KR20050110482A - Multi layer super resolution optical disc - Google Patents

Multi layer super resolution optical disc Download PDF

Info

Publication number
KR20050110482A
KR20050110482A KR1020040035519A KR20040035519A KR20050110482A KR 20050110482 A KR20050110482 A KR 20050110482A KR 1020040035519 A KR1020040035519 A KR 1020040035519A KR 20040035519 A KR20040035519 A KR 20040035519A KR 20050110482 A KR20050110482 A KR 20050110482A
Authority
KR
South Korea
Prior art keywords
layer
optical disc
resolution optical
recording
super
Prior art date
Application number
KR1020040035519A
Other languages
Korean (ko)
Other versions
KR100579460B1 (en
Inventor
안건호
곽금철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020040035519A priority Critical patent/KR100579460B1/en
Priority to US11/131,269 priority patent/US7534480B2/en
Publication of KR20050110482A publication Critical patent/KR20050110482A/en
Application granted granted Critical
Publication of KR100579460B1 publication Critical patent/KR100579460B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L13/00Implements for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L13/10Scrubbing; Scouring; Cleaning; Polishing
    • A47L13/20Mops
    • A47L13/22Mops with liquid-feeding devices
    • A47L13/225Steam mops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4075Handles; levers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2601/00Washing methods characterised by the use of a particular treatment
    • A47L2601/04Steam
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24308Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/2431Metals or metalloids group 13 elements (B, Al, Ga, In)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25706Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing transition metal elements (Zn, Fe, Co, Ni, Pt)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/257Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers
    • G11B2007/25705Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials
    • G11B2007/25715Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of layers having properties involved in recording or reproduction, e.g. optical interference layers or sensitising layers or dielectric layers, which are protecting the recording layers consisting essentially of inorganic materials containing oxygen
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • G11B7/253Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates
    • G11B7/2533Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins
    • G11B7/2534Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of substrates comprising resins polycarbonates [PC]

Abstract

본 발명은, 멀티 레이어 초해상 광디스크에 관한 것으로, 유전체 층, 마스크 층, 충격흡수 층, 마스크 층, 유전체 층이 순서대로 형성된 구조를 갖는 복수의 레이어(Layer)를 적층시킴과 아울러, 각 레이어들 사이에, 자외선(UV)에 의해 경화되는 중간층(Intermediate Layer)을 형성함으로써, 기록 마크의 외곽 형상에 의한 지터 특성을 획기적으로 개선시킬 수 있게 됨은 물론, 멀티 레이어 기록(Multi-Layer Recording)에 의한 고밀도 기록화를 극적으로 향상시킬 수 있게 되는 매우 유용한 발명인 것이다. The present invention relates to a multi-layer super-resolution optical disk, in which a plurality of layers having a structure in which a dielectric layer, a mask layer, an shock absorbing layer, a mask layer, and a dielectric layer are sequentially formed, By forming an intermediate layer that is cured by ultraviolet rays (UV), the jitter characteristic due to the outer shape of the recording mark can be remarkably improved, and of course, due to the multi-layer recording, It is a very useful invention that can dramatically improve high density recording.

Description

멀티 레이어 초해상 광디스크 {Multi layer super resolution optical disc} Multi layer super resolution optical disc

본 발명은, 광디스크의 신호 품질 개선과 기록 밀도 향상을 위한 멀티 레이어 초해상 광디스크에 관한 것이다. The present invention relates to a multilayer super resolution optical disc for improving signal quality and recording density of an optical disc.

일반적으로, 현재까지 개발되어 상용화되고 있는 상변화형 광디스크의 저장용량은, 적색 레이저를 사용하는 DVD(Digital Versatile Disc) 급 4.7 GByte와, 최근에 개발 추진 중에 있는 청색 레이저를 사용하는 BD(Blu-ray Disc) 급 25 GByte 정도가 가능하다. In general, the storage capacity of a phase change type optical disc that has been developed and commercialized so far is a DVD (Digital Versatile Disc) class 4.7 GByte using a red laser and a BD (Blu-) using a blue laser currently under development. ray Disc) 25GByte level is available.

한편, 'HD-TV' 또는 'E-medicine' 등과 같은 엄청난 정보의 기록, 저장 및 재생을 위해서는, 더 높은 고밀도 정보 저장 기술이 요구되고 있는 데, 예를 들어 고 선명 디지털 비디오(High Density Digital Video)의 데이터 스트림을 기록 저장하기 위해서는, 20 GByte 이상의 저장 용량과 25 Mbps 이상의 데이터 전송 속도로 기록할 수 있는 기록매체가 필요하다. On the other hand, higher density information storage technology is required to record, store and play huge amounts of information such as 'HD-TV' or 'E-medicine', for example, High Density Digital Video. In order to record and store a data stream of a), a recording medium capable of recording with a storage capacity of 20 GBytes or more and a data transmission speed of 25 Mbps or more is required.

또한, 2005년 이후에는 100 GB/CD-size 이상, 2010년 이후에는 Terabyte(TB) /CD-size 급 저장 용량의 정보 기록이 가능한 기술이 요구되는 데, 이를 위해서는 고밀도 기록과 고속 기록이 반드시 필요하게 되며, 다양한 멀티미디어 환경에서 다기능 정보 저장 기술의 여러 형태가 연구 개발되고 있다. In addition, after 2005, a technology capable of recording information of 100 GB / CD-size or more and Terabyte (TB) / CD-size storage capacity after 2010 is required, which requires high-density recording and high-speed recording. Various forms of multifunctional information storage technologies have been researched and developed in various multimedia environments.

그리고, 광 기록 기술은, 착탈 가능하면서도 대용량의 정보 저장이 가능하고, 멀티미디어 환경에서 필수적인 랜덤 억세스(Random Access)와 데이터의 신뢰성을 가지며, 저 가격으로 이용이 가능하기 때문에, 여러 종류의 정보 저장 방식 중, 가장 보편적으로 사용되고 있다. In addition, since the optical recording technology is detachable and stores a large amount of information, has random access and data reliability essential in a multimedia environment, and can be used at a low price, various types of information storage methods are available. Most commonly used.

한편, 광 기록 매체의 기록 밀도를 높이기 위한 방안으로, 기록매체에 입사되는 레이저 빔 크기를 줄이기 위해 주로 개발되어 온 방법은, 레이저 파장을 줄이거나, 또는 대물렌즈 개구수(NA: Numerical Aperture)를 증가시키는 것으로, 기록 비트(Bit)의 크기는 레이저 파장에 비례하고, 개구수에 반비례하게 된다.On the other hand, as a method for increasing the recording density of the optical recording medium, a method that has been mainly developed to reduce the laser beam size incident on the recording medium is to reduce the laser wavelength or to change the numerical aperture (NA: Numerical Aperture) By increasing, the size of the recording bit Bit is proportional to the laser wavelength and inversely proportional to the numerical aperture.

또한, 단파장 레이저를 이용한 기록과 재생이 가능한 기록매체는, 고밀도 저장매체로서 사용될 수 있으나, 단파장 레이저, 예를 들어 청색 레이저(405nm)와 고 개구수(NA=0.85) 사용으로 인해 고밀도화는, 거의 이론적인 한계에 도달하였으며, 그 이상의 저장 용량을 구현하기 위해서는 새로운 기술 개발이 요구되고 있는 실정이다.In addition, although a recording medium capable of recording and reproducing using a short wavelength laser can be used as a high density storage medium, the density is almost increased due to the use of a short wavelength laser such as a blue laser (405 nm) and a high numerical aperture (NA = 0.85). The theoretical limit has been reached, and new technology development is required to realize more storage capacity.

그리고, 일반적인 씨디(CD) 및 디브이디(DVD) 재생기들과 호환성을 가지면서도, 씨디(CD)의 저장 용량인 650 MBytes보다 수백 배 높은 고밀도 정보 저장이 가능한 광 기록매체로서, 초해상(Super-Resolution) 현상을 이용한 광디스크, 즉 초해상 광디스크의 연구 개발이 추진 중에 있다. In addition, it is an optical recording medium that is compatible with general CD (CD) and DVD (DVD) players, and can store information of several hundred times higher than 650 MBytes, which is a storage capacity of CD. Research and development of optical discs, that is, super resolution optical discs, is being promoted.

한편, 상기 초해상 광디스크의 기술은, 일반 레이저 광 픽업 시스템을 사용하면서도 기록 마크(Mark)의 크기를 획기적으로 줄여, 기록 밀도를 증가시킬 수 있으리라 기대되고 있는 데, 이는 집속된 레이저 빔의 근접장(Near-Field) 효과를 이용하게 된다. On the other hand, the technique of the super-resolution optical disk, while using a normal laser optical pickup system is expected to significantly reduce the size of the recording mark (mark), it is expected to increase the recording density, which is the near field of the focused laser beam ( Near-field) effect.

또한, WORM(Write Once Read Many) 형태의 초해상 방법은, 기록 가능한 광디스크에서, 디브이디(DVD)에 사용되던 결정/비결정 가역적 상변화형 기록층에 마크를 형성하는 것이 아니라, 마스크(Mask) 층의 AgOx, PtOx 등의 산화물 박막의 레이저광에 의한 분해(Decomposition)로 형성되는 공동(Cavity)과, 그 안에 석출된 나노 크기의 금속 입자들이 산란 중심체(Scattering) 역할을 하면서, 주위에 근접장을 만들어 기록층 역할을 하는 것을 이용한다. In addition, the WRM (Write Once Read Many) type super resolution method does not form a mark on the crystalline / non-crystalline reversible phase change recording layer used for DVD in a recordable optical disc, but rather a mask layer. Cavity formed by the decomposition of laser thin film of oxide thin film such as AgOx, PtOx, and nano-sized metal particles deposited therein act as scattering center, creating a near field around Use the role of recording layer.

그리고, 상기 마스크 산화물 박막의 상하에는, 광학적, 열적, 기계적 특성을 고려하여, ZnS-SiO2 계 조성의 유전체 박막 등이 사용되며, 기판은 가벼우면서, 사출성이 양호하고, 레이저 입사 때 복굴절(Birefringence)이 작은 특성을 이용하여 신호 대 잡음비(CNR; Carrier-to Noise Ratio) 증가를 위해 폴리카보네이트(PC: Polycarbonate)를 많이 사용하고 있다.In addition, a dielectric thin film having a ZnS-SiO 2 composition is used in the upper and lower portions of the mask oxide thin film in consideration of optical, thermal, and mechanical properties, and the substrate is light and has good injection property. Polycarbonate (PC) is widely used to increase signal-to-noise ratio (CNR) due to its low birefringence.

예를 들어, 도 1은 일반적인 초해상 광디스크의 구조를 도시한 것으로, 상기 초해상 광디스크(100)에 레이저를 조사함으로써, 그루브(Groove) 또는 랜드(Land) 위에 적층된 박막 내부에 국부적으로 분해된 마크를 기록하고, 낮은 출력의 레이저를 조사하여 마크와 나머지 기지(배경) 사이의 반사도 차이를 이용하여, 신호를 재생하게 된다. For example, FIG. 1 illustrates a structure of a general super resolution optical disc, and is locally decomposed inside a thin film laminated on a groove or a land by irradiating a laser to the super resolution optical disc 100. The mark is recorded and the low power laser is irradiated to reproduce the signal using the difference in reflectivity between the mark and the rest of the matrix (background).

이때, 재생 품질을 나타내는 지표로 지터(Jitter) 값이 중요하게 되는 데, 상기 지터 값은, 신호로부터 만들어진 클럭(예: PLL Clock)과 기록 마크 사이의 통계적 편차를 나타내는 양으로서, 마크의 시작 부분과 클럭, 그리고 끝 부분과 클럭간의 차이(Data to Clock Jitter)를 표준편차로 구하고, 1T 시간으로 나눈 백분율 값으로 나타낸다. At this time, the jitter value becomes an important indicator of the reproduction quality. The jitter value is an amount representing a statistical deviation between a clock (for example, a PLL clock) made from a signal and a recording mark. And the difference between the clock and the end and the clock (Data to Clock Jitter) as the standard deviation, expressed as a percentage value divided by 1T time.

한편, 상기 지터에 영향을 주는 원인은, 매우 다양하고 복잡하지만, 기록 마크의 형상과, 각 T의 마크와 마크 사이(Space)의 관계에 의한 영향(ISI: Inter- Symbol Interference)이 주는 비율이 매우 중요하고, 거의 대부분을 차지하게 되므로, 마크의 형상이 지터 최적화에 보다 적합한 형상이 되도록 제어하는 기술이 매우 중요하게 된다. On the other hand, the cause of the jitter is very diverse and complex, but the ratio of the influence of the relationship between the shape of the recording mark and the relationship between the marks of each T and the space (ISI: Inter-symbol Interference) Since it is very important and almost takes up, the technique of controlling the shape of the mark to be more suitable for jitter optimization becomes very important.

또한, 상기 마크를 광픽업에서 읽어 들여 신호를 해석하는 과정에서, 마크의 형상과 마크간 공간(Space) 사이의 관계가 신호의 품질을 결정하게 되는 데, 도 2에 도시한 바와 같이, 단일 마스크(Mask) 층을 사용한 초해상 광디스크(100)의 연구결과에서는, 기록 과정을 거치면서 수 나노 두께의 마스크 층(예: PtOx(4nm))이, 열 배 이상의 두께로 팽창되며, 그 팽창된 부분은 일반 상변화형 광디스크에서 기록층으로 사용되는 Ge-Sb-Te 또는 Ag-In-Sb-Te 박막 층이 된다.In the process of reading the mark from the optical pickup and interpreting the signal, the relationship between the shape of the mark and the space between the marks determines the quality of the signal. As shown in FIG. According to the research results of the super-resolution optical disc 100 using the (Mask) layer, a mask layer (eg, PtOx (4 nm)) of several nano-thickness is expanded to a thickness of more than ten times during the recording process, and the expanded portion Is a Ge-Sb-Te or Ag-In-Sb-Te thin film layer used as a recording layer in a general phase change type optical disk.

한편, 그 이유는, 집속되는 레이저 빔에 의해 마스크 층의 분해와 함께 낮은 융점을 가진 상변화 물질이 부분적으로 녹거나, 점도(Viscosity)가 낮아진 부위로 마스크 층이 더욱 쉽게 팽창하기 때문이다.On the other hand, the reason is that the mask layer is more easily expanded to the part where the phase change material having a low melting point is partially melted or the viscosity is lowered with the decomposition of the mask layer by the focused laser beam.

또한, 도 3에 도시한 바와 같이, 마스크 층(예: PtOx)의 위/아래에 기록층(예: AglnSbTe)을, 유전체 층(예: ZnS-SiO2)과 함께 대칭 구조로 제조한 초해상 광디스크(101)의 경우에도, 마크의 형상이 타원형 모양으로 팽창된다.In addition, as shown in FIG. 3, a super resolution in which a recording layer (eg AglnSbTe) is formed on and under a mask layer (eg PtOx) in a symmetrical structure with a dielectric layer (eg ZnS-SiO 2 ). Also in the case of the optical disc 101, the shape of the mark is expanded in an elliptical shape.

그리고, 상기와 같은 마크의 형상은, 기록용 레이저 빔의 가우시안 열 분포로 인해, 마크의 중심과 외곽간의 부피 팽창 차이가 상당히 크며, 외곽으로 갈수록 점차적으로 감소하게 되므로, 지터의 증가로 인해 신호 품질과 안정성이 극히 저조해지는 문제점이 발생하게 된다. And, the shape of the mark as described above, because of the Gaussian heat distribution of the recording laser beam, the difference in volume expansion between the center and the outer edge of the mark is quite large, and gradually decreases toward the outer portion, the signal quality due to the increase of jitter The problem is that the stability is extremely low.

또한, 최근에는, 초해상 광디스크에 보다 많은 용량의 데이터 스트림을 기록 저장할 수 있도록 하기 위한 해결 방안이 요구되고 있는 데, 이에 대한 효율적인 해결 방안이 아직 마련되어 있지 않은 실정이다. In recent years, there has been a demand for a solution for recording and storing a larger capacity data stream on a super-resolution optical disc. However, there is no efficient solution yet.

따라서, 본 발명은 상기와 같은 문제점 및 실정을 감안하여 창작된 것으로서, 유전체 층, 마스크 층, 충격흡수 층, 마스크 층, 유전체 층이 순서대로 형성된 구조를 갖는 복수의 레이어(Layer)를 적층하고, 각 레이어들 사이에 중간층을 형성함으로써, 기록 마크의 외곽 형상에 의한 지터 특성을 획기적으로 개선시킴과 아울러, 멀티 레이어 기록(Multi-Layer Recording)에 의한 고밀도 기록화를 극적으로 향상시킬 수 있도록 하기 위한 멀티 레이어 초해상 광디스크를 제공하는 데, 그 목적이 있는 것이다. Therefore, the present invention was created in view of the above problems and circumstances, and laminated a plurality of layers having a structure in which a dielectric layer, a mask layer, an impact absorbing layer, a mask layer, and a dielectric layer were formed in this order. By forming an intermediate layer between each layer, it is possible to drastically improve jitter characteristics due to the outer shape of the recording mark and to dramatically improve high-density recording by multi-layer recording. The purpose is to provide a layered super resolution optical disc.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 멀티 레이어 초해상 광디스크는, 초해상 광디스크에 있어서, 유전체 층, 마스크 층, 충격흡수 층, 마스크 층, 유전체 층이 순서대로 형성된 구조를 갖는 레이어가 2 개 이상 적층됨과 아울러, 각 레이어들 사이에 중간층이 형성되어 있는 것을 특징으로 한다.Multi-layer super-resolution optical disk according to the present invention for achieving the above object, in the super-resolution optical disk, two layers having a structure in which the dielectric layer, mask layer, shock absorbing layer, mask layer, dielectric layer is formed in order In addition to stacking more than one, characterized in that the intermediate layer is formed between each layer.

이하, 본 발명에 따른 멀티 레이어 초해상 광디스크에 대한 바람직한 실시예에 대해, 첨부된 도면을 참조하여 상세히 설명한다. Hereinafter, exemplary embodiments of a multilayer super-resolution optical disc according to the present invention will be described in detail with reference to the accompanying drawings.

우선, 본 발명에 따른 멀티 레이어 초해상 광디스크에는, 복수의 레이어가 적층됨과 아울러, 각 레이어들 사이에 중간층이 형성되는 데, 예를 들어 본 발명에 따른 듀얼(Dual) 레이어 초해상 광디스크의 경우, 도 4에 도시한 바와 같이, 유전체 층(20), 마스크 층(21), 충격흡수 층(22), 마스크 층(23), 유전체 층(24)이 순서대로 형성된 구조를 갖는 제1 레이어(Layer 0)와 제2 레이어(Layer 1)가 적층된다.First, a plurality of layers are stacked on the multilayer super resolution optical disc according to the present invention, and an intermediate layer is formed between the respective layers. For example, in the case of a dual layer super resolution optical disc according to the present invention, As shown in FIG. 4, a first layer having a structure in which the dielectric layer 20, the mask layer 21, the shock absorbing layer 22, the mask layer 23, and the dielectric layer 24 are sequentially formed. 0) and the second layer (Layer 1) are stacked.

그리고, 상기 제1 레이어(Layer 0)와 제2 레이어(Layer 1) 사이에는, 중간층(Intermediate Layer or Spacer or Space Layer)이 형성되는 데, 상기 중간층은, 자외선(UV)에 의해 경화되는 폴리머(Polymer) 물질이 사용되며, 상기 중간층의 두께는, 10um 내지 150um이 될 수 있다. In addition, an intermediate layer (Intermediate Layer or Spacer or Space Layer) is formed between the first layer (Layer 0) and the second layer (Layer 1), the intermediate layer, the polymer is cured by ultraviolet (UV) ( Polymer) material is used, the thickness of the intermediate layer may be 10um to 150um.

한편, 상기 마스크 층(21,23)은, Ox 또는 Nx를 포함한 금속 화합물(MOx 또는 MNx)로서, 특정 온도 이상 가열시, 금속 나노 입자와 가스로 분리되는 물질이 사용되고, 상기 충격흡수 층(22)은, 낮은 융점을 지닌 기록층 용 상변화 물질, 예를 들어 Ge,Sb,Te,Ag,In,Sn,Zn,Pb,Bi,Ti,Se,S,Al,Ga,Cd,l 들이 사용될 수 있으며, 상기 유전체 층(20,24)은, ZnS-SiO2 또는 SiNx 등이 사용될 수 있다.On the other hand, the mask layer (21, 23) is a metal compound (MOx or MNx) containing Ox or Nx, a material that is separated into metal nanoparticles and gas when heated above a specific temperature is used, the shock absorbing layer 22 ) Is a low melting point phase change material for a recording layer such as Ge, Sb, Te, Ag, In, Sn, Zn, Pb, Bi, Ti, Se, S, Al, Ga, Cd, l The dielectric layers 20 and 24 may be ZnS-SiO 2 or SiNx.

또한, 상기 마스크 층(21,23)과 충격흡수 층(22) 사이에는, 확산방지 층(미도시)이 별도로 추가 형성될 수 있으며, 상기 확산방지 층은, ZnS, SiOx, GeN, SiNx 들이 사용될 수 있는 데, 본 발명에 따른 멀티 레이어 초해상 광디스크의 구조에 대해 상세히 설명하면 다음과 같다. In addition, a diffusion barrier layer (not shown) may be additionally formed between the mask layers 21 and 23 and the shock absorbing layer 22, and the diffusion barrier layer may include ZnS, SiOx, GeN, and SiNx. The structure of the multilayer super resolution optical disc according to the present invention can be described in detail as follows.

도 5는, 본 발명에 따른 멀티 레이어 초해상 광디스크 중 임의의 한 레이어에 대한 적층 구조를 도시한 것으로, 상기 멀티 레이어 초해상 광디스크(200) 중 임의의 한 레이어는, 유전체 층(20), 마스크 층(21), 충격흡수 층(22), 마스크 층(23), 유전체 층(24)이 순서대로 적층 형성되는 데, 도 5에 도시한 각 박막 층의 물질과 두께는, 일 실시예로서 광학적 특성 향상을 위해 임의로 변경될 수 있다. Fig. 5 shows a lamination structure for any one of the multilayer super resolution optical discs according to the present invention, wherein any one of the multilayer super resolution optical discs 200 includes a dielectric layer 20 and a mask. The layer 21, the shock absorbing layer 22, the mask layer 23, and the dielectric layer 24 are laminated in this order, and the material and thickness of each thin film layer shown in FIG. It can be arbitrarily changed to improve properties.

한편, 상기와 같은 순서대로 적층되는 레이어 중, 기록 신호를 위해서 사용되는 마스크 층(21,23)은, 레이저 빔으로 인해 나노 크기의 금속 입자와 산소 또는 질소로 부분적으로 열분해 되어, 급격한 부피 팽창을 하게 된다. On the other hand, among the layers stacked in the above order, the mask layers 21 and 23 used for the recording signal are partially thermally decomposed into nano-sized metal particles and oxygen or nitrogen due to the laser beam, thereby providing rapid volume expansion. Done.

예를 들어, 상기 마스크 층(21,23)은, 주변에 상대적으로 낮은 융점을 지닌 충격흡수 층, 즉, 상변화형 광디스크에서 기록층 용 상변화 물질로 사용되던 박막의 충격흡수 층(22)은, 기록용 레이저 빔에 의해 점도가 낮아져, 마스크 층의 부피 팽창을 돕게 되는 충격 흡수 역할을 충분히 하게 된다. For example, the mask layers 21 and 23 may be a shock absorbing layer having a relatively low melting point, that is, a thin film shock absorbing layer 22 used as a phase change material for a recording layer in a phase change type optical disk. The viscosity is lowered by the recording laser beam, which is sufficient to serve as a shock absorber to assist in volume expansion of the mask layer.

만일, 도 2에 도시한 바와 같이, 한 쪽에만 충격 흡수 역할을 하는 박막이 있는 경우, 그 쪽으로만 부피 팽창이 일어나게 되며, 또한 도 3에 도시한 바와 같이, 마스크 층 양쪽에 유전체 층을 경계로 충격 흡수 역할을 하는 박막이 대칭적으로 있는 경우, 부피 팽창도 대칭적으로 일어나게 되므로, 결국 기록 마크의 형상이 지터 최적화에 적합한 형상을 갖지 못하게 된다. If there is a thin film that acts as a shock absorber on only one side, as shown in FIG. 2, volume expansion occurs only on that side, and as shown in FIG. 3, the dielectric layer is bounded on both sides of the mask layer. If the thin film serving as the shock absorber is symmetrically, volume expansion also occurs symmetrically, so that the shape of the recording mark does not have a shape suitable for jitter optimization.

반면, 본 발명에 따른 멀티 레이어 초해상 광디스크(200)의 경우, 도 5에 도시한 바와 같이, 2 개의 마스크 층(21,23) 사이에, 충격흡수 층(22)이 형성되어 있기 때문에, 기록 마크의 형상이 지터 최적화에 적합한 형상을 갖게 되는 데, 기록 직후에는, 기록용 레이저 광원에 의해 2 개의 마스크 층(21,23)이 열분해로 인해 충격흡수 층(22) 쪽으로 급격한 부피 팽창이 이루어지게 된다.On the other hand, in the case of the multilayer super-resolution optical disc 200 according to the present invention, since the shock absorbing layer 22 is formed between the two mask layers 21 and 23, as shown in FIG. The shape of the mark has a shape suitable for jitter optimization. Immediately after recording, two mask layers 21 and 23 are thermally decomposed by the recording laser light source to cause a sudden volume expansion toward the shock absorbing layer 22. do.

그리고, 기록 이후에는, 상기 상하 마스크 층 서로 간의 급격한 부피팽창이, 상기 충격흡수 층(22)을 상하로 밀어내면서 커져 결국 겹치게 되며, 이때 생성된 산소 혹은 질소에 의해 더욱 높은 압력을 가지면서 충격흡수 층을 좌우로 밀게 되고, 이러한 일련의 폭발적인 부피 팽창의 결과로 인해, 지터 최적화에 적합한 최종 기록마크 형상(40)이 만들어지게 된다. After the recording, the sudden volume expansion between the upper and lower mask layers is increased while pushing the shock absorbing layer 22 up and down, and eventually overlaps, and at this time, the absorbing shock has a higher pressure by the generated oxygen or nitrogen. The layers are pushed from side to side, and as a result of this series of explosive volume expansions, a final mark mark shape 40 suitable for jitter optimization is created.

또한, 본 발명에 따른 다른 실시예로서, 도 6에 도시한 바와 같이, 2 개의 마스크 층(21,23) 사이에 충격흡수 층(22)을 형성하되, 상기 마스크 층과 충격흡수 층 사이에, 낮은 융점의 박막과 확산방지 층(25,26)이 추가 형성될 수 있다. In addition, as another embodiment according to the present invention, as shown in Figure 6, while forming a shock absorbing layer 22 between the two mask layers (21, 23), between the mask layer and the shock absorbing layer, Low melting point thin films and diffusion barrier layers 25 and 26 may be further formed.

한편, 상기 마스크 층은, 기록용 레이저 광원에 의해 국부적으로 금속 나노 입자와 산소 또는 질소로 분해되어 회절 한계 이하 크기로 기록 마크가 생성되는 데, 상기 기록 마크의 재생은, 낮은 에너지의 레이저 빔을 주사하여, 금속 나노 입자로부터 발생되는 근접장 효과와, 산소 또는 질소 공동의 급격한 굴절률 변화를 이용하여 신호를 얻게 된다. On the other hand, the mask layer is locally decomposed into metal nanoparticles and oxygen or nitrogen by a recording laser light source to generate a recording mark with a size below a diffraction limit, and the reproduction of the recording mark produces a low energy laser beam. By scanning, a signal is obtained using the near field effect generated from the metal nanoparticles and the rapid change in refractive index of the oxygen or nitrogen cavity.

그러나, 실제 신호로 이용되는 영역은, 기록 마크의 중심 영역이고, 그 이외의 외곽부는, 길게 신호 기록방향으로 늘어지게 되므로, 본 발명에 얻어지는 재생 신호는, 마크 외곽부의 영역이 신호에 주는 영향이 상대적으로 줄어들고, 신호로 얻어지는 영역이 늘어날 뿐만 아니라, 그 영역이 보다 뚜렷하게 구분되어 진다.However, since the area used as the actual signal is the center area of the recording mark, and the outer portion other than that is stretched in the signal recording direction for a long time, the reproduction signal obtained in the present invention has an influence that the area of the mark outer portion affects the signal. Not only is it relatively small, the area of the signal is increased, but the area is more clearly distinguished.

따라서, 이를 통해 지터 값을 혁신적으로 줄일 수 있게 되며, 이러한 결과를 이용하여, 적은 기록 시간을 주었을 때도, 안정된 잡음 대 신호 비(CNR)와 양호한 지터 값을 얻을 수 있게 되어, 본 발명에 따른 멀티 레이어 초해상 광디스크(200, 210)의 지터 특성은, 종래의 초해상 광디스크(100,101)의 지터 특성보다 훨씬 양호한 특성을 갖게 된다. Therefore, it is possible to innovatively reduce the jitter value, and by using this result, a stable noise-to-signal ratio (CNR) and a good jitter value can be obtained even with a small recording time, and according to the present invention, The jitter characteristics of the layered super resolution optical discs 200 and 210 have properties that are much better than those of the conventional super resolution optical discs 100 and 101.

즉, 기록 마크의 리딩 에지(Leading Edge) 부분과 트레이링(Trailing Edge) 부분에서, 각 마크의 끝단 모양이 경사가 급할수록 좋은 지터 값을 갖게 되므로, 단일 마스크 층을 사용하였을 때의 광학적 리딩 신호는, 마크 중심부에서 많은 반사량을 보이지만, 외곽 부분으로 감에 따라 점차적으로 감소함을 보이게 되며, 이러한 외곽 형상은 마크간 간섭(ISI)에 영향을 주어 신호 품질 감소의 원인이 된다. That is, in the leading edge and trailing edge portions of the recording mark, the leading shape of each mark has a better jitter value as the steeper the slope, so that the optical leading signal when using a single mask layer Although a large amount of reflection is seen at the center of the mark, it gradually decreases as it goes to the outer part, and the outer shape affects the inter-mark interference (ISI) and causes signal quality reduction.

반면, 이를 개선하기 위해 복수의 마스크 층이 유전체 층을 경계로 제작되었을 때 신호의 중심에서 외곽으로 감소하는 기울기를 상당히 높일 수 있으며, 본 발명에서와 같은 광디스크의 구조를 갖는 경우, 종래의 초해상 광디스크에 비해, 반사량이 전체적으로 많고, 중심에서 외곽으로 가면서 반사량이 급격하게 감소하게 된다. On the other hand, in order to improve this, when the plurality of mask layers are fabricated with a dielectric layer as a boundary, the slope that decreases from the center of the signal to the outside can be significantly increased, and in the case of the optical disk structure as in the present invention, the conventional super resolution Compared to the optical disk, the amount of reflection is large, and the amount of reflection rapidly decreases from the center to the outside.

그리고, 도 7에 도시한 바와 같이, 서로 다른 제1 레이어(Layer 0)와 제2 레이어(Layer 1)에 각각 기록 마크를 형성하기 때문에, 하나의 레이어를 사용하였을 때 보다 2 배의 기록 용량을 확보할 수 있게 되는 데, 예를 들어 제1 레이어에 기록 마크를 형성하다가, 제2 레이어에 기록 마크를 형성하고자 하는 경우, 광픽업에 구비된 포커스 렌즈(Focus Lens)를 제1 레이어와 제2 레이어간의 이격거리(예: D) 만큼 위로 이동시키는 일련의 포커스 제어 동작이 필요하게 된다. As shown in FIG. 7, recording marks are formed in different first layers (Layer 0) and second layers (Layer 1), respectively, so that twice the recording capacity is obtained when one layer is used. For example, when the recording mark is formed on the first layer and the recording mark is formed on the second layer, the focus lens provided in the optical pickup may be provided with the first layer and the second layer. A series of focus control actions are required to move up by the separation distance between layers (eg D).

이상, 전술한 본 발명의 바람직한 실시예는, 예시의 목적을 위해 개시된 것으로, 당업자라면, 이하 첨부된 특허청구범위에 개시된 본 발명의 기술적 사상과 그 기술적 범위 내에서, 또다른 다양한 실시예들을 개량, 변경, 대체 또는 부가 등이 가능할 것이다. Or more, preferred embodiments of the present invention described above, for the purpose of illustration, those skilled in the art, within the technical spirit and the technical scope of the present invention disclosed in the appended claims below, to further improve various other embodiments Changes, substitutions or additions will be possible.

상기와 같이 구성되는 본 발명에 따른 멀티 레이어 초해상 광디스크는, 유전체 층, 마스크 층, 충격흡수 층, 마스크 층, 유전체 층이 순서대로 형성된 구조를 갖는 복수의 레이어(Layer)를 적층시킴과 아울러, 각 레이어들 사이에, 자외선(UV)에 의해 경화되는 중간층(Intermediate Layer)을 형성함으로써, 기록 마크의 외곽 형상에 의한 지터 특성을 획기적으로 개선시킬 수 있게 됨은 물론, 멀티 레이어 기록(Multi-Layer Recording)에 의한 고밀도 기록화를 극적으로 향상시킬 수 있게 되는 매우 유용한 발명인 것이다. Multi-layer super-resolution optical disks according to the present invention configured as described above, while stacking a plurality of layers (Layer) having a structure in which a dielectric layer, a mask layer, an impact absorbing layer, a mask layer, a dielectric layer is formed in order, By forming an intermediate layer cured by ultraviolet light (UV) between the layers, it is possible to drastically improve the jitter characteristic due to the outer shape of the recording mark, as well as multi-layer recording. It is a very useful invention that can dramatically improve high density recording by < RTI ID = 0.0 >

도 1은 일반적인 초해상 광디스크의 구조를 도시한 것이고,1 illustrates a structure of a general super resolution optical disc,

도 2 및 도 3은 일반적인 초해상 광디스크들에 대한 전자투과 현미경 사진을 각각 도시한 것이고, 2 and 3 show electron transmission micrographs of typical super-resolution optical disks, respectively,

도 4는 본 발명에 따른 멀티 레이어 초해상 광디스크에 대한 구조를 도시한 것이고, 4 illustrates a structure of a multilayer super resolution optical disc according to the present invention,

도 5는 본 발명에 따른 레이어 적층 구조를 도시한 것이고, 5 illustrates a layer stack structure according to the present invention,

도 6은 본 발명의 다른 실시예에 따른 레이어 적층 구조를 도시한 것이고,6 illustrates a layer stack structure according to another embodiment of the present invention,

도 7은 본 발명에 따른 멀티 레이어 초해상 광디스크의 각 레이어에 기록 마크가 형성되는 과정을 도시한 것이다. 7 shows a process in which recording marks are formed in each layer of the multilayer super resolution optical disc according to the present invention.

※ 도면의 주요부분에 대한 부호의 설명 ※ Explanation of code for main part of drawing

200,210 : 멀티 레이어 초해상 광디스크 20,24 : 유전체 층200,210: multi-layer super resolution optical disk 20,24: dielectric layer

21,23 : 마스크 층 22 : 충격흡수 층21,23: mask layer 22: shock absorbing layer

25,26 : 확산방지 층 30 : 중간층25,26: diffusion barrier layer 30: intermediate layer

40,41 : 기록마크40,41: Record mark

Claims (8)

초해상 광디스크에 있어서, In a super resolution optical disc, 유전체 층, 마스크 층, 충격흡수 층, 마스크 층, 유전체 층이 순서대로 형성된 구조를 갖는 레이어가 2 개 이상 적층됨과 아울러, At least two layers having a structure in which a dielectric layer, a mask layer, an impact absorbing layer, a mask layer, and a dielectric layer are formed in this order are stacked, 각 레이어들간의 사이에 중간층이 형성되어 있는 것을 특징으로 하는 멀티 레이어 초해상 광디스크. A multi-layered super resolution optical disc, wherein an intermediate layer is formed between the layers. 제 1항에 있어서, The method of claim 1, 상기 중간층은, 자외선에 의해 경화되는 폴리머 물질인 것을 특징으로 하는 멀티 레이어 초해상 광디스크. And said intermediate layer is a polymeric material which is cured by ultraviolet light. 제 2항에 있어서, The method of claim 2, 상기 중간층은, 10um 내지 150um의 두께를 갖는 것을 특징으로 하는 멀티 레이어 초해상 광디스크. The intermediate layer is a multi-layer super-resolution optical disc, characterized in that having a thickness of 10um to 150um. 제 1항에 있어서,The method of claim 1, 상기 유전체 층은, ZnS-SiO2 또는 SiNx인 것을 특징으로 하는 멀티 레이어 초해상 광디스크.And said dielectric layer is ZnS-SiO 2 or SiNx. 제 1항에 있어서,The method of claim 1, 상기 마스크 층은, Ox 또는 Nx를 포함한 금속 화합물(MOx 또는 MNx)로, 특정 온도 이상 가열시, 금속 나노 입자와 가스로 분리되는 물질인 것을 특징으로 하는 멀티 레이어 초해상 광디스크. The mask layer is a metal compound (MOx or MNx) containing Ox or Nx, a multi-layer super-resolution optical disc, characterized in that the material is separated into metal nanoparticles and gas when heated above a certain temperature. 제 1항에 있어서,The method of claim 1, 상기 충격흡수 층은, 낮은 융점을 지닌 물질인 Ge, Sb, Te, Ag, In, Sn, Zn, Pb, Bi, Ti, Se, S, Al, Ga, Cd, l 중, 어느 하나 이상인 것을 특징으로 하는 멀티 레이어 초해상 광디스크. The shock absorbing layer is at least one of Ge, Sb, Te, Ag, In, Sn, Zn, Pb, Bi, Ti, Se, S, Al, Ga, Cd, l, which are materials having a low melting point. Multi-layer super resolution optical disc. 제 1항에 있어서,The method of claim 1, 상기 마스크 층과 충격흡수 층 사이에, 확산방지 층이 추가 형성되는 것을 특징으로 하는 멀티 레이어 초해상 광디스크. A multi-layer super resolution optical disc, characterized in that the diffusion barrier layer is further formed between the mask layer and the shock absorbing layer. 제 7항에 있어서,The method of claim 7, wherein 상기 확산방지 층은, ZnS, SiOx, GeN, SiNx 중 어느 하나 이상의 물질인 것을 특징으로 하는 멀티 레이어 초해상 광디스크. The diffusion barrier layer, ZnS, SiOx, GeN, SiNx multilayer super-resolution optical disc, characterized in that any one or more of the materials.
KR1020040035519A 2004-05-19 2004-05-19 Multi layer super resolution optical disc KR100579460B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020040035519A KR100579460B1 (en) 2004-05-19 2004-05-19 Multi layer super resolution optical disc
US11/131,269 US7534480B2 (en) 2004-05-19 2005-05-18 Multi-layer super resolution optical disc

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040035519A KR100579460B1 (en) 2004-05-19 2004-05-19 Multi layer super resolution optical disc

Publications (2)

Publication Number Publication Date
KR20050110482A true KR20050110482A (en) 2005-11-23
KR100579460B1 KR100579460B1 (en) 2006-05-12

Family

ID=35375032

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040035519A KR100579460B1 (en) 2004-05-19 2004-05-19 Multi layer super resolution optical disc

Country Status (2)

Country Link
US (1) US7534480B2 (en)
KR (1) KR100579460B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601700B1 (en) * 2004-08-25 2006-07-14 삼성전자주식회사 Super resolution information storage medium, method and apparatus for recording and/or reproducing data on/from the same
US8097323B2 (en) 2006-09-22 2012-01-17 National Institute Of Advanced Industrial Science And Technology Optical recording medium

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7232598B2 (en) * 2003-10-22 2007-06-19 Lg Electronics Inc. Super resolution optical disc
KR100582498B1 (en) * 2004-05-21 2006-05-23 엘지전자 주식회사 Super resolution optical disc having a complex mask layers
JP2006209813A (en) * 2005-01-25 2006-08-10 Tdk Corp Optical recording medium
US20100232269A1 (en) * 2007-10-19 2010-09-16 Sharp Kabushiki Kaisha Optical information storage medium reproduction apparatus and control method of the same
FR2929747A1 (en) * 2008-04-04 2009-10-09 Commissariat Energie Atomique SUPER-RESOLUTION OPTICAL DISK WITH HIGH READING STABILITY
EP2109104A1 (en) 2008-04-09 2009-10-14 Deutsche Thomson OHG Optical storage medium comprising two semiconductor layers as mask layers
EP2196993A1 (en) 2008-12-02 2010-06-16 Thomson Licensing Optical storage medium comprising two nonlinear layers
US9117149B2 (en) 2011-10-07 2015-08-25 Industrial Technology Research Institute Optical registration carrier

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084643A (en) * 1999-09-09 2001-03-30 Hitachi Ltd Optical disk medium
US6987721B2 (en) * 2000-10-11 2006-01-17 Matsushita Electric Industrial Co., Ltd. Optical record medium, optical information processing apparatus, and optical recording/reproducing method
KR100415048B1 (en) * 2001-06-29 2004-01-13 한국과학기술연구원 High density optical recording media
JP4106417B2 (en) * 2002-05-16 2008-06-25 三星電子株式会社 Recording medium having a high melting point recording layer, information recording method for the recording medium, information reproducing apparatus and information reproducing method for reproducing information from the recording medium
US7232598B2 (en) * 2003-10-22 2007-06-19 Lg Electronics Inc. Super resolution optical disc

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601700B1 (en) * 2004-08-25 2006-07-14 삼성전자주식회사 Super resolution information storage medium, method and apparatus for recording and/or reproducing data on/from the same
US8097323B2 (en) 2006-09-22 2012-01-17 National Institute Of Advanced Industrial Science And Technology Optical recording medium

Also Published As

Publication number Publication date
US7534480B2 (en) 2009-05-19
KR100579460B1 (en) 2006-05-12
US20050259563A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US7534480B2 (en) Multi-layer super resolution optical disc
KR100734641B1 (en) Optical Recording Medium, Optical Recording/Reproducing Apparatus, Optical Recording Apparatus and Optical Reproducing Apparatus, Data Recording/Reproducing Method for Optical Recording Medium, and Data Recording Method and Data Reproducing Method
JP4778300B2 (en) Write-once optical recording medium
US7232598B2 (en) Super resolution optical disc
KR100731472B1 (en) Optical recording and playback method, and optical recording media
JP3698905B2 (en) Optical information recording medium, information recording method thereof, and information erasing method thereof
JP5148629B2 (en) Information recording medium, manufacturing method thereof, and recording / reproducing apparatus
KR100573680B1 (en) Multi level super resolution optical disc
Nakai et al. Dual-layer rewritable phase-change recording media for HD DVD system
Hosoda et al. Inorganic recordable disk with more eco-friendly material for blue
KR100573679B1 (en) Super resolution optical disc
KR100582498B1 (en) Super resolution optical disc having a complex mask layers
KR100678300B1 (en) Optical recording and playback method, and optical recording media
US20020168588A1 (en) Optical information recording medium
JP2004284018A (en) Optical recording medium
JPH04228126A (en) Optical information recording medium
KR100565628B1 (en) super-resolution nano optical disc
KR100747528B1 (en) Optical media
KR20010090164A (en) High density optical storage medium
Shi Optical memory: from 1st to 3rd generation and its future
Yamaguchi et al. Dual layer phase change optical disk using limit equalizer
WO2010106972A1 (en) Optical information recording medium
WO2009147048A1 (en) Optical storage medium comprising a recordable data layer with a non-linear structure and respective recorder
JP2003263776A (en) Optical recording medium
JP2007122789A (en) Multilayered optical recording medium

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100331

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee