KR20050068492A - Processing method of semiconductor process chamber through inert gas - Google Patents

Processing method of semiconductor process chamber through inert gas Download PDF

Info

Publication number
KR20050068492A
KR20050068492A KR1020030099967A KR20030099967A KR20050068492A KR 20050068492 A KR20050068492 A KR 20050068492A KR 1020030099967 A KR1020030099967 A KR 1020030099967A KR 20030099967 A KR20030099967 A KR 20030099967A KR 20050068492 A KR20050068492 A KR 20050068492A
Authority
KR
South Korea
Prior art keywords
reaction chamber
inert gas
gas
wafer
semiconductor
Prior art date
Application number
KR1020030099967A
Other languages
Korean (ko)
Inventor
최승철
Original Assignee
동부아남반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동부아남반도체 주식회사 filed Critical 동부아남반도체 주식회사
Priority to KR1020030099967A priority Critical patent/KR20050068492A/en
Publication of KR20050068492A publication Critical patent/KR20050068492A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles

Abstract

본 발명은 불활성가스를 이용한 반도체 반응챔버의 공정방법에 관한 것으로, 반도체 소자 제조를 위한 공정이 진행되는 반응챔버에서 해당 공정이 완료된 후, 불활성가스를 유입하는 단계를 추가함으로써, 종래 공정가스가 공급관을 통하여 공급되던 중 반응을 일으켜서 퇴적물을 형성하고 이를 통하여 공정가스의 흐름을 방해하였던 문제를 해소하여, 해당 장비의 공정능력을 향상시킬 수 있는 효과가 있다. The present invention relates to a method of processing a semiconductor reaction chamber using an inert gas, and after the corresponding process is completed in the reaction chamber in which a process for manufacturing a semiconductor device is performed, adding a step of introducing an inert gas, thereby providing a conventional process gas supply pipe. It is possible to improve the process capability of the equipment by eliminating the problem of forming a sediment by reacting the supply gas through the reaction and preventing the flow of process gas.

Description

불활성가스를 이용한 반도체 반응챔버의 공정방법 { Processing method of semiconductor process chamber through inert gas } Process method of semiconductor reaction chamber using inert gas {Processing method of semiconductor process chamber through inert gas}

본 발명은 불활성가스를 이용한 반도체 반응챔버의 공정방법에 관한 것으로, 보다 상세하게는 반도체 소자 제조를 위한 공정이 진행되는 반응챔버에서 해당 공정이 완료된 후, 추가 단계를 더 포함하여 반응챔버의 공정능력을 향상시킬 수 있는 불활성가스를 이용한 반도체 반응챔버의 공정방법에 관한 것이다. The present invention relates to a process for processing a semiconductor reaction chamber using an inert gas, and more particularly, after the process is completed in a reaction chamber in which a process for manufacturing a semiconductor device is performed, further comprising a process capability of the reaction chamber. It relates to a process method of a semiconductor reaction chamber using an inert gas that can improve the.

현대 사회에는 라디오, 컴퓨터, 텔레비젼 등의 각종 전자 제품이 매우 다양하게 사용되고 있으며, 상기 전자 제품에는 필수적으로 다이오우드, 트랜지스터, 사이리스터등의 반도체 소자가 포함된다. 위와 같이 현대 사회의 필수품인 반도체 소자는, 산화실리콘(모래)에서 고순도의 실리콘을 추출한 것을 단결정으로 성장시키고 이를 원판 모양으로 잘라서 웨이퍼를 만드는 과정, 상기 웨이퍼의 전체 표면에 막을 형성하고 필요한 부분을 제거하여 일정한 패턴을 형성하는 과정, 형성된 패턴에 따라 불순물 이온을 도핑하고 금속배선을 통하여 최초 설계된 회로를 구현하며 필요한 소자로 만들기 위한 패키지 공정등이 포함된 일련의 웨이퍼 가공 과정을 통하여 제조된다. In the modern society, various electronic products such as radios, computers, and televisions are used in various ways, and the electronic products include semiconductor devices such as diodes, transistors, and thyristors. As described above, the semiconductor device, which is a necessity of the modern society, grows a single crystal of silicon oxide (sand) extracted from high purity into a single crystal, cuts it into a disk shape, forms a wafer, forms a film on the entire surface of the wafer, and removes necessary portions. It is manufactured through a series of wafer processing processes that include a process of forming a predetermined pattern, doping impurity ions according to the formed pattern, implementing a circuit originally designed through metallization, and a package process for making a required device.

위와 같은 반도체 제조 공정 중, 일부 공정은 필요한 장치가 구비된 챔버내에서 진행된다. 가령, 웨이퍼의 특정 부분 물질을 화학 반응을 통해 제거해 내는 식각(etching)공정이나, 화학 반응을 이용하여 웨이퍼상에 박막을 형성하는 화학기상증착(Chemical Vapor Deposition)공정, 실리콘 단결정으로 된 웨이퍼의 특정한 영역에 전기전도특성을 부여하기 위하여 불순물을 첨가하는 이온주입공정 등은 모두 반응챔버에서 진행된다. In the semiconductor manufacturing process as described above, some processes are performed in a chamber equipped with the necessary apparatus. For example, an etching process for removing a specific portion of a wafer through a chemical reaction, a chemical vapor deposition process for forming a thin film on a wafer using a chemical reaction, and a wafer of silicon single crystal. The ion implantation step of adding impurities to impart electrical conductivity to the region is all performed in the reaction chamber.

위와 같이, 반응챔버에서 진행되는 공정의 개략적인 절차는 대부분 유사하며, 도 1을 참조하여 그러한 종래의 절차를 살펴보기로 한다. As above, the schematic procedure of the process carried out in the reaction chamber is mostly similar, and such a conventional procedure will be described with reference to FIG. 1.

우선, 첫단계에서는 공정의 대상이 되는 웨이퍼가 공정챔부로 반입된다. 일반적으로 반응챔버에는, 웨이퍼가 고정될 수 있는 웨이퍼척이 구비되는 웨이퍼스테이지가 설치되며, 반응챔버로 반입되는 웨이퍼는 웨이퍼척에 의해 공정이 진행되는 동안 고정된다. First, in the first step, the wafer to be processed is brought into the process chamber. In general, the reaction chamber is provided with a wafer stage provided with a wafer chuck to which the wafer can be fixed, and the wafer carried into the reaction chamber is fixed during the process by the wafer chuck.

두번째 단계로는, 공정가스가 상기 반응챔버로 공급관를 통하여 유입된다. 물론 상기 공정가스는 해당 공정에 따라 달라진다. In a second step, process gas is introduced into the reaction chamber through a feed pipe. Of course, the process gas depends on the process.

세번째 단계에서는, 공정가스와 웨이퍼간에 반응을 통하여 공정이 진행된다. In the third step, the process proceeds through reaction between the process gas and the wafer.

네번째 단계에서는, 공정이 완료된 후 반응챔버로부터 공정가스가 배출되고 웨이퍼가 반출된다. 공정을 마친 웨이퍼는 다음 공정을 위한 장치로 이동하고, 반응챔버에는 새로운 웨이퍼가 반입된다. In the fourth step, after the process is completed, the process gas is discharged from the reaction chamber and the wafer is taken out. After processing, the wafer is transferred to the apparatus for the next process, and a new wafer is loaded into the reaction chamber.

그런데, 상기와 같은 공정에 있어서, 각각의 웨이퍼에 대한 공정이 진행된 후에는 반응챔버 내의 클리닝이 필요하지만, 이럴 경우 공정에 지나치게 많은 시간이 소요되므로, 대부분의 경우에는 여러장의 웨이퍼에 대한 공정을 진행한 후에 클리닝을 실시한다. 그러나, 이러한 방법의 단점은, 공급관으로 여러번 공정가스가 이동하게 됨에 따라, 공정가스의 일부가 공급관에서 반응을 일으켜 퇴적물을 형성하고 이는 공급관을 부분적으로 막아서 공정가스의 흐름을 방해한다는 것이다. 따라서 이와 같은 경우, 반응챔버로의 공정가스 공급이 원활하지 못하여 반응챔버에서의 반응에 약영향을 미치게 된다. 또한 공급관에 생긴 퇴적물 중 일부는 공정가스와 함께 반응챔버로 유입되어 웨이퍼에 결함(defect)을 발생시키는 원인이 되기도 한다. By the way, in the above process, cleaning in the reaction chamber is required after the process for each wafer is progressed, but in this case, because the process takes too much time, in most cases proceed with the process for several wafers After cleaning, perform cleaning. However, a disadvantage of this method is that as the process gas moves to the feed pipe several times, a portion of the process gas reacts in the feed pipe to form deposits, which partially obstruct the feed pipe and obstruct the flow of the process gas. Therefore, in such a case, supply of the process gas to the reaction chamber is not smooth, and thus weakly affects the reaction in the reaction chamber. In addition, some of the deposits generated in the supply pipe may flow into the reaction chamber together with the process gas to cause defects in the wafer.

본 발명은 상기와 같은 사정을 감안하여 발명된 것으로, 반도체 소자 제조를 위한 공정이 진행되는 반응챔버에서 해당 공정이 완료된 후 불활성가스를 유입하는 단계를 추가하여, 공정가스가 공급관에서 반응하여 퇴적물을 형성하고 공정가스의 흐름을 방해하는 것을 미연에 방지할 수 있는 불활성가스를 이용한 반도체 반응챔버의 공정방법을 제공하고자 함에 그 목적이 있다. The present invention has been made in view of the above circumstances, and in addition to the step of introducing an inert gas after the process is completed in the reaction chamber for the process of manufacturing a semiconductor device, the process gas reacts in the supply pipe to deposit It is an object of the present invention to provide a method for processing a semiconductor reaction chamber using an inert gas that can prevent the formation and obstruct the flow of the process gas.

상기와 같은 목적을 구현하기 위한 본 발명 반도체 반응챔버의 공정방법은, 반도체 공정이 진행되는 반응챔버에 웨이퍼가 반입되는 단계, 상기 반응챔버로 공급관를 통하여 공정가스가 유입되는 단계, 공정가스와 웨이퍼간에 공정에 필요한 반응이 일어나는 단계, 공정이 완료된 후 반응챔버로부터 공정가스가 배출되고 웨이퍼가 반출되는 단계로 이루어지는 불활성가스를 이용한 반도체 반응챔버의 공정방법에 있어서, 상기 웨이퍼가 반출된 후 상기 반응챔버로 공급관를 통하여 불활성가스가 유입되는 단계, 상기 유입된 불활성가스는 반응챔버 내부에서 일정시간 머무른 후 배출되는 단계를 더 포함하는 것을 특징으로 한다. In the process method of the semiconductor reaction chamber of the present invention for achieving the above object, the wafer is introduced into the reaction chamber in which the semiconductor process is performed, the step of introducing the process gas through the supply pipe into the reaction chamber, between the process gas and the wafer A method of processing a semiconductor reaction chamber using an inert gas comprising a step in which a reaction required for a process occurs and a process gas is discharged from a reaction chamber after the process is completed and a wafer is taken out, wherein the wafer is taken out to the reaction chamber. Injecting the inert gas through the supply pipe, the inert gas is characterized in that it further comprises the step of discharging after staying in the reaction chamber for a predetermined time.

또한 상기 불활성가스가 유입되는 단계에 소요되는 시간은 해당 공정 시간의 10% 정도이며, 상기 불활성가스는 질소가스인 것을 특징으로 한다. In addition, the time required for the step of introducing the inert gas is about 10% of the process time, the inert gas is characterized in that the nitrogen gas.

이하 본 발명의 일실시예에 따른 구성 및 작용을 예시도면에 의거하여 상세히 설명한다. Hereinafter, the configuration and operation according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 2는 본 발명 불활성가스를 이용한 반도체 반응챔버의 공정방법에 따른 절차의 흐름도이고, 도 3은 본 발명이 적용된 화학기상증착공정을 위한 반응챔버의 단면도이다. 본 발명은 일반적인 반도체 반응챔버에서 진행되는 공정에 적용될 수 있지만, 일례로써 화학기상증착공정과 관련하여 본 발명의 적용예를 살펴본다. Figure 2 is a flow chart of the procedure according to the process method of the semiconductor reaction chamber using the inert gas of the present invention, Figure 3 is a cross-sectional view of the reaction chamber for the chemical vapor deposition process to which the present invention is applied. Although the present invention may be applied to a process performed in a general semiconductor reaction chamber, an example of application of the present invention will be described with reference to a chemical vapor deposition process.

화학기상증착공정은 공정가스와 웨이퍼간의 화학 반응을 통하여 웨이퍼 표면 위에 박막을 형성하는 반도체 공정 기술의 하나이다. 본 발명에 의한 공정방법에 있어서, 제 1단계 에서 제 4단계 까지는 종래의 것과 동일하며, 이를 화학기상증착공정과 관련하여 간단히 살펴보면, 다음과 같다. Chemical vapor deposition is one of the semiconductor processing technologies for forming a thin film on the wafer surface through a chemical reaction between the process gas and the wafer. In the process method according to the present invention, the first step to the fourth step is the same as the conventional one, and this is briefly described in relation to the chemical vapor deposition process, as follows.

먼저, 제 1단계에서는 웨이퍼(100)가 반응챔버(1)로 반입된다. 상기 반응챔버(1)에는 웨이퍼척이 구비된 웨이퍼스테이지(3)가 설치되고 상기 웨이퍼스테이지(3)에 형성된 진공라인(4)은 진공펌프(5)와 연결되어, 반입된 웨이퍼(100)의 하부면을 진공 흡착함으로써 고정시킨다. First, in the first step, the wafer 100 is loaded into the reaction chamber 1. In the reaction chamber 1, a wafer stage 3 having a wafer chuck is installed, and a vacuum line 4 formed on the wafer stage 3 is connected to a vacuum pump 5 to carry out a wafer 100. The lower surface is fixed by vacuum adsorption.

제 2단계에서는, 공정가스가 공급관(10)을 통하여 유입된다. In the second step, process gas is introduced through the supply pipe (10).

제 3단계에서는, 상기 공정가스가 반응챔버(1)의 상부면에 형성되는 샤워헤드(2)를 통하여 웨이퍼(100)에 전달되고 화학반응을 통하여 웨이퍼(100)상에 막을 형성한다. In a third step, the process gas is transferred to the wafer 100 through a shower head 2 formed on the upper surface of the reaction chamber 1 and a film is formed on the wafer 100 through a chemical reaction.

제 4단계에서는, 공정이 완료된 후, 공정가스가 공정가스배출구(20)를 통하여 배출되고 웨이퍼(100)가 반응챔버(1)로부터 반출되어 다음 공정을 위한 장치로 이송된다. In the fourth step, after the process is completed, the process gas is discharged through the process gas outlet 20 and the wafer 100 is taken out of the reaction chamber 1 and transferred to the apparatus for the next process.

종래의 공정방법에 의하면, 상기 제 4단계로 모든 절차가 종료되나, 본 발명에는 제 5단계와 제 6단계가 추가된다. According to the conventional process method, all the procedures are completed in the fourth step, but the fifth and sixth steps are added to the present invention.

제 5단계에서는, 상기 반응챔버(1)로 공급관(10)를 통하여 불활성가스가 유입된다. 상기 불활성가스는 공정가스가 공급되는 공급관(10)을 통하여 유입되므로, 공정가스가 이동하면서 일부 퇴적물을 생성하는 경우에도 이를 제거할 수 있다. 이 때 불활성가스가 유입되는 시간은 화학기상증착공정에 소요되는 시간의 약 10% 정도인 것이 바람직하다. 본 단계에 있어서, 지나치게 많은 시간이 소요되면 전체 공정시간이 길어져서 공정이 지연되는 문제가 있고, 지나지게 적은 시간동안만 불활성가스가 유입된다면 애초 의도한대로 공급관(10)에 형성된 퇴적물을 제거하기에 충분한 효과를 볼 수 없다. In the fifth step, inert gas is introduced into the reaction chamber 1 through the supply pipe 10. Since the inert gas is introduced through the supply pipe 10 through which the process gas is supplied, the inert gas may be removed even when some process deposits are generated while the process gas moves. At this time, the inert gas is preferably introduced in about 10% of the time required for the chemical vapor deposition process. In this step, if too much time is taken, there is a problem that the process is delayed due to an increase in the total process time, and if inert gas is introduced for only a small amount of time, the deposits formed in the supply pipe 10 may be removed as originally intended. Not enough effect

한편 위와 같이 공급관(10)을 통하여 불활성가스가 공급되기 위해서는, 종래 반응챔버(1)와는 달리 도 3에 도시된 것과 같이, 공급관(1)에 공정가스공급부(40)와 불활성가스공급부(50)가 동시에 연결되어 있어야 하며, 그 연결부위에 전환밸브(30)등이 설치되어 필요에 따라 유로를 변경할 수 있어야 한다. Meanwhile, in order to supply the inert gas through the supply pipe 10 as described above, unlike the conventional reaction chamber 1, as shown in FIG. 3, the process gas supply part 40 and the inert gas supply part 50 are supplied to the supply pipe 1. Should be connected at the same time, the switching valve 30, etc. should be installed in the connection portion should be able to change the flow path as necessary.

제 6단계에서는, 불활성가스의 유입을 중단한 후, 이미 유입된 불활성가스가 일정시간 반응챔버에 남아있도록 하여 불필요한 이물질들이 충분히 제거될 수 있도록 한 후, 이를 불활성가스와 함께 공정가스배출구(20)를 통하여 배출시킨다. 한편 본 발명에 사용되는 불활성가스는 별도의 화학반응을 일으키지 않으면서 단순히 공정가스에 의해 생성된 퇴적물을 제거할 수 있어야 하며, 동시에 가격의 측면을 감안하여 결정해야 한다. 그런데 일반적으로 반도체 제조 공정에 있어서는, 위와 같은 측면을 고려하여 퍼지가스로 질소가스를 사용하므로, 본 발명에 있어서도 질소가스를 이용함이 좋다. 특히 질소가스는 퍼지가스로 사용되고 있으므로, 본 발명을 적용하여 반응챔버(1)를 클리닝하는 부수적인 효과도 볼 수 있다. In the sixth step, after the inert gas is stopped, the inert gas that has already been introduced is left in the reaction chamber for a predetermined time so that unnecessary foreign substances can be sufficiently removed, and the process gas outlet 20 together with the inert gas. Eject through. On the other hand, the inert gas used in the present invention should be able to simply remove the sediment produced by the process gas without causing a separate chemical reaction, and at the same time should be determined in view of the price. In general, in the semiconductor manufacturing process, nitrogen gas is used as the purge gas in consideration of the above aspects, and therefore, nitrogen gas may also be used in the present invention. In particular, since nitrogen gas is used as the purge gas, it is possible to see the side effect of cleaning the reaction chamber 1 by applying the present invention.

본 발명은 화학기상증착공정을 일례로 설명하였지만, 본 발명은 상기 실시예에 한정되지 않고, 반응챔버에 공정가스가 유입되면서 해당 공정이 진행되는 모든 공정에 대해서 적용될 수 있다. Although the present invention has been described as a chemical vapor deposition process as an example, the present invention is not limited to the above embodiment, and may be applied to all processes in which the process proceeds while the process gas is introduced into the reaction chamber.

이상에서 살펴 본 바와 같이, 본 발명 불활성가스를 이용한 반도체 반응챔버의 공정방법에 의하면, 반도체 소자 제조를 위한 공정이 진행되는 반응챔버에서 해당 공정이 완료된 후 불활성가스를 유입하는 단계를 추가함으로써, 공정가스가 공급관에서 반응하여 퇴적물을 형성하고 공정가스의 흐름을 방해하여 반응챔버 내의 반응에 영향을 미치게 되는 것을 미연에 방지할 수 있고, 이를 통하여 해당 장비의 공정능력을 향상시킬 수 있는 효과가 있다. As described above, according to the process method of the semiconductor reaction chamber using the inert gas of the present invention, by adding a step of introducing an inert gas after the process is completed in the reaction chamber for the process for manufacturing a semiconductor device, It is possible to prevent the gas from reacting in the supply pipe to form deposits and disturbing the flow of the process gas to affect the reaction in the reaction chamber, thereby improving the process capability of the equipment.

도 1은 종래 반응챔버에서 진행되는 공정의 개략적인 절차를 도시한 흐름도, 1 is a flowchart illustrating a schematic procedure of a process performed in a conventional reaction chamber;

도 2는 본 발명 불활성가스를 이용한 반도체 반응챔버의 공정방법에 따른 절차의 흐름도,2 is a flow chart of a procedure according to a process method of a semiconductor reaction chamber using the inert gas of the present invention;

도 3은 본 발명이 적용된 화학증착공정을 위한 반응챔버의 단면도이다. 3 is a cross-sectional view of a reaction chamber for a chemical vapor deposition process to which the present invention is applied.

〈 도면의 주요부분에 대한 설명 〉<Description of Main Parts of Drawing>

1 : 반응챔버 2 : 샤워헤드1: reaction chamber 2: shower head

3 : 웨이퍼스테이지 4 : 진공라인3: wafer stage 4: vacuum line

5 : 진공펌프 10: 공급관5: vacuum pump 10: supply pipe

20: 공정가스배출구 30: 전환밸브20: process gas outlet 30: switching valve

40: 공정가스공급부 50: 불활성가스공급부 40: process gas supply unit 50: inert gas supply unit

100: 웨이퍼 100: wafer

Claims (3)

반도체 공정이 진행되는 반응챔버에 웨이퍼가 반입되는 단계, 상기 반응챔버로 공급관를 통하여 공정가스가 유입되는 단계, 공정가스와 웨이퍼간에 공정에 필요한 반응이 일어나는 단계, 공정이 완료된 후 반응챔버로부터 공정가스가 배출되고 웨이퍼가 반출되는 단계로 이루어지는 불활성가스를 이용한 반도체 반응챔버의 공정방법에 있어서, Wafer is introduced into the reaction chamber where the semiconductor process proceeds, Process gas is introduced through the supply pipe into the reaction chamber, Reaction required for the process between the process gas and the wafer occurs, Process gas is removed from the reaction chamber after the process is completed In the method of processing a semiconductor reaction chamber using an inert gas comprising a step of discharged and the wafer is carried out, 상기 웨이퍼가 반출된 후 상기 반응챔버로 공급관를 통하여 불활성가스가 유입되는 단계, 상기 유입된 불활성가스는 반응챔버 내부에서 일정시간 머무른 후 배출되는 단계를 더 포함하는 것을 특징으로 하는 불활성가스를 이용한 반도체 반응챔버의 공정방법.Injecting an inert gas into the reaction chamber through the supply pipe after the wafer is taken out, the inert gas is discharged after a predetermined time in the reaction chamber is discharged, the semiconductor reaction using an inert gas Process method of the chamber. 제 1항에 있어서, 상기 불활성가스가 유입되는 단계에 소요되는 시간은 해당 공정 시간의 10% 정도인 것을 특징으로 하는 불활성가스를 이용한 반도체 반응챔버의 공정방법.The method according to claim 1, wherein the time required for introducing the inert gas is about 10% of the corresponding process time. 제 1항 또는 제 2항에 있어서, 상기 불활성가스는 질소가스인 것을 특징으로 하는 불활성가스를 이용한 반도체 반응챔버의 공정방법.The process according to claim 1 or 2, wherein the inert gas is nitrogen gas.
KR1020030099967A 2003-12-30 2003-12-30 Processing method of semiconductor process chamber through inert gas KR20050068492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030099967A KR20050068492A (en) 2003-12-30 2003-12-30 Processing method of semiconductor process chamber through inert gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030099967A KR20050068492A (en) 2003-12-30 2003-12-30 Processing method of semiconductor process chamber through inert gas

Publications (1)

Publication Number Publication Date
KR20050068492A true KR20050068492A (en) 2005-07-05

Family

ID=37259045

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030099967A KR20050068492A (en) 2003-12-30 2003-12-30 Processing method of semiconductor process chamber through inert gas

Country Status (1)

Country Link
KR (1) KR20050068492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612999A (en) * 2022-10-19 2023-01-17 长鑫存储技术有限公司 Semiconductor production equipment and control method and device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612999A (en) * 2022-10-19 2023-01-17 长鑫存储技术有限公司 Semiconductor production equipment and control method and device thereof

Similar Documents

Publication Publication Date Title
US6527968B1 (en) Two-stage self-cleaning silicon etch process
KR20060127173A (en) Semiconductor device manufacturing method and insulating film etching method
KR20020070255A (en) Multiple stage cleaning for plasma etching chambers
EP0454308B1 (en) Process for fabricating low defect polysilicon
US7781343B2 (en) Semiconductor substrate having a protection layer at the substrate back side
US5240555A (en) Method and apparatus for cleaning semiconductor etching machines
US6221772B1 (en) Method of cleaning the polymer from within holes on a semiconductor wafer
JP2003273082A (en) Plasma processing apparatus and plasma processing method
KR100648329B1 (en) Reduction of metal oxide in dual frequency plasma etch chamber
US20100024840A1 (en) Chamber plasma-cleaning process scheme
US20080142052A1 (en) Method for cleaning backside etch during manufacture of integrated circuits
JP2011517368A (en) Method and apparatus for removing polymer from a substrate
US7604750B2 (en) Method for fabricating semiconductor device
US20070272270A1 (en) Single-wafer cleaning procedure
KR20050068492A (en) Processing method of semiconductor process chamber through inert gas
US5868853A (en) Integrated film etching/chamber cleaning process
US20060137711A1 (en) Single-wafer cleaning procedure
CN109300781A (en) The manufacturing method of ONO film layer
US6329294B1 (en) Method for removing photoresist mask used for etching of metal layer and other etching by-products
JPH09129595A (en) Plasma etching method
CN104779197A (en) Semiconductor device metallization systems and methods
JP2002043294A (en) Method and device for plasma processing
KR100671161B1 (en) Method for Cleaning a Wafer
US20070077772A1 (en) Apparatus and method for manufacturing semiconductor device using plasma
US20080160773A1 (en) Method of fabricating semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application