KR20050055456A - Biosensor using zinc oxide nanorod and preparation thereof - Google Patents

Biosensor using zinc oxide nanorod and preparation thereof Download PDF

Info

Publication number
KR20050055456A
KR20050055456A KR1020030088668A KR20030088668A KR20050055456A KR 20050055456 A KR20050055456 A KR 20050055456A KR 1020030088668 A KR1020030088668 A KR 1020030088668A KR 20030088668 A KR20030088668 A KR 20030088668A KR 20050055456 A KR20050055456 A KR 20050055456A
Authority
KR
South Korea
Prior art keywords
biosensor
zinc oxide
substrate
oxide nanorod
nanorod
Prior art date
Application number
KR1020030088668A
Other languages
Korean (ko)
Inventor
이규철
김진숙
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR1020030088668A priority Critical patent/KR20050055456A/en
Priority to PCT/KR2004/003197 priority patent/WO2005054869A1/en
Publication of KR20050055456A publication Critical patent/KR20050055456A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4146Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS involving nanosized elements, e.g. nanotubes, nanowires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/544Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being organic
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/563Immunoassay; Biospecific binding assay; Materials therefor involving antibody fragments

Abstract

본 발명은 산화아연계 나노막대를 이용한 바이오센서 및 이의 제조방법에 관한 것으로서, 본 발명에 따라 유기금속 화학증착법에 의해 성장된 산화아연계 나노막대를 센서의 감지부에 사용하여 제작된 나노센서는 감지도가 우수하고, 안정적이며 재현성이 뛰어나 항원/항체, 효소/기질, 수용체(receptor)/작동체(effector) 및 효소 저해제 등의 상호작용을 관찰할 수 있을 뿐만 아니라, 다양한 생체 분자들을 검출할 수 있어 생체 분자 수준에서의 유전자 분석 및 질병 진단 등 미래 생명공학 기술에 유리하게 이용될 수 있다.The present invention relates to a biosensor using zinc oxide nanorods and a method for manufacturing the same, wherein the nanosensor fabricated using the zinc oxide nanorod grown by the organometallic chemical vapor deposition method according to the present invention using the sensing unit of the sensor Sensitive, stable and reproducible, it is possible to observe the interactions of antigens / antibodies, enzymes / substrates, receptors / effectors and enzyme inhibitors, as well as to detect various biomolecules. It can be advantageously used for future biotechnology technologies such as genetic analysis and disease diagnosis at the biomolecular level.

Description

산화아연계 나노막대를 이용한 바이오센서 및 이의 제조방법{BIOSENSOR USING ZINC OXIDE NANOROD AND PREPARATION THEREOF} Biosensor using zinc oxide nanorod and manufacturing method thereof {BIOSENSOR USING ZINC OXIDE NANOROD AND PREPARATION THEREOF}

본 발명은 산화물 반도체 나노막대를 이용하여 생체 분자 개체를 거대 분자수준에서 관찰할 수 있는 나노 바이오센서 및 이의 제작에 관한 것으로, 구체적으로는 유기금속 화학증착법에 의해 성장된 산화아연계 나노막대를 기판 위에 수평 또는 수직으로 배향시킨 후 전극을 형성하여 제조되는 신규한 바이오센서에 관한 것이다. The present invention relates to a nano-biosensor capable of observing a biomolecule individual at the macromolecular level by using an oxide semiconductor nanorods, and to fabrication thereof. Specifically, a zinc oxide-based nanorod grown using an organometallic chemical vapor deposition method The present invention relates to a novel biosensor manufactured by forming electrodes on a horizontal or vertical orientation.

나노 크기의 물질들은 새로운 물리 화학적 성질, 즉 독특한 전기적, 광학적 및 기계적 특성을 가져 최근 과학계에서 매우 중요한 분야로 대두되고 있다. 지금까지 진행되어 온 나노 구조에 관한 연구는 양자크기 효과(quantum size effect)와 같은 새로운 현상으로 미래의 새로운 광소자 물질로서의 가능성을 보여주고 있다. 특히, 나노 크기의 물질은 사이즈가 작아 표면적/부피 비가 증가하기 때문에 표면에서 일어나는 전기 화학적인 반응이 우세해지므로 다양한 센서에 이용할 수 있다. Nano-sized materials have emerged as a very important field in the recent scientific community due to their new physical and chemical properties, namely their unique electrical, optical and mechanical properties. The research on nanostructures that have been carried out to date shows new possibilities such as quantum size effects and the potential of new optical device materials of the future. In particular, nano-sized materials can be used in various sensors because the small size increases the surface area / volume ratio, so that the electrochemical reaction occurring on the surface becomes superior.

하지만, 쌓아가기 방식으로 만들어진 대부분의 나노소재는 인위적으로 조작하기가 매우 힘들어 실제 소자에 적용하기가 어렵다. 그러나, 나노튜브, 나노선 및 나노막대 등과 같은 일차원 나노소재는 종횡비(aspect ratio)가 커서 조작이 용이하므로, 가장 먼저 나노 소자로 구현되었고 실용화에 가장 근접해 있다. 최근에는 상기 일차원 반도체 나노소재를 이용한 다양한 전자소자 및 나노센서가 제조되어 주목을 받고 있다. However, most nanomaterials made by stacking methods are very difficult to artificially manipulate, and thus are difficult to apply to actual devices. However, since one-dimensional nanomaterials such as nanotubes, nanowires, and nanorods are easy to operate due to their large aspect ratio, they are first implemented as nanodevices and are closest to practical application. Recently, various electronic devices and nanosensors using the one-dimensional semiconductor nanomaterial have been manufactured and attract attention.

예를 들면, 2000년에는 미국 스탠포드대의 H. 다이(Dai) 교수 연구팀이 단일벽 탄소 나노튜브를 이용하여 NO2 및 NH3 등의 가스분자를 검출할 수 있는 화학센서를 개발하였고(Science 287, 622 (2000)), 2003년에는 나노믹스(Nanomix) 사의 알렉산더 스타(Alexander Star) 팀이 탄소 나노튜브를 이용하여 비오틴(biotin)-스트렙타비딘(streptavidin) 결합을 감지하는 바이오센서를 개발하였다(Alexander Star et al., Nano letters, 2003, vol 3, 459). 그러나, 가스 및 생체 분자의 검출은 반도체 특성을 보이는 나노소재만을 이용하여야 가능하기 때문에 금속성과 반도성을 제어하기가 쉽지 않은 나노튜브의 경우에는 많은 제약을 보인다.For example, in 2000, H. Dai's research team at Stanford University developed a chemical sensor that can detect gas molecules such as NO 2 and NH 3 using single-walled carbon nanotubes (Science 287, 622 (2000)), and in 2003, Alexander Star team of Nanomix developed a biosensor that detects biotin-streptavidin binding using carbon nanotubes ( Alexander star et al ., Nano letters, 2003, vol 3, 459). However, since gas and biomolecules can be detected only by using nanomaterials exhibiting semiconductor characteristics, nanotubes, which are difficult to control metallicity and semiconductivity, have many limitations.

이에 반해, 반도체 나노선은 불순물 도핑을 통해 인위적으로 전기 전도도를 제어하기가 용이하므로 소자 제작이 용이하고, 소자의 감지도를 향상시킬 수 있다. 예를 들면, 2001년 미국 하버드대의 H. 박(Park) 교수 및 C. M. 리에버(Lieber) 교수팀은 비산화물 나노선의 일종인 실리콘 나노선의 표면을 수용체(receptor)로 개질시킴으로써 다양한 생체분자를 검출할 수 있는 나노센서를 개발하였다(Science 293, 1289 (2001)). 그러나, 비산화물 나노선을 이용하여 바이오센서를 제작하는 경우에는 나노선 표면에 절연층인 산화물이 형성되기 때문에 감지도가 저하된다는 문제점이 있다. In contrast, the semiconductor nanowires can easily control the electrical conductivity through impurity doping, thereby facilitating device fabrication and improving the sensitivity of the device. For example, in 2001, a team of professors H. Park and CM Lieber of Harvard University in the United States detected various biomolecules by modifying the surface of a silicon nanowire, a type of non-oxide nanowire, with a receptor. Nano sensors have been developed (Science 293, 1289 (2001)). However, when fabricating a biosensor using non-oxide nanowires, there is a problem that the sensitivity is lowered because an oxide, which is an insulating layer, is formed on the surface of the nanowires.

이러한 관점에서, 산화물 반도체 나노막대는 화학적으로 안정하고, 감지도가 우수하며, 나노소자로 제작시 전극과 금속전극 사이에 접촉저항이 적다는 장점을 갖는다. 특히, 산화아연 나노막대의 경우에는 3.4 eV의 직접 천이형 밴드구조를 가지며, Cd 또는 Mg 등을 첨가해서 밴드갭을 2.8 내지 4.1 eV 까지 조절 가능하고, Al이나 Ga 등의 도핑을 통한 전기전도도 제어가 가능해서 차세대 나노 바이오센서의 핵심소재가 될 것으로 기대된다. 그러나, 전 세계적으로 산화아연계 나노막대를 이용한 바이오센서에 대한 연구는 보고된 바가 없다.From this point of view, the oxide semiconductor nanorods have the advantages of being chemically stable, excellent in sensitivity, and having low contact resistance between the electrode and the metal electrode when fabricated as nanodevices. In particular, the zinc oxide nanorod has a direct transition band structure of 3.4 eV, the band gap can be adjusted to 2.8 to 4.1 eV by adding Cd or Mg, and the conductivity is controlled by doping with Al or Ga. It is expected to be a key material for next generation nano biosensor. However, no studies on biosensors using zinc oxide nanorods have been reported worldwide.

따라서, 본 발명의 목적은 표면적/부피 비가 크고, 표면이 화학적으로 안정한 산화물 반도체 나노막대를 이용하여 감지도가 우수하고 안정적이며 재현성이 뛰어난, 생체 분자 개체를 거대분자 수준에서 관찰할 수 있는 바이오센서를 제공하는 것이다. Accordingly, an object of the present invention is a biosensor capable of observing a biomolecular entity at the macromolecular level, using a oxide semiconductor nanorod having a large surface area / volume ratio and having a chemically stable surface, with excellent sensitivity and stability. To provide.

상기 목적을 달성하기 위하여 본 발명에서는, 절연성 기판, 기판상의 산화아연계 나노막대를 포함하는 감지층 및 감지층에 형성된 전극층을 포함하는 바이오센서를 제공한다.In order to achieve the above object, the present invention provides a biosensor comprising an insulating substrate, a sensing layer including a zinc oxide nanorod on the substrate and an electrode layer formed on the sensing layer.

또한, 본 발명에서는 유기금속 화학증착법에 의해 성장된 산화아연계 나노막대를 기판 위에 수평 또는 수직으로 배향시킨 후 전극을 형성하는 것을 포함하는, 바이오센서의 제조방법을 제공한다. In addition, the present invention provides a method for manufacturing a biosensor, comprising forming an electrode after the zinc oxide nanorods grown by organometallic chemical vapor deposition are oriented horizontally or vertically on a substrate.

이하 본 발명에 대하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

구체적으로, 본 발명에 따른 바이오센서는 기재 상에 성장된 산화아연계 나노막대를 기재로부터 분리한 다음 절연성 기판 위에 수평으로 배향시키거나, 기재 상에 수직 배향된 산화아연계 나노막대 어레이를 직접 이용하여 제조될 수 있다.Specifically, the biosensor according to the present invention separates the zinc oxide nanorod grown on the substrate from the substrate and then oriented horizontally on the insulating substrate, or directly using the zinc oxide nanorod array oriented vertically on the substrate. Can be prepared.

본 발명에서 감지층에 감지물질로서 사용되는 산화아연계 나노막대는, 아연-함유 유기금속 및 산소-함유 기체 또는 산소-함유 유기물을 별개의 라인을 통해 각각 반응기에 주입하고, 운반 기체로는 아르곤 등과 같은 불활성 기체를 사용하여 상기 반응물의 전구체들을 화학반응시키는 것을 특징으로 하는 유기금속 화학증착법에 의해 제조될 수 있다.In the present invention, the zinc oxide nanorod used as the sensing material in the sensing layer is injected with zinc-containing organometallic and oxygen-containing gas or oxygen-containing organic material into the reactor through separate lines, and argon as the carrier gas. It can be prepared by an organometallic chemical vapor deposition method characterized in that the precursors of the reactants are chemically reacted using an inert gas such as and the like.

본 발명에 있어서, 성장되는 산화아연계 나노막대의 직경, 길이 및 밀도는 성장온도, 압력 및 반응물질의 흐름속도에 따라 다양하게 조절할 수 있고, 센서의 감지도를 향상시키는 동시에 선택적인 감지가 가능하도록 다양한 유기 또는 무기 소재, 예를 들면 Mg, Cd, Ti, Li, Cu, Al, Ni, Y, Ag, Mn, V, Fe, La, Ta, Nb, Ga, In, S, Se, P, As, Co, Cr, B, N, Sb 및 H로 이루어진 군 중에서 선택된 1종 이상, 또는 GaN, AlN, InN, GaAs, InP, GaP 또는 이들의 합금 등과 같은 다양한 이종물질을 산화아연에 코팅시킬 수 있다.In the present invention, the diameter, length, and density of the grown zinc oxide nanorods can be variously adjusted according to the growth temperature, pressure, and the flow rate of the reactant, and can be selectively sensed while improving the sensitivity of the sensor. Various organic or inorganic materials such as Mg, Cd, Ti, Li, Cu, Al, Ni, Y, Ag, Mn, V, Fe, La, Ta, Nb, Ga, In, S, Se, P, At least one selected from the group consisting of As, Co, Cr, B, N, Sb, and H, or various heterogeneous materials such as GaN, AlN, InN, GaAs, InP, GaP, or alloys thereof may be coated on zinc oxide. have.

본 발명에 따른 산화아연계 나노막대는 금속 촉매를 사용하지 않고 반응 전구체들이 핵생성제로 바로 성장되기 때문에 촉매에 의한 오염이 방지되어 전기적, 광학적 특성이 우수하다.The zinc oxide nanorod according to the present invention is excellent in electrical and optical characteristics because the reaction precursors are grown directly to the nucleating agent without using a metal catalyst, thereby preventing contamination by the catalyst.

본 발명에 사용되는 절연성 기판의 예로는 실리콘 기판, 유리 기판, 석영 기판, 파이렉스 기판, 사파이어 기판, 플라스틱 기판 및 이들 표면이 절연성 막으로 코팅된 기판 등을 들 수 있다.Examples of the insulating substrate used in the present invention include a silicon substrate, a glass substrate, a quartz substrate, a Pyrex substrate, a sapphire substrate, a plastic substrate, and a substrate coated with an insulating film.

본 발명에 따른 바이오센서는 다양한 형태로 제작될 수 있는데, 예를 들면 상기 유기금속 화학증착법에 의해 성장된 산화아연계 나노막대를 기재에서 분리한 후 한 개 또는 여러 개의 산화아연계 나노막대를 절연성 기판 위에 수평하게 위치시킨 다음 전극을 붙여 제작할 수도 있고, 기재상에 수직 배향된 산화아연계 나노막대 어레이에 직접 전극을 형성한 후 제작할 수도 있다.The biosensor according to the present invention may be manufactured in various forms. For example, after separating the zinc oxide nanorod grown by the organometallic chemical vapor deposition method from the substrate, one or several zinc oxide nanorods are insulated from each other. The electrode may be prepared by placing the electrode horizontally on the substrate and then attaching the electrode. Alternatively, the electrode may be directly formed on the zinc oxide nanorod array vertically oriented on the substrate.

구체적으로는, 산화아연계 나노막대는 종횡비가 커서 인위적으로 조작하기가 용이하기 때문에 개별 나노막대를 이용한 나노소자를 비교적 쉽게 제조할 수 있어 도 1a에 나타낸 바와 같이, 성장된 산화아연계 나노막대를 예를 들면 칼 등과 같은 날카로운 도구로 긁어내어 기재에서 분리시킨 후 단일 산화아연계 나노막대를 에탄올 등과 같은 유기용매에 용해시킨 다음 이를 절연성 기판 위에 분산시키고, 전자빔 리쏘그라피(lithography) 방법으로 금속층을 패턴화한 후 열 혹은 전자빔 증발법을 이용하여 타이타늄(Ti)과 금(Au) 등의 금속층을 순차적으로 증착시키고 나서 열처리함으로써 오믹 전극을 형성하여 나노 바이오센서를 제조할 수 있다. Specifically, since the zinc oxide nanorod has a large aspect ratio and is easy to be artificially manipulated, it is possible to manufacture nanodevices using individual nanorods relatively easily. As shown in FIG. For example, by scraping with a sharp tool such as a knife to separate from the substrate, a single zinc oxide nanorod is dissolved in an organic solvent such as ethanol, and then dispersed on an insulating substrate, and the metal layer is patterned by electron beam lithography. After the formation, the nano biosensor may be manufactured by forming an ohmic electrode by sequentially depositing and thermally treating a metal layer such as titanium (Ti) and gold (Au) using heat or electron beam evaporation.

또한, 도 2a에 나타낸 바와 같이, 유기금속 화학증착법에 의해 기재 상에 수직으로 증착 성장된 산화아연계 나노막대에 전극을 형성하여 바이오센서를 제조할 수도 있는데, 기재 상에 수직 방향으로 성장된 산화아연계 나노막대와 금속전극이 증착된 기재를 이용하면 보다 용이하게 나노센서를 제조할 수 있다.In addition, as shown in FIG. 2A, a biosensor may be manufactured by forming an electrode on a zinc oxide-based nanorod deposited by vertically depositing growth on a substrate by an organometallic chemical vapor deposition method. Using the substrate on which the zinc-based nanorods and the metal electrode are deposited, the nanosensor can be more easily manufactured.

본 발명의 산화아연계 나노막대를 이용한 바이오센서는 감지물질의 흡착이 잘 되고 원하는 생체분자간의 결합만을 감지하는 것을 돕기 위해, 바이오센서를 PEG(폴리에틸렌글리콜), PEI(폴리에틸렌이민), 및 PLA(폴리락트산) 등으로 개질된 PEG 중에서 선택된 중합체 용액; 또는 폴리디알릴디메틸암모늄 클로라이드(polydiallyldimethylammonium chloride), 폴리소듐 4-스티렌설포네이트(polysodium 4-styrenesulfonate) 및 디아조계 수지 등과 같은 유기용매에 12 내지 14시간 동안 침지시켜 도 3에 나타낸 바와 같이 산화아연계 나노막대 표면을 상기 중합체 또는 유기용매로 코팅처리하여 사용할 수도 있다. The biosensor using the zinc oxide nanorod of the present invention is a biosensor to PEG (polyethylene glycol), PEI (polyethyleneimine), PLA ( Polymer solutions selected from PEG modified with polylactic acid) and the like; Or zinc oxide type immersed in an organic solvent such as polydiallyldimethylammonium chloride, polysodium 4-styrenesulfonate and diazo resin for 12 to 14 hours, as shown in FIG. The nanorod surface can also be used by coating with the polymer or organic solvent.

본 발명에 따라 산화아연계 나노막대를 감지층 물질로 사용하여 제조된 바이오센서는 비오틴 또는 개질된 비오틴과 스트렙타비딘 또는 개질된 스트렙타비딘 등과의 항원-항체 결합, 및 LDL, DNA 및 생체 단백질 등과 같은 생체 분자 및 이들의 상호작용을 감지할 수 있다.Biosensors prepared using zinc oxide-based nanorods according to the present invention are biotin or antigen-antibody binding of biotin or modified biotin and streptavidin or modified streptavidin, and LDL, DNA and biological proteins. Biological molecules such as and the like, and their interactions.

예를 들면, 비오틴은 비타민 B군에 속하고 인체의 신진대사와 성장에 필요한 비타민으로서, 비오틴이 부족할 경우에는 몸이 쉽게 피로해지고, 우울증, 근육통, 탈모, 빈혈 등을 초래하며, LDL은 동맥경화를 발생시키는 중요한 원인인자이다. 따라서, 본 발명에 따른 나노 바이오센서는 상기와 같은 생체 분자를 감지할 수 있어 유전자 분석, 질병진단 등에 이용될 수 있다.For example, biotin belongs to the vitamin B group and is a vitamin necessary for metabolism and growth of the human body. When lack of biotin, the body becomes tired easily and causes depression, myalgia, hair loss, anemia, and LDL. It is an important cause factor. Therefore, the nano biosensor according to the present invention can detect such biomolecules and can be used for genetic analysis, disease diagnosis, and the like.

이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않는다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are not intended to limit the invention only.

실시예 1: 단일 산화아연계 나노막대를 이용한 바이오센서의 제조Example 1 Preparation of Biosensor Using Single Zinc Oxide Nanorod

개별적인 라인을 통해 운반기체로 아르곤을 사용하여 반응전구체인 디메틸아연(Zn(CH3)2) 및 O2 기체를 각각 반응기내로 1 내지 10 sccm 및 20 내지 100 sccm 범위의 흐름속도로 주입하고, 기재 상에 상기 물질들을 화학반응시켜 산화아연 나노막대를 증착 성장시켰다. 약 1시간에 걸쳐 나노선의 성장이 진행되는 동안 반응기 내의 압력은 0.1 내지 100 torr로, 온도는 상온 내지 800℃로 유지하였다.Argon is used as a carrier gas via separate lines to inject the reaction precursors dimethylzinc (Zn (CH 3 ) 2 ) and O 2 gas into the reactor at flow rates ranging from 1 to 10 sccm and 20 to 100 sccm, respectively, The materials were chemically reacted on the substrate to deposit and grow a zinc oxide nanorod. During the growth of the nanowires over about 1 hour, the pressure in the reactor was maintained at 0.1 to 100 torr, and the temperature was maintained at room temperature to 800 ℃.

이어서, 성장된 산화아연 나노막대를 칼로 긁어내어 기재에서 분리시킨 후 에탄올과 혼합시킨 다음, 이를 절연성 기판인 SiO2/Si에 분산시키고, 전자현미경을 사용하여 정확한 위치에 배치시키고, 산화아연 나노막대 팁 부분에 열 혹은 전자빔 증발법을 이용하여 Ti (300 Å)/Au (500 Å)를 증착시킨 다음 약 300 ℃에서 1분 동안 열처리함으로써 오믹전극을 형성하여 도 1a에 나타낸 바와 같은, 단일 산화아연 나노막대가 수평 배향된 형태의 바이오센서를 제조하였다.Subsequently, the grown zinc oxide nanorods were scraped off with a knife, separated from the substrate, mixed with ethanol, and then dispersed in an insulating substrate, SiO 2 / Si, placed in the correct position using an electron microscope, and the zinc oxide nanorods. Ti (300 mW) / Au (500 mW) was deposited on the tip portion by heat or electron beam evaporation and then heat treated at about 300 ° C. for 1 minute to form an ohmic electrode, as shown in FIG. 1A. A biosensor having a horizontal orientation with a nanorod was manufactured.

또한, 상기 제조된 바이오센서의 주사전자현미경 사진은 도 1b에 나타내었다. In addition, the scanning electron micrograph of the prepared biosensor is shown in Figure 1b.

실시예 2: 수직 배향된 산화아연계 나노막대를 이용한 바이오센서의 제조Example 2 Preparation of Biosensor Using Vertically Oriented Zinc Oxide Nanorods

개별적인 라인을 통해 운반기체로 아르곤을 사용하여 반응전구체인 디메틸아연 및 O2 기체를 각각 반응기내로 1 내지 10 sccm 및 20 내지 100 sccm 범위의 흐름속도로 주입하고, 기재 상에 상기 물질들을 화학반응시켜 산화아연 나노막대를 증착 성장시켰다. 약 1시간에 걸쳐 나노선의 성장이 진행되는 동안 반응기 내의 압력은 0.1 내지 10 torr로, 온도는 상온 내지 800℃로 유지하였다.Using argon as a carrier gas through separate lines, the reaction precursors, dimethylzinc and O 2 gas, were injected into the reactor at flow rates ranging from 1 to 10 sccm and 20 to 100 sccm, respectively, and the chemicals were reacted on the substrate. The zinc oxide nanorods were deposited and grown. During the growth of the nanowires over about 1 hour, the pressure in the reactor was maintained at 0.1 to 10 torr, the temperature was maintained at room temperature to 800 ℃.

이어서, 성장된 산화아연 나노막대 팁 부분에 열 혹은 전자빔 증발법을 이용하여 타이타늄(Ti)(300 Å)과 금(Au)(500 Å)을 순차적으로 증착시킨 후 약 300 ℃에서 1분 동안 열처리하여 상부 오믹 전극을 형성하여 도 2a에 나타낸바와 같은, 산화아연 나노막대가 수직 배향된 형태의 바이오센서를 제조하였다.Subsequently, titanium (Ti) (300 kPa) and gold (Au) (500 kPa) were sequentially deposited on the grown zinc oxide nanorod tips by heat or electron beam evaporation, followed by heat treatment at about 300 ° C. for 1 minute. By forming an upper ohmic electrode, as shown in FIG. 2a, a biosensor having a zinc oxide nanorod was vertically oriented was manufactured.

또한, 상기 제조된 바이오센서의 주사전자현미경 사진을 도 2b에 나타내었다. In addition, a scanning electron micrograph of the prepared biosensor is shown in Figure 2b.

시험예 1: 비오틴-스트렙타비딘 결합 감지 측정Test Example 1: Measurement of biotin-streptavidin binding detection

실시예 1에서 제조한 바이오센서를, PEG 0.0337 g을 탈이온수 2250 ㎕에 녹인 용액에 약 20시간 동안 담가두어, 도 3에 나타낸 바와 같이 산화아연 나노막대 표면을 PEG로 코팅처리 하였다. 이어서, 1 μM 농도의 비오틴 5 ㎕ 및 PEG로 개질된 비오틴(비오틴PEG) 5 ㎕를 각각 센서에 떨어뜨려 PEG 코팅된 산화아연 나노막대 상에 항체인 비오틴 및 비오틴PEG를 각각 흡착시키고, 바이오센서의 전압을 변화시켜가면서 전류를 측정하고 그 결과를 도 4a 및 4b에 각각 나타내었다. 그런 다음, 항원인 200 μM 농도의 스트렙타비딘 5 ㎕를 센서에 떨어뜨린 후 바이오센서의 전압을 변화시켜가면서 전류를 측정하고 그 결과를 도 4a 및 4b에 각각 나타내었다. 도 4a 및 4b로부터, PEG로 코팅된 산화아연 나노막대에 비오틴 또는 PEG로 개질된 비오틴만을 흡착시켰을 때는 전압이 커져도 전류가 거의 변하지 않지만, 스트렙토마이신을 투입함에 따라 포화전류가 급격히 증가하는 것을 보아, 본 발명에 따른 바이오센서는 비오틴-스트렙타비딘 결합을 감지할 수 있음을 알 수 있다.The biosensor prepared in Example 1 was immersed in a solution in which 0.0337 g of PEG was dissolved in 2250 μl of deionized water for about 20 hours, and the zinc oxide nanorod surface was coated with PEG as shown in FIG. 3. Subsequently, 5 μl of biotin at a concentration of 1 μM and 5 μl of biotin (biotin PEG) modified with PEG were dropped onto the sensor, respectively, to adsorb the biotin and biotin PEG on the PEG coated zinc oxide nanorods, respectively. The current was measured while varying the voltage, and the results are shown in FIGS. 4A and 4B, respectively. Then, 5 μl of streptavidin at a concentration of 200 μM as an antigen was dropped onto the sensor, and the current was measured while changing the voltage of the biosensor. The results are shown in FIGS. 4A and 4B, respectively. 4A and 4B, when only biotin or biotin modified with PEG is adsorbed to the zinc oxide nanorod coated with PEG, the current hardly changes even when the voltage is increased, but the saturation current rapidly increases with the introduction of streptomycin. It can be seen that the biosensor according to the present invention can detect biotin-streptavidin binding.

시험예 2: LDL 감지 측정Test Example 2: LDL Detection Measurement

pH 7.4에서 0.15 M NaCl 0.5 ml 및 0.01% EDTA 0.5 ml의 혼합용액에 LDL 1 ml를 녹인 후 감압하에 동결 건조시킨 LDL 혼합물 0.004 mg을 1 ml의 에탄올에 녹이고, 이 중 5 ㎕를 취하여 실시예 1에서 제조한 바이오센서 위에 떨어뜨린 후 바이오센서의 게이트 전압을 변화시켜가면서 전류를 측정하고, LDL로 처리하지 않은 바이오센서의 전류 측정 결과와 함께 그 결과를 도 5에 나타내었다. 도 5로부터, 본 발명에 따라 제조된, 단일 산화아연 나노막대가 기판에 수평으로 배향된 형태의 바이오센서는 LDL을 떨어뜨리기 전보다 LDL로 처리한 후 전류가 감소한 것으로 보아 LDL을 감지할 수 있음을 알 수 있다.1 ml of LDL was dissolved in a mixed solution of 0.5 ml of 0.15 M NaCl and 0.5 ml of 0.01% EDTA at pH 7.4, and then 0.004 mg of the freeze-dried LDL mixture was dissolved in 1 ml of ethanol. After dropping on the biosensor manufactured by the present invention while measuring the current while changing the gate voltage of the biosensor, the results are shown in Figure 5 with the current measurement results of the biosensor not treated with LDL. From FIG. 5, a biosensor having a single zinc oxide nanorod manufactured in accordance with the present invention, which is horizontally oriented on a substrate, can detect LDL because the current decreases after treatment with LDL than before dropping LDL. Able to know.

시험예 3: LDL 감지 측정Test Example 3: LDL Detection Measurement

실시예 1에서 제조한 바이오센서 대신 실시예 2에서 제조한 바이오센서를 사용하는 것을 제외하고는, 시험예 2와 유사한 공정을 수행하여 LDL 감지 여부를 측정한 결과 도 6에 나타난 바와 같이, LDL을 떨어뜨리기 전보다 LDL을 투입한 후 전류가 감소하는 것을 보아 본 발명에 따라 제조된, 기판에 수직 배향된 산화아연 나노막대를 이용한 바이오센서도 LDL을 감지할 수 있음을 알 수 있다.Except for using the biosensors prepared in Example 2 instead of the biosensors prepared in Example 1, by performing a similar process to Test Example 2 to determine whether the LDL detection as shown in Figure 6, LDL It can be seen that the biosensor using the zinc oxide nanorod oriented vertically to the substrate prepared according to the present invention can detect the LDL after the current is decreased after the LDL is injected rather than before dropping.

본 발명에 따라 산화물 반도체인 산화아연계 나노막대를 이용하여 제조한 바이오센서는 감지도가 뛰어나고, 안정적이며, 재현성이 뛰어나고, 개개의 생체 분자 및 이들의 상호작용을 관찰할 수 있어 유전자 분석, 질병진단 등의 생명공학의 기반기술을 제공하며, 향후 미래 기능성 나노시스템 구현을 위한 초 고집적 전자기기 및 바이오 칩 등에 응용할 수 있어 엄청난 부가가치를 창출할 수 있을 것으로 기대된다. Biosensors manufactured using zinc oxide nanorods, which are oxide semiconductors according to the present invention, are highly sensitive, stable, and reproducible, and can observe individual biomolecules and their interactions. It provides biotechnology-based technologies such as diagnostics, and is expected to create tremendous added value as it can be applied to ultra-high-density electronic devices and biochips for implementing functional nanosystems in the future.

도 1a 및 1b는 각각 본 발명에 따른, 기판에 수평 배향된 단일 산화아연계 나노막대를 이용한 바이오센서의 구조도 및 주사전자현미경(SEM) 사진이고,1A and 1B are structural diagrams and scanning electron microscopy (SEM) photographs of a biosensor using a single zinc oxide nanorod oriented horizontally on a substrate according to the present invention, respectively.

도 2a 및 2b는 각각 본 발명에 따른, 기판에 수직 배향된 산화아연계 나노막대를 이용한 바이오센서의 구조도 및 주사전자현미경(SEM) 사진이고, 2A and 2B are structural diagrams and scanning electron microscope (SEM) photographs of a biosensor using zinc oxide-based nanorods oriented perpendicular to a substrate, respectively, according to the present invention;

도 3은 본 발명에 따라 PEG로 코팅된 단일 산화아연계 나노막대를 이용한 바이오센서의 구조도이고,3 is a structural diagram of a biosensor using a single zinc oxide-based nanorod coated with PEG according to the present invention,

도 4a 및 4b는 각각 본 발명에 따른, PEG로 코팅된 단일 산화아연계 나노막대를 이용한 바이오센서의 비오틴-스트렙타비딘 및 비오틴PEG-스트렙타비딘 결합 감지에 따른 전기적 특성 변화를 나타내는 그래프이고,4A and 4B are graphs showing electrical property changes according to detection of biotin-streptavidin and biotinPEG-streptavidin binding of a biosensor using a single zinc oxide-based nanorod coated with PEG according to the present invention.

도 5는 본 발명에 따른, 단일 산화아연계 나노막대를 이용한 바이오센서의 LDL 감지에 따른 전기적 특성 변화를 나타내는 그래프이며,5 is a graph showing a change in electrical characteristics according to the detection of the LDL of the biosensor using a single zinc oxide nanorod according to the present invention,

도 6은 본 발명에 따른, 기판에 수직 배향된 산화아연계 나노막대를 이용한 바이오센서의 LDL 감지에 따른 전기적 특성 변화를 나타내는 그래프이다.FIG. 6 is a graph illustrating changes in electrical characteristics according to LDL detection of a biosensor using zinc oxide-based nanorods oriented perpendicular to a substrate according to the present invention.

Claims (10)

절연성 기판, 기판상의 감지층 및 감지층에 형성된 전극을 포함하는 바이오센서에 있어서, 감지층이 산화아연계 나노막대를 포함함을 특징으로 하는 바이오센서.A biosensor comprising an insulating substrate, a sensing layer on the substrate, and an electrode formed on the sensing layer, wherein the sensing layer comprises a zinc oxide nanorod. 제 1 항에 있어서,The method of claim 1, 산화아연계 나노막대가 Mg, Cd, Ti, Li, Cu, Al, Ni, Y, Ag, Mn, V, Fe, La, Ta, Nb, Ga, In, S, Se, P, As, Co, Cr, B, N, Sb 및 H로 이루어진 군 중에서 선택된 1종 이상의 이종물질을 추가로 포함한 형태인 것을 특징으로 하는 바이오센서.Zinc oxide nanorods include Mg, Cd, Ti, Li, Cu, Al, Ni, Y, Ag, Mn, V, Fe, La, Ta, Nb, Ga, In, S, Se, P, As, Co, Biosensor characterized in that it further comprises at least one heterogeneous material selected from the group consisting of Cr, B, N, Sb and H. 제 1 항에 있어서,The method of claim 1, 산화아연계 나노막대가 GaN, AlN, InN, GaAs, InP, GaP 또는 이들의 합금을 추가로 포함한 형태인 것을 특징으로 하는 바이오센서.Biosensor characterized in that the zinc oxide nano-rod further comprises a GaN, AlN, InN, GaAs, InP, GaP or alloys thereof. 제 1 항에 있어서,The method of claim 1, 산화아연계 나노막대가 PEG, PEI 및 개질된 PEG로 이루어진 군 중에서 선택된 중합체로 코팅되는 것을 특징으로 하는 바이오센서.And a zinc oxide nanorod is coated with a polymer selected from the group consisting of PEG, PEI and modified PEG. 제 1 항에 있어서,The method of claim 1, 산화아연계 나노막대가 폴리디알릴디메틸암모늄 클로라이드, 폴리소듐 4-스티렌설포네이트 및 디아조계 수지 중에서 선택된 유기용매로 코팅되는 것을 특징으로 하는 바이오센서.A biosensor characterized in that the zinc oxide nanorod is coated with an organic solvent selected from polydiallyldimethylammonium chloride, polysodium 4-styrenesulfonate and diazo resin. 제 1 항에 있어서,The method of claim 1, 기판이 실리콘 기판, 유리 기판, 석영 기판, 파이렉스 기판, 사파이어 기판, 플라스틱 기판 및 이들 표면이 절연성 막으로 코팅된 기판 중에서 선택되는 것을 특징으로 하는 바이오센서.A biosensor, wherein the substrate is selected from a silicon substrate, a glass substrate, a quartz substrate, a Pyrex substrate, a sapphire substrate, a plastic substrate, and a substrate coated with an insulating film. 제 1 항에 있어서,The method of claim 1, 항원-항체 결합, 생체분자 및 이들의 상호작용의 감지에 사용되는 것을 특징으로 하는 바이오센서.A biosensor, which is used for detection of antigen-antibody binding, biomolecules and their interactions. 제 7 항에 있어서,The method of claim 7, wherein 항원이 스트렙타비딘 또는 개질된 스트렙타비딘이고, 항체가 비오틴 또는 개질된 비오틴인 것을 특징으로 하는 바이오센서.A biosensor, wherein the antigen is streptavidin or modified streptavidin and the antibody is biotin or modified biotin. 제 7 항에 있어서,The method of claim 7, wherein 생체분자가 LDL, DNA 또는 단백질인 것을 특징으로 하는 바이오센서.Biosensor, characterized in that the biomolecule is LDL, DNA or protein. 유기금속 화학증착법에 의해 성장된 산화아연계 나노막대를 기판 위에 수평 또는 수직으로 배향시킨 후 전극을 형성하는 것을 포함하는, 제 1 항 내지 제 9 항중 어느 한 항에 따른 바이오센서의 제조방법.10. A method of manufacturing a biosensor according to any one of claims 1 to 9, comprising aligning a zinc oxide nanorod grown by an organometallic chemical vapor deposition method horizontally or vertically on a substrate and then forming an electrode.
KR1020030088668A 2003-12-08 2003-12-08 Biosensor using zinc oxide nanorod and preparation thereof KR20050055456A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020030088668A KR20050055456A (en) 2003-12-08 2003-12-08 Biosensor using zinc oxide nanorod and preparation thereof
PCT/KR2004/003197 WO2005054869A1 (en) 2003-12-08 2004-12-07 Biosensor comprising zinc oxide-based nanorod and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030088668A KR20050055456A (en) 2003-12-08 2003-12-08 Biosensor using zinc oxide nanorod and preparation thereof

Publications (1)

Publication Number Publication Date
KR20050055456A true KR20050055456A (en) 2005-06-13

Family

ID=34651315

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030088668A KR20050055456A (en) 2003-12-08 2003-12-08 Biosensor using zinc oxide nanorod and preparation thereof

Country Status (2)

Country Link
KR (1) KR20050055456A (en)
WO (1) WO2005054869A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778555B1 (en) * 2006-04-10 2007-11-28 전남대학교산학협력단 Method for fabricating sensor using zinc oxide nanorod arrays
WO2009044983A1 (en) * 2007-10-05 2009-04-09 Electronics And Telecommunications Research Institute Three-dimensional nanodevices including nanostructures
KR100959067B1 (en) * 2008-01-14 2010-05-20 전북대학교산학협력단 Zinc oxide nanostuctures based chemical sensors for hydrazine detection
KR101027074B1 (en) * 2008-10-23 2011-04-05 서울대학교산학협력단 nanostructure gas sensors and nanostructure gas sensor array with metal oxide layer and method of producing the same
CN109954481A (en) * 2019-04-04 2019-07-02 重庆大学 The method for preparing the ZnO@ZIF-8 nano flower compound of Ag doping
CN110240168A (en) * 2019-06-13 2019-09-17 浙江大学 A kind of preparation method of small size modified manometer silicon dioxide
CN114574554A (en) * 2022-02-23 2022-06-03 宁德师范学院 TiO 22Defect-controlled DNA methylation photoelectric detection method

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023329A2 (en) * 2006-08-24 2008-02-28 Koninklijke Philips Electronics N.V. Method of manufacturing a semiconductor sensor device and semiconductor sensor device
CN101275073B (en) * 2007-09-26 2010-07-21 浙江大学 Preparation for ZnO quantum dot
CN101271078B (en) * 2008-04-03 2010-12-15 东南大学 Production method of biological chemistry sensor
US9309128B2 (en) 2009-04-14 2016-04-12 Institute Of Geological And Nuclear Sciences Limited Zinc oxide nanostructures and sensors using zinc oxide nanostructures
CN102175821A (en) * 2011-02-14 2011-09-07 深圳市联祥瑞智能设备有限公司 Ammonia sensitive material and preparing method thereof
EP2639847A1 (en) * 2012-03-14 2013-09-18 Karlsruher Institut für Technologie Electrochemically-gated field-effect transistor
DE102013207310A1 (en) * 2013-04-23 2014-10-23 Siemens Aktiengesellschaft gas sensor
US8927967B2 (en) 2013-04-24 2015-01-06 Karlsruhe Institute Of Technology Electrochemically-gated field-effect transistor, methods for its manufacture and use thereof
CN104362231A (en) * 2014-12-05 2015-02-18 中国科学院苏州生物医学工程技术研究所 LED (Light Emitting Diode) with localized horizontally-arranged 1DZnO micro-nano structure array
US9678030B2 (en) * 2014-12-30 2017-06-13 General Electricity Company Materials and sensors for detecting gaseous agents
CN104833738B (en) * 2015-05-06 2017-05-24 广西壮族自治区药用植物园 Method for carrying out protein enzymatic hydrolysis
JP6777982B2 (en) * 2015-10-14 2020-10-28 株式会社日本触媒 Composition for gas sensor
CN107731660A (en) * 2017-09-27 2018-02-23 闽南师范大学 A kind of manufacture of semiconductor figure substrate and the method for extension
CN111039574B (en) * 2019-12-31 2020-09-29 哈尔滨商业大学 Preparation method and application of core-shell zinc oxide @ molybdenum trioxide nano array composite film
CN115818696A (en) * 2022-12-01 2023-03-21 辽宁大学 Preparation method of Cu-doped ZnO nano material and application of Cu-doped ZnO nano material in gas sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2360298A3 (en) * 2000-08-22 2011-10-05 President and Fellows of Harvard College Method for depositing a semiconductor nanowire
WO2003005450A2 (en) * 2001-05-18 2003-01-16 President And Fellows Of Harvard College Nanoscale wires and related devices
AU2904602A (en) * 2000-12-11 2002-06-24 Harvard College Nanosensors
CN1306619C (en) * 2001-03-30 2007-03-21 加利福尼亚大学董事会 Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US20030189202A1 (en) * 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778555B1 (en) * 2006-04-10 2007-11-28 전남대학교산학협력단 Method for fabricating sensor using zinc oxide nanorod arrays
WO2009044983A1 (en) * 2007-10-05 2009-04-09 Electronics And Telecommunications Research Institute Three-dimensional nanodevices including nanostructures
KR100943707B1 (en) * 2007-10-05 2010-02-23 한국전자통신연구원 Three dimensional nano devices including nano structure
US8263964B2 (en) 2007-10-05 2012-09-11 Electronics And Telecommunications Research Institute Three-dimensional nanodevices including nanostructures
KR100959067B1 (en) * 2008-01-14 2010-05-20 전북대학교산학협력단 Zinc oxide nanostuctures based chemical sensors for hydrazine detection
KR101027074B1 (en) * 2008-10-23 2011-04-05 서울대학교산학협력단 nanostructure gas sensors and nanostructure gas sensor array with metal oxide layer and method of producing the same
CN109954481A (en) * 2019-04-04 2019-07-02 重庆大学 The method for preparing the ZnO@ZIF-8 nano flower compound of Ag doping
CN110240168A (en) * 2019-06-13 2019-09-17 浙江大学 A kind of preparation method of small size modified manometer silicon dioxide
CN114574554A (en) * 2022-02-23 2022-06-03 宁德师范学院 TiO 22Defect-controlled DNA methylation photoelectric detection method
CN114574554B (en) * 2022-02-23 2023-05-30 宁德师范学院 TiO (titanium dioxide) 2 DNA methylation photoelectric detection method for defect regulation

Also Published As

Publication number Publication date
WO2005054869A1 (en) 2005-06-16

Similar Documents

Publication Publication Date Title
KR20050055456A (en) Biosensor using zinc oxide nanorod and preparation thereof
Rashid et al. The development of silicon nanowire as sensing material and its applications
US20190376925A1 (en) Nucleic acid sequencing device containing graphene
Curreli et al. Real-time, label-free detection of biological entities using nanowire-based FETs
US9091648B2 (en) Carbon based biosensors and processes of manufacturing the same
Ramgir et al. Metal oxide nanowires for chemiresistive gas sensors: issues, challenges and prospects
De La Rica et al. Applications of peptide and protein-based materials in bionanotechnology
US8486287B2 (en) Methods for fabrication of positional and compositionally controlled nanostructures on substrate
KR100732610B1 (en) FET based sensor for detecting biomolecule, method for preparing the same, and method for detecting biomolecule using the FET based sensor
JP2012247189A (en) Graphene sensor, substance species analyzer using sensor, and method for detecting substance species using sensor
US8324703B2 (en) Approach to contacting nanowire arrays using nanoparticles
KR20150117945A (en) Bio sensor based upon reduced graphene oxide and method for sensing bio-material using the same
KR101102098B1 (en) Method for Producing Branched Nanowire
Coffer Semiconducting silicon nanowires for biomedical applications
WO2007001401A2 (en) Small molecule mediated, heterogeneous, carbon nanotube biosensing
Majd et al. The development of radio frequency magnetron sputtered p-type nickel oxide thin film field-effect transistor device combined with nucleic acid probe for ultrasensitive label-free HIV-1 gene detection
Danielson et al. Gas-phase synthesis for label-free biosensors: zinc-oxide nanowires functionalized with gold nanoparticles
KR101029154B1 (en) Zinc Oxide Nanostructured Micropattern and Method for Preparing the Same
Pearton et al. GaN, ZnO and InN nanowires and devices
US20170307602A1 (en) Biosensors Comprising a Gate-Keeper Membrane
US20070186629A1 (en) Functionalizable nanowire-based AFM probe
KR20100087426A (en) Bio-sensor using si nanowire, manufacturing method of the bio-sensor, and detecting method for cell using the bio-sensor
KR101763515B1 (en) Method and apparatus for detecting dna using graphene/silicon bio-sensor
Risveden et al. Branched nanotrees with immobilized acetylcholine esterase for nanobiosensor applications
Haarindraprasad et al. Spiked nanorosette: A novel zinc oxide‐gold textured nanostructure for impedance biosensing of target DNA signatures

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application