KR20050043160A - Manufacturing method of fluorinated core-shell particles and composites containing fluorinated core-shell particles for front display panel - Google Patents

Manufacturing method of fluorinated core-shell particles and composites containing fluorinated core-shell particles for front display panel Download PDF

Info

Publication number
KR20050043160A
KR20050043160A KR1020030077956A KR20030077956A KR20050043160A KR 20050043160 A KR20050043160 A KR 20050043160A KR 1020030077956 A KR1020030077956 A KR 1020030077956A KR 20030077956 A KR20030077956 A KR 20030077956A KR 20050043160 A KR20050043160 A KR 20050043160A
Authority
KR
South Korea
Prior art keywords
fluorine
core
ococr
formula
based polymer
Prior art date
Application number
KR1020030077956A
Other languages
Korean (ko)
Other versions
KR100553314B1 (en
Inventor
이수복
박인준
김동권
김정훈
하종욱
소원욱
이광원
김광한
범정철
김재원
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020030077956A priority Critical patent/KR100553314B1/en
Publication of KR20050043160A publication Critical patent/KR20050043160A/en
Application granted granted Critical
Publication of KR100553314B1 publication Critical patent/KR100553314B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/38Esters containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

본 발명은 코어-셀형 불소계 고분자 입자와 이를 함유하는 평판디스플레이 패널용 불소계 복합소재 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 무기입자와 아조계 염화실란 화합물의 실록산 결합으로 코어를 형성하고, 상기 코어표면에는 특정의 불소계 고분자 화합물이 중합되어 셀을 형성한 코어-셀형 불소계 고분자 입자와, 그리고 상기 코어-셀형 불소계 고분자 입자와 투명고분자 화합물을 일정함량 범위로 분산중합 하는 일련의 단일공정으로, 발수·발유, 하드코팅, 반사방지, 오염 및 지문방지 등의 다양한 기능을 동시에 갖는 신규한 평판디스플레이 패널(FDP)용 불소계 복합소재 및 이의 제조방법에 관한 것이다.The present invention relates to a core-cell-type fluorine-based polymer particles, a fluorine-based composite material for a flat panel display panel containing the same, and a method for manufacturing the same. More particularly, the core is formed of a siloxane bond of an inorganic particle with an azo chloride compound. Core-cell type fluorine-based polymer particles in which a specific fluorine-based polymer compound is polymerized to form a cell on the core surface, and a series of single processes for dispersing and polymerizing the core-cell type fluorine-based polymer particles and transparent polymer compound in a certain content range. The present invention relates to a novel fluorine-based composite material for a flat panel display panel (FDP) having various functions such as oil repellency, hard coating, antireflection, contamination and fingerprint prevention, and a manufacturing method thereof.

Description

코어-셀형 불소계 고분자 입자와 이를 함유하는 평판디스플레이 패널용 불소계 복합소재 및 이의 제조방법{Manufacturing method of fluorinated core-shell particles and composites containing fluorinated core-shell particles for Front Display Panel} Manufacturing method of fluorinated core-shell particles and composites containing fluorinated core-shell particles for Front Display Panel

본 발명은 코어-셀형 불소계 고분자 입자와 이를 함유하는 평판디스플레이 패널용 불소계 복합소재 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 무기입자와 아조계 염화실란 화합물의 실록산 결합으로 코어를 형성하고, 상기 코어표면에는 특정의 불소계 고분자 화합물이 중합되어 셀을 형성한 코어-셀형 불소계 고분자 입자와, 그리고 상기 코어-셀형 불소계 고분자 입자와 투명고분자 화합물을 일정함량 범위로 분산중합 하는 일련의 단일공정으로, 발수·발유, 하드코팅, 반사방지, 오염 및 지문방지 등의 다양한 기능을 동시에 갖는 신규한 평판디스플레이 패널(FDP)용 불소계 복합소재 및 이의 제조방법에 관한 것이다.The present invention relates to a core-cell-type fluorine-based polymer particles, a fluorine-based composite material for a flat panel display panel containing the same, and a method for manufacturing the same. More particularly, the core is formed of a siloxane bond of an inorganic particle with an azo chloride compound. Core-cell type fluorine-based polymer particles in which a specific fluorine-based polymer compound is polymerized to form a cell on the core surface, and a series of single processes for dispersing and polymerizing the core-cell type fluorine-based polymer particles and transparent polymer compound in a certain content range. The present invention relates to a novel fluorine-based composite material for a flat panel display panel (FDP) having various functions such as oil repellency, hard coating, antireflection, contamination and fingerprint prevention, and a manufacturing method thereof.

일반적으로, 과불소기 함유 화합물은 매우 낮은 표면 에너지로 인해 발수발유성, 내약품성, 윤활성, 이형성 및 방오성 등의 기능성을 가진다. 이러한 기능성을 함유로 이 화합물은 제지산업의 내유(oil repellent)가공제, 화장품 산업의 기능성 무기 분체(lipid repellent cosmetics) 및 섬유와 피혁산업의 발수·발유제등과 같이 일상 생활용품의 제조에 재료로 활용될 뿐만 아니라 금속 소재의 부식방지, 자동차 외장코팅 및 고분자 가공 분야의 정밀 이형 기술 등 그 활용범위가 매우 넓다.In general, perfluorine-containing compounds have functionality such as water and oil repellency, chemical resistance, lubricity, mold release property and antifouling property due to very low surface energy. With this functionality, the compound is used in the manufacture of everyday life products such as oil repellents in the paper industry, functional repellent cosmetics in the cosmetics industry, and water and oil repellents in the textile and leather industries. In addition, the range of application is very wide such as corrosion prevention of metal materials, automotive exterior coating and precision release technology in polymer processing.

한편, 최근 급증하고 있는 액정 디스플레이 장치와 같은 디스플레이 장치의 구조를 살펴보면 다음의 여러 기능층으로 구성된다. 먼저, 디스플레이 패널 표면의 액정을 보호하고 평판화하기 위한 하드코팅층, 표면 반사광을 분산시키고 외부광의 정반사를 억제시켜 외부의 반사를 방지하는 반사방지층, 지문이나 이물질 등으로부터 오염방지 및 제거가 용이하도록 하는 오염 및 지문방지층, 그리고 디스플레이 패널에 흐림현상을 방지하여 가시도를 향상시키는 흐림방지층 등의 다양한 기능을 가진 층으로 이루어진다. On the other hand, the structure of a display device such as a liquid crystal display device that is rapidly increasing in recent years is composed of the following several functional layers. First, the hard coating layer for protecting and flattening the liquid crystal on the surface of the display panel, the antireflection layer for dispersing the surface reflection light and suppressing the specular reflection of external light to prevent contamination and removal from fingerprints or foreign matters It consists of layers with various functions such as contamination and anti-fingerprint layers, and an anti-fog layer that improves visibility by preventing blur from the display panel.

이러한 디스플레이 장치 중 컴퓨터, 텔레비전, 핸드폰 등에 이용되고 있는 평판디스플레이 패널(FDP)에 사용되는 광학필름의 구조를 살펴보면, 먼저 액정 혹은 편광기능층, 액정을 보호하고 평판화하기 위한 하드코팅층, 선명한 화질을 제공하기 위한 반사방지층, 그리고 표면의 오염을 방지하는 방오층으로 구성되어 있다. 그러나, 현재의 기술 수준으로 반사방지층은 친수성이 매우 큰 무기물 미립자의 다층구조로 되어있어, 사용 중 쉽게 오염되고 오염물질의 제거가 용이하지 않으며, 또한 알콜과 같은 용제 등을 사용하여 이러한 오염물질을 제거할 경우 디스플레이 표면의 손상을 유발하게 되는 문제점이 있다. 뿐만 아니라, 현재 액정 디스플레이의 하드코팅층, 반사방지층, 흐림방지층 및 오염 및 지문방지층의 제조공정은 각각의 서로 다른 소재의 층 형성과 이를 위한 복잡한 공정으로 이루어져 있어 많은 시간과 경비가 소요되는 문제가 있다.Looking at the structure of the optical film used in the flat panel display panel (FDP) used in computers, televisions, mobile phones, etc. of the display devices, first, the liquid crystal or polarizing layer, the hard coating layer for protecting and flattening the liquid crystal, and the clear image quality It consists of an antireflection layer to provide, and an antifouling layer to prevent surface contamination. However, in the state of the art, the antireflection layer has a multi-layered structure of inorganic fine particles having a very high hydrophilic property, so that it is easily contaminated during use and is not easy to remove contaminants. If removed, there is a problem that causes damage to the display surface. In addition, the current manufacturing process of the hard coating layer, anti-reflection layer, anti-fog layer and contamination and fingerprint layer of the liquid crystal display consists of a layer of each different material and a complicated process for this has a problem that takes a lot of time and expense .

이에 본 발명자들은 상기와 같은 디스플레이 장치 공정의 복잡화와 방오 기능에 대한 문제점을 해결하기 위하여 연구 노력한 결과, 무기입자와 아조계 염화실란 화합물의 실록산 결합으로 코어를 형성하고, 상기 코어 표면에 특정의 불소계 고분자 화합물이 중합되어 셀을 형성하는 코어-셀형 불소계 고분자 입자와, 그리고 상기 코어-셀형 불소계 고분자 입자와 투명고분자 화합물을 일정 함량으로 분산 중합하여, 상기 무기입자의 표면 요철구조로 인해 우수한 난반사, 저반사 효과를 가지고 저표면에너지와 저굴절율을 지닌 불소계 고분자 화합물에 의해 발수, 발유, 활수 및 방오성의 기능을 동시에 갖는다는 것을 알게 됨으로써 본 발명을 완성하게 되었다.Accordingly, the present inventors have made efforts to solve the problems of the complexity and antifouling function of the display device process, as a result, to form a core by the siloxane bond of inorganic particles and azo chloride silane compound, a specific fluorine-based Core-cell-type fluorine-based polymer particles, in which polymer compounds are polymerized to form cells, and the core-cell-type fluorine-based polymer particles and transparent polymer compounds are dispersed and polymerized in a predetermined amount, so that excellent reflection and low reflection due to the surface irregularities of the inorganic particles The present invention has been completed by knowing that the fluorine-based polymer compound having a reflective effect and a low surface energy and a low refractive index has functions of water repellency, oil repellency, water repellency, and antifouling property.

따라서, 본 발명은 난반사, 저반사 효과와 발수, 발유, 활수 및 방오성의 기능을 동시에 갖는 코어-셀형 불소계 고분자 입자를 제공하는데 그 목적이 있다. Accordingly, an object of the present invention is to provide a core-cell type fluorine-based polymer particle having both diffuse reflection, low reflection effect, and water / oil repellency, water repellency, and antifouling properties.

또한, 본 발명은 코어-셀형 불소계 고분자 입자와 투명고분자 화합물을 중합하는 일련의 단일공정으로 하드코팅, 반사방지, 오염 및 지문방지 등의 다양한 기능을 동시에 갖는 평판디스플레이 패널용 불소계 복합소재 및 이의 제조방법을 제공하는데 그 목적이 있다. In addition, the present invention is a fluorine-based composite material for a flat panel display panel having various functions such as hard coating, antireflection, contamination and fingerprint prevention in a series of single processes for polymerizing core-cell type fluorine-based polymer particles and a transparent polymer compound, and the preparation thereof. The purpose is to provide a method.

본 발명은 아조계 염화실란 화합물이 고착화된 무기입자가 코어를 형성하고, 다음 화학식 1a ∼ 1d로 표시되는 화합물 중에서 선택된 불소계 고분자 화합물이 셀을 형성하여 이루어진 코어-셀형 불소계 고분자 입자에 그 특징이 있다.The present invention is characterized by core-cell type fluorine-based polymer particles in which an inorganic particle in which an azo chloride compound is fixed forms a core, and a fluorine-based polymer compound selected from the compounds represented by the following Formulas 1a to 1d forms a cell. .

[화학식 1a][Formula 1a]

XCnF2nCH2OCOCR1=CH2 XC n F 2n CH 2 OCOCR 1 = CH 2

[화학식 1b][Formula 1b]

XCnF2nSO2NR2(CH2)mOCOCR1=CH 2 XC n F 2n SO 2 NR 2 (CH 2 ) m OCOCR 1 = CH 2

[화학식 1c][Formula 1c]

XCnF2nCH2CH(OH)(CH2)mOCOCR1=CH2 XC n F 2n CH 2 CH (OH) (CH 2 ) m OCOCR 1 = CH 2

[화학식 1d] [Formula 1d]

XCnF2n(CH2)mOCOCR1=CH2 XC n F 2n (CH 2 ) m OCOCR 1 = CH 2

상기 화학식 1a ∼ 1d에서, R1은 H 또는 -CH3이고, R2는 C1 ∼ C10 알킬기이고, X는 H, F 또는 Cl이고, m은 2 ∼ 6의 정수이고, n은 3 ∼ 21의 정수이다.In Formulas 1a to 1d, R 1 is H or —CH 3 , R 2 is a C 1 to C 10 alkyl group, X is H, F or Cl, m is an integer of 2 to 6, n is 3 to Is an integer of 21.

또한, 본 발명은 상기 코어-셀형 불소계 고분자 입자 10 ∼ 50 중량%와 투명 고분자 화합물 50 ∼ 90 중량%가 포함되어 이루어진 평판디스플레이 패널용 불소계 복합소재 및 이의 제조방법에 또 다른 특징이 있다.In addition, the present invention has another feature of the fluorine-based composite material for a flat panel display panel and the manufacturing method thereof comprising 10 to 50% by weight of the core-cell-type fluorine-based polymer particles and 50 to 90% by weight of the transparent polymer compound.

이하 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

본 발명은 무기입자와 아조계 염화실란 화합물의 실록산 결합으로 코어를 형성하고, 상기 코어표면에는 상기 화학식 1a ∼ 1d로 표시되는 화합물 중에서 선택된 불소계 고분자 화합물이 중합되어 셀을 형성하는 코어-셀형 불소계 고분자 입자와 투명고분자 화합물이 분산중합으로 복합소재를 형성하며, 분산중합 시 상기 코어-셀형 불소계 고분자 입자 포함된 과불소기의 표면이행성을 이용하여 층을 형성하게 된다. 상기와 같은 일련의 단일 공정의 수행으로 발수·발유성, 방오성 및 평판 디스플레이 패널에 요구되는 하드코팅, 지문·반사방지 및 오염 등의 다양한 기능을 동시에 갖는 신규한 불소계 복합소재에 관한 것이다.In the present invention, a core is formed by siloxane bond of an inorganic particle and an azo chloride compound, and a core-cell fluorine polymer is formed by polymerizing a fluorine polymer compound selected from the compounds represented by Formulas 1a to 1d on the surface of the core to form a cell. The particles and the transparent polymer compound form a composite material by dispersion polymerization, and during dispersion polymerization, a layer is formed by using the surface migration property of the perfluorine group containing the core-cell type fluorine-based polymer particles. The present invention relates to a novel fluorine-based composite material having various functions such as hard coating, fingerprint, antireflection, and contamination required for water and oil repellency, antifouling property, and flat panel display panel by performing a series of single processes as described above.

본 발명은 상기 아조계 염화실란 화합물이 고착화된 무기입자와 상기 화학식 1a ∼ 1d로 표시되는 화합물 중에서 선택된 불소계 고분자 화합물로 이루어진 코어-셀형 불소계 고분자 입자와, 투명고분자 화합물이 일정비로 함유되어 이루어진 것에 기술구성상의 특징이 있는 바, 종래의 평판 디스플레이 패널의 광학필름의 각기 제조공정이 다른 여러 기능 층으로 구성된 것에 반하여 상기한 본 발명의 불소계 복합소재는 단일 공정으로 여러 기능을 동시에 수행 가능한 것이다.The present invention relates to a core-cell type fluorine-based polymer particle composed of inorganic particles to which the azo chloride compound is fixed, and a fluorine-based polymer compound selected from the compounds represented by Formulas 1a to 1d, and a transparent polymer compound. As a feature of the configuration, the conventional fluorine-based composite material of the present invention is capable of performing several functions simultaneously in a single process, whereas the manufacturing process of the optical film of the conventional flat panel display panel is composed of several different functional layers.

본 발명의 코어-셀형 불소계 고분자 입자의 제조방법을 보다 구체적으로 살펴보면 다음과 같다.Looking at the manufacturing method of the core-cell-type fluorine-based polymer particles of the present invention in more detail.

먼저, 무기입자와 아조계 염화실란 화합물을 60/40 ∼ 90/10 중량비로 실록산 결합하여 코어를 형성한다. 상기 무기입자는 평균입자 크기가 7 ㎚ ∼ 3 ㎛인 것으로, 예를 들면 실리카, 알루미나, 산화티타늄, 산화아연, 산화세륨, 산화구리, 산화니켈 및 산화지르코늄 중에서 선택된 1종 또는 2종 이상 사용할 수 있다. 이러한 무기입자는 제조되는 복합소재의 표면에 요철구조를 형성하여 우수하게 난반사, 저반사 및 기계적 물성 향상의 효과를 가지며, 상기 아조계 염화실란 화합물과의 실록산 결합으로 화학적으로 매우 안정한 결합을 하게 되는 특성이 있다. 상기 무기입자의 평균입자 크기가 7 ㎚ 미만에서는 입자들이 분산이 안 되고 서로 뭉치는 문제가 발생하고, 3 ㎛를 초과하는 경우에는 침강이 쉽게 일어나 저장 안정성 및 작업성이 떨어지는 문제가 발생한다. 상기 아조계 염화실란 화합물은 공지의 것으로, 예를 들면 아조 모노실란(azo monosilane, AMS), 아조 디실란(azo disilane, ADS) 및 아조 트리실란(azo trisilane, ATS) 중에서 선택된 1종 또는 2종 이상이 사용될 수 있다. 상기 아조계 염화실란 화합물이 상기 범위미만에서는 무기 입자에 부착되지 않아 코어-셀형을 형성하는데 문제가 있으며, 범위를 초과하는 경우에는 더 이상 반응이 진행되지 않으므로 추가비용만 발생되게 된다. First, the inorganic particles and the azo-based silane compound are siloxane bonds in a weight ratio of 60/40 to 90/10 to form a core. The inorganic particles have an average particle size of 7 nm to 3 μm, and may be used, for example, one or two or more selected from silica, alumina, titanium oxide, zinc oxide, cerium oxide, copper oxide, nickel oxide, and zirconium oxide. have. These inorganic particles form irregularities on the surface of the composite material to be produced to have excellent effects of diffuse reflection, low reflection, and mechanical properties, and are chemically very stable by siloxane bonds with the azo chloride compound. There is a characteristic. When the average particle size of the inorganic particles is less than 7 nm, the particles are not dispersed and agglomerate with each other, and when the average particle size exceeds 3 μm, sedimentation occurs easily, resulting in poor storage stability and workability. The azo chloride compound is a known one, for example one or two selected from azo monosilane (AMS), azo disilane (ADS) and azo trisilane (ATS). The above can be used. When the azo-based silane chloride compound is less than the above range does not adhere to the inorganic particles, there is a problem in forming a core-cell type. If the azo-based silane chloride compound exceeds the range, the reaction does not proceed any more, so only an additional cost is generated.

다음으로, 상기에서 형성된 코어와 상기 화학식 1로 표시되는 1 ∼ 4 화합물 중에서 선택된 불소계 고분자 화합물을 10/90 ∼ 50/50 중량비로 50 ∼ 90 ℃ 온도에서 라디칼 중합반응시켜 코어-셀형 불소계 고분자 입자를 제조한다.Next, the core-cell-type fluorine-based polymer particles are formed by radically polymerizing the core formed above and the fluorine-based polymer compound selected from 1 to 4 compounds represented by Chemical Formula 1 at 50-90 ° C. at a 10/90 to 50/50 weight ratio. Manufacture.

상기 불소계 고분자 화합물은 화학식 1a ∼ 1d에 나타낸 것으로, XCnF2nCH2OCOCR1=CH2, XCnF2nSO 2NR2(CH2)mOCOCR1=CH2, XCnF 2nCH2CH(OH)(CH2)mOCOCR1=CH2 및 XCnF2n(CH2)mOCOCR1=CH2 중에서 선택된 것을 사용할 수 있다. 상기 과불소기를 함유한 불소계 고분자 화합물은 낮은 표면 에너지와 저굴절율을 지니고 있어 발수, 발유, 활수 및 방오성의 기능을 나타내며, 특히 상기 고분자에 포함된 과불소 알킬기의 표면 이행성을 이용하여 층을 형성하는 일련의 단일공정으로 평판 디스플레이 패널에 사용되는 복합소재를 제조할 수 있다. 상기 아조계 염화실란 화합물이 고착화된 무기입자와 불소계 고분자 화합물의 사용량이 상기 범위를 벗어나는 경우에는 아조계 염화실란 화합물이 고착화된 무기입자 표면에 불소계 고분자 화합물이 충분히 중합되지 않는 문제가 있다. 상기한 반응은 공지의 라디칼 중합에 의해 이루어지며, 상기 반응온도가 50 ℃ 미만이면 반응시간이 많이 걸리고, 90 ℃를 초과하는 경우에는 반응을 조절하기 어려운 문제가 발생한다.The fluorine-based polymer compound is represented by Chemical Formulas 1a to 1d, and XC n F 2n CH 2 OCOCR 1 = CH 2 , XC n F 2n SO 2 NR 2 (CH 2 ) m OCOCR 1 = CH 2 , XC n F 2n CH 2 CH (OH) (CH 2 ) m OCOCR 1 = CH 2 and XC n F 2n (CH 2 ) m OCOCR 1 = CH 2 may be selected. The fluorine-based polymer compound containing the perfluorine group has low surface energy and low refractive index, and thus exhibits water repellency, oil repellency, water repellency, and antifouling properties, and in particular, forms a layer by using the surface shiftability of the perfluorinated alkyl group included in the polymer. It is possible to manufacture a composite material used in a flat panel display panel in a single process. If the amount of the inorganic particles and the fluorine-based polymer compound to which the azo chloride compound is fixed is outside the above range, there is a problem that the fluorine-based polymer compound is not sufficiently polymerized on the surface of the inorganic particles to which the azo-chloride silane compound is fixed. The reaction is carried out by a known radical polymerization, if the reaction temperature is less than 50 ℃ takes a lot of reaction time, if it exceeds 90 ℃ problems occur difficult to control the reaction.

다음으로 상기한 라디칼 중합으로 형성된 코어-셀형 불소계 고분자 입자와 투명고분자를 불소계 유기용매와 탄화수소계 유기용매의 혼합물에 투입하여 분산중합 시킨다. 상기 투명고분자는 아크릴레이트계 또는 메타크릴레이트계 단량체, 저밀도 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리카보네이트 및 폴리메틸펜텐 중에서 선택된 1종 또는 2종 이상을 사용할 수 있으며, 상기 아크릴레이트계 또는 메타크릴레이트계 단량체로는 예를 들면 메틸(메타) 아크릴레이트, 에틸(메타) 아크릴레이트, 부틸(메타) 아크릴레이트, 헥실(메타) 아크릴레이트, 에틸헥실(메타) 아크릴레이트, 옥틸(메타) 아크릴레이트, 라우릴(메타) 아크릴레이트, 옥타데실(메타) 아크릴레이트, 글리시딜(메타) 아크릴레이트, 도데실(메타) 아크릴레이트, 스테아릴(메타) 아크릴레이트, 벤질(메타) 아크릴레이트, 사이클로헥실(메타) 아크릴레이트, 2-히드록시(메타) 아크릴레이트, 2-히드록시프로필(메타) 아크릴레이트 등이 선택되어 사용될 수 있다. 상기 코어-셀형 불소계 고분자 입자와 투명고분자는 10/90 ∼ 50/50 중량비로 혼합하여 사용되며, 상기 코어-셀형 불소계 고분자 입자의 사용량이 10 중량비 미만에서는 내부 산란의 효과가 적고 접촉각 및 표면자유에너지 등의 표면특성들이 나빠지게 되며, 50 중량비를 초과하는 경우에는 투과도와 헤이즈 등의 광학특성들이 나빠지는 문제가 발생한다. 코어-셀형 불소계 고분자 입자와 투명고분자가 용해되는 용매는 불소계 유기용매와 탄화수소계 유기용매를 혼합하여 사용될 수 있으며, 상기 불소계 유기용매는 1,2,2,-트리클로로-1,1,2-트리플루오로에탄, 트리플루오로에탄올 및 트리플루오로메톡시톨루엔 중에서 선택된 1종 또는 2종이 사용될 수 있으며, 탄화수소계 유기용매는 일반적인 중합에 사용되는 것으로, 예를 들면 에탄올, 이소프로판올, 메틸에틸케톤, 테트라하이드로퓨란 및 클로로포름 중에서 선택된 것을 사용할 수 있으며, 보다 바람직하기로는 클로로포름이 좋다. 상기 불소계 유기용매와 유기용매는 70/30 ∼ 30/70 중량비로 혼합하여 사용하는 것이 바람직하며, 상기 혼합용매의 사용비가 범위를 벗어나는 경우에는 투명고분자가 침전되거나 코어-쉘형 불소계 고분자 입자의 분산 안정성이 떨어지는 문제가 발생한다. Next, the core-cell type fluorine-based polymer particles and the transparent polymer formed by the radical polymerization are added to a mixture of a fluorine-based organic solvent and a hydrocarbon-based organic solvent for dispersion polymerization. The transparent polymer may use one or two or more selected from acrylate or methacrylate monomers, low density polyethylene, polypropylene, polyethylene terephthalate, polycarbonate, and polymethylpentene, and the acrylate or methacryl As a monomer type, for example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, ethyl hexyl (meth) acrylate, octyl (meth) acrylate , Lauryl (meth) acrylate, octadecyl (meth) acrylate, glycidyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, benzyl (meth) acrylate, cyclo Hexyl (meth) acrylate, 2-hydroxy (meth) acrylate, 2-hydroxypropyl (meth) acrylate, etc. are selected and used. It can be. The core-cell-type fluorine-based polymer particles and the transparent polymer are used in a mixture of 10/90 to 50/50 weight ratio, and when the amount of the core-cell-type fluorine-based polymer particles is less than 10 weight ratio, the effect of internal scattering is small, and the contact angle and the surface free energy are used. The surface characteristics of the back light deteriorate, and when the weight ratio exceeds 50, optical properties such as transmittance and haze deteriorate. The solvent in which the core-cell type fluorine-based polymer particles and the transparent polymer are dissolved may be used by mixing a fluorine-based organic solvent and a hydrocarbon-based organic solvent, and the fluorine-based organic solvent may be 1,2,2, -trichloro-1,1,2- One or two selected from trifluoroethane, trifluoroethanol and trifluoromethoxytoluene may be used, and the hydrocarbon-based organic solvent is used for general polymerization, for example, ethanol, isopropanol, methyl ethyl ketone, tetra Hydrofuran and chloroform may be selected, and more preferably chloroform. Preferably, the fluorine-based organic solvent and the organic solvent are mixed and used in a 70/30 to 30/70 weight ratio, and when the ratio of the mixed solvent is out of the range, transparent polymer precipitates or dispersion stability of core-shell fluorine-based polymer particles. This falling problem occurs.

다음으로 상기에서 분산 중합시킨 코어-셀형 불소계 고분자 입자와 투명고분자를 10 ∼ 40 ℃ 온도에서, 1 ∼ 24 시간동안 용매 캐스팅하고, 100 ∼ 160 ℃ 온도에서 가열냉각(annealing)시켜 불소계 복합소재를 제조한다.Next, the core-cell type fluorine-based polymer particles and the transparent polymer, which have been dispersed and polymerized above, are solvent cast at 10 to 40 ° C. for 1 to 24 hours, and then cooled by annealing at 100 to 160 ° C. to prepare a fluorine-based composite material. do.

이상 본 발명에 따라 제조된 불소계 복합소재는 일련의 단일공정으로 하드코팅, 반사방지, 오염 및 지문방지 등의 다양한 기능을 동시에 가지므로 평판디스플레이 패널용으로 적합하다.The fluorine-based composite material prepared according to the present invention has various functions such as hard coating, antireflection, contamination and fingerprint prevention at the same time in a series of single processes, and thus is suitable for flat panel display panels.

이하, 본 발명을 실시예에 의거하여 더욱 상세히 설명하면 다음과 같은 바, 본 발명이 이에 한정된 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following Examples, but the present invention is not limited thereto.

합성예 1Synthesis Example 1

250 ml 튜브형 슈랭크 유리 반응기에 평균 입자크기가 12 ㎚의 실리카 입자 3 g, 건조된 톨루엔 50 g, 트리에틸아민(TEA) 1 g을 넣는다. 아조계 염화실란계 개시제 4,4-아조비스-(4-시아노펜타노익에시드-(3-클로로디메틸실릴)프로필에스테르 1 g을 건조된 톨루엔 10 mL에 넣어 녹인 후 상기 반응기에 투입하고 밀봉한다. 실리카 입자 내부의 기체를 제거한 후에 상온에서 1일 동안 자기 조립형 개시제 부착 반응을 실시한다. 상기 개시제가 실리카 입자 표면에 화학적 반응(immobilization)으로 실록산 결합이 형성된 후 반응기에서 꺼낸다. 상기 반응 후 남아있는 개시제와 반응 후에 형성된 염(salt)을 제거하기 위해 톨루엔, 메탄올 및 아세톤을 이용하여 세척한다. In a 250 ml tubular Schrank glass reactor, 3 g of silica particles with an average particle size of 12 nm, 50 g of dried toluene and 1 g of triethylamine (TEA) were charged. 1 g of azo chloride silane initiator 4,4-azobis- (4-cyanopentanoic acid- (3-chlorodimethylsilyl) propyl ester is dissolved in 10 mL of dried toluene, and then charged into the reactor and sealed. After removing the gas inside the silica particles, the self-assembled initiator attachment reaction is carried out at room temperature for 1 day, after which the siloxane bond is formed by chemical immobilization on the surface of the silica particles and taken out of the reactor. Wash with toluene, methanol and acetone to remove salts formed after reaction with the initiator.

상기에서 세척된 다공성 실리카 지지체를 상온 건조시킨 후, 250 mL 튜브형 슈랭크 유리반응기에 넣고 C8F17C2H4OCOCH=CH2를 50 g 넣어, 60 ℃의 항온조에서 3시간동안 반응을 진행하였다. 상기 반응 후 남아있는 자유고분자(freepolymer)는 1,1,2-트리클로로-1,2,2-트리플루오로에탄(R-113)을 이용하여 속슬렛 추출로 세척한다.The dried porous silica support was dried at room temperature, then placed in a 250 mL tube-type Schrank glass reactor, and 50 g of C 8 F 17 C 2 H 4 OCOCH = CH 2 was placed in a 60 ° C. thermostat for 3 hours. It was. The free polymer remaining after the reaction is washed by Soxhlet extraction using 1,1,2-trichloro-1,2,2-trifluoroethane (R-113).

합성예 2Synthesis Example 2

상기 합성예 1과 동일하게 실시하되, 평균입자 크기가 1 ㎛의 실리카 입자를 사용하여 반응을 수행하여 불소계 고분자 입자를 합성하였다.In the same manner as in Synthesis Example 1, the reaction was performed using silica particles having an average particle size of 1 μm to synthesize fluorine-based polymer particles.

실시예 1Example 1

250 ml를 유리반응기에 R-113 100 g과 클로로포름 100 g을 넣고 제조된 PFA/Silica 복합체(합성예 1에서 제조) 0.3 g과 폴리메틸메타크릴레이트(PMMA)를 각각 0.3 g을 넣고 초음파 유화기를 이용하여 분산시켰다. 상기에서 분산시킨 용액을 2 ml를 슬라이드 글라스에 24시간동안 실온에서 용매 캐스팅하였고, 제조된 필름을 120 ℃에서 24시간동안 가열냉각(annealing)시켰다. 상기 반응으로 제조된 불소계 복합소재의 물성을 측정하여 다음 표 1에 나타내었다.250 ml of R-113 and 100 g of chloroform were added to a glass reactor. 0.3 g of PFA / Silica composite (prepared in Synthesis Example 1) and 0.3 g of polymethyl methacrylate (PMMA) were respectively added. And dispersed. 2 ml of the above dispersed solution was solvent cast on a slide glass at room temperature for 24 hours, and the prepared film was annealed at 120 ° C. for 24 hours. The physical properties of the fluorine-based composite material prepared by the reaction are measured and shown in Table 1 below.

실시예 2Example 2

상기 실시예 1과 동일한 방법으로 실시하되, 폴리메틸메타크릴레이트를 0.6 g 사용하여 반응을 수행하였다. 상기 반응으로 제조된 불소계 복합소재의 물성을 측정하여 다음 표 1에 나타내었다.The reaction was carried out in the same manner as in Example 1, using 0.6 g of polymethyl methacrylate. The physical properties of the fluorine-based composite material prepared by the reaction are measured and shown in Table 1 below.

실시예 3Example 3

상기 실시예 1과 동일한 방법으로 실시하되, 폴리메틸메타크릴레이트를 0.9 g 사용하여 반응을 수행하였다. 상기 반응으로 제조된 불소계 복합소재의 물성을 측정하여 다음 표 1에 나타내었다.The reaction was carried out in the same manner as in Example 1, using 0.9 g of polymethyl methacrylate. The physical properties of the fluorine-based composite material prepared by the reaction are measured and shown in Table 1 below.

실시예 4Example 4

상기 실시예 1과 동일한 방법으로 실시하되, PFA/Silica 복합체를 0.04 g 사용하여 반응을 수행하였다. 상기 반응으로 제조된 불소계 복합소재의 물성을 측정하여 다음 표 1에 나타내었다.In the same manner as in Example 1, the reaction was performed using 0.04 g of PFA / Silica complex. The physical properties of the fluorine-based composite material prepared by the reaction are measured and shown in Table 1 below.

실시예 5Example 5

상기 실시예 1과 동일한 방법으로 실시하되, PFA/Silica 복합체를 0.1 g 사용하여 반응을 수행하였다. 상기 반응으로 제조된 불소계 복합소재의 물성을 측정하여 다음 표 1에 나타내었다.In the same manner as in Example 1, the reaction was performed using 0.1 g of the PFA / Silica complex. The physical properties of the fluorine-based composite material prepared by the reaction are measured and shown in Table 1 below.

실시예 6Example 6

실시예 1과 동일한 방법으로 실시하되, 합성예 2의 PFA/Silica 복합체 0.1 g과 폴리메틸메타아크릴레이트 0.3 g을 넣고 사용하여 반응을 수행하였다. 상기 반응으로 제조된 불소계 복합소재의 물성을 측정하여 다음 표 1에 나타내었다.The reaction was carried out in the same manner as in Example 1, but using 0.1 g of PFA / Silica composite of Synthesis Example 2 and 0.3 g of polymethylmethacrylate. The physical properties of the fluorine-based composite material prepared by the reaction are measured and shown in Table 1 below.

비교예 1Comparative Example 1

상기 실시예 1과 동일한 방법으로 실시하되, 용매캐스팅한 후, 가열냉각(annealing)을 시키지 않고 반응을 수행하였다. 상기 반응으로 제조된 복합소재의 물성을 측정하여 다음 표 1에 나타내었다.In the same manner as in Example 1, but after the solvent cast, the reaction was carried out without heating and cooling (annealing). The physical properties of the composite material prepared by the reaction are measured and shown in Table 1 below.

비교예 2Comparative Example 2

PFA/Silica 복합체 0.15 g을 100 g의 R-113에 녹여 2 ㎖를 슬라이드 글라스에 24시간동안 실온에서 용매 캐스팅하고, 그 다음에 폴리메틸메타크릴레이트(PMMA) 0.15 g을 100 g의 클로로포름에 녹여 2 ㎖를 PFA/Silica 복합체가 캐스팅된 필름위에 24시간동안 실온에서 용매 캐스팅한 후 제조된 필름을 120 ℃에서 24시간동안 가열냉각(annealing)시켰다. 상기 반응으로 제조된 복합소재의 물성을 측정하였으며 다음 표 1에 나타내었다. 0.15 g of the PFA / Silica complex was dissolved in 100 g of R-113, 2 ml of the solvent was cast in a slide glass at room temperature for 24 hours, and then 0.15 g of polymethyl methacrylate (PMMA) was dissolved in 100 g of chloroform. 2 ml of the PFA / Silica composite was cast on a film cast for 24 hours at room temperature, and then the film was annealed at 120 ° C. for 24 hours. The physical properties of the composite material prepared by the reaction was measured and shown in Table 1 below.

비교예 3Comparative Example 3

상기 비교예 2와 동일하게 실시하되, 폴리메틸메타크릴레이트(PMMA)을 0.30 g을 사용하여 반응을 수행하였다. 상기 반응으로 제조된 복합소재의 물성을 측정하였으며 다음 표 1에 나타내었다. The reaction was carried out in the same manner as in Comparative Example 2, using 0.30 g of polymethyl methacrylate (PMMA). The physical properties of the composite material prepared by the reaction was measured and shown in Table 1 below.

비교예 4Comparative Example 4

상기 비교예 2와 동일하게 실시하되, 폴리메틸메타크릴레이트(PMMA)을 0.45 g을 사용하여 반응을 수행하였다. 상기 반응으로 제조된 복합소재의 물성을 측정하였으며 다음 표 1에 나타내었다. In the same manner as in Comparative Example 2, but the reaction was carried out using 0.45 g of polymethyl methacrylate (PMMA). The physical properties of the composite material prepared by the reaction was measured and shown in Table 1 below.

비교예 5Comparative Example 5

폴리메틸메타크릴레이트(PMMA) 0.30 g을 100 g의 클로로포름에 녹여 2 ㎖를 24시간동안 실온에서 용매 캐스팅한 후 제조된 필름을 120 ℃에서 24시간동안 가열냉각(annealing)시켰다. 상기 반응으로 제조된 복합소재의 물성을 측정하였으며 다음 표 1에 나타내었다. 0.30 g of polymethyl methacrylate (PMMA) was dissolved in 100 g of chloroform, and 2 ml of the solvent was cast at room temperature for 24 hours, followed by annealing at 120 DEG C for 24 hours. The physical properties of the composite material prepared by the reaction was measured and shown in Table 1 below.

구분division 투과도(%)Permeability (%) 헤이즈(%)Haze (%) 접촉각 (°)Contact angle (°) 표면자유에너지 (dyn/cm)Surface free energy (dyn / cm) 지문식취성Fingerprint 증류수Distilled water 디요오도메탄Diiodomethane 실시예 1Example 1 93.093.0 5.55.5 104.9104.9 74.174.1 20.620.6 0 실시예 2Example 2 92.392.3 18.818.8 114.3114.3 88.988.9 13.213.2 실시예 3Example 3 92.592.5 14.714.7 113.4113.4 90.690.6 12.512.5 실시예 4Example 4 92.992.9 5.65.6 112.6112.6 89.589.5 13.013.0 0 실시예 5Example 5 92.292.2 8.48.4 112.0112.0 90.390.3 12.712.7 0 실시예 6Example 6 92.992.9 5.55.5 114.9114.9 90.190.1 12.712.7 0 비교예 1Comparative Example 1 91.691.6 12.612.6 99.899.8 67.467.4 24.424.4 비교예 2Comparative Example 2 91.191.1 47.647.6 112.1112.1 74.774.7 20.620.6 비교예 3Comparative Example 3 90.090.0 41.541.5 109.6109.6 72.772.7 21.521.5 비교예 4Comparative Example 4 90.590.5 29.229.2 96.796.7 46.746.7 28.228.2 비교예 5Comparative Example 5 93.093.0 1.111.11 79.2 79.2 38.738.7 41.441.4 × ×

[물성 측정방법][Measurement of physical properties]

1. 헤이즈 및 투과율 측정1.Haze and transmittance measurement

헤이즈 및 전광선 투과율은 BYK-Gardner HB-4725를 이용하여 측정하였다. 이때 측정은 필름이 디텍터 방향으로 향하게 하였고, 3곳의 상이한 지점에서 행하여 평균값을 취하였다. 필름의 투명성을 평가하는 방법의 하나로서 투과율이 높고 헤이즈가 낮은 것이 양호한 투명성을 나타낸다.Haze and total light transmittance were measured using BYK-Gardner HB-4725. The measurements were then directed to the detector direction and taken at three different points to take an average value. As one of the methods of evaluating the transparency of a film, high transmittance | permeability and low haze show favorable transparency.

2. 접촉각 측정2. Contact angle measurement

접촉각은 25 ±1 ℃에서 물 및 디요오도메탄 등 두 종류의 접촉액을 사용하여 광조사기(illuminator)가 부착된 Goniometer(Rame-Hart 100-series)를 이용하여 측정하였다. 이때 측정은 접촉액 직경이 2 mm의 방울로 5개 상이한 지점에서 행했고, 평균을 기록하였다.The contact angle was measured using a Goniometer (Rame-Hart 100-series) equipped with an illuminator using two types of contact liquids such as water and diiodomethane at 25 ± 1 ° C. The measurements were made at five different points with droplets of 2 mm in diameter, and the average was recorded.

3. 표면 자유에너지3. Surface free energy

표면 자유에너지는 물(H2O)과 디요오도메탄(CH2I2)을 이용하여 얻은 접촉각(contact angle)과 하기 수학식 1의 기하평균 근사식(geometric mean approximations)을 이용하여 표면 겉보기 에너지를 계산하였다.Surface free energy is apparent by using contact angles obtained using water (H 2 O) and diiodomethane (CH 2 I 2 ) and geometric mean approximations of Equation 1 below. The energy was calculated.

4. 오염 및 지문방지성 측정4. Measurement of contamination and fingerprint prevention

집게손가락을 이용하여 필름 표면에 5초간 눌러서 지문을 남겨 지문을 마른 천으로 닦아낼 때의 용이성을 평가했다. 지문이 묻어도 수월하게 잘 닦이는 경우는 0, 닦아내기 어렵지만 흔적이 남지 않는 경우는 △, 닦아내기 어렵고 흔적이 남는 경우는 ×라고 표기하였다.The index finger was used for 5 seconds to leave the fingerprint on the surface of the film to evaluate the ease of wiping the fingerprint with a dry cloth. If the fingerprint is easily wiped, it is easy to wipe well, and it is difficult to wipe, but if no trace remains, it is marked as △.

상기 표 1에 나타난 바와 같이, 본 발명에 다른 실시예 1 ∼ 6의 복합소재는 비교예 1 ∼ 5보다 투과도, 헤이즈, 지문방지성, 발수성 및 발유성이 우수함을 알 수 있었다. 비교예 1 ∼ 5의 물성 데이터 중 실시예 보다 좋은 수치를 나타내는 항목도 일부 존재하나, 모든 물성이 동시에 향상되지 않는다는 것을 확인할 수 있었다. As shown in Table 1, the composite materials of Examples 1 to 6 according to the present invention was found to be superior to the transmittance, haze, anti-fingerprint, water repellency and oil repellency than Comparative Examples 1 to 5. Although there exist some items which show the numerical value better than an Example among the physical property data of Comparative Examples 1-5, it was confirmed that all the physical properties do not improve at the same time.

이상에서 설명한 바와 같이, 본 발명에 따라 제조된 불소계 복합소재는 무기입자에 의해 표면에 미세 요철 구조로 난반사 효과, 저 반사 효과, 저 표면에너지 특성을 가지고 저 굴절율의 특성을 지닌 불소화합물에 의한 발수, 발유, 활수, 방오성 등의 특성을 동시에 가져, 이동통신 기기나 모니터 등의 디스플레이의 평판디스플레이 패널에서 널리 사용되는 다양한 기능을 동시에 갖는 불소계 복합소재를 일련의 단일공정으로 제조하여 경제적으로 유리하다.As described above, the fluorine-based composite material prepared according to the present invention is water repellent by a fluorine compound having the characteristics of low refractive index and diffuse reflection effect, low reflection effect, low surface energy characteristics with fine concavo-convex structure on the surface by inorganic particles It is economically advantageous to manufacture a fluorine-based composite material having a variety of functions that are widely used in flat panel display panels of displays such as mobile communication devices or monitors at the same time as having properties such as oil repellency, water repellency, and antifouling properties.

도 1은 본 발명에 따라 제조되는 불소계 복합소재를 이용하여 평판디스플레이 패널의 층을 형성하는 과정을 나타낸 것이다.1 illustrates a process of forming a layer of a flat panel display panel using a fluorine-based composite material prepared according to the present invention.

Claims (9)

아조계 염화실란 화합물이 고착화된 무기입자가 코어를 형성하고, 다음 화학식 1a ∼ 1d로 표시되는 화합물 중에서 선택된 불소계 고분자 화합물이 셀을 형성하여 이루어진 것을 특징으로 하는 코어-셀형 불소계 고분자:A core-cell fluorine-based polymer, characterized in that the inorganic particles to which the azo-based silane compound is fixed form a core, and a fluorine-based polymer compound selected from the compounds represented by the following Chemical Formulas 1a to 1d forms a cell: [화학식 1a] [Formula 1a] XCnF2nCH2OCOCR1=CH2 XC n F 2n CH 2 OCOCR 1 = CH 2 [화학식 1b][Formula 1b] XCnF2nSO2NR2(CH2)mOCOCR1=CH 2 XC n F 2n SO 2 NR 2 (CH 2 ) m OCOCR 1 = CH 2 [화학식 1c][Formula 1c] XCnF2nCH2CH(OH)(CH2)mOCOCR1=CH2 XC n F 2n CH 2 CH (OH) (CH 2 ) m OCOCR 1 = CH 2 [화학식 1d] [Formula 1d] XCnF2n(CH2)mOCOCR1=CH2 XC n F 2n (CH 2 ) m OCOCR 1 = CH 2 상기 화학식 1a ∼ 1d에서, R1은 H 또는 -CH3이고, R2는 C1 ∼ C10 알킬기이고, X는 H, F 또는 Cl이고, m은 2 ∼ 6의 정수이고, n은 3 ∼ 21의 정수이다.In Formulas 1a to 1d, R 1 is H or —CH 3 , R 2 is a C 1 to C 10 alkyl group, X is H, F or Cl, m is an integer of 2 to 6, n is 3 to Is an integer of 21. 제 1 항에 있어서, 상기 무기입자는 평균입자 크기가 7 ㎚ ∼ 3 ㎛인 것임을 특징으로 하는 코어-셀형 불소계 고분자.The core-cell fluorine-based polymer according to claim 1, wherein the inorganic particles have an average particle size of 7 nm to 3 µm. 제 1 항에 있어서, 상기 무기입자는 실리카, 알루미나, 산화티타늄, 산화아연, 산화세륨, 산화구리, 산화니켈 및 산화지르코늄 중에서 선택된 1종 또는 2종 이상인 것임을 특징으로 하는 코어-셀형 불소계 고분자.The core-cell fluorine-based polymer according to claim 1, wherein the inorganic particles are one or two or more selected from silica, alumina, titanium oxide, zinc oxide, cerium oxide, copper oxide, nickel oxide and zirconium oxide. 제 1 항에 있어서, 상기 아조계 염화실란 화합물은 아조 모노실란(AMS), 아조 디실란(ADS) 및 아조 트리실란(ATS) 중에서 선택된 1종 또는 2종 이상인 것임을 특징으로 하는 코어-셀형 불소계 고분자.The core-cell type fluorine-based polymer according to claim 1, wherein the azo chloride compound is at least one selected from azo monosilane (AMS), azo disilane (ADS), and azo trisilane (ATS). . 아조계 염화실란 화합물이 고착화된 무기입자가 코어를 형성하고, 다음 화학식 1a ∼ 1d로 표시되는 화합물 중에서 선택된 불소계 고분자 화합물이 셀을 형성한 코어-셀형 불소계 고분자 입자 10 ∼ 50 중량%와, 10 to 50% by weight of the core-cell fluorine-based polymer particles in which the inorganic particles to which the azo chloride silane compound is fixed form a core, and the fluorine-based polymer compound selected from the compounds represented by the following Chemical Formulas 1a to 1d forms a cell; 투명고분자 화합물 50 ∼ 90 중량%가 포함되어 이루어진 것임을 특징으로 하는 불소계 복합소재.A fluorine-based composite material, characterized in that it comprises 50 to 90% by weight of the transparent polymer compound. [화학식 1a][Formula 1a] XCnF2nCH2OCOCR1=CH2 XC n F 2n CH 2 OCOCR 1 = CH 2 [화학식 1b][Formula 1b] XCnF2nSO2NR2(CH2)mOCOCR1=CH 2 XC n F 2n SO 2 NR 2 (CH 2 ) m OCOCR 1 = CH 2 [화학식 1c][Formula 1c] XCnF2nCH2CH(OH)(CH2)mOCOCR1=CH2 XC n F 2n CH 2 CH (OH) (CH 2 ) m OCOCR 1 = CH 2 [화학식 1d] [Formula 1d] XCnF2n(CH2)mOCOCR1=CH2 XC n F 2n (CH 2 ) m OCOCR 1 = CH 2 상기 화학식 1a ∼ 1d에서, R1은 H 또는 -CH3이고, R2는 C1 ∼ C10 알킬기이고, X는 H, F 또는 Cl이고, m은 2 ∼ 6의 정수이고, n은 3 ∼ 21의 정수이다.In Formulas 1a to 1d, R 1 is H or —CH 3 , R 2 is a C 1 to C 10 alkyl group, X is H, F or Cl, m is an integer of 2 to 6, n is 3 to Is an integer of 21. 제 5 항에 있어서, 상기 무기입자는 실리카, 알루미나, 산화티타늄, 산화아연, 산화세륨, 산화구리, 산화니켈 및 산화지르코늄 중에서 선택된 1종 또는 2종 이상이고, 평균입자 크기가 7 ㎚ ∼ 3 ㎛인 것임을 특징으로 하는 불소계 복합소재.The method of claim 5, wherein the inorganic particles are one or two or more selected from silica, alumina, titanium oxide, zinc oxide, cerium oxide, copper oxide, nickel oxide, and zirconium oxide, and the average particle size is 7 nm to 3 µm. Fluorine-based composite material, characterized in that. 제 5 항에 있어서, 상기 투명고분자 화합물은 아크릴레이트계 또는 메타크릴레이트계 단량체, 저밀도폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리카보네이트 및 폴리메틸펜텐 중에서 선택된 1종 또는 2종 이상인 것임을 특징으로 하는 불소계 복합소재.The fluorine-based compound according to claim 5, wherein the transparent polymer compound is one or two or more selected from acrylate or methacrylate monomers, low density polyethylene, polypropylene, polyethylene terephthalate, polycarbonate, and polymethylpentene. Composite materials. 평균입자 크기가 7 ㎚ ∼ 3 ㎛인 무기입자와 아조계 염화실란 화합물을 반응시켜 실록산 결합을 이루는 코어를 형성하는 공정과;Reacting an inorganic particle having an average particle size of 7 nm to 3 μm with an azo chloride compound to form a core forming a siloxane bond; 상기 형성된 코어와 다음 화학식 1a ∼ 1d 표시되는 화합물 중에서 선택된 불소계 고분자 화합물을 50 ∼ 90 ℃ 온도에서 라디칼 중합반응시켜 코어-셀형 불소계 고분자 입자를 제조하는 공정과; Preparing a core-cell type fluorine-based polymer particle by radically polymerizing the formed core with a fluorine-based polymer compound selected from the compounds represented by Formulas 1a to 1d at a temperature of 50 to 90 ° C .; 상기 코어-셀형 불소계 고분자 입자와 투명고분자 화합물을 분산 중합시키는 공정; 및Dispersing and polymerizing the core-cell type fluorine-based polymer particle and the transparent polymer compound; And 상기 고분자 중합물을 10 ∼ 40 ℃ 온도에서, 1 ∼ 24 시간동안 용매 캐스팅하고, 100 ∼ 160 ℃ 온도에서 가열냉각(annealing)시키는 공정이 Solvent casting the polymer polymer at a temperature of 10 to 40 ℃, for 1 to 24 hours, and annealing at 100 to 160 ℃ temperature 포함되어 이루어진 것을 특징으로 하는 불소계 복합소재의 제조방법:Method for producing a fluorine-based composite material, characterized in that comprises: [화학식 1a][Formula 1a] XCnF2nCH2OCOCR1=CH2 XC n F 2n CH 2 OCOCR 1 = CH 2 [화학식 1b][Formula 1b] XCnF2nSO2NR2(CH2)mOCOCR1=CH 2 XC n F 2n SO 2 NR 2 (CH 2 ) m OCOCR 1 = CH 2 [화학식 1c][Formula 1c] XCnF2nCH2CH(OH)(CH2)mOCOCR1=CH2 XC n F 2n CH 2 CH (OH) (CH 2 ) m OCOCR 1 = CH 2 [화학식 1d] [Formula 1d] XCnF2n(CH2)mOCOCR1=CH2 XC n F 2n (CH 2 ) m OCOCR 1 = CH 2 상기 화학식 1a ∼ 1d에서, R1은 H 또는 -CH3이고, R2는 C1 ∼ C10 알킬기이고, X는 H, F 또는 Cl이고, m은 2 ∼ 6의 정수이고, n은 3 ∼ 21의 정수이다.In Formulas 1a to 1d, R 1 is H or —CH 3 , R 2 is a C 1 to C 10 alkyl group, X is H, F or Cl, m is an integer of 2 to 6, n is 3 to Is an integer of 21. 제 8 항에 있어서, 상기 분산 중합시 불소계 유기용매와 탄화수소계 유기용매가 70/30 ∼ 30/70 중량비로 혼합된 용매를 사용하는 것을 특징으로 하는 불소계 복합소재의 제조방법.The method of manufacturing a fluorine-based composite material according to claim 8, wherein a solvent in which the fluorine-based organic solvent and the hydrocarbon-based organic solvent are mixed in a weight ratio of 70/30 to 30/70 is used in the dispersion polymerization.
KR1020030077956A 2003-11-05 2003-11-05 Composites containing fluorinated core-shell particles for Front Display Panel, and Manufacturing method thereof KR100553314B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030077956A KR100553314B1 (en) 2003-11-05 2003-11-05 Composites containing fluorinated core-shell particles for Front Display Panel, and Manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030077956A KR100553314B1 (en) 2003-11-05 2003-11-05 Composites containing fluorinated core-shell particles for Front Display Panel, and Manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20050043160A true KR20050043160A (en) 2005-05-11
KR100553314B1 KR100553314B1 (en) 2006-02-20

Family

ID=37243944

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030077956A KR100553314B1 (en) 2003-11-05 2003-11-05 Composites containing fluorinated core-shell particles for Front Display Panel, and Manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100553314B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101244883B1 (en) * 2012-03-19 2013-03-18 한국기계연구원 Anti-reflecting board having anti-fingerprint function and manufacturing method thereof
US20140303281A1 (en) * 2013-03-14 2014-10-09 The Sherwin-Williams Company Hybrid latex particles for self-stratifying coatings
CN111154389A (en) * 2018-11-07 2020-05-15 现代自动车株式会社 Polyurethane-silicon dioxide composite material coating composition, polyurethane-silicon dioxide composite film and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412050B1 (en) 2017-07-07 2022-06-21 삼성전자주식회사 Compounds, compositions including the same, and layered structures and devices prepared from the compositions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101244883B1 (en) * 2012-03-19 2013-03-18 한국기계연구원 Anti-reflecting board having anti-fingerprint function and manufacturing method thereof
US20140303281A1 (en) * 2013-03-14 2014-10-09 The Sherwin-Williams Company Hybrid latex particles for self-stratifying coatings
CN111154389A (en) * 2018-11-07 2020-05-15 现代自动车株式会社 Polyurethane-silicon dioxide composite material coating composition, polyurethane-silicon dioxide composite film and preparation method thereof
US11299640B2 (en) 2018-11-07 2022-04-12 Hyundai Motor Company Polyurethane-silica composite-based coating composition, polyurethane-silica composite film, and method of preparing the same
US11873419B2 (en) 2018-11-07 2024-01-16 Hyundai Motor Company Polyurethane-silica composite-based coating composition, polyurethane-silica composite film, and method of preparing the same

Also Published As

Publication number Publication date
KR100553314B1 (en) 2006-02-20

Similar Documents

Publication Publication Date Title
KR101563564B1 (en) Hard coat film and transparent conducting film
US7638581B2 (en) Fluoropolymer nanoparticle coating composition
CN101398489B (en) Optical film, polarizing plate and image display device
EP2631068B1 (en) Laminate body and manufacturing method thereof
JP6363072B2 (en) Additives containing low surface energy groups and hydroxyl groups, and coating compositions
KR101559186B1 (en) Optical laminate, polarizing plate, and display apparatus using the same
KR20140004124A (en) Coating compositions comprising non-ionic surfactant exhibiting reduced fingerprint visibility
SG185417A1 (en) Antireflective films comprising microstructured surface
CN103597000B (en) Nano concavo-convex structure resin combination and use its automobile instrument cover transparent component and auto navigation monitor transparent component
JP2015511254A (en) Nanostructured material and method for producing the same
JP5199237B2 (en) Curable fluoroalkyl silicone composition
JP4375335B2 (en) Curable surface modifier and curable surface modifying composition using the same
JP2014240956A (en) Reflection-preventing film, polarizing plate, cover glass, image display device, method for producing reflection-preventing film, cloth for cleaning reflection-preventing film, kit including reflection-preventing film and cleaning cloth, and method for cleaning reflection-preventing film
CN105264407A (en) Anti-glare film, polarizer, liquid-crystal panel, and image display device
KR20050083597A (en) Antiglare and antireflection coatings of surface active nanoparticles
JP2010512423A (en) Coating composition for low refractive index layer, antireflection film using the same, and image display device including the antireflection film
CN111712534B (en) Antireflection film, polarizing plate and display device
JP2007284622A (en) Coating composition for surface protective layer
US9701850B2 (en) Coating compositions comprising polymerizable non-ionic surfactant exhibiting reduced fingerprint visibility
JP4860952B2 (en) Coating composition for surface protective layer and antireflection film using the same
US20050106377A1 (en) Anti-glare optical film for display devices
JP4866086B2 (en) Combination lens, chromatic aberration correction method
JPH0716940A (en) Optical article having antistaining properties
KR100553314B1 (en) Composites containing fluorinated core-shell particles for Front Display Panel, and Manufacturing method thereof
WO2015063816A1 (en) Article having coating on substrate, coating composition, and coating method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111214

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee