요가 없어 폴리우레탄 농도 상승에 의한 공급펌프등의 설비에 무리가 없고, 함침액의 교체시 생산수율 저하 문제를 개선할 수 있는 신축성이 우수한 인공피혁의 제조방법을 제공하고자 한다.
The present invention is a co-polyester fiber which is a dissolvable soluble fiber that can be dissolved in an aqueous alkali solution in the sea component elution process, which is one of the existing artificial leather manufacturing process, to compensate for the disadvantages of the existing method in manufacturing the nonwoven fabric (hereinafter, Non-woven fabric by mixing the fine fibers of 0.5 denier or less and non-woven fabric in the manufacturing process of the nonwoven fabric and needle punching to produce the nonwoven fabric. It is not limited to the limit of the nonwoven fabric manufacturing equipment and also contains dissolved fiber, so the density of the nonwoven fabric is not low, so it has morphological stability, and it is not necessary to increase the filling amount by increasing the concentration of the polyurethane impregnation solution. Of equipment such as supply pump is not overwhelming and production yield decreases when impregnation liquid is replaced An object of the present invention is to provide a method of manufacturing an artificial leather having excellent elasticity that can improve a problem.

이와 같은 과제를 달성하기 위한 본 발명의 신축성이 우수한 인공피혁의 제조방법은, 이(易)용해성을 갖는 용해섬유를 부직포 전체 중량대비 5~50중량% 사용하고 추출성분과 섬유형성성 성분으로 구성된 2성분 복합섬유를 부직포 전체 중량대비 95~50중량% 사용하여 부직포를 제조한 다음, 상기 부직포에 폴리우레탄 탄성체를 함침 한 후 부직포 내 용해섬유와 2성분 복합섬유중의 추출 성분을 용출한 다음, 버핑하는 것을 특징으로 한다.In order to achieve such a problem, a method of manufacturing artificial leather having excellent elasticity, using dissolving fibers having dissolvability of 5 to 50% by weight relative to the total weight of a nonwoven fabric, is composed of an extract component and a fiber forming component. After manufacturing the nonwoven fabric using the bicomponent composite fiber 95 ~ 50% by weight relative to the total weight of the nonwoven fabric, after impregnating the polyurethane elastomer in the nonwoven fabric and eluting the extraction components of the dissolved fibers and bicomponent composite fibers in the nonwoven fabric, Characterized in buffing.

이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

본 발명은 이(易)용해성을 갖는 용해섬유를 부직포 전체 중량대비 5~50중량% 사용하고 추출성분과 섬유형성성 성분으로 구성된 2성분 복합섬유를 부직포 전체 중량대비 95~50중량% 사용하여 부직포를 제조한 다음, 상기 부직포에 폴리우레탄 탄성체를 함침 한 후 부직포 내 용해섬유와 2성분 복합섬유중의 추출 성분을 용출한 다음, 버핑하여 인공피혁을 제조한다.The present invention uses 5 to 50% by weight of dissolving fibers having dissolvability and non-woven fabric using 95 to 50% by weight of the total weight of the nonwoven fabric using a bicomponent composite fiber composed of an extract component and a fiber forming component. After the preparation, impregnated with a polyurethane elastomer in the nonwoven fabric, eluting the extraction component of the dissolved fiber and bicomponent composite fibers in the nonwoven fabric, and then buffing to produce artificial leather.

상기의 2성분 복합섬유를 구성하는 섬유형성성 성분은 추출성분 용출 후에 단사섬도가 0.5데니어 이하이며, 그 성분은 폴리에틸렌테레프탈레이트 등이다.The fiber-forming component constituting the two-component composite fiber has a single yarn fineness of 0.5 denier or less after the extraction component is eluted, and the component is polyethylene terephthalate or the like.

한편, 2성분 복합섬유를 구성하는 추출성분과 부직포 제조시 사용되는 용해섬유 각각은 주성분인 폴리에틸렌테레프탈레이트에 폴리에틸렌글리콜, 폴리프로필렌글리콜, 1-4-사이클로헥산 디카르복실산, 1-4-사이클로헥산디메탄올, 1-4-사이클로헥산디카르복실레이트, 2-2-디메틸-1,3-프로판디올, 2-2-디메틸-1,4-부탄디올, 2,2,4-트리메틸-1,3-프로판디올, 아디프산, 금속 설포네이트 함유 에스테르 단위 또는 이들의 혼합물이 공중합되어 있는 알칼리 이(易)용해성 공중합 폴리에스테르이다.On the other hand, each of the extract component constituting the two-component composite fibers and the dissolved fibers used in the production of the nonwoven fabric are polyethylene terephthalate, which is a main component, polyethylene glycol, polypropylene glycol, 1-4-cyclohexane dicarboxylic acid, and 1-4-cyclo. Hexanedimethanol, 1-4-cyclohexanedicarboxylate, 2-2-dimethyl-1,3-propanediol, 2-2-dimethyl-1,4-butanediol, 2,2,4-trimethyl-1, Alkali-soluble co-polyester which 3-propanediol, adipic acid, a metal sulfonate containing ester unit, or a mixture thereof is copolymerized.

보다 바람직하기로는, 상기 추출성분과 용해섬유 각각은 금속설포네이트 함유 에스테르 단위가 3∼15몰% 공중합된 공중합 폴리에스테르에 수평균 분자량이 8,000 이상인 폴리에틸렌 글리콜을 4∼20중량% 첨가시킨 공중합 폴리에스테르인 것이 좋다.More preferably, each of the extract component and the dissolved fiber is a copolymerized polyester obtained by adding 4 to 20% by weight of polyethylene glycol having a number average molecular weight of 8,000 or more to a copolymerized polyester having 3 to 15 mol% of a metal sulfonate-containing ester unit. It is good to be.

상기와 같이 용해섬유가 알칼리 이(易)용해성 성분인 이유는 인공피혁 제조시 2성분 복합사내 추출성분을 용출하는 공정에서 상기 용해섬유도 용출, 제거 하기 위한 것이다.The reason why the dissolved fiber is an alkali dissolvable component as described above is to elute and remove the dissolved fiber in the process of eluting the extract component in the two-component composite yarn during the manufacture of artificial leather.

용해섬유와 추출성분의 조성을 서로 동일하게 할 수도 있고, 서로 상이하게 할 수도 있다.The composition of the dissolved fiber and the extract component may be the same as or different from each other.

또한, 부직포의 중량, 후도, 밀도등을 균일하게 하기 위해서 서로 조성이 상이한 2종 이상의 용해섬유들을 함께 적용 할 수도 있다.In addition, in order to make the weight, thickness, density, etc. of the nonwoven fabric uniform, two or more kinds of dissolved fibers having different compositions may be applied together.

상기 용해섬유는 길이가 20㎜이상이고 단사섬도가 10데니어 이하인 단섬유 형태인 것이 바람직하다. 길이가 20㎜미만이면 부직포 제조시 카딩이 곤란해질 수 있고, 단사섬도가 10데니어를 초과하면 부직포 제조시 오프닝 공정 및 카딩 공정이 곤란해질 수 있다.The dissolved fibers are preferably in the form of short fibers having a length of 20 mm or more and single yarn fineness of 10 denier or less. When the length is less than 20 mm, carding may become difficult in manufacturing the nonwoven fabric, and when the single yarn fineness exceeds 10 denier, the opening process and the carding process may be difficult in manufacturing the nonwoven fabric.

한편, 상기 2성분 복합사는 섬유형성성 성분과 추출성분을 10~60중량% : 40~90중량%, 바람직하기로는 30~50중량% : 50~70중량% 비율로 복합방사장치내에 공급 한 후 통상의 방법으로 복합 방사하여 제조한다.On the other hand, the two-component composite yarn 10 ~ 60% by weight: 40 ~ 90% by weight, preferably 30 ~ 50% by weight: 50 ~ 70% by weight of the fiber-forming component and the extraction component after supplying in the composite spinning device It is prepared by complex spinning in a conventional manner.

섬유형성성 성분은 추출성분 용출 후 단사섬도가 0.5데니어 이하가 되도록 한다.The fiber-forming component has a single yarn fineness of 0.5 denier or less after the extraction component is eluted.

부직포 제조시 용해섬유 : 2성분 복합사의 중량비율을 5~50중량% : 50~95중량%, 바람직하기로는 10~40중량% : 60~90중량%로 하는 것이 좋다.In the production of nonwoven fabrics, the weight ratio of dissolved fibers: bicomponent composite yarns is 5 to 50% by weight: 50 to 95% by weight, preferably 10 to 40% by weight: 60 to 90% by weight.

용해섬유가 5중량% 미만인 경우에는 용출 공정에서 용해섬유가 제거되어 발생하는 밀도 감소 효과가 너무 미흡한 단점이 있고, 용해섬유가 50중량%를 초과하는 경우에는 반대로 밀도 감소 효과가 너무 커서 중량이 가장 무거운 부직포를 제조하더라도 밀도가 급격히 감소하여 형태 변형이 일어나고 용해섬유가 많아 용출공정에서 완전 용출되지 않는 문제점이 있다.If the dissolved fiber is less than 5% by weight, there is a disadvantage that the density reduction effect caused by the removal of the dissolved fiber in the elution process is too weak.If the dissolved fiber is more than 50% by weight, the density reduction effect is so large that the weight is the most Even if a heavy nonwoven fabric is manufactured, there is a problem in that the density is drastically reduced and morphological deformation occurs, and thus, many fibers are not completely dissolved in the elution process.

2성분 복합사와 용해섬유를 오프닝하여 혼합하고 카딩, 크로스래핑시켜 웹을 제조하고 니들펀칭하여 부직포를 제조한다. 본 발명에서와 같이 용해섬유를 혼합하여 부직포를 제조하면 정규 부직포처럼 단위면적당 니들펀칭수를 유지할 수 있기 때문에 종래의 저밀도 부직포 사용시 발생되는 여러 문제점들을 해소할 수 있을뿐만 아니라, 밀도를 낮게 하기 위해 단위면적당 니들펀칭수를 적게 할 수 밖에 없었던 이유로 극세 섬유간 교락이 적어 신장회복율이 부족한 단점을 개선할 수 있다.The bicomponent composite yarn and the dissolved fiber are opened, mixed, carded, and cross-wrapped to prepare a web and needle punched to produce a nonwoven fabric. When manufacturing the nonwoven fabric by mixing the dissolve fibers as in the present invention, it is possible to maintain the needle punching number per unit area like the regular nonwoven fabric, so that not only can solve various problems caused when using the conventional low density nonwoven fabric, but also to reduce the density of the unit The reason why the number of needle punches per area was inevitably reduced is that there is little inter-fiber entanglement, which can improve the disadvantage of the lack of elongation recovery rate.

상기 부직포를 5~20%의 폴리비닐알코올 수용액으로 바인더 처리 후 폴리우레탄 탄성체 함침액을 함침시킨다. 이 때 폴리우레탄 함량은 40중량% 미만으로 한다. 그 이유는 폴리우레탄 충진량이 많을시 발생할 수 있는 인공피혁 표면의 폴리우레탄 비침 현상 발생을 감소시키고, 최종 제품의 폴리우레탄 함량을 작게 하여 제조원가를 낮추기 위해서이다. 또한, 용해섬유가 포함된 부직포이므로 동일한 폴리우레탄 농도일 경우 종래의 저밀도 부직포에 비해 부직포 내부의 공극이 적어서 폴리우레탄 함량이 낮을 수 밖에 없다.The nonwoven fabric is impregnated with a polyurethane elastomer impregnation solution after binder treatment with 5-20% polyvinyl alcohol aqueous solution. At this time, the polyurethane content is less than 40% by weight. The reason for this is to reduce the occurrence of polyurethane immersion phenomenon on the surface of artificial leather, which may occur when the amount of polyurethane filling is large, and to reduce the manufacturing cost by reducing the polyurethane content of the final product. In addition, since the non-woven fabric containing the dissolving fiber, the same polyurethane concentration is less than the conventional low-density non-woven fabric has less voids in the non-woven fabric than the polyurethane content is inevitably low.

이후 2성분 복합사의 추출성분을 제거하는 용출공정에서 알칼리 수용액으로 침지 또는 패드스팀법으로 2성분 복합사의 추출성분 뿐만 아니라 용해섬유도 함께 제거하고 슬라이스 또는 버핑 후 염색 및 마무리 가공을 하여 폭 및/또는 길이 방향으로 30% 신장시 신장회복율이 90% 이상인 인공피혁을 제조한다. 상기 공정이외의 수축공정 또는 추가 버핑 및 후가공공정등이 포함될 수도 있으며 본 발명은 공정의 순서를 특별하게 한정하는 것이 아니다.Then, in the elution process to remove the extracted components of the two-component composite yarns, it is removed by dipping or pad steaming with an aqueous alkali solution to remove not only the extract components of the two-component composite yarns, but also dissolved fibers, and then sliced or buffed, dyed and finished to be wide and / or Artificial leather having a recovery rate of 90% or more at 30% elongation in the longitudinal direction is manufactured. In addition to the above process may include shrinkage process or additional buffing and post-processing process, etc. The present invention does not specifically limit the order of the process.

본 발명에 따라 제조된 인공피혁은 아래 측정방법으로 측정된 30% 신장시 폭방향 및 길이 방향의 신장회복율이 90% 이상으로 신축성이 매우 우수하다. 신축성 은 신장과 회복의 연속합으로 볼 수 있다.The artificial leather manufactured according to the present invention has excellent elasticity as the recovery rate in the width direction and the longitudinal direction of 90% or more at 30% elongation measured by the following measuring method. Elasticity can be seen as a series of stretches and recovery.

신장시 부직포의 저항력이 작아 쉽게 잘 늘어나고 회복시 폴리우레탄 탄성체의 회복력이 커서 잘 회복되어야 신축성이 우수하다고 할 수 있다.
It can be said that the elasticity of the nonwoven fabric is small and easily stretched when it is stretched, and the recovery force of the polyurethane elastic body is well recovered when it is recovered.

· 30% 30% 신장시Xinjiang 폭방향의Widthwise 신장회복율Elongation recovery

- 측정기기 ; 인스트롱(INSTRON)사의 인장시험기  -Measuring equipment; Instron tensile tester

- 측정조건 ; 인장방법 : 반복 정속 신장법(KS K 0352 방법 응용)  - Measuring conditions ; Tensile Method: Repeated Constant Velocity Stretch Method (KS K 0352 Method Application)

시료의 파지 길이 : 8cm               Gripping length of the sample: 8 cm

인장속도 : 300mm/분               Tensile Speed: 300mm / min

반복 신장∼회복 신율범위 : 0∼30% (0∼2.4cm)               Repeated elongation to recovery elongation range: 0 ~ 30% (0 ~ 2.4cm)

반복하중 부여 회수 : 연속적으로 신장회복 5회               Number of repeated loads: 5 consecutive recovery

- 측정방법  - How to measure

(1) 시료의 규격 : 길이방향 2.5cm×폭방향 20cm     (1) Specimen of specimen: 2.5cm in length x 20cm in width

(2) 상기 측정조건대로, 시료를 8cm의 거리(L0)로 마킹(Marking)한 후      (2) After marking the sample at a distance L0 of 8 cm according to the measurement conditions,

파지하고 30% (L=2.4cm)까지 신장하였다가 0%까지 회복하기를 연속적      Grasp and stretch to 30% (L = 2.4cm) and recover to 0% continuously

으로 5회 반복 실시한다.      Repeat five times.

(3) 시험후 2시간 동안 방치하고 나서 마킹한(Marking)한 부위의 최종      (3) The final part of the marked area after being left for 2 hours after the test.

길이(L')를 측정한다.        Measure the length L '.                     

(4) 아래와 같은 계산식에 의하여 30% 신장시 신장회복율을 평가한다.     (4) Evaluate elongation recovery at 30% elongation according to the following formula.

Figure 112004029527126-PAT00001
Figure 112004029527126-PAT00001

[상기식에서, L0는 시료의 처음길이(8cm)이고, L은 30% 신장시의 시료길이(2.4cm)이고, L' = 반복 하중을 5번 준 다음 2시간 방치한 후의 시료의 길이(회복이 안되고 늘어난 채 남아있는 길이)이다.][In the above formula, L0 is the initial length of the sample (8cm), L is the sample length at the time of 30% elongation (2.4cm), and L '= the length of the sample after leaving it for 2 hours after giving the repeated load five times (recovery There is no stretched length left).]

이하, 실시예 및 비교실시예를 통하여 본 발명을 더욱 구체적으로 살펴본다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples.

그러나, 본 발명은 하기 실시예에 의해 그 보호범위가 한정되는 것은 아니다.
However, the present invention is not limited by the following examples.

실시예Example 1 One

주성분인 폴리에틸렌테레프탈레이트에 금속설포네이트 함유 폴리에스테르 단위가 5몰% 공중합 되어 있는 공중합 폴리에스테르를 방사 연신하고 크림프 및 커팅 공정을 거쳐 단사섬도가 3.5데니어이고 길이가 51㎜인 단섬유를 제조하여 이를 용해섬유로 사용하였다. 폴리아미드-6 70중량부를 극세성분으로 하고, 상기 공중합 폴리에스테르 30중량부를 추출성분으로 하여 방사 연신하고 크림프 및 커팅 공정을 거쳐 단사섬도 3.5데니아, 길이 51mm의 해도형 복합 단섬유(해성분 용출후 단사섬도 : 0.07데니아)를 제조하여 2성분 복합사로 사용하였다. 상기의 용해섬유와 2성분 복합사를 10중량부% : 90중량%의 비율로 오프닝하여 혼합하고, 카아딩-크로스래핑 공정을 거쳐 웹를 형성하고 니들펀칭을 실시하여 단위중량 742g/㎡, 후도 3.38mm, 폭 1700mm의 부직포를 제조하였다. 이어서 부직포 시트를 10%농도의 폴리비닐알코올 수용액으로 패딩 건조하여 섬유 중량에 대해 10중량% 되게 부여하였다. 그 직후에 폴리에테르 타입의 폴리우레탄 탄성체를 디메틸포름아마이드(DMF)에 희석하여 농도 8%의 함침용액을 제조하고, 여기에 상기 복합 시트를 디핑한 후 폴리우레탄 탄성체를 수용액 속에서 응고시키고 70℃의 수용액에서 수세하여 폴리비닐알코올 고분자를 완전히 제거하고 나서 건조하였다. 상기의 섬유와 폴리우레탄으로 구성된 함침포를 온도가 100℃인 10%의 가성소다 수용액에서 연속적으로 처리하여 용해섬유와 2성분 복합사내 추출성분을 완전 제거하고 도성분만 남도록 섬유를 극세화 시킨 다음, 슬라이스하여 2분할한 다음, 조도 #300번 사포를 적용하여 후도를 0.68mm되도록 버핑 가공하므로써 극세섬유의 일부를 절단시켜 일으켜 세워 모우를 발현시켰다. 그 다음으로 견뢰도가 우수한 산성염료로 고압래피드 염색기에서 염색한 후 고착 세정하고 건조하였다. 끝으로, 유연제 및 대전방지제 처리공정을 거쳐 스웨이드 타입의 복합 인공피혁을 제조하였다. 상기와 같이 제조된 인공피혁의 물성을 앞에서 설명한 방법으로 평가하여 그 결과를 하기 표 3에 나타내었다.
Spinning and stretching the copolyester with 5 mol% of the metal sulfonate-containing polyester unit in polyethylene terephthalate as a main component, and through the crimping and cutting process, a single fiber having 3.5 denier fineness and 51 mm in length was produced. Used as soluble fiber. 70 parts by weight of polyamide-6 as an ultrafine component, 30 parts by weight of the copolymerized polyester as an extraction component, spin-stretched and subjected to a crimping and cutting process, 3.5 denier single yarn fineness and 51 mm long island-like composite short fibers (after sea component elution) Single yarn fineness: 0.07 denia) was prepared and used as a two-component composite yarn. The dissolved fibers and the two-component composite yarns are opened and mixed at a ratio of 10 parts by weight: 90% by weight, a web is formed through a carding-cross lapping process, and needle punched to carry out a unit weight of 742 g / m 2 and afterwards. A nonwoven fabric of 3.38 mm and width 1700 mm was prepared. The nonwoven sheet was then padded and dried with an aqueous 10% polyvinyl alcohol solution to give 10% by weight to the fiber weight. Immediately thereafter, a polyether-type polyurethane elastomer was diluted in dimethylformamide (DMF) to prepare an impregnation solution with a concentration of 8%. After dipping the composite sheet therein, the polyurethane elastomer was solidified in an aqueous solution and then 70 ° C. It was washed with water in an aqueous solution of and the polyvinyl alcohol polymer was completely removed before drying. The impregnated fabric composed of the fiber and polyurethane was continuously treated in a 10% aqueous solution of caustic soda at a temperature of 100 ° C. to completely remove the dissolved fiber and the extracted components in the two-component composite yarn and to make the fiber fine so that only the island component remained. After slicing and dividing into two, the roughness # 300 sandpaper was applied to buff the thickness to 0.68mm, thereby cutting a part of the ultrafine fibers to raise and express the wool. Next, the dyes were fastened with an acid dye having excellent color fastness in a high pressure rapid dyeing machine, fixed, washed, and dried. Finally, suede-type composite artificial leather was manufactured through a softener and an antistatic agent treatment process. The physical properties of the artificial leather manufactured as described above were evaluated by the method described above, and the results are shown in Table 3 below.

실시예Example 2 내지  2 to 실시예Example 3 및  3 and 비교실시예Comparative Example 1 내지  1 to 비교실시예 Comparative Example 3 3

제조되는 부직포의 섬유배합, 단위중량 및 후도와 폴리우레탄 탄성체의 농도를 표 1과 같이 변경하는 것 이외에는 실시예 1과 동일한 방법으로 복합 인공피혁 스웨이드를 제조하고, 물성을 앞에서 설명한 방법으로 평가하여 그 결과를 하기 표 2에 나타내었다.
A composite artificial leather suede was prepared in the same manner as in Example 1 except that the fiber blend, unit weight and thickness of the manufactured nonwoven fabric were changed as shown in Table 1, and the physical properties were evaluated by the method described above. The results are shown in Table 2 below.

제조조건Manufacture conditions 구분division 용해섬유/2성분 복합사 중량비율(%)Dissolved fiber / 2 component composite yarn weight ratio (%) 부직포Non-woven 폴리우레탄 농도(%)Polyurethane Concentration (%) 단위중량(g/㎡)Unit weight (g / ㎡) 후도(㎜)Thickness (mm) 밀도(g/㎠)Density (g / ㎠) 실시예 1Example 1 10/9010/90 742742 3.383.38 0.2200.220 1010 실시예 2Example 2 30/7030/70 737737 3.403.40 0.2170.217 1212 실시예 3Example 3 50/5050/50 725725 3.353.35 0.2160.216 1414 비교 실시예 1Comparative Example 1 0/1000/100 765765 4.354.35 0.1760.176 1010 비교 실시예 2Comparative Example 2 0/1000/100 751751 4.414.41 0.1700.170 1212 비교 실시예 3Comparative Example 3 0/1000/100 783783 4.434.43 0.1770.177 1414

실시예Example 4 4

주성분인 폴리에틸렌테레프탈레이트에 금속설포네이트 함유 폴리에스테르 단위가 4몰% 공중합 되어 있는 공중합 폴리에스테르에 수평균 분자량이 16,000인 폴리에틸렌글리콜 8중량%를 첨가시켜 개질한 공중합 폴리에스테르를 방사 연신하고 크림프 및 커팅공정을 거쳐 단사섬도가 3.5데니어이고 길이가 51㎜인 단섬유를 제조하여 이를 용해섬유로 사용하였다. 폴리아미드-6 70중량부를 극세성분으로 하고, 상기 공중합 폴리에스테르 30중량부를 추출성분으로 하여 방사 연신하고 크림프 및 커팅 공정을 거쳐 단사섬도 3.5데니아, 길이 51mm의 해도형 복합 단섬유(해성분 용출 후 단사섬도 : 0.07데니아)를 제조하여 2성분 복합사로 사용하였다. 상기의 용해섬유와 2성분 복합사를 10중량부% : 90중량%의 비율로 오프닝하여 혼합하고, 카아딩-크로스래핑 공정을 거쳐 웹를 형성하고 니들펀칭을 실시하여 단위중량 550g/ ㎡, 후도 2.11mm, 폭 1700mm의 부직포를 제조하였다. 이어서 부직포 시트를 10%농도의 폴리비닐알코올 수용액으로 패딩 건조하여 섬유 중량에 대해 10중량% 되게 부여하였다. 그 직후에 폴리에테르 타입의 폴리우레탄 탄성체를 디메틸포름아마이드(DMF)에 희석하여 농도 12%의 함침용액을 제조하고, 여기에 상기 복합 시트를 디핑한 후 폴리우레탄 탄성체를 수용액 속에서 응고시키고 70℃의 수용액에서 수세하여 폴리비닐알코올 고분자를 완전히 제거하고 나서 건조하였다. 상기의 섬유와 폴리우레탄으로 구성된 함침포를 온도가 100℃인 10%의 가성소다 수용액에서 연속적으로 처리하여 용해섬유와 2성분 복합사내 추출성분을 완전 제거하고 도성분만 남도록 섬유를 극세화 시킨 다음, 조도 #240번 사포를 적용하여 후도를 1.05mm되도록 버핑 가공하므로써 극세섬유의 일부를 절단시켜 일으켜 세워 모우를 발현시켰다. 그 다음으로 분산염료로 고압래피드 염색기에서 염색한 후 고착 세정하고 건조하였다. 끝으로, 유연제 및 대전방지제 처리공정을 거쳐 스웨이드 타입의 복합 인공피혁을 제조하였다. 상기와 같이 제조된 인공피혁의 물성을 앞에서 설명한 방법으로 평가하여 그 결과를 하기 표 3에 나타내었다.
8 wt% of polyethylene glycol having a number average molecular weight of 16,000 was added to a copolyester copolymerized with 4 mol% of a metal sulfonate-containing polyester unit in polyethylene terephthalate as a main component to spin-stretch and modify the copolyester. After the process, single yarn fineness was 3.5 denier and 51 mm in length, short fibers were prepared and used as dissolved fibers. 70 parts by weight of polyamide-6 as an ultrafine component, 30 parts by weight of the copolymerized polyester as an extraction component, spin-drawn and subjected to a crimping and cutting process, a single yarn fineness 3.5 denier and a 51 mm long island-like composite short fiber (after sea component elution) Single yarn fineness: 0.07 denia) was prepared and used as a two-component composite yarn. The dissolved fibers and the two-component composite yarns are mixed by opening at a ratio of 10 parts by weight: 90% by weight, a web is formed through a carding-cross lapping process, and needle punched to carry out a unit weight of 550 g / m 2, even after A nonwoven fabric of 2.11 mm and width of 1700 mm was prepared. The nonwoven sheet was then padded and dried with an aqueous 10% polyvinyl alcohol solution to give 10% by weight to the fiber weight. Immediately thereafter, a polyether-type polyurethane elastomer was diluted in dimethylformamide (DMF) to prepare an impregnation solution having a concentration of 12%. After dipping the composite sheet therein, the polyurethane elastomer was solidified in an aqueous solution and then 70 ° C. It was washed with water in an aqueous solution of and the polyvinyl alcohol polymer was completely removed before drying. The impregnated fabric composed of the fiber and polyurethane was continuously treated in a 10% aqueous solution of caustic soda at a temperature of 100 ° C. to completely remove the dissolved fiber and the extracted components in the two-component composite yarn and to make the fiber fine so that only the island component remained. By applying roughness # 240 sandpaper to buff the thickness to 1.05mm, a part of the ultrafine fibers were cut and raised to raise the wool. Then, after dyeing in a high-speed rapid dyeing machine with a disperse dye, fixed washing and dried. Finally, suede-type composite artificial leather was manufactured through a softener and an antistatic agent treatment process. The physical properties of the artificial leather manufactured as described above were evaluated by the method described above, and the results are shown in Table 3 below.

실시예Example 5 내지  5 to 실시예Example 6 및  6 and 비교실시예Comparative Example 4 내지  4 to 비교실시예 Comparative Example 6 6

제조되는 부직포의 섬유배합, 단위중량 및 후도와 폴리우레탄 탄성체의 농도를 표 2와 같이 변경하는 것 이외에는 실시예 1과 동일한 방법으로 복합 인공피혁 스웨이드를 제조하고, 물성을 앞에서 설명한 방법으로 평가하여 그 결과를 하기 표 3에 나타내었다.
A composite artificial leather suede was prepared in the same manner as in Example 1 except that the fiber blend, unit weight and thickness of the manufactured nonwoven fabric were changed as shown in Table 2, and the physical properties thereof were evaluated by the method described above. The results are shown in Table 3 below.

제조조건Manufacture conditions 구분division 용해섬유/2성분 복합사 중량비율(%)Dissolved fiber / 2 component composite yarn weight ratio (%) 부직포Non-woven 폴리우레탄 농도(%)Polyurethane Concentration (%) 단위중량(g/㎡)Unit weight (g / ㎡) 후도(㎜)Thickness (mm) 밀도(g/㎠)Density (g / ㎠) 실시예 4Example 4 10/9010/90 550550 2.112.11 0.2350.235 1010 실시예 5Example 5 30/7030/70 554554 2.062.06 0.2410.241 1212 실시예 6Example 6 50/5050/50 562562 2.102.10 0.2320.232 1414 비교 실시예 4Comparative Example 4 0/1000/100 593593 2.942.94 0.2020.202 1010 비교 실시예 5Comparative Example 5 0/1000/100 605605 2.982.98 0.2030.203 1212 비교 실시예 6Comparative Example 6 0/1000/100 612612 3.073.07 0.1990.199 1414

물성결과Physical property results 구분division 폴리우레탄 함량(중량%)Polyurethane content (% by weight) 30% 신장시 폭방향 신장회복율(%)Width recovery at 30% elongation (%) 실시예 1Example 1 48.648.6 91.591.5 실시예 2Example 2 53.153.1 93.093.0 실시예 3Example 3 59.259.2 95.595.5 실시예 4Example 4 43.543.5 90.390.3 실시예 5Example 5 47.647.6 91.391.3 실시예 6Example 6 52.952.9 93.693.6 비교 실시예 1Comparative Example 1 36.136.1 78.278.2 비교 실시예 2Comparative Example 2 39.339.3 81.781.7 비교 실시예 3Comparative Example 3 43.343.3 84.484.4 비교 실시예 4Comparative Example 4 34.934.9 76.976.9 비교 실시예 5Comparative Example 5 37.837.8 78.878.8 비교 실시예 6Comparative Example 6 41.241.2 82.082.0

본 발명은 용해섬유를 혼용하여 부직포를 제조하기 때문에 저밀도 부직포에 비해 섬유간의 교락도가 증가되어 신장회복율이 우수하다.In the present invention, since the nonwoven fabric is manufactured by mixing the dissolved fibers, the degree of entanglement between the fibers is increased compared to the low density nonwoven fabric, so that the recovery rate is excellent.

또한, 본 발명은 저밀도 부직포의 단점인 부직포 후도 및 중량의 불균일과 후공정에서의 변형을 감소시켜 안정적인 품질 확보가 가능하다.In addition, the present invention is to ensure a stable quality by reducing the non-woven fabric and the non-uniformity and weight of the non-woven fabric after the disadvantage of the low density non-woven fabric.

또한, 본 발명은 용해섬유가 용출되므로 용출율이 높아 폴리우레탄 함량이 많게 되므로 굳이 폴리우레탄 함침액의 농도를 높여 충진량을 증가시킬 필요가 없어 폴리우레탄 점도 상승에 의한 공급펌프등의 설비가 무리가 없고 함침액의 교체시 생상수율이 저하되는 단점을 개성할 수 있다.In addition, the present invention is because the dissolved fiber is eluted, the dissolution rate is high and the polyurethane content is high, so there is no need to increase the amount of filling by increasing the concentration of the polyurethane impregnation solution, so there is no difficulty in equipment such as a supply pump by increasing the viscosity of the polyurethane. It is possible to personalize the disadvantage of lowering the production yield when the impregnation solution is replaced.

Claims (7)

이(易)용해성을 갖는 용해섬유를 부직포 전체 중량대비 5~50중량% 사용하고 추출성분과 섬유형성성 성분으로 구성된 2성분 복합섬유를 부직포 전체 중량대비 95~50중량% 사용하여 부직포를 제조한 다음, 상기 부직포에 폴리우레탄 탄성체를 함침 한 후 부직포 내 용해섬유와 2성분 복합섬유중의 추출성분을 용출한 다음, 버핑 하는 것을 특징으로 하는 신축성이 우수한 인공피혁의 제조방법.Non-woven fabrics were prepared by using dissolving fibers having dissolvability of 5-50% by weight relative to the total weight of the nonwoven fabric and using 95-50% by weight of the bicomponent composite fibers composed of the extracting component and the fiber-forming component. Next, after impregnating the polyurethane elastomer in the nonwoven fabric, eluting the extraction components of the dissolved fibers and the bicomponent composite fibers in the nonwoven fabric, and then buffing, characterized in that the manufacturing method of artificial leather with excellent elasticity. 1항에 있어서, 2성분 복합섬유를 구성하는 섬유형성성 성분은 추출성분 용출후 단사섬도가 0.5데니어 이하인 것을 특징으로 하는 신축성이 우수한 인공피혁의 제조방법.The method for producing artificial leather having excellent elasticity according to claim 1, wherein the fiber-forming component constituting the bicomponent composite fiber has a single yarn fineness of 0.5 denier or less after eluting the extract component. 1항에 있어서, 2성분 복합섬유를 구성하는 섬유형성성 성분이 폴리에틸렌테레프탈레이트 또는 폴리아미드인 것을 특징으로 하는 신축성이 우수한 인공피혁의 제조방법.The method for producing artificial leather having excellent elasticity according to claim 1, wherein the fiber-forming component constituting the bicomponent conjugate fiber is polyethylene terephthalate or polyamide. 1항에 있어서, 용해 섬유 및 추출성분 각각이 주성분인 폴리에틸렌테레프탈 레이트에 폴리에틸렌글리콜, 폴리프로필렌글리콜, 1-4-사이클로헥산 디카르복실산, 1-4-사이클로헥산디메탄올, 1-4-사이클로헥산디카르복실레이트, 2-2-디메틸-1,3-프로판디올, 2-2-디메틸-1,4-부탄디올, 2,2,4-트리메틸-1,3-프로판디올, 아디프산, 금속 설포네이트 함유 에스테르 단위 또는 이들의 혼합물이 공중합되어 있는 것을 특징으로 하는 신축성이 우수한 인공피혁의 제조방법.A polyethylene glycol, polypropylene glycol, 1-4-cyclohexane dicarboxylic acid, 1-4-cyclohexanedimethanol, and 1-4-cyclo to polyethylene terephthalate, each of which is a dissolved fiber and an extract component, respectively. Hexanedicarboxylate, 2-2-dimethyl-1,3-propanediol, 2-2-dimethyl-1,4-butanediol, 2,2,4-trimethyl-1,3-propanediol, adipic acid, A method for producing an artificial leather having excellent elasticity, characterized in that a metal sulfonate-containing ester unit or a mixture thereof is copolymerized. 1항에 있어서, 용해섬유 및 추출성분이 알칼리 이(易)용해성인 것을 특징으로 하는 신축성이 우수한 인공피혁의 제조방법.The method for producing an artificial leather having excellent elasticity according to claim 1, wherein the dissolved fiber and the extract component are alkali soluble. 1항에 있어서, 용해 섬유의 길이가 20㎜이상이고, 단사 섬도가 10데니어 이하인 것을 특징으로 하는 신축성이 우수한 인공피혁의 제조방법.The method for producing artificial leather having excellent elasticity according to claim 1, wherein the length of the dissolved fiber is 20 mm or more and single yarn fineness is 10 denier or less. 1항에 있어서, 인공피혁이 30% 신장시 폭방향의 신장회복율이 90% 이상인 것을 특징으로 하는 신축성이 우수한 인공피혁의 제조방법.The method of manufacturing an artificial leather having excellent elasticity according to claim 1, wherein the recovery rate in the width direction of the artificial leather is 30% or more at 30% elongation.
KR1020040051836A 2004-07-05 2004-07-05 Manufacturing method of artificial leather with excellent elasticity KR100931955B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040051836A KR100931955B1 (en) 2004-07-05 2004-07-05 Manufacturing method of artificial leather with excellent elasticity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040051836A KR100931955B1 (en) 2004-07-05 2004-07-05 Manufacturing method of artificial leather with excellent elasticity

Publications (2)

Publication Number Publication Date
KR20060003925A true KR20060003925A (en) 2006-01-12
KR100931955B1 KR100931955B1 (en) 2009-12-15

Family

ID=37116289

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040051836A KR100931955B1 (en) 2004-07-05 2004-07-05 Manufacturing method of artificial leather with excellent elasticity

Country Status (1)

Country Link
KR (1) KR100931955B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0175166B1 (en) * 1994-09-26 1999-03-20 이웅열 The process for the preparation of artificial leather
KR0182628B1 (en) * 1994-12-28 1999-04-01 이웅열 Method of manufacturing man-made leather
KR100475542B1 (en) 1997-12-30 2005-12-21 주식회사 효성 Manufacturing method of microfibre nonwoven artificial leather
KR100523949B1 (en) 1998-04-03 2005-12-27 주식회사 코오롱 Artificial leather and its manufacturing method.

Also Published As

Publication number Publication date
KR100931955B1 (en) 2009-12-15

Similar Documents

Publication Publication Date Title
KR100688693B1 (en) Fibrous substrate for artificial leather and artificial leather using the same
KR100658097B1 (en) Suede like artificial leather with excellent strength and elongation properties
RU2527367C1 (en) Leatherette with ultrathin fibres and method of its manufacture
KR101398287B1 (en) Leather-like sheet and process for production thereof
KR100534525B1 (en) A composite sheet used for artificial leather with low elongation and excellent softness
KR102637213B1 (en) Napped artificial leather dyed using cationic dye, and method for manufacturing same
DE2310211A1 (en) Simulated suede - from woven fabric with weft clad in elastomer for dispersion to give spaces for filling
KR101976120B1 (en) Manufacturing method of artificial leather
JP6613764B2 (en) Artificial leather and method for producing the same
KR101249934B1 (en) Process Of Producing Suede―like Polyurethane―impregnated Textiles Using NanoFilaments
KR100247080B1 (en) Method of manufacturing artificial leather with high density , high tenacity and softness
KR100931955B1 (en) Manufacturing method of artificial leather with excellent elasticity
KR100469753B1 (en) Method for producing microfilament suede-like textiles
JP3997592B2 (en) Artificial leather and method for producing the same
KR101166453B1 (en) Artificial leather with excellent anti-pilling property and method of manufacturing the same
KR102620337B1 (en) Napped Artificial Leather
JP6065440B2 (en) Artificial leather
KR101192924B1 (en) Artificial leather and method for manufacturing the same
KR100601306B1 (en) Artificial leather with excellent elasticity and method of manufacturing for the same
JP4419669B2 (en) Leather-like sheet and method for producing the same
KR101316664B1 (en) Process of producing suede-like polyurethane-impregnated textiles using nanofilaments
KR101049185B1 (en) Artificial leather with excellent elasticity and its manufacturing method
KR100337990B1 (en) Method of manufacturing nubuck-type artificial leather
KR101885253B1 (en) Artificial Leather and Method for Manufacturing The Same
KR101664492B1 (en) Leather like composite sheet and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120912

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131122

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20141201

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20151116

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20171201

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20181203

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20191203

Year of fee payment: 11