KR20050089673A - Non contact collection power system for power supply of electric car - Google Patents

Non contact collection power system for power supply of electric car Download PDF

Info

Publication number
KR20050089673A
KR20050089673A KR1020040015190A KR20040015190A KR20050089673A KR 20050089673 A KR20050089673 A KR 20050089673A KR 1020040015190 A KR1020040015190 A KR 1020040015190A KR 20040015190 A KR20040015190 A KR 20040015190A KR 20050089673 A KR20050089673 A KR 20050089673A
Authority
KR
South Korea
Prior art keywords
vehicle
power
current collector
transmission line
power transmission
Prior art date
Application number
KR1020040015190A
Other languages
Korean (ko)
Other versions
KR100573411B1 (en
Inventor
이병송
한경희
변윤섭
배창한
Original Assignee
한국철도기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국철도기술연구원 filed Critical 한국철도기술연구원
Priority to KR1020040015190A priority Critical patent/KR100573411B1/en
Publication of KR20050089673A publication Critical patent/KR20050089673A/en
Application granted granted Critical
Publication of KR100573411B1 publication Critical patent/KR100573411B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

본 발명은 전력을 동력원으로 하는 전기 차량(전기 자동차)에 있어서 차량 외부로부터 전력을 선택적으로 공급받아 동작 가능하도록 하는 전원급전용 비접촉 집전 시스템에 관한 것이다.  BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact current collecting system for power supply, in which an electric vehicle (electric vehicle) using electric power as a power source is selectively supplied with electric power from the outside of the vehicle to operate.

본 발명에서는 차량이 주행하는 도로상에 전력송전선을 설치하고, 차량에 전력 집전장치를 설치하여 전자기 유도작용에 의해 비접촉방식의 차량전력공급이 가능하도록 하도록 하는 비접촉 급전시스템을 제공하고자 하는 것으로, 주행중 차량으로의 집전과 차량 내부 배터리 충전을 위한 전력집전이 가능하도록 하는 종래의 접촉방식의 장점은 살리면서, 종래의 접촉방식의 한계였던 기계적 마찰에 의한 마모, 소음 발생현상을 해소하고, 차량에의 집전 손실로 작용할 수 있는 아크, 공기마찰 등의 전기적, 환경적 손실, 피해성분을 제거하여 보다 효율적인 전기차량 급전용 집전 방식을 제공하고자 하는 것이다.The present invention is to provide a non-contact power supply system to install a power transmission line on the road on which the vehicle runs, and to install a power current collector on the vehicle to enable the non-contact vehicle power supply by electromagnetic induction. While utilizing the advantages of the conventional contact method that enables the current collection to the vehicle and power collection for charging the battery inside the vehicle, it eliminates the phenomenon of abrasion and noise caused by mechanical friction, which was the limitation of the conventional contact method. The purpose of the present invention is to provide a more efficient electric vehicle current collection method by removing electrical and environmental losses such as arc, air friction, and damage components that may act as current collection losses.

Description

전기 차량의 전원급전용 비접촉 집전 시스템{Non contact collection power system for power supply of electric car} Non contact collection power system for power supply of electric car}

본 발명은 전력을 동력원으로 하는 전기 차량(전기 자동차)에 있어서 차량 외부로부터 전력을 선택적으로 공급받아 동작 가능하도록 하는 전원급전용 비접촉 집전 시스템에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact current collecting system for power supply, in which an electric vehicle (electric vehicle) using electric power as a power source is selectively supplied with electric power from the outside of the vehicle to operate.

일반적으로 전기차량은 전기를 전력공급원으로 하여 운행하는 차량을 의미하며, 전기 자동차와 전동차로 구분할 수 있다. In general, an electric vehicle refers to a vehicle that operates by using electricity as a power supply source, and may be classified into an electric vehicle and an electric vehicle.

전동차는 고전압, 전류가 흐르고 있는 가선에 판도그라프를 접촉시켜 전동차량에 전기에너지를 공급받아 운행하며, 전기 자동차는 차량 자체에 전력공급원으로 충전이 가능한 배터리를 탑재하고, 탑재된 배터리에서 공급되는 전력을 이용하여 운행하게 된다. Electric cars operate by supplying electric energy to electric vehicles by contacting a dodograph with a line flowing high voltage and current, and electric vehicles are equipped with a battery that can be charged as a power source in the vehicle itself, and the electric power supplied from the mounted battery It will operate using.

전동차의 경우 가선에 의해 정해진 궤도를 따라 이동하게 되므로, 대중 교통수단으로 한정해서 사용될 수 밖에 없으며, 주어진 선로 내에서만 운행이 가능하게 되므로, 운전자가 원하는 국부적인 장소까지의 이동이 불가능하다.In the case of the electric car is moved along the track determined by the wire, it can not only be used as a public transportation means, it is possible to operate only within a given track, it is impossible to move to the local place desired by the driver.

이와 달리 전기자동차는 운전자가 원하는 위치까지 자유로이 이동할 수 있어 개인교통수단으로 적절하나, 일반 가솔린 자동차와는 달리 축전지라 하여, 배터리에 의해 전력을 공급하게 되므로 일반 가솔린 자동차에 비해 저속 운행되며, 충전시간이 오래 걸리며, 또한 한번 충전에 의해 주행하는 거리가 제한적이다.On the other hand, electric vehicles can move freely to the driver's desired position, which is suitable for personal transportation.However, unlike general gasoline cars, electric vehicles are powered by batteries because they are powered by batteries. This takes a long time and also limits the distance traveled by a single charge.

근래에 들어서는 환경 공해의 주범인 자동차의 배기가스에 대한 문제점이 재조명되면서 각 자동차 메이커에서는 상기한 바와 같은 전기 자동차의 단점을 개선한 전기 자동차의 다양한 모델을 개발하고 있으며, 상용화에 이르고 있다. In recent years, as the problem of the exhaust gas of automobiles, which is the main culprit of environmental pollution, has been re-examined, each car maker is developing various models of electric vehicles that have improved the disadvantages of the electric vehicles as described above, and are reaching commercialization.

전기 자동차에 있어 앞서와 같이 고속주행 및 1회 충전 주행거리의 확보는 매우 중요하며, 이 같은 능력은 리튬 배터리나 모터용 마그넷, 신형 인버터용 트랜지스터 같은 신형 부품과 넓은 공간을 확보해주는 프레임 장착 등의 시스템 기술 개발에 힘입어 가능해진다.As mentioned above, it is very important to secure high-speed driving and single-charging mileage for electric vehicles, and this capability includes new components such as lithium batteries, magnets for motors, and transistors for new inverters and frame mounting to secure a large space. This is made possible by the development of system technology.

그렇다고 하더라도 일반적인 사양을 고려할 때 일반 가솔린 자동차에 비해 토크(torque)가 떨어질 뿐만 아니라, 고속주행에 따른 배터리의 전력소모에 의한 주행거리 단축을 고려하지 않을 수 없다. Even so, when considering general specifications, torque is not as low as that of general gasoline cars, and it is inevitable to reduce the mileage caused by battery power consumption due to high-speed driving.

본 발명에서는 차량이 주행하는 도로상에 전력송전선을 설치하고, 차량에 전력 집전장치를 설치하여 전자기 유도작용에 의해 비접촉방식의 차량전력공급이 가능하도록 하도록 하는 비접촉 급전시스템을 제공하고자 하는 것으로, 주행중 차량으로의 집전과 차량 내부 배터리 충전을 위한 전력집전이 가능하도록 하는 종래의 접촉방식의 장점은 살리면서, 종래의 접촉방식의 한계였던 기계적 마찰에 의한 마모, 소음 발생현상을 해소하고, 차량에의 집전 손실로 작용할 수 있는 아크, 공기마찰 등의 전기적, 환경적 손실, 피해성분을 제거하여 보다 효율적인 전기차량 급전용 집전방식을 제공하고자 한 것이다. The present invention is to provide a non-contact power supply system to install a power transmission line on the road on which the vehicle runs, and to install a power current collector on the vehicle to enable the non-contact vehicle power supply by electromagnetic induction. While utilizing the advantages of the conventional contact method that enables the current collection to the vehicle and power collection for charging the battery inside the vehicle, it eliminates the phenomenon of abrasion and noise caused by mechanical friction, which was the limitation of the conventional contact method. The purpose of the present invention is to provide a more efficient electric vehicle current collecting method by removing electrical and environmental losses such as arc, air friction, and damage components that may act as current collection losses.

본 발명은, 차량이 주행하는 궤도 또는 도로의 하부에 설치(매설)되어 전원이 인가되는 전력송전선부와, 전력송전선부와 소정의 거리를 두고 차량의 저면단에 설치되는 집전장치부로 구성하고, 1차측인 전력송전선부와 2차측인 집전장치부의 자기적 에너지 경로에 공극을 두어 1,2차측을 분리하여, 2차측의 집전장치부의 철심과 코일부가 1차측의 전력송선전부의 코일과 일정 간격의 공극을 유지하면서 차량 운행중에 집전이 이루어지는 것을 특징으로 한다. The present invention comprises a power transmission line portion installed (embedded) at the lower part of the track or road on which the vehicle travels and to which power is applied, and a current collector portion installed at a bottom end of the vehicle at a predetermined distance from the power transmission line portion. A gap is formed in the magnetic energy path of the primary power transmission line portion and the secondary current collector portion to separate the primary and secondary sides, so that the core and the coil portion of the secondary current collector portion are separated from the coils of the primary power transmission portion. It is characterized in that the current collector is made while the vehicle is running while maintaining the air gap.

이와 같은 특징을 갖는 본 발명을 첨부된 도면 도 1 내지 도 2에 도시된 실시예를 참조하여 설명하면 다음과 같다. The present invention having such features will be described with reference to the embodiments shown in FIGS. 1 to 2 as follows.

차량이 주행하는 도로에 매설되며 전원이 인가되는 전력송전선부(10)와, 차량에 설치되는 집전장치부(20)로 구성된다.It is composed of a power transmission line unit 10 is embedded in the road on which the vehicle travels and the power is applied, and a current collector unit 20 installed in the vehicle.

상기 전력송전선부(10)는 직선도체형식의 코일(12)과, 코일(12)의 상면으로 누설되는 자속량을 줄이기 위한 자로폐쇄형 비자성체(11)로 구성된다.The power transmission line part 10 is composed of a coil 12 of a linear conductor type and a magnetic closure nonmagnetic material 11 for reducing the amount of magnetic flux leaking to the upper surface of the coil 12.

상기 집전장치부(20)는 상기 전력송전선부(10)의 코일(12)과 마주보는 철심(21)과, 철심(21)에 권선된 코일(22)로 구성된다.The current collector unit 20 includes an iron core 21 facing the coil 12 of the power transmission line unit 10, and a coil 22 wound on the iron core 21.

상기 집전장치부(20)의 철심(21)은 전력송전선부(10)의 코일(12)이 위치에 대응하는 중앙부에 코일(22)의 설치부를 갖는 사다리꼴의 반개폐형의 관형상으로 이루어지며, 그 단면부(C)가 전력송전부(10)의 코일(12)에서 발생된 자속이 이동하도록 하는 자기에너지 경로를 형성한다.Iron core 21 of the current collector unit 20 is made of a trapezoidal semi-opening tubular shape having the installation portion of the coil 22 in the center corresponding to the position of the coil 12 of the power transmission line portion 10, The cross section C forms a magnetic energy path for the magnetic flux generated in the coil 12 of the power transmission unit 10 to move.

상기 철심(21)에 권선된 코일(22)은 권선시 철심(21)으로부터 소정의 간격만큼 이격될 수 있도록 비자성체(23)를 설치하도록 한다. The coil 22 wound on the iron core 21 is provided with a nonmagnetic material 23 so as to be spaced apart from the iron core 21 by a predetermined interval during winding.

이와 같은 본 발명은,Such a present invention,

차량 주행시에 도로에 매설된 전력송전선부(10)와 집전장치부(20)는 일정하게 유지되는 공극을 형성한 상태에서 코일(12)과 철심(21)이 구성된다. The coil 12 and the iron core 21 are formed in the state where the space between the power transmission line portion 10 and the current collector portion 20 embedded in the road while the vehicle is running to form a constant maintained.

상기 철심(21)은 전력송전선부(10)의 코일(12)의 상단에 코일(12)의 매설된 방향으로 단면(C)을 갖도록 사다리꼴의 반개폐형의 관형상을 갖도록 구성되어, 코일(12)에서 발생된 자속이 이동하도록 자기에너지 경로를 형성한다. The iron core 21 is configured to have a trapezoidal half-opening tubular shape so as to have a cross section C in the buried direction of the coil 12 at the upper end of the coil 12 of the power transmission line portion 10, the coil 12 Form a magnetic energy path to move the magnetic flux generated in the).

이때 전력송전선부(10)의 코일(12)에 의한 자속의 분포를 고려하여 집전장치부(20)에서의 철심(21)의 형상을 설계할 수 있으며, 이를 고려하면 다양한 형상의 철심(21)을 적용할 수 있다. In this case, the shape of the iron core 21 in the current collector unit 20 may be designed in consideration of the distribution of magnetic flux by the coil 12 of the power transmission line unit 10. Can be applied.

전력송전선부(10)가 설치되는 위치 즉, 도로에 매설되는 점을 감안하여 직선도체형식의 코일(12)이 매립되며, 1차측 전력송전선부(10)에는 철심을 구성하지 않는다.In consideration of the location where the power transmission line unit 10 is installed, i.e., being embedded in the road, a coil 12 of a straight conductor type is embedded, and the primary power transmission line unit 10 does not form an iron core.

이는 철심을 도로하단에 연속적으로 설치하였을 경우 철심에 의한 철손, 동손의 양이 상당하므로 이를 설치하지 않고, 효율을 증가시키기 위하여 전력송전선부(10)의 자로형성은 공심형으로 한다. This is because when the iron core is continuously installed at the bottom of the road, the amount of iron loss and copper loss due to the iron core is considerable, so that the self-shaping of the power transmission line unit 10 is increased to increase efficiency without installing it.

이때 코일(12)의 상면이 트여져 있는 상태이므로, 코일(12)의 상면으로 자로폐쇄형 비자성체(11)를 설치하여 누설 자속량을 줄여준다.At this time, since the upper surface of the coil 12 is open, the magnetic flux closing nonmagnetic material 11 is installed on the upper surface of the coil 12 to reduce the amount of magnetic flux leakage.

또한 상기 집전장치부(20)의 철심(21)에는 코일(22)을 도 1 및 도 2에서와 같이, 중앙부에 권선하게 되며, 권선시 비자성체(23)를 함께 권선하여 코일(22)을 철심(21)으로부터 소정의 간격을 두고, 코일(22)의 권선이 이루어질 수 있도록 한다.In addition, the coil 22 is wound around the core 21 of the current collector 20, as shown in FIGS. 1 and 2, and the coil 22 is wound by winding the nonmagnetic material 23 together. At a predetermined distance from the iron core 21, the winding of the coil 22 can be made.

이와 같은 구성에 따라 전원이 공급되는 전력송전선부(10)가 1차측으로 작용하여 전력송전선부(10)의 코일(12)에 흐르는 전류에 따라 발생된 자속이 2차측인 집전장치(20)에 유기되어 집전장치(20)내에서 교류기전력이 발생하게 되는 바, According to such a configuration, the power transmission line unit 10 to which power is supplied acts as the primary side, and the magnetic flux generated according to the current flowing through the coil 12 of the power transmission line unit 10 is applied to the current collector 20 having the secondary side. It is induced to generate an AC electromotive force in the current collector 20,

여기서 본 발명에서 제시한 집전 장치는 다음과 같은 일반 변압기의 유기기전력식을 따른다.Here, the current collector proposed in the present invention follows the organic electromotive formula of the general transformer as follows.

e_{ 1 } (1차측```유기기전력)=``-N_{ 1 } { d phi } over { dt } #e_{ 2 } (2차측```유기기전력)=``-N_{ 2 } { d phi } over { dt }e_ {1} (primary side `` `organic power) =` `-N_ {1} {d phi} over {dt} #e_ {2} (secondary side` `` organic power) = `` -N_ {2 } {d phi} over {dt}

단 위에서 사용된 기전력의 경우 1, 2차 철심의 분리가 없다고 보고, 그래서 자속의 누설분이 미미하다고 가정하였을 때에 적용되는 변압기 기전력 공식이다.In the case of the electromotive force used in the unit, the transformer electromotive force formula is applied when it is assumed that there is no separation of the primary and secondary iron cores, and the leakage of magnetic flux is assumed to be insignificant.

본 발명 시스템에서는 비접촉 급전방식이므로, 차량과 도로사이에 유지되어야 하는 공극이 존재하며, 이와 같은 공극은 차량의 이동을 방해하지 않는 범위에서 충분하게 확보되어야 하고, 그 때문에 자연히 공극의 길이가 커질 수 밖에 없다. In the system of the present invention, since there is a non-contact power feeding method, air gaps must be maintained between the vehicle and the road. Such air gaps must be sufficiently secured in a range that does not prevent the movement of the vehicle. There is nothing else.

따라서 집전장치부(20)와 전력송전선부(10) 사이의 공극에 의해 발생하는 자속의 누설분이 발생하게 된다. Therefore, the leakage of the magnetic flux generated by the gap between the current collector unit 20 and the power transmission line unit 10 is generated.

이때, 발생하는 2차측인 집전 장치부(20)와 1차측인 전력송전선부(10) 사이의 자기적 누설성분은 1, 2차 측 전력전달효율을 결정짓는 중요한 요소로서 작용하므로 이러한 자속의 누설성분을 충분하게 고려하지 않은 일반 변압기의 계산방식의 경우, 이 수식의 적용으로 인하여 나타나는 계산, 설계의 오차가 무시할 수 없을 만큼 큰 값을 가지게 되므로, 누설 인덕턴스의 크기를 정확하게 계산할 필요가 있다. At this time, the magnetic leakage component between the secondary current collector 20 and the primary power transmission line 10 which acts as an important factor for determining the primary and secondary power transfer efficiency, the leakage of magnetic flux In the case of the general transformer calculation method that does not consider the components sufficiently, the calculation and design errors due to the application of this formula have a value that cannot be ignored, so it is necessary to accurately calculate the magnitude of the leakage inductance.

누설성분, 다시 말해 변압기의 누설 인덕턴스를 정확히 구하기 위해서는 유한요소법을 이용한 자속의 분포정도를 계산한 후, 이를 이용하여 1, 2차 측의 자기적 결합정도를 나타내는 결합계수 q를 구함으로써, 누설 인덕턴스의 값을 정확하게 계산한다. In order to accurately calculate the leakage component, that is, the leakage inductance of the transformer, the magnetic flux distribution is calculated using the finite element method, and then the coupling coefficient q representing the magnetic coupling degree of the primary and secondary sides is used to calculate the leakage inductance. Accurately calculate the value of.

급전 장치의 동작에 중요 요소로서 작용하는 누설 인덕턴스를 포함한 등가회로를 완성하면 급전 장치 자체 특성의 분석, 설계가 가능하다.Completion of the equivalent circuit including the leakage inductance, which acts as an important factor in the operation of the power feeding device, enables analysis and design of the power feeding device itself.

이와 같은 본 발명 시스템의 동작과정을 설명하면 다음과 같다. Referring to the operation of the present invention as described above.

이와 같은 전체 본 발명 시스템은 변압기에서와 같이 1차측 전력송전선부(10)와 2차측 집전장치부(20)로 구분할 수 있다.Such an overall system of the present invention may be divided into a primary side power transmission line unit 10 and a secondary side current collector unit 20 as in a transformer.

1차측 전력송전선부(10)에는 에너지를 공급하는 코일(전선)(12)과 2차측 집전장치부(20)에는 공급받는 코일(22)이 구성되어 있는 바, A coil (wire) 12 for supplying energy to the primary power transmission line unit 10 and a coil 22 for receiving the supply are provided in the secondary current collector unit 20.

1차측 도로에 매설된 전력송전선부(10)는 일반 코일 권선방식을 따르지 않고 직선도체 형식으로 코일(12)이 매립되는 형태를 이룬다. The power transmission line portion 10 embedded in the primary road forms a form in which the coil 12 is embedded in a straight conductor form without following a general coil winding method.

1차측 전력송전선(10)에 교류전력이 인가되면, Ampere의 주회적분 법칙( OINT vec H cdot d vec l `=` I )에 따라 이 교번전류가 흐르는 도선 주위에 자속을 발생시키게 된다.When AC power is applied to the primary power transmission line 10, magnetic flux is generated around the conducting wire through which this alternating current flows according to Ampere's round integral law (OINT vec H cdot d vec l `=` I).

따라서 발생된 자속은 전력송전선(10)의 코일(12)을 둘러싸고 2차측인 집전장치부(20)로 흐른다.Therefore, the generated magnetic flux flows to the current collector 20 on the secondary side, surrounding the coil 12 of the power transmission line 10.

여기서 차량이 이동중에도 전력송전선(10)의 코일(12)과 집전장치부(20)의 철심(21)은 일정한 공극을 유지하게 되며 전원주파수가 차량운전속도에 비하여 상대적으로 높기 때문에 차량의 이동에 관계없이 2차측인 집전장치부(20)의 철심(21)을 투과하게 된다.Here, while the vehicle is moving, the coil 12 of the power transmission line 10 and the iron core 21 of the current collector unit 20 maintain a constant air gap, and the power frequency is relatively high compared to the vehicle driving speed. Regardless, the iron core 21 of the current collector unit 20 on the secondary side is transmitted.

이때 Faraday 법칙(EMF=-N { d phi } over { dt } )에 의하여, 2차측인 집전장치부(20)에는 1차측인 전력송전선부(10)에 인가된 교류주파수와 동일한 주파수를 가지는 교류기전력이 유기 된다.At this time, according to Faraday's law (EMF = -N {d phi} over {dt}), the current collector unit 20 on the secondary side has the same frequency as the AC frequency applied to the power transmission line unit 10 on the primary side. Electromotive force is induced.

이와 같이 전력송전선부(10)로부터 집전장치부(20)로 전력을 공급받으므로써 이동차량 전원의 공급 및 차량내 배터리 충전전력의 공급이 가능해진다.In this way, the electric power is supplied from the power transmission line unit 10 to the current collector unit 20 so that the mobile vehicle power supply and the battery charging power in the vehicle can be supplied.

이와 같은 본 발명 시스템을 적용하면, 일반 노면에의 집전 설비를 설치하는 것만으로 차량의 운행이 가능하기 때문에 궤도를 필요로하는 종전 철도시스템에서 뿐만 아니라 일반 도로 주행용 차량 시스템에 대해서도 적용이 가능하다. By applying the present invention system, the vehicle can be operated simply by installing a current collector on a general road surface, so that the present invention can be applied not only to a conventional railway system requiring a track but also to a vehicle system for driving on a general road. .

또한 도로 또는 궤도내에 설치된 전력송전 시스템과 어떠한 물리적 접촉이 없이 완벽하게 분리되므로, 기계적인 마찰로 인한 손실없이 차량으로 전력을 공급하여 기후환경이나, 기계적인 요인으로 인한 집전 효율 저하 성분이 제거된다.In addition, since it is completely separated from the power transmission system installed on the road or track without any physical contact, power is supplied to the vehicle without loss due to mechanical friction, thereby eliminating the deterioration of current collection efficiency due to climatic environment or mechanical factors.

도 1은 본 발명 전기 차량의 전원급전용 비접촉 집전 시스템을 나타낸 사시도.1 is a perspective view showing a non-contact current collector for power supply of the electric vehicle of the present invention.

도 2는 본 발명에 있어서, 전원급전용 집전 시스템을 정면에서 나타낸 도면.2 is a front view showing a current collecting system for power supply according to the present invention;

Claims (3)

차량이 주행하는 궤도 또는 도로에 설치되어 전원이 인가되는 전력송전선부와, 전력송전선부와 소정의 거리를 두고 차량의 저면단에 설치되는 집전장치부로 구성하여, 1차측인 전력송전선부와 2차측인 집전장치부의 자기적 에너지 경로에 일정한 공극을 유지하면서 차량 운행중에 집전이 이루어지는 것을 특징으로 하며, The power transmission line part installed on the track or road on which the vehicle is driven and the power is applied, and the current collector part installed at the bottom end of the vehicle at a predetermined distance from the power transmission line part. Characterized in that the current is collected during the operation of the vehicle while maintaining a constant gap in the magnetic energy path of the phosphorus current collector, 전력송전선부는 직선도체형식의 코일이 설치되고, 코일의 상면으로는 누설되는 자속량을 줄이기 위해 자로폐쇄형 비자성체가 구성되며, The power transmission line part is provided with a coil of straight conductor type, and a magnetic closure type nonmagnetic material is formed to reduce the amount of magnetic flux leaking to the upper surface of the coil. 상기 집전장치부는 상기 전력송전선부의 방향으로 자기에너지 경로를 제공, 공유하는 단면부를 갖는 형상으로 이루어지는 철심과, 철심에 소정의 간격을 두고 이격되도록 권선되는 코일로 구성되는 것을 특징으로 전기 차량의 전원급전용 비접촉 집전 시스템.The current collector unit is composed of an iron core having a shape having a cross-section to provide and share a magnetic energy path in the direction of the power transmission line portion, and the coil is wound so as to be spaced apart from the iron core at a predetermined interval Dedicated contactless current collector system. 제 1항에 있어서, 상기 집전장치부의 철심은 전력송전선부의 방향으로 단면부가 형성되는 사다리꼴의 반개폐형 관형상으로 이루어지는 것을 특징으로 하는 전기 차량의 전원급전용 비접촉 집전 시스템.The non-contact current collecting system for power supply of an electric vehicle according to claim 1, wherein the iron core of the current collector part has a trapezoidal half-opening tubular shape in which a cross section is formed in the direction of the power transmission line part. 제 1항 또는 제 2항에 있어서, 상기 집전장치부의철심에 소정의 간격을 두고 이격된 위치에 코일이 권선될 수 있도록 하는 수단으로 비자성체를 더 포함하는 것을 특징으로 하는 전기 차량의 전원급전용 비접촉 집전 시스템. The power supply of an electric vehicle according to claim 1 or 2, further comprising a non-magnetic material as a means for allowing the coil to be wound at a position spaced apart from the iron core of the current collector part at a predetermined interval. Contactless current collector system.
KR1020040015190A 2004-03-05 2004-03-05 Non contact collection power system for power supply of electric car KR100573411B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040015190A KR100573411B1 (en) 2004-03-05 2004-03-05 Non contact collection power system for power supply of electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040015190A KR100573411B1 (en) 2004-03-05 2004-03-05 Non contact collection power system for power supply of electric car

Publications (2)

Publication Number Publication Date
KR20050089673A true KR20050089673A (en) 2005-09-08
KR100573411B1 KR100573411B1 (en) 2006-04-25

Family

ID=37272056

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040015190A KR100573411B1 (en) 2004-03-05 2004-03-05 Non contact collection power system for power supply of electric car

Country Status (1)

Country Link
KR (1) KR100573411B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007108586A1 (en) * 2006-03-22 2007-09-27 Korea Railroad Research Institute System of railway vehicle using linear motor and non-contact electric power supply system
KR100783723B1 (en) * 2006-01-20 2007-12-07 한국철도기술연구원 Non-contact electric power supply system
KR100976061B1 (en) * 2006-10-05 2010-08-17 쇼와 히코키 고교 가부시키가이샤 Non-contact electric power supply device
WO2011062452A2 (en) * 2009-11-23 2011-05-26 Korea Advanced Institute Of Science And Technology Cable protection structure, road structure having the same, and method of constructing the road structure
KR101457198B1 (en) * 2013-05-31 2014-11-03 한국철도기술연구원 Contactless power supply system for railway cars
CN105699101A (en) * 2016-01-27 2016-06-22 中国矿业大学 A road surface energy acquisition test system and a method thereof
CN109367392A (en) * 2018-11-28 2019-02-22 兰州交通大学 A kind of contactless train pantograph
CN114683858A (en) * 2022-04-29 2022-07-01 中车青岛四方机车车辆股份有限公司 Current collector of magnetic suspension train and power supply system, control method and device thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100783723B1 (en) * 2006-01-20 2007-12-07 한국철도기술연구원 Non-contact electric power supply system
WO2007108586A1 (en) * 2006-03-22 2007-09-27 Korea Railroad Research Institute System of railway vehicle using linear motor and non-contact electric power supply system
KR100840927B1 (en) * 2006-03-22 2008-06-24 한국철도기술연구원 System of railway vehicle using Linear motor and Non-contact electric power supply system
KR100976061B1 (en) * 2006-10-05 2010-08-17 쇼와 히코키 고교 가부시키가이샤 Non-contact electric power supply device
WO2011062452A3 (en) * 2009-11-23 2011-11-10 Korea Advanced Institute Of Science And Technology Cable protection structure, road structure having the same, and method of constructing the road structure
KR101042948B1 (en) * 2009-11-23 2011-06-20 한국과학기술원 Smart Highway having Embedded Cable
WO2011062452A2 (en) * 2009-11-23 2011-05-26 Korea Advanced Institute Of Science And Technology Cable protection structure, road structure having the same, and method of constructing the road structure
KR101457198B1 (en) * 2013-05-31 2014-11-03 한국철도기술연구원 Contactless power supply system for railway cars
CN105699101A (en) * 2016-01-27 2016-06-22 中国矿业大学 A road surface energy acquisition test system and a method thereof
CN109367392A (en) * 2018-11-28 2019-02-22 兰州交通大学 A kind of contactless train pantograph
CN109367392B (en) * 2018-11-28 2024-02-27 兰州交通大学 Non-contact type train pantograph
CN114683858A (en) * 2022-04-29 2022-07-01 中车青岛四方机车车辆股份有限公司 Current collector of magnetic suspension train and power supply system, control method and device thereof
CN114683858B (en) * 2022-04-29 2023-09-15 中车青岛四方机车车辆股份有限公司 Current collector of magnetic suspension train and power supply system, control method and device thereof

Also Published As

Publication number Publication date
KR100573411B1 (en) 2006-04-25

Similar Documents

Publication Publication Date Title
US8833533B2 (en) Ultra slim power supply device and power acquisition device for electric vehicle
Yilmaz et al. General design requirements and analysis of roadbed inductive power transfer system for dynamic electric vehicle charging
Bi et al. A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility
Chopra et al. Driving range extension of EV with on-road contactless power transfer—A case study
Mi et al. Modern advances in wireless power transfer systems for roadway powered electric vehicles
Choi et al. Advances in wireless power transfer systems for roadway-powered electric vehicles
JP5083413B2 (en) Electric vehicle
AU2009294810B2 (en) Inductively receiving electric energy for a vehicle
KR101038350B1 (en) Non-contact type inductive power transfer device for electric vehicle
CN102883908B (en) For the system (metal detection device) of one or more electrically driven vehicle
CN101860068A (en) Road charging device for charging electric automobile battery
KR20050036663A (en) The electric rolling stoke system using non contact supply electric power
Huh et al. KAIST wireless electric vehicles-OLEV
CN102822000B (en) System (detector assembly) for one or more electrically driven vehicles
KR20180102290A (en) A vehicle and a charger for the vehicle
KR100573411B1 (en) Non contact collection power system for power supply of electric car
Choi et al. Trends of wireless power transfer systems for roadway powered electric vehicles
Kobayashi et al. Development and performance evaluation of a non-contact rapid charging inductive power supply system for electric micro-bus
Navidi et al. Analysis of wireless and catenary power transfer systems for electric vehicle range extension on rural highways
KR100976345B1 (en) Automatic power apparatus and electric vehicle having the same and driving method thereof
JP2013169109A (en) Mobile vehicle and non contact power transmission apparatus
KR20050106313A (en) The electric car battery charging system using non contact supply electric power
JP6044124B2 (en) Mobile vehicle and non-contact power transmission device
Russer et al. A system for wireless inductive power supply of electric vehicles while driving along the route
KR101356030B1 (en) System for Charging And Pick-up, Collector Device And Power Supply Structure Therefor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130409

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140409

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee