KR20050071188A - Expression vector for benzaldehyde dehydrogenase gene from pseudomonas putida, bacteria transformed with the same and method for preparing 2,6-naphthalene dicarboxylic acid with highly purified using the transformants - Google Patents

Expression vector for benzaldehyde dehydrogenase gene from pseudomonas putida, bacteria transformed with the same and method for preparing 2,6-naphthalene dicarboxylic acid with highly purified using the transformants Download PDF

Info

Publication number
KR20050071188A
KR20050071188A KR1020030102143A KR20030102143A KR20050071188A KR 20050071188 A KR20050071188 A KR 20050071188A KR 1020030102143 A KR1020030102143 A KR 1020030102143A KR 20030102143 A KR20030102143 A KR 20030102143A KR 20050071188 A KR20050071188 A KR 20050071188A
Authority
KR
South Korea
Prior art keywords
dicarboxylic acid
pseudomonas putida
naphthalene dicarboxylic
acid
expression vector
Prior art date
Application number
KR1020030102143A
Other languages
Korean (ko)
Other versions
KR100659419B1 (en
Inventor
이종환
최용복
김성균
김동성
김소영
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020030102143A priority Critical patent/KR100659419B1/en
Publication of KR20050071188A publication Critical patent/KR20050071188A/en
Application granted granted Critical
Publication of KR100659419B1 publication Critical patent/KR100659419B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01007Benzaldehyde dehydrogenase (NADP+) (1.2.1.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/01028Benzaldehyde dehydrogenase (NAD+) (1.2.1.28)

Abstract

본 발명은 슈도모나스 푸티다 유래의 벤즈알데히드 디히드로게나제 유전자의 발현 벡터, 이 벡터로 형질전환된 미생물 및 이 형질전환체 이용한 고순도 2,6-나프탈렌 디카르복실산의 제조 방법에 관한 것으로, 좀 더 구체적으로, 2-포밀-6-나프토산을 2,6-나프탈렌 디카르복실산으로 전환시키는 능력을 갖는 슈도모나스 푸티다(Pseudomonas putida) 유래의 벤즈알데히드 디히드로게나제 유전자의 발현벡터를 제조하고 이 발현벡터로 형질전환된 미생물을 사용하여 2,6-나프탈렌 디카르복실산의 순도를 높이는 방법에 관한 것이다.The present invention relates to an expression vector of a benzaldehyde dehydrogenase gene derived from Pseudomonas putida, a microorganism transformed with the vector, and a method for producing high purity 2,6-naphthalene dicarboxylic acid using the transformant. Specifically, an expression vector of benzaldehyde dehydrogenase gene derived from Pseudomonas putida having the ability to convert 2-formyl-6-naphthoic acid to 2,6-naphthalene dicarboxylic acid was prepared and expressed. The present invention relates to a method for increasing the purity of 2,6-naphthalene dicarboxylic acid using a microorganism transformed with a vector.

본 발명의 슈도모나스 푸티다 유래의 벤즈알데히드 디히드로게나제를 발현하는 형질전환 미생물을 사용할 경우, 2,6-디메틸나프탈렌을 산화시켜 생산한 조 나프탈렌 디카르복실산에 포함된 2-포밀-6-나프토산을 생물학적 방법으로 경제적이며 효율적으로 산화시켜 고순도의 2,6-나프탈렌 디카르복실산으로 전환시킬 수 있으므로 고순도로 정제된 2,6-나프탈렌 디카르복실산을 생산하기 위해 산업적 이용가치가 매우 높은 장점이 있다. When using a transformed microorganism expressing benzaldehyde dehydrogenase derived from Pseudomonas putida of the present invention, 2-formyl-6-naph contained in crude naphthalene dicarboxylic acid produced by oxidizing 2,6-dimethylnaphthalene Tosan can be converted into high purity 2,6-naphthalene dicarboxylic acid economically and efficiently by biological method, so the industrial value is very high to produce purified 2,6-naphthalene dicarboxylic acid. There is an advantage.

Description

슈도모나스 푸티다 유래의 벤즈알데히드 디히드로게나제 유전자의 발현 벡터, 이 벡터로 형질전환된 미생물 및 이 형질전환체를 이용한 고순도 2,6-나프탈렌 디카르복실산의 제조 방법{Expression vector for benzaldehyde dehydrogenase gene from Pseudomonas putida, bacteria transformed with the same and method for preparing 2,6-Naphthalene dicarboxylic acid with highly purified using the transformants}Expression vector of benzaldehyde dehydrogenase gene derived from Pseudomonas putida, microorganism transformed with this vector, and method for producing high purity 2,6-naphthalene dicarboxylic acid using the transformant {Expression vector for benzaldehyde dehydrogenase gene from Pseudomonas putida, bacteria transformed with the same and method for preparing 2,6-Naphthalene dicarboxylic acid with highly purified using the transformants}

본 발명은 슈도모나스 푸티다 유래의 벤즈알데히드 디히드로게나제 유전자의 발현 벡터, 이 벡터로 형질전환된 미생물 및 이 형질전환체를 이용하여 고순도로 2,6-나프탈렌 디카르복실산을 제조하는 방법에 관한 것으로, 좀 더 구체적으로 슈도모나스 푸티다 (Pseudomonas putida) 유래의 벤즈알데히드 디히드로게나제(Benzaldehyde dehydrogenase; 이하 BZDH) 유전자(xylC)를 포함하는 재조합 발현벡터, 상기 발현벡터로 형질전환된 형질전환 미생물 및 이를 이용하여 2,6-디메틸나프탈렌(2,6-Dimethyl naphthalene; 이하 2,6-DMN)을 산화시켜 생산한 조 나프탈렌 디카르복실산(crude Naphthalene dicarboxylic acid; 이하 cNDA) 내에 함유된 2-포밀-6-나프토산(2-Formyl-6-naphthoic acid; 이하 FNA)을 2,6-나프탈렌 디카르복실산(2,6-Naphthalene dicarboxylic acid; 이하 NDA)으로 전환시키는 환경친화적이며 경제적으로 고순도의 2,6-나프탈렌 디카르복실산을 얻을 수 있는 방법에 관한 것이다.The present invention relates to an expression vector of a benzaldehyde dehydrogenase gene derived from Pseudomonas putida, a microorganism transformed with the vector, and a method for producing 2,6-naphthalene dicarboxylic acid with high purity using the transformant. More specifically, a recombinant expression vector comprising a benzaldehyde dehydrogenase (hereinafter referred to as BZDH) gene ( xylC ) derived from Pseudomonas putida , a transformed microorganism transformed with the expression vector, and 2-formyl contained in crude naphthalene dicarboxylic acid (cNDA) produced by oxidizing 2,6-dimethyl naphthalene (2,6-DMN) using Eco-friendly and economical conversion of 6-naphthoic acid (FNA) to 2,6-Naphthalene dicarboxylic acid (NDA) The present invention relates to a method for obtaining high purity 2,6-naphthalene dicarboxylic acid.

나프탈렌 디카르복실산의 디에스테르는 폴리에스테르 및 폴리아미드와 같은 여러 가지의 고분자 물질을 제조하는데 유용하다. 특히 유용한 디에스테르의 한 예로는 디메틸-2,6-나프탈렌 디카르복실레이트(이하 NDC)가 있다. NDC는 에틸렌 글리콜과 축합하여 고성능 폴리에스테르 물질인 폴리(에틸렌-2,6-나프탈렌)(이하 PEN)을 생성할 수 있다. PEN으로부터 제조된 섬유 및 필름은 폴리(에틸렌테레프탈레이트)(이하 PET)에 비하여 강도가 높고 열적 성질이 우수하다. 이로 인해 PEN은 자기 녹음 테이프 및 전자 부품을 제조하는데 사용될 수 있는 박막과 같은 상용품을 제조하는데 사용되는 매우 우수한 물질이다. 또한 기체 확산, 특히 이산화탄소, 산소 및 수증기에 대한 우수한 저항성으로 인해 PEN으로 제조된 필름은 식품 용기, 특히 고온 충전물용 식품 용기를 제조하는데 유용하다. 또한 타이어 코드 제조에 유용한 강화 섬유를 제조하는데 사용될 수 있다.Diesters of naphthalene dicarboxylic acids are useful for preparing various polymeric materials such as polyesters and polyamides. One example of a particularly useful diester is dimethyl-2,6-naphthalene dicarboxylate (hereinafter NDC). NDC can condense with ethylene glycol to produce poly (ethylene-2,6-naphthalene) (hereinafter PEN), a high performance polyester material. Fibers and films made from PEN have higher strength and better thermal properties than poly (ethylene terephthalate) (hereinafter PET). This makes PEN a very good material for making commercial products such as thin films that can be used to make magnetic recording tapes and electronic components. Films made of PEN are also useful for making food containers, especially food containers for high temperature fillings, due to their good resistance to gas diffusion, in particular carbon dioxide, oxygen and water vapor. It can also be used to make reinforcing fibers useful for making tire cords.

현재 NDC는 도 3에 나타낸 바와 같이 2,6-DMN을 산화시켜 cNDA를 생산한 다음 에스테르화시켜 생산되고 있다. 현재 NDC가 PEN 합성시 주원료로 사용되고 있지만 NDA를 원료로 사용할 경우에 비해 몇 가지 문제점을 가지고 있다. 첫째, NDA 축합 반응시에는 물이 생성되는데 비해 NDC의 경우 메탄올이 부산물로 생성되어 폭발성의 위험이 있으며, 둘째, NDC 제조 공정 중 순수한 NDC를 얻기 위하여 NDA를 에스테르화하여 정제공정을 거쳐 NDC를 생산하므로 NDA에 비하여 한 단계의 공정이 더 필요하고, 셋째로 기존의 PET 생산설비를 가지고 있을 경우 기존 설비의 이용 차원에서 NDC의 사용에 적절치 못하다.NDC is currently produced by oxidizing 2,6-DMN to produce cNDA and then esterification, as shown in FIG. Currently, NDC is used as a main raw material when synthesizing PEN, but there are some problems compared to using NDA as a raw material. Firstly, water is produced during NDA condensation, whereas methanol is a by-product in the case of NDC, and there is a risk of explosiveness. Second, NDA is esterified to obtain pure NDC during the NDC manufacturing process, and then NDC is produced through purification process. Therefore, one more step is required compared to NDA, and thirdly, if you have an existing PET production facility, it is not suitable for the use of NDC in terms of using the existing facility.

상술한 NDC의 단점에도 불구하고 PEN 제조시 NDA 대신에 NDC가 사용되는 이유는 아직까지 중합에 필요한 순도를 가진 정제된 NDA의 제조가 어렵기 때문이다. DMN의 산화시 FNA, 2-나프토산, 및 트리멜리트산 등 각종 불순물이 포함되어 있는 cNDA가 생성된다. 이중 특히 FNA가 존재하면 중합반응이 중간에서 멈추게 되어 중합체의 물성에 나쁜 영향을 미치게 되므로 FNA를 제거해야 되나 이의 제거에는 어려운 문제가 존재한다.Despite the disadvantages of NDC described above, the reason why NDC is used instead of NDA in PEN production is that it is still difficult to produce purified NDA having the purity necessary for polymerization. Oxidation of DMN produces cNDA containing various impurities such as FNA, 2-naphthoic acid, and trimellitic acid. Of these, in particular, the presence of FNA, the polymerization is stopped in the middle to adversely affect the physical properties of the polymer to remove the FNA, but there is a difficult problem to remove it.

따라서, cNDA에 존재하는 FNA를 제거하기 위하여 또는 NDA를 정제하기 위하여 재결정법, 산화공정을 한 번 더 거치는 방법, cNDA를 메탄올을 이용하여 NDC로 제조한 후 수화시켜 NDA를 제조하거나 수소화 공정에 의해 정제된 NDA를 제조하는 방법 등이 연구되었다. 또한 용매 처리, 용융 결정, 고압 결정, 초임계추출 등 여러 가지 정제방법을 사용하고 있으나 아직까지 만족할 만한 순도를 가진 NDA를 제조하지 못하고 있다. 또한 순도를 높이더라도 수율이 매우 떨어져 실제 생산에 적용하기가 어려운 실정이다.Therefore, in order to remove FNA present in cNDA or to purify NDA, recrystallization, oxidation process is performed once more, cNDA is prepared by NDC using methanol and then hydrated to prepare NDA or by hydrogenation process. Methods of preparing purified NDA have been studied. In addition, various purification methods such as solvent treatment, melting crystals, high pressure crystals, and supercritical extraction have been used, but have not yet produced NDAs with satisfactory purity. In addition, even if the purity is increased, the yield is very difficult to apply to actual production.

또한 생물학적 방법을 사용하여 FNA를 제거하고자 하는 노력이 시도된 바 있는데, 현재까지 바실러스(Bacillus) 속 균주를 이용하여 FNA를 제거시키는 방법에 대한 보고가 있으며(한국특허출원 제02-0087819호), XMO를 이용하여 방향족 알데히드 및 카르복실산을 제조하는 방법(한국특허출원 제02-7005344호)이 보고되었으나, FNA를 NDA로 전환하는 방법에 대해선 알려진 바가 없다.In addition, efforts have been made to remove FNA using a biological method. To date, there has been a report on a method for removing FNA using a strain of Bacillus genus (Korean Patent Application No. 02-0087819). A method for preparing aromatic aldehydes and carboxylic acids using XMO (Korean Patent Application No. 02-7005344) has been reported, but there is no known method for converting FNA to NDA.

한편, 슈도모나스 푸티다(Pseudomonas putida) mt-2의 TOL 플라스미드 pWWO의 xyl 오페론상에 존재하는 xylC는 방향족 알데히드를 산화시키는 역할을 하는 효소인 벤즈알데히드 디히드로게나제(BZDH)를 코딩하는 유전자이다. BZDH는 방향족 고리의 알데히드기를 선택적으로 산화시켜서 카르복실기로 전환시킨다. 이는 메타(meta)-이화 경로를 통해 크렙스 회로의 기질로 변환될 카르복실산 유도체를 형성하는 대사 경로의 초기단계이다. 도 5는 초기 TOL 대사 경로 효소 및 초기 TOL 오페론의 xyl 유전자들의 조직화 (organization)에 의해 톨루엔에서 벤질 알콜, 벤즈알데히드 및 벤조산으로의 단계별 산화를 나타낸다. XMO는 크실렌 모노옥시게나제를 나타내고, BADH는 벤질 알콜 데히드로게나제를 나타내고, BZDH는 벤즈알데히드 디히드로게나제를 나타낸다. Pu는 상부의 TOL 오페론 프로모터를 지시하고, xylWxylN은 미지 기능의 유전자이다. XMO는 유전자 xylMxylA에 의해 코딩되는 2개의 폴리펩티드 서브유닛으로 구성된다. xylA는 NADH 수용자 리덕타제, 즉, NADH로부터의 환원 당량을 막에 위치한 히드록실라제인 xylM으로 수송하는 전자 수송 단백질이다. 대사 경로의 제2 효소인 BADH는 기질이 장쇄 알콜인 아연-함유 디히드로게나제 족의 동종이량체 구성원인 벤질 알콜 디히드로게나제이다. 이 효소는 xylB 유전자에 의해 코딩된다.On the other hand, Pseudomonas footage is (Pseudomonas putida) xylC present on the xyl operon of the TOL plasmid pWWO of mt-2 is a gene encoding benzaldehyde dehydrogenase of claim (BZDH) an enzyme which acts to oxidize an aromatic aldehyde. BZDH converts the aldehyde group of the aromatic ring to a carboxyl group by selective oxidation. This is the initial stage of the metabolic pathway that forms carboxylic acid derivatives that will be converted to substrates of the Krebs cycle via the meta-catabolic pathway. Figure 5 shows the stepwise oxidation of toluene to benzyl alcohol, benzaldehyde and benzoic acid by the organization of the xy genes of the early TOL metabolic pathway enzyme and early TOL operon. XMO stands for xylene monooxygenase, BADH stands for benzyl alcohol dehydrogenase and BZDH stands for benzaldehyde dehydrogenase. Pu indicates the upper TOL operon promoter, xylW and xylN are unknown function genes. XMO consists of two polypeptide subunits encoded by the genes xylM and xylA . xylA is an NADH receptor reductase, ie an electron transport protein that transports a reducing equivalent from NADH to xylM , a hydroxylase located on the membrane. BADH, the second enzyme of the metabolic pathway, is benzyl alcohol dehydrogenase, a homodimer member of the zinc-containing dehydrogenase family whose substrate is a long chain alcohol. This enzyme is encoded by the xylB gene.

대사 경로의 제3 효소인 BZDH는 역시 동종이량체인 벤즈알데히드 디히드로게나제로, xylC 유전자에 의해 코딩되는 효소이다. 이 xylC를 발현하도록 유전공학적으로 조작된 대장균이 벤즈알데히드 및 3- 및 4-메틸-치환된 벤즈알데히드, 3-니트로-, 염소- 치환된 벤즈알데히드를 산화시킬 수 있음은 증명된 바 있었다(참조: Inoue et al., J. Bacteriol., 177: 1196-1201, 1995). 그러나 상기 BZDH가 FNA를 NDA로 전환시키는 지에 대해서는 알려진 바가 없다.BZDH, the third enzyme of the metabolic pathway, is also a homodimer, benzaldehyde dehydrogenase, an enzyme encoded by the xylC gene. It has been demonstrated that E. coli genetically engineered to express this xylC can oxidize benzaldehyde and 3- and 4-methyl-substituted benzaldehyde, 3-nitro-, chlorine-substituted benzaldehyde (Inoue et. al., J. Bacteriol., 177: 1196-1201, 1995). However, it is not known whether the BZDH converts FNA to NDA.

이에 본 발명에서는 cNDA중의 FNA를 제거하는 문제를 해결하기 위한 연구를 수행한 결과, 슈도모나스 푸티다 유래의 벤즈알데히드 디히드로게나제가 cNDA중의 FNA를 산화시켜 제거될 수 있고, 따라서 고순도의 NDA를 얻을 수 있음을 확인하였고, 본 발명은 이를 기초로 완성되었다.Therefore, in the present invention, as a result of research to solve the problem of removing FNA in cNDA, benzaldehyde dehydrogenase derived from Pseudomonas putida can be removed by oxidizing FNA in cNDA, thus high purity NDA can be obtained. It was confirmed, the present invention was completed based on this.

따라서, 본 발명의 목적은 슈도모나스 푸티다 유래의 벤즈알데히드 디히드로게나제를 코딩하는 xylC 유전자를 포함하는 재조합 발현벡터를 제공하는데 있다.Accordingly, an object of the present invention is to provide a recombinant expression vector comprising an xylC gene encoding benzaldehyde dehydrogenase derived from Pseudomonas putida.

본 발명의 다른 목적은 상기 재조합 발현벡터로 형질전환된 형질전환 미생물을 제공하는데 있다.Another object of the present invention to provide a transformed microorganism transformed with the recombinant expression vector.

본 발명의 또 다른 목적은 상기 형질전환 미생물에 벤즈알데히드 디히드로게나제의 고 발현을 유도하는 방법을 제공하는데 있다. Still another object of the present invention is to provide a method for inducing high expression of benzaldehyde dehydrogenase in the transgenic microorganism.

본 발명의 또 다른 목적은 상기 벤즈알데히드 디히로게나제가 고발현된 형질전환 미생물을 제공하는데 있다.Still another object of the present invention is to provide a transformed microorganism in which the benzaldehyde dehydrogenase is highly expressed.

본 발명의 또 다른 목적은 상기 형질전환 미생물을 사용하여 고순도로 2,6-나프탈렌 디카르복실산을 제조하는 방법을 제공하는데 있다.Still another object of the present invention is to provide a method for producing 2,6-naphthalene dicarboxylic acid with high purity using the transformed microorganism.

상기 목적을 달성하기 위하여, 본 발명의 재조합 발현벡터는 2-포밀-6-나프토산을 2,6-나프탈렌 디카르복실산으로의 전환능을 갖는 슈도모나스 푸티다(Pseudomonas putida) 유래의 벤즈알데히드 디히드로게나제 유전자(xylC)를 포함한다.In order to achieve the above object, the recombinant expression vector of the present invention is benzaldehyde dihydro derived from Pseudomonas putida having the ability to convert 2-formyl-6-naphthoic acid to 2,6-naphthalene dicarboxylic acid Genease gene ( xylC ).

상기 다른 목적을 달성하기 위한, 본 발명의 형질전환 미생물은 상기 벡터로 형질전환된다.In order to achieve the above another object, the transformed microorganism of the present invention is transformed with the vector.

상기 또 다른 목적을 달성하기 위한 본 발명의 벤즈알데히드 디히드로게나제의 고 발현 유도방법은 상기 형질전환 미생물을 25 내지 45℃의 온도에서 배양하고, 상기 배양액에 0.1 내지 2.0mM의 IPTG를 첨가시키는 것으로 구성된다.The high expression induction method of benzaldehyde dehydrogenase of the present invention for achieving the above another object is to incubate the transformed microorganism at a temperature of 25 to 45 ℃, add 0.1 ~ 2.0mM IPTG to the culture solution It is composed.

본 발명의 또 다른 목적을 달성하기 위한 벤즈알데히드 디히로게나제가 고발현된 형질전환 미생물은 상기 방법으로 제조된다.To achieve another object of the present invention, a transformed microorganism having high benzaldehyde dehydrogenase expression is prepared by the above method.

상기 또 다른 목적을 달성하기 위한, 본 발명의 고순도 2,6-나프탈렌 디카르복실산의 제조 방법은 pH가 6.0 내지 10.0인 완충용액, 0 내지 20%의 디메틸설폭사이드의 존재하에서, 벤즈알데히드 디히드로게나제의 발현을 유도시킨 형질전환 미생물를 조 나프탈렌 디메틸카르복실산을 기질로 사용하여 25 내지 45℃의 온도에서 반응시켜 조 나프탈렌 디메틸카르복실산에 포함된 2-포밀-6-나프토산을 2,6-나프탈렌디카르복실산으로 전환시키는 것을 구성된다.In order to achieve the above another object, the method for preparing high purity 2,6-naphthalene dicarboxylic acid of the present invention is a benzaldehyde dihydrogen in the presence of a buffer solution having a pH of 6.0 to 10.0, dimethyl sulfoxide of 0 to 20% The transformed microorganism which induced the expression of the genease was reacted at a temperature of 25 to 45 DEG C using crude naphthalene dimethylcarboxylic acid as a substrate to obtain 2-formyl-6-naphthoic acid contained in crude naphthalene dimethylcarboxylic acid 2, Conversion to 6-naphthalenedicarboxylic acid.

이하 본 발명을 좀 더 구체적으로 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

전술한 바와 같이, 본 발명은 슈도모나스 푸티다(Pseudomonas putida)에서 유래된 벤즈알데히드 디히드로게나제를 사용하여 고 순도의 2,6-나프탈렌 디카르복실산을 제조하는 방법에 관한 것이다.As mentioned above, the present invention relates to a method for preparing high purity 2,6-naphthalene dicarboxylic acid using benzaldehyde dehydrogenase derived from Pseudomonas putida .

먼저, 본 발명에서는 상기 슈도모나스 푸티다(Pseudomonas putida) 유래의 벤즈알데히드 디히드로게나제를 코딩하는 xylC 유전자로 슈도모나스 푸티다 t-2(ATCC 33015)로부터 통상의 방법으로 분리한 플라스미드 DNA(pWW0)를 주형으로 사용하였다. 그 다음, 유전자은행의 염기서열 자료(GenBank Sequence Database, D63341)를 바탕으로 프라이머(primer)를 제작하여 중합효소 연쇄반응을 통해 증폭하였다. 증폭된 xylC 유전자의 DNA 절편은 통상적인 방법으로 정제하고 벡터에 클로닝하였다. 본 발명에서는 상기 벡터로 pUC18을 사용하였으나 다양한 발현 벡터가 가능하므로 발현의 목적에 따라 다른 발현 벡터를 용이하게 이용할 수 있다.First, in the present invention, the plasmid DNA (pWW0) separated from Pseudomonas putida t-2 (ATCC 33015) by the conventional method is used as the xylC gene encoding the benzaldehyde dehydrogenase derived from Pseudomonas putida . Used as. Then, primers were prepared based on the gene bank's nucleotide sequence data (GenBank Sequence Database, D63341) and amplified by polymerase chain reaction. DNA fragments of the amplified xylC genes were purified by conventional methods and cloned into vectors. In the present invention, pUC18 is used as the vector, but various expression vectors are possible, and thus different expression vectors may be easily used depending on the purpose of expression.

본 발명에 따르면, 상기 슈도모나스 푸티다(Pseudomonas putida) 유래의xylC 유전자는 종래에 방향족 고리의 알데히드기를 선택적으로 산화시켜서 카르복실기로 전환시키는 기능이 알려져 있었으나, 본 발명에서와 같이 2-포밀-6-나프토산을 2,6-나프탈렌디카르복실산으로 전환시키는 기능은 확인된 바 없었다. 따라서, 본 발명에서는 미생물로 벤즈알데히드 디히드로게나제를 코딩하는 xylC 유전자를 갖는 슈도모나스 푸티다의 사용이 가능하고, 바람직하게는 슈도모나스 푸티다 mt-2(ATCC 33015)이다.According to the present invention, the xylC gene derived from Pseudomonas putida has been known in the past to selectively oxidize an aldehyde group of an aromatic ring to convert to a carboxyl group, but as in the present invention, 2-formyl-6-nap The function of converting tosan into 2,6-naphthalenedicarboxylic acid has not been confirmed. Therefore, in the present invention, Pseudomonas putida having an xylC gene encoding benzaldehyde dehydrogenase as a microorganism can be used, and Pseudomonas putida mt-2 (ATCC 33015) is preferable.

한편, 상기 제조된 발현 벡터내로 xylC 유전자의 클로닝은 제한 효소 절단 및 염기 서열 분석 등을 통해 확인할 수 있다.Meanwhile, cloning of the xylC gene into the prepared expression vector can be confirmed through restriction enzyme cleavage and sequencing.

제조된 상기 벤즈알데히드 디히드로게나제 발현 벡터는 숙주 미생물에 도입된다. 본 발명에서는 상기 숙주 미생물로 대장균을 이용하여, 염화칼슘법, 염화루비듐법, 또는 전기영동(일렉트로포레이션)법 등의 통상적인 방법으로 형질전환시켰다.The benzaldehyde dehydrogenase expression vector thus prepared is introduced into the host microorganism. In the present invention, E. coli is used as the host microorganism, and transformed by a conventional method such as calcium chloride method, rubidium chloride method, or electrophoresis (electroporation) method.

한편, 본 발명의 벤즈알데히드 디히드로게나제 발현 벡터로 형질전환된 형질전환 미생물을 사용하여 2-포밀-6-나프토산을 2,6-나프탈렌디카르복실산으로 전환시키기 위해서는 상기 형질전환 미생물 내에서 벤즈알데히드 디히드로게나제가 고 발현되는 것이 바람직하며 본 발명에서 사용한 pUC 18은 락 프로모터(lac promoter)의 조절하에 유전자가 발현되므로, 이소프로필-β-D-티오갈락토피라노시드(이하 "IPTG"라 함)를 사용하면 벤즈알데히드 디히드로게나제를 발현을 유도하였다. 상기 형질전환 미생물을 통상의 배양온도인 25 내지 45℃의 온도, 바람직하게는 37℃에서 충분히 키우고 이를 다시 100㎖의 LB 배지에 1%(V/V)가 되도록 접종하고 OD600 값이 0.4 내지 0.5에 이르게 되면 IPTG 농도가 0.1 내지 2.0mM, 바람직하게는 0.5mM이 되도록 첨가하여 상기 단백질의 발현을 유도한 후, 다시 37℃에서 배양하게 된다. 이러한 형질전환체의 배양 및 단백질의 발현은 상기 방법에만 한정되는 것은 아니며, 당 업자에게 알려진 모든 방법이 가능하다.Meanwhile, in order to convert 2-formyl-6-naphthoic acid to 2,6-naphthalenedicarboxylic acid using the transformed microorganism transformed with the benzaldehyde dehydrogenase expression vector of the present invention, It is preferable that benzaldehyde dehydrogenase is highly expressed and pUC 18 used in the present invention is a gene expressed under the control of a lac promoter, thus isopropyl-β-D-thiogalactopyranoside (hereinafter referred to as "IPTG"). ) Induced the benzaldehyde dehydrogenase expression. The transformed microorganism is incubated at a temperature of 25 to 45 ° C., preferably 37 ° C., which is a normal culture temperature, and inoculated again to 1% (V / V) in 100 ml of LB medium, and an OD 600 value of 0.4 to When it reaches 0.5, the IPTG concentration is added in an amount of 0.1 to 2.0 mM, preferably 0.5 mM, thereby inducing the expression of the protein, followed by incubation at 37 ° C. Cultivation of such transformants and expression of proteins are not limited to these methods, all methods known to those skilled in the art are possible.

이렇게 벤즈알데히드 디히드로게나제가 고발현된 형질전환 미생물을 사용하여 조 나프탈렌 디메틸카르복실산에 포함된 2-포밀-6-나프토산을 2,6-나프탈렌디카르복실산으로 전환시킬 수 있다.Thus, the benzaldehyde dehydrogenase-transformed microorganism can be used to convert 2-formyl-6-naphthoic acid contained in crude naphthalene dimethylcarboxylic acid to 2,6-naphthalenedicarboxylic acid.

상기 단백질이 고발현된 형질전환 미생물은 배양액으로부터 균체만을 회수하여 생리식염수에 현탁시켜서 사용된다.The transformed microorganism with high expression of the protein is used by recovering only cells from the culture medium and suspending them in physiological saline.

조 나프탈렌 디메틸카르복실산에 포함된 2-포밀-6-나프토산을 2,6-나프탈렌디카르복실산으로 전환시키는 반응은 pH 6.0 내지 10, 바람직하게는 pH 8의 완충 용액 및 0 내지 20%, 바람직하게는 5%의 디메틸설폭사이드(Dimethylsulfoxide) (DMSO)의 존재하에서 통상의 반응온도인 25 내지 45℃의 온도, 바람직하게는 30℃에서 이루어진다.The reaction for converting 2-formyl-6-naphthoic acid contained in crude naphthalene dimethylcarboxylic acid to 2,6-naphthalenedicarboxylic acid is carried out at a buffer solution of pH 6.0 to 10, preferably pH 8 and 0 to 20%. , Preferably at a temperature of 25 to 45 ° C., preferably at 30 ° C., which is a typical reaction temperature in the presence of 5% of dimethylsulfoxide (DMSO).

상기 완충용액은 KH2PO4, K2HPO4, 또는 Na2HPO4 등을 사용할 수 있고, 상기 DMSO는 용매로 사용된다. 아울러, 2-포밀-6-나프토산을 2,6-나프탈렌디카르복실산으로 충분히 전환시키기 위해서 반응 시간은 1 내지 20시간, 바람직하게는 6시간이다.As the buffer solution, KH 2 PO 4 , K 2 HPO 4 , or Na 2 HPO 4 may be used, and the DMSO is used as a solvent. In addition, in order to fully convert 2-formyl-6-naphthoic acid to 2,6-naphthalenedicarboxylic acid, reaction time is 1 to 20 hours, Preferably it is 6 hours.

한편, 기질로 사용되는 조 나프탈렌 디메틸카르복실산에 존재하는 2-포밀-6-나프토산의 함량은 0.01 내지 10%, 바람직하게는 9%인 것을 사용하였다. On the other hand, the content of 2-formyl-6-naphthoic acid present in the crude naphthalene dimethylcarboxylic acid used as the substrate was used 0.01 to 10%, preferably 9%.

이와 같이, 본 발명의 방법에 따라 벤즈알데히드 디히드로게나제가 발현된 형질전환 미생물을 사용하여 2-포밀-6-나프토산을 2,6-나프탈렌디카르복실산으로 전환시키면 99%이상의 순도를 나타내므로 고순도로 정제된 2,6-나프탈렌디카르복실산을 얻을 수 있어 경제적이며 산업적으로 이용가치가 높다.As such, the conversion of 2-formyl-6-naphthoic acid to 2,6-naphthalenedicarboxylic acid using a transformed microorganism expressing benzaldehyde dehydrogenase according to the method of the present invention results in a purity of 99% or more. Highly purified 2,6-naphthalenedicarboxylic acid can be obtained, which is economical and industrially useful.

이하 실시 예를 통해 본 발명을 좀 더 구체적으로 설명하지만, 이에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited thereto.

실시예 1Example 1

xylCxylC 유전자의 클로닝 Cloning of genes

슈도모나스 푸티다(Pseudomonas putida) mt-2(ATCC 33015) 유래의 벤즈알데히드 디히드로게나제를 코딩하는 xylC 유전자(서열번호 1)를 클로닝하기 위하여, 먼저 상기 xylC 유전자 서열을 포함하는 플라스미드 DNA(pWW0)를 슈도모나스 푸티다 mt-2(ATCC 33015)로부터 분리하였다(참조: Sambrook et al., Molecular Cloning, A Laboratory Manual 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). 상기 분리한 플라스미드 DNA(pWW0)를 주형 DNA로 하여, xylC(참조: GenBank Sequence Database, D63341) 유전자의 DNA 염기서열을 기초로 제작한 프라이머 1,5'-GCTGCAGAGGATGCGTTCGAAATG-3'(서열번호 2) 및 프라이머 2,5'-GATCAGCCCGCAAGCTGCAGCAAC-3'(서열번호 3)를 사용하여 중합효소 연쇄반응을 수행하였다. 중합효소 연쇄반응에서, 첫번째 변성(denaturation) 단계는 94℃에서 5분간 1회 수행하였고, 이후 두 번째 변성단계는 94℃에서 1분간, 교잡(annealing)단계는 56℃에서 1분간, 연장(extention) 단계는 72℃에서 1.5분간 수행하였으며, 이를 40회 반복하고, 이후 72℃에서 10분간 마지막 연장 단계를 1회 수행하였다. 이와 같은 방법으로 얻어진 절편에서 약 1.6kbp 크기의 DNA 절편을 분리하고, 제한효소 Pst I으로 절단하였다. 이를 동일한 제한효소로 절단한 플라스미드 pUC18에 클로닝하여 재조합 발현벡터 pUC18-xylC를 제조하였다. 도 2는 제작된 pUC18-xylC의 유전자 지도를 나타낸 것이다.In order to clone the xylC gene (SEQ ID NO: 1) encoding benzaldehyde dehydrogenase derived from Pseudomonas putida mt-2 (ATCC 33015), plasmid DNA (pWW0) comprising the xylC gene sequence was first prepared. Isolated from Pseudomonas putida mt-2 (ATCC 33015) (Sambrook et al., Molecular Cloning, A Laboratory Manual 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). Primer 1,5'-GCTGCAGAGGATGCGTTCGAAATG-3 '(SEQ ID NO: 2) prepared using the isolated plasmid DNA (pWW0) as a template DNA, based on the DNA base sequence of the xylC gene (GenBank Sequence Database, D63341); Polymerase chain reaction was performed using primers 2,5'-GATCAGCCCGCAAGCTGCAGCAAC-3 '(SEQ ID NO: 3). In the polymerase chain reaction, the first denaturation step was performed once at 94 ° C. for 5 minutes, then the second denaturation step was at 94 ° C. for 1 minute, and the annealing step at 56 ° C. for 1 minute, extension ) Step was performed at 72 ° C. for 1.5 minutes, and this was repeated 40 times, after which the last extension step was performed once at 72 ° C. for 10 minutes. DNA fragments of about 1.6kbp size were isolated from the fragments obtained in this manner, and digested with restriction enzyme Pst I. This was cloned into plasmid pUC18 digested with the same restriction enzyme to prepare a recombinant expression vector pUC18- xylC . Figure 2 shows a gene map of the produced pUC18- xylC .

실시예 2Example 2

클로닝된 유전자의 분석Analysis of Cloned Genes

실시예 1에서 제조된 재조합벡터(pUC18-xylC)의 클로닝된 유전자의 염기서열분석을 위하여, M13mp18과 M13mp19 두 벡터의 개열지도를 토대로 여러가지 제한효소들을 이용하여 상기 재조합 벡터를 절단하고, 각각의 조각을 M13mp18과 M13mp19에 서브클로닝(subcloning)하였으며, 이들을 AmpliTaq DNA 중합효소를 이용한 에이비아이 프리즘 빅다이 프라이머 사이클-시퀸싱 키트(ABI PRISM BigDye primer cycle-sequencing kit)(퍼킨-엘머사, 미국)를 이용하여 서열분석하였다. 이때, 두 가닥 DNA의 양쪽 방향을 다 읽기 위하여 부분적으로 합성 뉴클레오타이드를 만들었으며, 이를 통하여 클로닝된 DNA 절편의 유전자 염기서열을 분석하여, 진뱅크에 등록된 염기서열과 비교해 본 결과, xylC 유전자가 클로닝되었음을 확인하였다.For sequencing the cloned gene of the recombinant vector (pUC18- xylC ) prepared in Example 1, the recombinant vector was cut using various restriction enzymes based on a cleavage map of two vectors M13mp18 and M13mp19, and each fragment Were subcloned into M13mp18 and M13mp19, and the ABI PRISM BigDye primer cycle-sequencing kit (Perkin-Elmer, USA) using AmpliTaq DNA polymerase. Were sequenced. At this time, in order to read both directions of both strands of DNA, synthetic nucleotides were partially made. Through this analysis, the gene sequences of the cloned DNA fragments were analyzed and compared with the base sequences registered in GenBank , and the xylC gene was cloned. It was confirmed.

실시예 3Example 3

pUC18-pUC18- xylCxylC 가 도입된Introduced 형질전환 미생물의 제조Preparation of Transgenic Microorganisms

염화칼슘 방법을 이용하여(참조: Sambrook et al., Molecular Cloning, A Laboratory Manual 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) 대장균 JM109를 pUC18-xylC 벡터로 형질전환시켰다. 이를 엠피실린(ampicillin, 100㎎/L), X-gal, IPTG 및 박토-아가(bacto-agar, 15g/L)가 첨가된 LB 평판배지(이스트 추출물, 5g/L; 트립톤, 10g/L; NaCl, 10g/L)에서 배양하여 자라는 균주를 선별하여 형질전환 대장균 JM109(pUC18-xylC)를 제조하였다.E. coli JM109 was transformed with the pUC18- xylC vector using the calcium chloride method (Sambrook et al., Molecular Cloning, A Laboratory Manual 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). LB plate medium (yeast extract, 5 g / L; tryptone, 10 g / L) to which ampicillin (100 mg / L), X-gal, IPTG and bacto-agar (15 g / L) was added Transformed E. coli JM109 (pUC18- xylC ) was prepared by selecting strains grown by incubation in NaCl, 10g / L).

실시예 4Example 4

pUC18-pUC18- xylC xylC 형질전환 미생물의 배양을 통한 Through the cultivation of the xylCxylC 유전자의 발현  Gene expression

xylC 유전자를 형질전환 미생물에서 발현시키고 이를 확인하기 위해 상기 실시예 3에서 제조한 대장균 형질전환체 JM109(pUC18-xylC)와 대조군으로서 재조합 발현벡터가 포함되지 않은 야생주 JM109를 동일한 조건으로 배양하여 발현된 벤즈알데히드 디히드로게나제의 활성을 측정하였다. 상기 2 종의 대장균을 각각 LB 시험관에 접종한 다음 37℃에서 충분히 키우고 이를 다시 100㎖의 LB 배지에 1%(V/V)가 되도록 접종하였으며, OD600 값이 0.4 내지 0.5에 이르렀을 때, IPTG 농도가 0.5mM이 되도록 첨가하여 벤즈알데히드 디히드로게나제의 발현을 유도한 후, 다시 37℃에서 배양하였다.To express and confirm the xylC gene in a transformed microorganism, E. coli transformant JM109 prepared in Example 3 (pUC18- xylC ) and wild line JM109 without a recombinant expression vector as a control were cultured under the same conditions. Activity of the benzaldehyde dehydrogenase was measured. Each of the two strains of E. coli was inoculated in an LB test tube, then grown sufficiently at 37 ° C., and inoculated again to 1% (V / V) in 100 ml of LB medium, and when the OD 600 value reached 0.4 to 0.5, IPTG concentration was added to 0.5 mM to induce the expression of benzaldehyde dehydrogenase, and then incubated at 37 ° C.

실시예 5Example 5

pUC18-pUC18- xylC xylC 형질전환 미생물로부터 발현된 벤즈알데히드 디히드로게나제를 이용한 2-포밀-6-나프토산(FNA)으로부터 2,6-나프탈렌 디카르복실산(NDA)으로의 전환Conversion from 2-formyl-6-naphthoic acid (FNA) to 2,6-naphthalene dicarboxylic acid (NDA) using benzaldehyde dehydrogenase expressed from transgenic microorganisms

실시예 4에 의하여 얻은 벤즈알데히드 디히드로게나제가 발현된 형질전환 미생물의 배양액을 원심분리하여 균체를 회수하고 0.85% 생리식염수로 세척하고, 다시 상기 생리식염수에 현탁하였다. 하기 표 1의 조성으로 반응액을 제조하고 30℃의 반응조에서 6시간동안 반응 시킨 후 상기 반응액을 고속액체크로마토그래피 (HPLC)로 분석하였다. The culture medium of the transformed microorganism expressing the benzaldehyde dehydrogenase obtained in Example 4 was recovered by centrifugation, washed with 0.85% saline, and then suspended in the saline again. To prepare a reaction solution in the composition of Table 1 and after reacting for 6 hours in a reaction vessel of 30 ℃ the reaction solution was analyzed by high performance liquid chromatography (HPLC).

반응액에서 사용된 완충용액의 pH는 8.0이며, 디메틸설폭사이드의 농도는 5 %로 하였다. NDA내 FNA 함량은 9%인 것을 사용하였다. 실험 결과는 하기 표 2에 나타내었으며, JM109(pUC18-xylC)균주가 야생주에 비하여 높은 FNA의 NDA로의 전환능을 가지고 있었다. HPLC의 분석조건은 하기 표 3과 같았다.The pH of the buffer solution used in the reaction solution was 8.0 and the concentration of dimethyl sulfoxide was 5%. The FNA content in NDA was 9%. The experimental results are shown in Table 2 below, and JM109 (pUC18- xylC ) strain had higher FNA conversion to NDA than wild strains. HPLC analysis conditions were as shown in Table 3 below.

반응액 조성Reaction liquid composition 조성Furtherance 사용량usage 비 고Remarks 0.1 M KH2PO4/KOH(pH 8.0)0.1 M KH 2 PO 4 / KOH (pH 8.0) 42.5 ㎖42.5 ml 포도당glucose 0.25 g0.25 g 최종 농도. : 0.5% Final concentration. 0.5% DMSODMSO 0.5 ㎖0.5 ml NDA 용액(100 ㎎/㎖ DMSO)NDA solution (100 mg / ml DMSO) 2 ㎖ 2 ml DMSO 최종 농도 : 5% NDA내 FNA 함량 : 9 % DMSO final concentration: FNA content in 5% NDA: 9% 균체 현탁액Cell suspension 5 ㎖5 ml 합계Sum 50 ㎖50 ml

FNA의 NDA로의 전환률 (상대비율 %)Conversion rate of FNA to NDA (%) 실험구Experiment 반응시간(hr)Response time (hr) 전환율(%)% Conversion FNAFNA NDANDA JM109(pUC18-xylC)JM109 (pUC18- xylC ) 00 100.0100.0 100.0100.0 1One 85.485.4 101.3101.3 33 72.872.8 103.0103.0 66 51.651.6 104.2104.2 JM109 JM109 00 100.0100.0 100.0100.0 1One 99.599.5 100.1100.1 33 99.399.3 100.0100.0 66 99.399.3 100.0100.0

HPLC 분석조건HPLC analysis conditions HPLCHPLC LC 10-ADVP (시마츠)LC 10-AD VP (Shimatsu) 컬럼column XTerraTM RP18 (4.6ㅧ250㎜, Waters)XTerra TM RP18 (4.6 ㅧ 250㎜, Waters) 검출기Detector UV 240nm UV 240nm 컬럼 온도Column temperature 40℃ 40 ℃ 유속Flow rate 1 ㎖/분 1 ml / min 주입 부피Injection volume 20 ㎕ 20 μl 이동 상Mobile phase 시간(분)Minutes 0.3% 인산0.3% phosphoric acid 아세토니트릴Acetonitrile 00 9898 22 55 9292 88 2828 5252 4848 3030 2020 8080 3535 55 9595 3636 9898 22 4949 9898 22

본 발명에 따라 제조된 슈도모나스 푸티다(Pseudomonas putida) 유래의 xylC 유전자를 포함하는 발현벡터로 형질전환된 미생물을 사용할 경우, 2,6-디메틸 나프탈렌을 산화시켜 생산된 조 나프탈렌 디카르복실산에 포함되어있는 2-포밀-6-나프토산을 2,6-나프탈렌 디카르복실산으로 전환시키는데 뛰어난 효과가 있다. 따라서, 본 발명에 따른 방법을 이용할 경우 경제적이며 친환경적인 방법으로 고순도의 2,6-나프탈렌 디카르복실산을 생산할 수 있어 산업적으로 유용한 가치가 있다.When using a microorganism transformed with an expression vector containing the xylC gene derived from Pseudomonas putida prepared according to the present invention, 2,6-dimethyl naphthalene is included in the crude naphthalene dicarboxylic acid produced. It is excellent in converting 2-formyl-6-naphthoic acid into 2,6-naphthalene dicarboxylic acid. Therefore, when the method according to the present invention is used, it is possible to produce high purity 2,6-naphthalene dicarboxylic acid in an economical and environmentally friendly way, which is industrially useful.

도 1은 본 발명의 슈도모나스 푸티다 유래의 벤즈알데히드 디히드로게나제를 암호화하는 유전자를 포함하는 재조합 발현벡터 pUC18-xylC의 유전자 지도이다.1 is a genetic map of a recombinant expression vector pUC18- xylC containing a gene encoding benzaldehyde dehydrogenase derived from Pseudomonas putida of the present invention.

도 2는 DMN을 산화시켜 NDA 및 NDC를 합성하는 과정을 나타내는 도면이다.2 is a diagram illustrating a process of synthesizing NDA and NDC by oxidizing DMN.

도 3은 DMN의 산화시 생성물을 나타내는 도면이다.3 shows a product upon oxidation of DMN.

도 4는 상부의 TOL 대사 경로 효소 및 상부의 TOL 오페론의 xyl 유전자들에 의한 단계별 산화 기작을 나타낸 도면이다.4 is a diagram showing the step-by-step oxidation mechanism by the upper TOL metabolic pathway enzyme and the upper TOL operon xyl genes.

<110> hyosung <120> Expression vector for benzaldehyde dehydrogenase gene from Pseudomonas putida, bacteria transformed with the same and method for preparing 2,6-Naphthalene dicarboxylic acid with highly purified using the transformants <130> lee03-488 <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 1578 <212> DNA <213> Pseudomonas putida <400> 1 agttaaggag gcataattat gcgggaaaca aaagagcagc ctatctggta cgggaaggtg 60 tttagttcta attgggtaga ggcgcgggga ggtgttgcca atgttgtcga tccgtccaat 120 ggagacattc ttggcattac gggtgttgct aacggcgaag atgtcgatgc tgctgtgaac 180 gcagctaaga gagcgcaaaa ggaatgggcc gcaataccat ttagtgaaag agccgccatt 240 gtccgcaagg ctgccgaaaa actaaaggag cgcgagtatg aattcgccga ttggaacgta 300 cgggaatgcg gcgcaattcg tccgaagggc ttatgggagg ccggaattgc gtatgagcaa 360 atgcatcaag ctgcgggtct agcttctttg cctaacggta cattgtttcc atcggcagtt 420 ccagggcgca tgaatctttg tcagcgcgtt ccagttggcg tggtcggcgt aattgcacct 480 tggaatttcc cgttgtttct agcaatgcgt tcggtagcac cagccttagc gttgggtaat 540 gcggtgatct taaagcccga ccttcagact gctgtcaccg ggggggcgct cattgccgaa 600 atcttttccg acgctggcat gccggacggt gttcttcacg ttcttcctgg tggagcggac 660 gtaggagagt caatggttgc gaactccgga attaacatga tttcttttac cgggtccaca 720 caggtgggcc ggttgatcgg agagaaatgc gggagaatgc tgaaaaaggt tgcgcttgaa 780 ctgggtggta ataatgtcca catcgtgttg cctgacgccg atttagaagg ggctgtcagc 840 tgcgctgctt ggggtacgtt tttgcatcag ggccaagtgt gcatggccgc cggacgtcat 900 ttagtacata gggacgttgc tcagcaatat gcagagaaac tggcgctacg tgccaagaac 960 ttagtggtgg gggatccaaa ctcggatcaa gtgcatctcg gcccgcttat caatgagaaa 1020 caggtagttc gcgtccacgc gctcgttgaa tctgcgcaaa gggccggtgc tcaggttttg 1080 gcgggaggta cgtatcaaga tcgctactac caagctaccg taatcatgga tgtgaagccg 1140 gagatggagg ttttcaaatc tgaaattttc ggcccggtgg ctccgatcac tgtatttgac 1200 agtattgaag aggcgattga attggcaaac tgttcggagt atgggttggc cgcatctatc 1260 catactaggg cgttggcgac tggtctagac atcgcaaagc gtctaaatac cggtatggtc 1320 catattaatg accagccaat taactgtgag ccgcatgttc ccttcggagg aatgggtgcc 1380 tcgggtagcg gaggccggtt tggcggacct gcaagtattg aagaatttac tcaatctcaa 1440 tggattagta tggttgagaa gccagctaat tacccatttt gagtcgacaa taataaagta 1500 ggtggatata tggacacgct tcgttattac ctgattcctg ttgttactgc ttgcgggctg 1560 atcggatttt actatggt 1578 <210> 2 <211> 24 <212> DNA <213> Pseudomonas putida <400> 2 gctgcagagg atgcgttcga aatg 24 <210> 3 <211> 24 <212> DNA <213> Pseudomonas putida <400> 3 gatcagcccg caagctgcag caac 24<110> hyosung <120> Expression vector for benzaldehyde dehydrogenase gene from Pseudomonas putida, bacteria transformed with the same and method for preparing 2,6-Naphthalene dicarboxylic acid with highly purified using the transformants <130> lee03-488 <160> 3 <170> KopatentIn 1.71 <210> 1 <211> 1578 <212> DNA (213) Pseudomonas putida <400> 1 agttaaggag gcataattat gcgggaaaca aaagagcagc ctatctggta cgggaaggtg 60 tttagttcta attgggtaga ggcgcgggga ggtgttgcca atgttgtcga tccgtccaat 120 ggagacattc ttggcattac gggtgttgct aacggcgaag atgtcgatgc tgctgtgaac 180 gcagctaaga gagcgcaaaa ggaatgggcc gcaataccat ttagtgaaag agccgccatt 240 gtccgcaagg ctgccgaaaa actaaaggag cgcgagtatg aattcgccga ttggaacgta 300 cgggaatgcg gcgcaattcg tccgaagggc ttatgggagg ccggaattgc gtatgagcaa 360 atgcatcaag ctgcgggtct agcttctttg cctaacggta cattgtttcc atcggcagtt 420 ccagggcgca tgaatctttg tcagcgcgtt ccagttggcg tggtcggcgt aattgcacct 480 tggaatttcc cgttgtttct agcaatgcgt tcggtagcac cagccttagc gttgggtaat 540 gcggtgatct taaagcccga ccttcagact gctgtcaccg ggggggcgct cattgccgaa 600 atcttttccg acgctggcat gccggacggt gttcttcacg ttcttcctgg tggagcggac 660 gtaggagagt caatggttgc gaactccgga attaacatga tttcttttac cgggtccaca 720 caggtgggcc ggttgatcgg agagaaatgc gggagaatgc tgaaaaaggt tgcgcttgaa 780 ctgggtggta ataatgtcca catcgtgttg cctgacgccg atttagaagg ggctgtcagc 840 tgcgctgctt ggggtacgtt tttgcatcag ggccaagtgt gcatggccgc cggacgtcat 900 ttagtacata gggacgttgc tcagcaatat gcagagaaac tggcgctacg tgccaagaac 960 ttagtggtgg gggatccaaa ctcggatcaa gtgcatctcg gcccgcttat caatgagaaa 1020 caggtagttc gcgtccacgc gctcgttgaa tctgcgcaaa gggccggtgc tcaggttttg 1080 gcgggaggta cgtatcaaga tcgctactac caagctaccg taatcatgga tgtgaagccg 1140 gagatggagg ttttcaaatc tgaaattttc ggcccggtgg ctccgatcac tgtatttgac 1200 agtattgaag aggcgattga attggcaaac tgttcggagt atgggttggc cgcatctatc 1260 catactaggg cgttggcgac tggtctagac atcgcaaagc gtctaaatac cggtatggtc 1320 catattaatg accagccaat taactgtgag ccgcatgttc ccttcggagg aatgggtgcc 1380 tcgggtagcg gaggccggtt tggcggacct gcaagtattg aagaatttac tcaatctcaa 1440 tggattagta tggttgagaa gccagctaat tacccatttt gagtcgacaa taataaagta 1500 ggtggatata tggacacgct tcgttattac ctgattcctg ttgttactgc ttgcgggctg 1560 atcggatttt actatggt 1578 <210> 2 <211> 24 <212> DNA (213) Pseudomonas putida <400> 2 gctgcagagg atgcgttcga aatg 24 <210> 3 <211> 24 <212> DNA (213) Pseudomonas putida <400> 3 gatcagcccg caagctgcag caac 24

Claims (8)

2-포밀-6-나프토산을 2,6-나프탈렌 디카르복실산으로의 전환능을 갖는 슈도모나스 푸티다(Pseudomonas putida) 유래의 벤즈알데히드 디히드로게나제 유전자(xylC)를 포함하는 것을 특징으로 하는 재조합 발현벡터.Recombinant comprising a benzaldehyde dehydrogenase gene ( xylC ) from Pseudomonas putida having the ability to convert 2-formyl-6-naphthoic acid to 2,6-naphthalene dicarboxylic acid Expression vector. 제1항에 있어서, 상기 슈도모나스 푸티다는 슈도모나스 푸티다 mt-2(ATCC 33015)인 것을 특징으로 하는 재조합 발현벡터.The recombinant expression vector of claim 1, wherein the Pseudomonas putida is Pseudomonas putida mt-2 (ATCC 33015). 미생물에 제1항 또는 제2항의 발현벡터를 도입하여 형질전환시킨 것을 특징으로 하는 형질전환 미생물.A transformed microorganism characterized by transforming by introducing the expression vector of claim 1 or 2 into a microorganism. 제3항에 있어서, 상기 미생물은 대장균인 것을 특징으로 하는 방법.The method of claim 3, wherein the microorganism is E. coli. 제3항에 따른 형질전환 미생물을 25 내지 45℃의 온도에서 배양하고, 상기 배양액에 0.1 내지 2.0mM의 IPTG를 첨가하여 벤즈알데히드 디히드로게나제의 발현을 유도시키는 것을 특징으로 하는 벤즈알데히드 디히드로게나제의 발현 유도방법.The transformed microorganism according to claim 3 is incubated at a temperature of 25 to 45 ℃, and benzaldehyde dehydrogenase, characterized in that to induce the expression of benzaldehyde dehydrogenase by adding 0.1 to 2.0 mM IPTG to the culture medium Method of inducing expression of. 제5항에 따른 방법으로 벤즈알데히드 디히로게나제가 고발현된 것을 특징으로 하는 형질전환 미생물.A transformed microorganism characterized in that benzaldehyde dehydrogenase is highly expressed by the method according to claim 5. pH가 6.0 내지 10.0인 완충용액, 0 내지 20%의 디메틸설폭사이드의 존재하에서, 제6항에 따른 형질전환 미생물을 조 나프탈렌 디메틸카르복실산을 기질로 사용하여 25 내지 45℃의 온도에서 반응시켜 조 나프탈렌 디메틸카르복실산에 포함된 2-포밀-6-나프토산을 2,6-나프탈렌디카르복실산으로 전환시키는 것을 특징으로 하는 고 순도 2,6-나프탈렌디카르복실산의 제조 방법.In the presence of a buffer solution having a pH of 6.0 to 10.0 and 0 to 20% of dimethyl sulfoxide, the transformed microorganism according to claim 6 is reacted at a temperature of 25 to 45 DEG C using crude naphthalene dimethylcarboxylic acid as a substrate. A process for producing high purity 2,6-naphthalenedicarboxylic acid, characterized by converting 2-formyl-6-naphthoic acid contained in crude naphthalene dimethylcarboxylic acid to 2,6-naphthalenedicarboxylic acid. 제7항에 있어서, 상기 조 나프탈렌 디메틸카르복실산은 0.01 내지 10%의 2-포밀-6-나프토산을 포함하는 것을 특징으로 하는 2,6-나프탈렌디카르복실산의 제조 방법.8. The process for producing 2,6-naphthalenedicarboxylic acid according to claim 7, wherein the crude naphthalene dimethylcarboxylic acid comprises 0.01 to 10% 2-formyl-6-naphthoic acid.
KR1020030102143A 2003-12-31 2003-12-31 Expression vector for benzaldehyde dehydrogenase gene from Pseudomonas putida, bacteria transformed with the same and method for preparing 2,6-Naphthalene dicarboxylic acid with highly purified using the transformants KR100659419B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030102143A KR100659419B1 (en) 2003-12-31 2003-12-31 Expression vector for benzaldehyde dehydrogenase gene from Pseudomonas putida, bacteria transformed with the same and method for preparing 2,6-Naphthalene dicarboxylic acid with highly purified using the transformants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030102143A KR100659419B1 (en) 2003-12-31 2003-12-31 Expression vector for benzaldehyde dehydrogenase gene from Pseudomonas putida, bacteria transformed with the same and method for preparing 2,6-Naphthalene dicarboxylic acid with highly purified using the transformants

Publications (2)

Publication Number Publication Date
KR20050071188A true KR20050071188A (en) 2005-07-07
KR100659419B1 KR100659419B1 (en) 2006-12-18

Family

ID=37261164

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030102143A KR100659419B1 (en) 2003-12-31 2003-12-31 Expression vector for benzaldehyde dehydrogenase gene from Pseudomonas putida, bacteria transformed with the same and method for preparing 2,6-Naphthalene dicarboxylic acid with highly purified using the transformants

Country Status (1)

Country Link
KR (1) KR100659419B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100655030B1 (en) * 2005-11-24 2006-12-06 주식회사 효성 -72 26- Pseudomonas sp. HN-72 and Purification method of 26-naphthalene dicarboxylic acid using the same
WO2008013347A1 (en) * 2006-07-25 2008-01-31 Hyosung Corporation Purification method of crude naphthalene dicarboxylic acid using benzaldehyde dehydrogenase from recombinated microorganism and 2,6-naphthalene dicarboxylic acid in crystalline form obtained by using the same
KR100823411B1 (en) * 2006-12-26 2008-04-17 주식회사 효성 Purification method of crude naphthalene dicarboxylic acid using microorganism
JP2008526195A (en) * 2004-12-30 2008-07-24 ヒョサン コーポレーション Method for preparing transformant expressing benzaldehyde dehydrogenase and preparation of 2,6-naphthalene dicarboquinic acid using the transformant
KR100860435B1 (en) * 2006-12-29 2008-09-25 주식회사 효성 Purification method of crude naphthalene dicarboxylic acid using fixed microorganism
WO2015190632A1 (en) * 2014-06-12 2015-12-17 한국과학기술원 Recombinant microorganisms having terephthalic acid productivity, and terephthalic acid preparation method using same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19951768A1 (en) * 1999-10-27 2001-05-03 Basf Ag Microbiological process for the production of aromatic aldehydes and / or carboxylic acids

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008526195A (en) * 2004-12-30 2008-07-24 ヒョサン コーポレーション Method for preparing transformant expressing benzaldehyde dehydrogenase and preparation of 2,6-naphthalene dicarboquinic acid using the transformant
KR100655030B1 (en) * 2005-11-24 2006-12-06 주식회사 효성 -72 26- Pseudomonas sp. HN-72 and Purification method of 26-naphthalene dicarboxylic acid using the same
WO2007061155A1 (en) * 2005-11-24 2007-05-31 Hyosung Corporation Pseudomonas sp. hn-72 and purification method of 2,6-naphthalene dicarboxylic acid using the same
US8202714B2 (en) 2005-11-24 2012-06-19 Hyosung Corporation Pseudomonas SP. HN-72 and purification method of 2,6-naphthalene dicarboxylic acid using the same
WO2008013347A1 (en) * 2006-07-25 2008-01-31 Hyosung Corporation Purification method of crude naphthalene dicarboxylic acid using benzaldehyde dehydrogenase from recombinated microorganism and 2,6-naphthalene dicarboxylic acid in crystalline form obtained by using the same
KR100851742B1 (en) * 2006-07-25 2008-08-11 주식회사 효성 26- Purification method of crude naphthalene dicarboxylic acid using benzaldehyde dehydrogenase from recombinated microorganism and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same
KR100823411B1 (en) * 2006-12-26 2008-04-17 주식회사 효성 Purification method of crude naphthalene dicarboxylic acid using microorganism
KR100860435B1 (en) * 2006-12-29 2008-09-25 주식회사 효성 Purification method of crude naphthalene dicarboxylic acid using fixed microorganism
WO2015190632A1 (en) * 2014-06-12 2015-12-17 한국과학기술원 Recombinant microorganisms having terephthalic acid productivity, and terephthalic acid preparation method using same

Also Published As

Publication number Publication date
KR100659419B1 (en) 2006-12-18

Similar Documents

Publication Publication Date Title
US7470770B2 (en) Gene encoding malic enzyme and method for preparing succinic acid using the same
US20080020436A1 (en) Novel gene encoding formate dehydrogenases d &amp; e and method for preparing succinic acid using the same
US9200308B2 (en) Penicillium amagasakiense glucose oxidase mutants
KR100659419B1 (en) Expression vector for benzaldehyde dehydrogenase gene from Pseudomonas putida, bacteria transformed with the same and method for preparing 2,6-Naphthalene dicarboxylic acid with highly purified using the transformants
JP2012000059A (en) FERMENTATIVE PRODUCTION OF MUCONOLACTONE, β-KETOADIPIC ACID AND/OR LEVULINIC ACID
WO2003091430A1 (en) GLUCOSE DEHYDROGENASE β-SUBUNIT AND DNA ENCODING THE SAME
KR100770516B1 (en) 26- Method for preparing Transformants expressing Benzaldehyde dehydrogenase and Method for Purification of 2 6-naphthalene dicarboxylic acid using the Transformants
KR100655030B1 (en) -72 26- Pseudomonas sp. HN-72 and Purification method of 26-naphthalene dicarboxylic acid using the same
KR100719687B1 (en) 26- Method for Preparing Aldehyde Dehydrogenage Derived from Bacillus subtilis and Method for Purification of 26-Naphthalane Dicarboxylic Acid by Using It
KR100471112B1 (en) A refining process of 2,6-Naphtalene Dicarboxylic Acid using a microorganism
KR100702317B1 (en) 26- an aldehyde dehydrogenase from bacillus subtilis preparation method of the same and preparation method of 26-naphthalene dicarboxylic acid using the same
US7842483B2 (en) Cytochrome c oxidase enzyme complex
JP4036667B2 (en) Novel glucose dehydrogenase and gene encoding the same
US20090087874A1 (en) Glucose dehydrogenase and production thereof
KR20040062945A (en) Glucose dehydrogenase
KR20050042771A (en) Glucose dehydrogenase
JP2010148368A (en) Fructose dehydrogenase activity-having protein, and method for producing the same
KR100811385B1 (en) 26- Method for preparing Microorganism expressing Xylene monooxygenase and Method for production of 26-naphthalene dicarboxylic acid using the microorganism
KR100811380B1 (en) 26- method for preparing transformants expressing xanthine dehydrogenase and method for purification of 26-naphthalene dicarboxylic acid using the transformants
CN107099514B (en) The expression of dihydrolipoic acid dehydrogenase LPD a kind of and purification process
KR100320269B1 (en) New 2-Ketoaldonate Reductase Gene and 2-Keto-L-Glonate Production Using It
KR100847984B1 (en) 26- Purification method of crude naphthalene dicarboxylic acid using recombinated microorganism and 26-naphthalene dicarboxylic acid in crystalline form obtained by using the same
JP2012044868A (en) High-temperature-resistant bacterium producible of 5-ketogluconic acid, and method for producing 5-ketogluconic acid using the high-temperature-resistant bacterium
EA013412B1 (en) Gene sms 27
WO2012115290A1 (en) Transformant for producing lactic acid having high optical purity, and method for producing lactic acid using same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100630

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee