KR20050116055A - 테레인 화합물의 제조방법 - Google Patents

테레인 화합물의 제조방법 Download PDF

Info

Publication number
KR20050116055A
KR20050116055A KR1020040040956A KR20040040956A KR20050116055A KR 20050116055 A KR20050116055 A KR 20050116055A KR 1020040040956 A KR1020040040956 A KR 1020040040956A KR 20040040956 A KR20040040956 A KR 20040040956A KR 20050116055 A KR20050116055 A KR 20050116055A
Authority
KR
South Korea
Prior art keywords
compound
butoxy
reaction
preparing
butyldimethylsilyloxy
Prior art date
Application number
KR1020040040956A
Other languages
English (en)
Other versions
KR100543172B1 (ko
Inventor
유익동
이상구
유인자
김원곤
김종평
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020040040956A priority Critical patent/KR100543172B1/ko
Publication of KR20050116055A publication Critical patent/KR20050116055A/ko
Application granted granted Critical
Publication of KR100543172B1 publication Critical patent/KR100543172B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/65Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by splitting-off hydrogen atoms or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/703Unsaturated compounds containing a keto groups being part of a ring containing hydroxy groups
    • C07C49/743Unsaturated compounds containing a keto groups being part of a ring containing hydroxy groups having unsaturation outside the rings, e.g. humulones, lupulones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/753Unsaturated compounds containing a keto groups being part of a ring containing ether groups, groups, groups, or groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

본 발명은 테레인 화합물의 제조 방법에 관한 것으로, 상세하게는, 퍼퓨릴알콜로부터 고리확장 반응 및 고리축약 반응을 거쳐 시클로펜텐온 화합물을 제조하는 단계, 및 그리냐드 반응, 산화적 전위 반응, 이중 결합의 이성화를 거쳐 3-프로페닐시클로펜텐온을 제조하는 단계 등 일련의 반응 단계를 포함하는 테레인 화합물의 제조방법에 관한 것이다. 본 발명의 제조 방법은 반응 조건이 온화하고 경제적이므로 테레인 화합물의 대량생산에 유용하다.

Description

테레인 화합물의 제조방법{A Process for Preparing Terrein Compounds}
본 발명은 하기 화학식 1로 표시되는 테레인(terrein) 화합물의 제조 방법에 관한 것이다.
(±)-테레인은 곰팡이의 대사물질로서 아스페르길루스 테레우스(Aspergillus terreus)로부터 1935년 처음 분리되었고[H. Raistrick, G. Smith. Biochem. J. 29, 606, (1935)] 이의 정확한 화학적 구조가 밝혀진 것은 1954년[J. F. Grove, J. Chem. Soc. 4693, (1954)]이다.
테레인은 식물 뿌리의 신장을 약화시켜 식물의 성장을 억제하는 작용을 하며 항생 작용을 가지는 것으로 밝혀져 있다. 또한 포유동물의 생리 활성 물질인 프로스타글란딘(prostaglandin)과 입체화학적 구조가 유사하여 프로스타글란딘 합성의 중간 물질로 사용될 수 있음이 보고된 바 있는 등 (미국특허 제 4,103,091) 그 산업상 중요성이 날로 증가하고 있다.
일반적으로 테레인은 아스페르길루스 테레우스균의 배양에 의하여 얻을 수 있다[Misawa et al., Nippon Nogeikagaku Kaishi, 36,699 (1962)]. 그러나 배양에 의한 제조방법은 배양기간이 길고 정제 후 수율이 낮아 대량생산이 어렵고 비경제적인 단점이 있다. 따라서 합성에 의한 테레인의 제조 방법을 개발하려는 노력이 있었으나 테레인의 산과 염기에서 불안정한 성질 때문에 테레인 화합물의 전합성에 성공한 것은 불과 최근의 일이다.
1990년 콜브 등은 하기 반응식 1과 같은 방법으로 테레인을 합성하였다[H. C. Kolb et al., Tetrahedron Asymm. 1, 237, (1990)]. 그러나 이 방법은 퍼퓨릴알콜로부터 고리확장과 고리축약 반응을 거쳐 시클로펜텐온 고리를 만들기까지 4개의 반응 공정을 거쳐야 하므로 수율이 낮을 뿐 아니라 반응에 사용되는 시약들이 고가인 단점이 있다. 또한, 반응시약 중 E-1-프로페닐큐프레이트(E-1-propenyl cuprate)는 EZ형이 혼합된 1-프로페닐브로미드로부터 2단계의 반응을 거쳐 E-1-프로페닐리튬을 얻고 이로부터 제조해야 하므로 비경제적이다.
클룬더 등[L. J. H. Klunder et al., Tetrahedron Letters, 22, 45, (1981)]은 하기 반응식 2와 같이 트리시클로데케논 화합물을 출발물질로 하여 시클로펜타디엔온 에폭사이드를 거쳐 테레인을 합성하였으나, 이 제조방법은 핵심 공정인 FVP(flash vacuum pyrolysis) 반응의 조건이 400℃의 고온을 요하는 등 대량 생산에 적합하지 못한 단점이 있다.
따라서, 본 발명자들은 경제적이고 온화한 반응 조건의 효과적인 테레인 화합물 합성법을 개발하고자 노력한 결과, 퍼퓨릴알콜로부터 고리확장 반응 및 고리축약 반응을 거쳐 시클로펜텐온 화합물을 제조하는 단계, 및 그리냐드 반응(Grignard Reaction), 산화적 전위 반응, 이중 결합의 이성화를 거쳐 3-프로페닐시클로펜텐온을 제조하는 단계 등 일련의 반응 단계를 포함하는 테레인 화합물의 제조 방법을 완성하였다.
본 발명은 퍼퓨릴알콜로부터 고리확장 반응 및 고리축약 반응을 거쳐 시클로펜텐온 화합물을 제조하는 단계, 및 그리냐드 반응, 산화적 전위 반응, 이중 결합의 이성화를 거쳐 3-프로페닐시클로펜텐온을 제조하는 단계 등 일련의 반응 단계를 포함하는 테레인 화합물의 제조 방법을 제공하고자 한다.
본 발명은 테레인의 제조 방법을 제공한다.
본 발명의 제조방법은 하기 반응식 3에 나타난 바와 같이,
1) 퍼퓨릴알콜(furfuryl alcohol) 2를 브롬화제 및 무수아세트산과 반응시켜 아세톡시피란온 화합물 3을 제조하는 단계;
2) 화합물 3의 아세톡시기를 t-부톡시기로 변환하여 t-부톡시피란온 화합물 4를 제조하는 단계;
3) 화합물 4의 고리 축약 반응(ring contracture)을 통해 시클로헥산온 화합물 5를 생성하는 단계;
4) 화합물 5의 히드록시기에 t-부틸디메틸실릴 보호기를 부착하는 단계;
5) 화합물 6을 알릴마그네슘 브로미드와 반응시켜 3차 알콜인 화합물 7을 제조하는 단계;
6) 화합물 7로부터 산화적 전위반응(oxidative rearrangement)을 통하여 알릴시클로펜텐온 화합물 8을 제조하는 단계;
7) 화합물 8의 이성화(isomerization) 반응으로 E-프로페닐시클로펜텐온 화합물 9를 제조하는 단계;
8) 루이스 산을 이용하여 화합물 8t-부틸 보호기를 제거하는 단계; 및
9) 산을 이용하여 화합물 9t-부틸디메틸실릴 보호기를 제거하는 단계로 이루어진다.
이하, 본 발명의 제조방법을 각 단계 별로 상세히 설명한다.
상기 반응식 3의 제 1)단계는 브롬화제 및 염기를 퍼퓨릴알콜과 반응시킨 후 무수 아세트산을 가하는 방법으로 6원환의 아세톡시피란온 화합물 3을 얻을 수 있다. 브롬화제로는 N-브로모숙신이미드(NBS)가 바람직하며 염기로는 무기 염기 중 약염기를 사용한다. 더욱 바람직하게는 NBS와 NaHCO3의 혼합물을 물 존재하에 퍼퓨릴알콜과 낮은 온도에서 반응시킨 후 이어 무수아세트산을 적가한다.
제 2)단계에서는 화합물 3을 루이스 산 존재 하에서 t-부틸알콜과 같은 부피가 큰 알킬알콜과 반응시켜 알콕시피란온 화합물 4를 얻는다.
제 1)단계 및 제 2)단계는 콜브 등의 합성 방법(반응식 1)에서 사용된 방법과 유사하다. 그러나 종래의 방법은 히드록시피란온을 경유하므로 3 단계의 반응을 거쳐야 하고 2-(트리메틸-실릴)에탄올과 염화아연과 같은 고가의 시약을 사용하는 단점이 있다. 본 발명에서는 반응 단계를 2단계로 단축하고, 알킬알콜 및 산을 사용하여 보다 경제적으로 반응을 수행할 수 있다. 바람직하게는 t-부틸알콜 및 SnCl4를 이용하며, t-부톡시기는, 테레인 화합물의 두 개의 히드록시기에 서로 다른 치환기를 도입하려하는 경우, 다른 보호기에 비해 약한 산성 조건에서 선택적으로 제거할 수 있는 장점이 있다.
제 3)단계에서는 염기 존재 하에서 피란온 화합물 4의 고리 축약(ring contraction)반응을 수행하여 시클로펜텐온 화합물 5를 얻는다. 이 때 사용되는 바람직한 염기는 무기염기 또는 아민류의 약염기이며 보다 바람직하게는 트리메틸아민이다. 바람직한 용매는 디메틸포름아미드이다. 화합물 5의 4, 5 위치의 인접한 두 치환기 t-부톡시기와 히드록시기는 트랜스(trans)로 위치하게 되어 목적화합물 테레인의 입체구조와 일치한다. 이 때 cis 이성체는 생성되지 않는다.
제 4)단계에서는 시클로펜텐온 화합물 5의 5번 위치의 히드록시기에 보호기를 부착하여 화합물 6을 얻는다.
제 5)단계에서는 알릴브로마이드와 마그네슘을 반응시켜 그리냐드 시약을 제조한 후 저온에서 화합물 6과 반응시켜 3차 알콜 화합물 7을 제조한다.
테레인 화합물의 E-1-프로페닐기를 도입하기 위한 여러 방법이 있을 수 있으나, 콜브 등의 합성 방법(반응식 1)에서와 같이 E-1-프로페닐리튬으로부터 E-1-프로페닐큐프레이트(E-1-propenyl cuprate)를 제조하여 사용하게 되면, 수율이 낮고 비경제적인 단점이 있다. 따라서, 본 발명에서와 같이 그리냐드 시약을 이용하여 알릴기를 먼저 도입한 후 E-1-프로페닐기로 이성화시키는 방법을 사용하면 경제적일 뿐 아니라, 높은 수율(그리냐드 반응 97 % 이성화 반응 92 %)로 E-1-프로페닐기를 도입할 수 있다.
제 6)단계에서는 크롬(VI) 산화제를 이용하여 알릴기의 전위와 히드록시기의 산화를 동시에 수행하여 화합물 8을 얻는다. 바람직하게는 피리디늄클로로크로메이트(PCC)와 PCC의 1.5 당량의 셀라이트(celite)를 사용한다. PCC 시약은 존스(Jones) 시약 등 다른 크롬 산화제에 비하여 반응성 및 수율이 좋을 뿐 아니라 별도로 제조할 필요 없이 손쉽게 구매하여 사용할 수 있는 장점이 있다. 또한, 존스 시약은 황산 용액에서 제조되므로 반응 조건이 강한 산성이 되기 때문에 본 반응에서는 PCC를 사용하는 것이 바람직하다. PCC반응은 그 종결 후 PCC와 그 부산물을 여과하여 제거할 때 끈적임으로 인하여 여과하기 곤란한 문제가 있으므로 셀라이트를 혼합하여 반응시킴으로써 손쉽게 여과할 수 있다.
제 7)단계에서는 염기에 매우 민감한 화합물 8을 묽은 염기성 알콜 용액으로 처리하여 이중 결합이 보다 안정한 위치로 재배열된 이성체인 화합물 9로 변환시킨다. 이 때, 수산화나트륨 메탄올 용액을 사용한다.
제 8)단계 및 제 9)단계에서는 산을 이용하여 보호기를 제거하여 테레인 화합물 1을 얻는다. 제 8)단계에서는 루이스 산을 사용하는 것이 바람직하며, 더욱 바람직하게는 디클로로메탄 중에서 TiCl4를 적가하여 반응시킨다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명을 한정하지 않는다.
<실시예 > 테레인 화합물(1)의 제조
1. 6-아세톡시-2,6-디히드로-3 H -피란-3-온(3)
퍼퓨릴알콜(26 g, 0.27 mmol) 2를 테트라히드로퓨란 (104 ㎖)와 물 (26 ㎖)의 혼합용액에 용해시키고 0℃로 온도를 낮추었다. 여기에 N-브로모숙신이미드 (NBS; 52 g, 0.29 mol)와 NaHCO3 (44 g, 0.53 mol)의 혼합물을 조금씩 적가하였다. 여기에 무수아세트산 (54 g, 0.53 mol)을 넣고 반응온도를 상온으로 올리며 18시간 동안 교반하였다. 반응용액에 고체 NaHCO3와 포화 NaHCO3 수용액을 적가하여 중화한 후 에틸아세테이트로 추출하였다. 유기층을 분리하여 소금물로 세척하고 무수 황산마그네슘으로 건조시켜 감압 농축한 후 실리카겔 컬럼 크로마토그래피(헥산:에틸아세테이트 = 6:1)로 정제하여 55% (23 g)의 수율로 노란색 오일의 화합물 3을 얻었다.
2. 6- t -부톡시-2,6-디히드로-3 H -피란-3-온(4)
상기 1에서 얻은 화합물 3 (23 g, 0.147 mol)를 디클로로메탄 (15 ㎖)에 녹인 후 삼차부탄올 (69 ㎖, 0.736 mol)를 적가하고, 여기에 SnCl4 (14.7 ㎖의 1 M 디클로로메탄 용액, 14.7 mmol)를 상온에서 천천히 부가하고 4시간 동안 교반하였다. 반응용액에 포화 NaHCO3 수용액을 넣어 반응을 종결하고 에틸아세테이트로 추출하였다. 유기층을 분리하여 포화 NaHCO3 수용액과 소금물로 연속하여 세척하고 무수 황산마그네슘으로 건조시켜 감압 농축한 후 실리카겔 컬럼 크로마토그래피 (헥산:에틸아세테이트 = 8:1)로 정제하여 93% (23.4 g)의 수율로 노란색 오일의 화합물 4를 얻었다.
3. 4- t -부톡시-5-히드록시-시클로펜트-2-엔-1-온(5)
상기 2에서 얻은 화합물 4 (23.4g, 0.14 mol)을 디메틸포름아미드 (343 ㎖, 2.5 ㎖/mmol)에 용해시키고, 트리에틸아민 (95.8 ㎖, 0.687 mol)을 적가하여 70℃에서 24시간 동안 교반하였다. 반응액을 감압 농축한 후 실리카겔 컬럼 크로마토그래피 (헥산:에틸아세테이트 = 6:1)로 정제하고 헥산으로 씻어주어 47% (11.1 g)의 수율로 흰색의 고체인 화합물 5를 얻었다.
4. 4- t -부톡시-5- t -부틸디메틸실릴옥시-시클로펜트-2-엔-1-온(6)
상기 3에서 얻은 화합물 5 (11.1 g, 65.3 mmol)와 이미다졸 (9.8 g, 0.14 mol)을 디클로로메탄에 용해시키고 여기에 TBDMSCl(tert-butyldimethylsilyl chloride; 1.8 g, 78.4 mmol)을 적가하여 상온에서 2시간 동안 교반하였다. 반응액에 0.1 N HCl을 넣어 반응을 종결하고 디클로로메탄으로 추출하였다. 유기층을 소금물로 세척하고 무수 황산마그네슘으로 건조하고 감압 농축한 후 실리카겔 컬럼 크로마토그래피 (헥산:에틸아세테이트 = 8:1)로 정제하여 77% (14.3 g)의 수율로 무색 오일의 화합물 6을 얻었다.
5. 1-알릴-4- t -부톡시-5- t -부틸디메틸실릴옥시-시클로펜트-2-엔-1-올(7)
먼저 마그네슘 (6.5 g, 0.27 mol)에 디에틸에테르 (20 ㎖)를 넣고 디에틸에테르 (80 ㎖)에 녹인 알릴 브로미드(allyl bromide; 7.8 ㎖, 89.8 mmol)를 30분에 걸쳐 천천히 적가한후 30분 동안 가열 환류시켜 알릴마그네슘 브로미드(allylmagnesium bromide)를 제조하였다. 상기 4에서 얻은 화합물 6 (7.3 g, 25.6 mmol)를 디에틸에테르 (70 ㎖)에 용해시키고 만들어진 알릴마그네슘 브로미드를 -78℃에서 천천히 적가한 뒤 서서히 상온으로 올리며 24시간 동안 교반하였다. 반응액에 포화된 NH4Cl 수용액을 넣으면 침전물이 생기는데 이것을 유리필터로 여과한 후 여과액을 무수 황산마그네슘으로 건조시켜 감압 농축하여 97% (8.1 g)의 수율로 노란색 오일의 화합물 7을 얻었다.
6. 5- t -부톡시-4- t -부틸디메틸실릴옥시-3-알릴-시클로펜트-2-엔-1-온(8)
상기 5에서 얻은 화합물 7 (11.2 g, 34.3 mmol)을 디클로로메탄 (300 ㎖)에 용해시키고, 여기에 셀라이트 (Celite; 45 g, PCC의 1.5배)와 PCC(pyridinium chlorochromate; 29.6 g, 0.137 mol)를 적가한 뒤 상온에서 24 시간 동안 교반하였다. 반응액을 유리필터로 여과한 후 여과액을 감압 농축하여 실리카겔 컬럼 크로마토그래피 (헥산:에틸아세테이트 = 25:1)로 정제하여 60% (13.3 g)의 수율로 무색 오일의 화합물 8을 얻었다.
7. 5- t -부톡시-4- t -부틸디메틸실릴옥시-3- (E) -프로펜-1-일-시클로펜트-2-엔-1-온 (9)
상기 6에서 얻은 화합물 8 (13.3g, 40.9 mmol)을 NaOH (55 mg)이 포함된 메탄올(130 ㎖)에 용해시키고 상온에서 15분 동안 교반하였다. 0.1 N HCl을 넣어 반응액을 중화시키고 감압 농축하여 메탄올을 제거한 뒤 에틸아세테이트로 추출하였다. 유기층을 분리하여 다시 소금물로 세척하고 무수 황산마그네슘으로 건조하고 감압 농축한 후 실리카겔 컬럼 크로마토그래피 (헥산:에틸아세테이트 = 20:1)로 정제하여 77% (10.3 g)의 수율로 흰색 고체의 화합물 9를 얻었다.
8. 5-히드록시-4-t-부틸디메틸실릴옥시-3- (E) -프로펜-1-일-시클로펜트-2-엔-1-온 (10)
상기 7에서 얻은 화합물 9 (10g, 30.8 mmol)을 디클로로메탄 (100 ㎖)에 용해시키고 TiCl4 (31 ㎖의 1M 디클로로메탄 용액, 61.6 mmol)을 0℃에서 천천히 적가하고 20분 동안 교반하였다. 반응액에 포화 NaHCO3 수용액을 넣어 반응을 종결하고 에틸아세테이트로 추출하였다. 유기층을 분리하여 무수 황산마그네슘으로 건조하고 감압 농축한 후 실리카겔 컬럼 크로마토그래피 (헥산:에틸아세테이트 = 9:1)로 정제하여 92% (7.6 g)의 수율로 흰색 고체의 화합물 10을 얻었다.
9. 테레인 화합물(1)
상기 8에서 얻은 화합물 10 (1g, 3.72 mmol)를 35% HCl 수용액(2 ㎖)와 에탄올 (10 ㎖)의 혼합용액에 용해시키고 상온에서 2시간 동안 교반하였다. 반응액에 포화 NaHCO3 수용액을 넣어 반응을 종결하고 에틸아세테이트로 추출하였다. 유기층을 분리하여 무수 황산마그네슘으로 건조시켜 감압 농축한 후 실리카겔 컬럼 크로마토그래피 (메탄올:디클로로메탄 = 4:96)로 정제한 뒤 벤젠으로 재결정하여 62% (360 mg)의 수율로 흰색 고체의 테레인 화합물 1을 얻었다. 이 물질의 분석 결과는 다음과 같다.
1H NMR (300MHz, (CD3)2CO) δ 6.88-6.76 (m, 1H), 6.43 (d, J = 15.9 Hz, 1H), 5.95 (s, 1H), 4.72 (bs, 1H), 4.06 (bs, 1H), 1.92 (dd, J = 6.9, 1.2 Hz, 3H); 13C NMR (75 MHz, (CD3)2CO) δ 169.2, 140.0, 126.5, 125.9, 82.5, 78.0, 19.4.
본 발명의 테레인 화합물 제조 방법은 온화하고 경제적인 반응 조건에서 우수한 수율로 테레인 화합물을 제조할 수 있어 대량생산에 유용하다.

Claims (6)

  1. 하기 반응식 3에 나타낸 바와 같이,
    1) 퍼퓨릴알콜(furfuryl alcohol) 2를 브롬화제 및 무수아세트산과 반응시켜 6-아세톡시-2,6-디히드로-3H-피란-3-온 3을 제조하는 단계;
    2) 6-아세톡시-2,6-디히드로-3H-피란-3-온 3의 아세톡시기를 t-부톡시기로 변환하여 6-t-부톡시-2,6-디히드로-3H-피란-3-온 4를 제조하는 단계;
    3) 6-t-부톡시-2,5-디히드로-3H-피란-3-온 4의 고리 축약 반응(ring contracture)을 통해 4-t-부톡시-5-히드록시-시클로펜트-2-엔-1-온 5를 생성하는 단계;
    4) 4-t-부톡시-5-히드록시-시클로펜트-2-엔-1-온 5의 히드록시기에 t-부틸디메틸실릴 보호기를 부착하는 단계;
    5) 4-t-부톡시-5-t-부틸디메틸실릴옥시-시클로펜트-2-엔-1-온 6을 알릴마그네슘 브로미드와 반응시켜 1-알릴-4-t-부톡시-5-t-부틸디메틸실릴옥시-시클로펜트-2-엔-1-올 7을 제조하는 단계;
    6) 1-알릴-4-t-부톡시-5-t-부틸디메틸실릴옥시-시클로펜트-2-엔-1-올 7로부터 산화적 전위반응(oxidative rearrangement)을 통하여 5-t-부톡시-4-t-부틸디메틸실릴옥시-3-알릴-시클로펜트-2-엔-1-온 8을 제조하는 단계;
    7) 5-t-부톡시-4-t-부틸디메틸실릴옥시-3-알릴-시클로펜트-2-엔-1-온 8의 이성화(isomerization)반응으로 5-t-부톡시-4-t-부틸디메틸실릴옥시-3-(E)-프로펜-1-일-시클로펜트-2-엔-1-온 9를 제조하는 단계;
    8) 루이스 산을 이용하여 5-t-부톡시-4-t-부틸디메틸실릴옥시-3-(E)-프로펜-1-일-시클로펜트-2-엔-1-온 9t-부틸 보호기를 제거하는 단계; 및
    9) 산을 이용하여 5-히드록시-4-t-부틸디메틸실릴옥시-3-(E)-프로펜-1-일-시클로펜트-2-엔-1-온 10t-부틸디메틸실릴 보호기를 제거하는 단계로 이루어지는 테레인 화합물 1의 제조방법.
    <반응식 3>
  2. 제 1항에 있어서, 상기 제 1)단계의 브롬화제가 N-브로모숙신이미드(NBS)인 것을 특징으로 하는 테레인 화합물 1의 제조방법.
  3. 제 1항에 있어서, 상기 제 3)단계에서 6-t-부톡시-2,6-디히드로-3H-피란-3-온 4를 디메틸포름아미드에 용해시킨 후 트리에틸아민과 반응시켜 고리 축약 반응을 수행함을 특징으로 하는 테레인 화합물 1의 제조방법.
  4. 제 1항에 있어서, 상기 제 6)단계에서 피리디늄클로로크로메이트(PCC) 및 셀라이트(celite)를 함께 사용하여 산화적 전위 반응을 수행함을 특징으로 하는 테레인 화합물 1의 제조방법.
  5. 제 4항에 있어서, 상기 제 6)단계에서 피리디늄클로로크로메이트와 셀라이트를 당량비로 1:1.5 사용함을 특징으로 하는 테레인 화합물 1의 제조방법.
  6. 제 1항에 있어서, 상기 제 7)단계에서 화합물 8을 수산화나트륨 메탄올 용액 중에서 이성화 반응을 수행함을 특징으로 하는 테레인 화합물 1의 제조방법.
KR1020040040956A 2004-06-04 2004-06-04 테레인 화합물의 제조방법 KR100543172B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040040956A KR100543172B1 (ko) 2004-06-04 2004-06-04 테레인 화합물의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040040956A KR100543172B1 (ko) 2004-06-04 2004-06-04 테레인 화합물의 제조방법

Publications (2)

Publication Number Publication Date
KR20050116055A true KR20050116055A (ko) 2005-12-09
KR100543172B1 KR100543172B1 (ko) 2006-01-20

Family

ID=37289802

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040040956A KR100543172B1 (ko) 2004-06-04 2004-06-04 테레인 화합물의 제조방법

Country Status (1)

Country Link
KR (1) KR100543172B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771523B1 (ko) * 2006-04-06 2007-10-30 한국생명공학연구원 테레인을 포함하는 피부 각질 형성세포 증식 억제제

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771523B1 (ko) * 2006-04-06 2007-10-30 한국생명공학연구원 테레인을 포함하는 피부 각질 형성세포 증식 억제제

Also Published As

Publication number Publication date
KR100543172B1 (ko) 2006-01-20

Similar Documents

Publication Publication Date Title
EP0045118A2 (en) Intermediates for the synthesis of bicyclo (2,2,1) heptanes and bicyclo (2,2,1) hept-2Z-enes
JP2001510189A (ja) チアゾール誘導体、その製造法および使用
US5430171A (en) T-butyl (R)-(-)-4-cyano-3-hydroxybutyrate and process for preparing the same
JPS62145093A (ja) ポドフイロトキシンおよび関連化合物製造用中間体、並びにその製造方法および利用
Srinivas et al. Stereoselective total synthesis of (+)-varitriol
Dinh et al. Synthetic efforts toward the synthesis of octalactins
KR100543172B1 (ko) 테레인 화합물의 제조방법
US5286883A (en) (3R,5S)-3,5,6-trihydroxyhexanoic acid derivative and production method thereof
Katoh et al. An efficient route for the synthesis of methyl (−)-1, 4a-dimethyl-5-oxodecahydronaphthalene-1-carboxylate by using baker’s yeast-catalyzed asymmetric reduction
SU1277897A3 (ru) Способ получени 1,1-диоксо-6-бром(или-6,6-дибром)пеницилланоилоксиметиловых эфиров 6-(2-азидо-2-фенилацетамидо)пенициллановой кислоты
Clark et al. Base-catalyzed hydroperoxy keto aldehyde cyclization
SU999977A3 (ru) Способ получени 3,3-этилендиокси-4,5-секо-19-норандрост-9-ен-5,17-диона
JPS62201842A (ja) 3−ヒドロキシシクロペント−4−エン−1−オン類の製造法
JPH0121146B2 (ko)
Fernández-Mateos et al. A brief and stereoselective synthesis of limonoid models, with antifeedant activity against Locusts migratoria
US4107181A (en) Useful prostaglandin intermediates
JPH047346B2 (ko)
Chaumont-Olive et al. Total synthesis of spiromastilactone A
US6207841B1 (en) Bisphenol derivative and its manufacturing method
KR100457732B1 (ko) 광학합성의 비대칭 푸로푸란리그난 화합물의 신규 제조방법
JP4428086B2 (ja) 1−アセトキシ−3−(3,4−メチレンジオキシフェニル)プロペン誘導体の製法
Ugurchieva et al. Synthesis of (±)-4-alkanolides from pent-4-enoic acid
AU2003203479A1 (en) Process for the preparation of bicyclic diketone salts
KR0131050B1 (ko) 신규 아민화합물 및 그의 제조방법
US4808340A (en) Process for preparing methyl 4-oxo-5-tetradecynoate

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091223

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee