KR20050041185A - Method for fabricating ferroelectric random access memory having bottom electrode isolated by dielectric - Google Patents
Method for fabricating ferroelectric random access memory having bottom electrode isolated by dielectric Download PDFInfo
- Publication number
- KR20050041185A KR20050041185A KR1020030076250A KR20030076250A KR20050041185A KR 20050041185 A KR20050041185 A KR 20050041185A KR 1020030076250 A KR1020030076250 A KR 1020030076250A KR 20030076250 A KR20030076250 A KR 20030076250A KR 20050041185 A KR20050041185 A KR 20050041185A
- Authority
- KR
- South Korea
- Prior art keywords
- hard mask
- lower electrode
- film
- forming
- insulating film
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 239000010410 layer Substances 0.000 claims abstract description 22
- 239000011229 interlayer Substances 0.000 claims abstract description 20
- 239000004065 semiconductor Substances 0.000 claims abstract description 18
- 238000002955 isolation Methods 0.000 claims abstract description 17
- 239000000758 substrate Substances 0.000 claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 10
- 238000001039 wet etching Methods 0.000 claims abstract description 10
- 238000000926 separation method Methods 0.000 claims abstract description 9
- 238000005530 etching Methods 0.000 claims description 9
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 7
- 229920002120 photoresistant polymer Polymers 0.000 claims description 6
- 230000004888 barrier function Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims 1
- 238000005498 polishing Methods 0.000 abstract description 6
- 239000003990 capacitor Substances 0.000 abstract description 5
- 239000010408 film Substances 0.000 description 54
- 238000003860 storage Methods 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052741 iridium Inorganic materials 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 2
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 2
- 229910000457 iridium oxide Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000005380 borophosphosilicate glass Substances 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229910021341 titanium silicide Inorganic materials 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- -1 tungsten nitride Chemical class 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B53/00—Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/31051—Planarisation of the insulating layers
- H01L21/31053—Planarisation of the insulating layers involving a dielectric removal step
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32139—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Semiconductor Memories (AREA)
Abstract
본 발명은 하부전극간 분리를 위한 분리절연막의 평탄화시에 하부전극 표면이 손상되는 것을 방지하는데 적합한 강유전체메모리소자의 제조 방법을 제공하기 위한 것으로, 본 발명은 반도체기판 상부에 층간절연막을 형성하는 단계, 상기 층간절연막 상에 하부전극과 하드마스크의 순서로 적층된 적층막을 형성하는 단계, 상기 적층막을 포함한 전면에 분리절연막을 형성하는 단계, 상기 하드마스크의 표면이 드러날때까지 상기 분리절연막을 평탄화시키는 단계, 상기 하드마스크를 습식식각을 통해 제거하는 단계, 상기 하드마스크 제거후 드러난 상기 하부전극을 포함한 전면에 강유전체막을 형성하는 단계, 및 상기 강유전체막 상에 상부전극을 형성하는 단계를 포함하며, 이로써 본 발명은 분리절연막의 화학적기계적연마 또는 에치백 공정시 하부전극 표면의 손상을 하드마스크가 보호하므로써 하부전극의 표면이 매우 균일하여 후속 강유전체막의 불균일한 성장을 방지하여 균일한 캐패시터 성능을 얻을 수 있다. The present invention provides a method of manufacturing a ferroelectric memory device suitable for preventing the lower electrode surface from being damaged during the planarization of the isolation insulating film for separation between the lower electrodes, the present invention comprises the steps of forming an interlayer insulating film on the semiconductor substrate Forming a stacked layer stacked on the interlayer insulating layer in the order of a lower electrode and a hard mask; forming a separated insulating layer on the entire surface including the stacked layer; and planarizing the separated insulating layer until the surface of the hard mask is exposed. Removing the hard mask by wet etching; forming a ferroelectric film on the entire surface including the lower electrode exposed after removing the hard mask; and forming an upper electrode on the ferroelectric film. According to the present invention, the chemical mechanical polishing or etch back process of the isolation insulating film The surface of the lower electrode is very uniform By the hard mask protecting the damage to the electrode surface and can obtain a uniform performance of the capacitor to prevent subsequent non-uniform growth of the ferroelectric film.
Description
본 발명은 반도체소자의 제조 방법에 관한 것으로, 특히 강유전체 메모리소자의 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a ferroelectric memory device.
일반적으로, 반도체 메모리 소자에서 강유전체(Ferroelectric) 박막을 강유전체 캐패시터에 사용함으로써 DRAM(Dynamic Random Access Memory) 소자에서 필요한 리프레쉬(Refresh)의 한계를 극복하고 대용량의 메모리를 이용할 수 있는 소자의 개발이 진행되어왔다. 이러한 강유전체 박막을 이용하는 강유전체 메모리 소자(Ferroelectric Random Access Memory; FeRAM) 소자는 비휘발성 메모리 소자(Nonvolatile Memory device)의 일종으로 전원이 끊어진 상태에서도 저장 정보를 기억하는 장점이 있을 뿐만 아니라 동작 속도도 DRAM에 필적하여 차세대 기억소자로 각광받고 있다.In general, by using a ferroelectric thin film in a ferroelectric capacitor in a semiconductor memory device, the development of a device capable of using a large-capacity memory while overcoming the limitation of refresh required in a DRAM (Dynamic Random Access Memory) device is in progress. come. A ferroelectric random access memory (FeRAM) device using such a ferroelectric thin film is a kind of nonvolatile memory device, which not only stores stored information even when power is cut off, but also operates at a speed of DRAM. It is comparable to the next generation memory device.
상기한 강유전체메모리소자는 저장전극(Storage node)의 재료로서 DRAM과 다른 물질을 사용한다. 즉, 강유전체 박막으로서 Y-1 또는 BLT 등을 사용하고 저장전극의 재료로 Pt, Ir, IrO2, Ru, RuO2를 사용한다. 이와 같은 금속물질들은 증착 공정 및 식각공정이 어려워 단순 적층(Stack) 구조의 저장전극을 형성시킬 수 밖에 없었다.The ferroelectric memory device uses a material different from DRAM as a material of a storage node. That is, Y-1 or BLT is used as the ferroelectric thin film, and Pt, Ir, IrO 2 , Ru, RuO 2 are used as the material of the storage electrode. Such metal materials have difficulty in the deposition process and the etching process, thereby forming a storage electrode having a simple stack structure.
그러나, 점차 강유전체메모리소자도 고집적화되면서 단순 적층 구조의 저장전극은 평면적인 구조때문에 패턴 밀도의 향상에 한계가 있고, 특히 후속 공정에서도 극심한 토폴로지(topology) 문제, 즉 평탄화불량으로 인한 금속배선의 단락을 초래하므로써 새로운 구조의 저장전극의 필요성이 요구되었다.However, as ferroelectric memory devices are increasingly integrated, the storage electrodes of simple stacked structures have a limitation in improving the pattern density due to the planar structure. In particular, even in subsequent processes, short circuits due to severe topology problems, that is, poor planarization, are prevented. As a result, there is a need for a storage electrode having a new structure.
후속 공정에서의 평탄화불량을 개선하기 위한 기술이 첨부도면 도 1a 내지 도 1c에 도시되어 있다.Techniques for ameliorating poor planarization in subsequent processes are illustrated in the accompanying drawings, FIGS. 1A-1C.
도 1a 내지 도 1c는 종래 기술에 따른 강유전체메모리소자의 제조 방법을 도시한 공정 단면도이다.1A to 1C are cross-sectional views illustrating a method of manufacturing a ferroelectric memory device according to the prior art.
도 1a에 도시된 바와 같이, 반도체기판(11)에 활성영역을 정의하는 소자분리막(12)을 형성하고, 반도체기판(11) 상부에 워드라인(13)을 형성한다. 여기서, 도시되지 않았지만, 잘 알려진 바와 같이 워드라인(13) 아래에는 게이트절연막이 존재하고, 또한 워드라인(13) 양측의 반도체기판(11)에는 트랜지스터의 소스/드레인영역이 형성될 것이다.As shown in FIG. 1A, an isolation layer 12 defining an active region is formed on the semiconductor substrate 11, and a word line 13 is formed on the semiconductor substrate 11. Although not shown here, as is well known, a gate insulating film exists under the word line 13, and a source / drain region of a transistor may be formed in the semiconductor substrate 11 on both sides of the word line 13.
다음으로, 워드라인(13)을 포함한 반도체 기판(11) 상부에 제1층간절연막(14)을 형성한 후, 제1층간절연막(14)을 관통하여 반도체 기판(11)의 일부에 연결되는 비트라인콘택(15)과 비트라인(16)을 형성한다.Next, after the first interlayer insulating film 14 is formed on the semiconductor substrate 11 including the word line 13, the bit is connected to a part of the semiconductor substrate 11 through the first interlayer insulating film 14. The line contact 15 and the bit line 16 are formed.
이어서, 비트라인(16)을 포함한 전면에 제2층간절연막(17)을 형성한 후, 제2층간절연막(17)과 제1층간절연막(14)을 동시에 관통하여 반도체 기판(11)의 나머지 일부분에 접하는 스토리지노드콘택(18)을 형성한다.Subsequently, after the second interlayer insulating film 17 is formed on the entire surface including the bit line 16, the second interlayer insulating film 17 and the first interlayer insulating film 14 are simultaneously penetrated to rest the remaining portion of the semiconductor substrate 11. The storage node contact 18 is formed in contact with each other.
그리고 나서, 스토리지노드콘택(18)에 연결되는 적층 구조의 하부전극(19)을 형성한다. Thereafter, a lower electrode 19 having a stacked structure connected to the storage node contact 18 is formed.
다음으로, 하부전극(19)을 포함한 전면에 하부전극간 분리(Isolation)를 위한 분리절연막(20)을 형성한다.Next, a separation insulating film 20 for isolation between lower electrodes is formed on the entire surface including the lower electrode 19.
도 1b에 도시된 바와 같이, 하부전극(19)의 표면이 드러날때까지 화학적기계적연마 또는 에치백을 이용하여 분리절연막(20)을 평탄화시킨다.As shown in FIG. 1B, the isolation insulating layer 20 is planarized by chemical mechanical polishing or etch back until the surface of the lower electrode 19 is exposed.
도 1c에 도시된 바와 같이, 평탄화된 분리절연막(20) 및 하부전극(19) 상에 강유전체막(21)을 형성한 후, 강유전체막(21) 상에 상부전극(22)을 형성한다.As shown in FIG. 1C, after the ferroelectric film 21 is formed on the planarized isolation insulating film 20 and the lower electrode 19, the upper electrode 22 is formed on the ferroelectric film 21.
상술한 종래 기술은 강유전체막(21) 형성전의 하부구조를 평탄화시켜 평탄화불량으로 인해 발생하는 후속 금속배선의 단락을 억제하고 있다.The above-described prior art flattens the substructure before the formation of the ferroelectric film 21, thereby suppressing the short circuit of the subsequent metal wiring caused by the poor planarization.
그러나, 분리절연막(20)을 평탄화시키기 위한 화학적기계적연마(CMP) 또는 에치백 과정에서 하부전극(19) 표면이 물리적 또는 플라즈마로 인해 손상되어 하부전극 표면이 매우 불균일해지고, 이는 후속 강유전체막(21) 성장의 불량을 초래하여 캐패시터의 특성을 열화시키는 문제가 발생한다. However, in the chemical mechanical polishing (CMP) or etch back process to planarize the isolation insulating film 20, the surface of the lower electrode 19 is damaged by physical or plasma, resulting in a very uneven surface of the lower electrode. ) A problem of deterioration of the characteristics of the capacitor is caused by poor growth.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출한 것으로, 하부전극간 분리를 위한 분리절연막의 평탄화시에 하부전극 표면이 손상되는 것을 방지하는데 적합한 강유전체메모리소자의 제조 방법을 제공하는데 그 목적이 있다. The present invention has been made to solve the above problems of the prior art, and provides a method of manufacturing a ferroelectric memory device suitable for preventing damage to the lower electrode surface during planarization of the isolation insulating film for separation between the lower electrodes. There is this.
상기 목적을 달성하기 위한 본 발명의 강유전체 메모리 소자의 제조 방법은 반도체기판 상부에 층간절연막을 형성하는 단계, 상기 층간절연막 상에 하부전극과 하드마스크의 순서로 적층된 적층막을 형성하는 단계, 상기 적층막을 포함한 전면에 분리절연막을 형성하는 단계, 상기 하드마스크의 표면이 드러날때까지 상기 분리절연막을 평탄화시키는 단계, 상기 하드마스크를 습식식각을 통해 제거하는 단계, 상기 하드마스크 제거후 드러난 상기 하부전극을 포함한 전면에 강유전체막을 형성하는 단계, 및 상기 강유전체막 상에 상부전극을 형성하는 단계를 포함하는 것을 특징으로 한다. According to another aspect of the present invention, there is provided a method of manufacturing a ferroelectric memory device, including forming an interlayer insulating layer on an upper surface of a semiconductor substrate, and forming a laminated film laminated on the interlayer insulating layer in the order of a lower electrode and a hard mask. Forming a separation insulating film on the entire surface including a film, planarizing the separation insulating film until the surface of the hard mask is exposed, removing the hard mask by wet etching, and removing the lower electrode exposed after removing the hard mask. Forming a ferroelectric film on the entire surface including, and forming an upper electrode on the ferroelectric film.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다.Hereinafter, the preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. .
도 2a 내지 도 2f는 본 발명의 실시예에 따른 강유전체 메모리 소자의 제조 방법을 도시한 공정 단면도이다.2A to 2F are cross-sectional views illustrating a method of manufacturing a ferroelectric memory device according to an embodiment of the present invention.
도 2a에 도시된 바와 같이, 반도체기판(31)에 활성영역을 정의하는 소자분리막(32)을 형성하고, 반도체기판(31) 상부에 워드라인(33)을 형성한다. 여기서, 도시되지 않았지만, 잘 알려진 바와 같이 워드라인(33) 아래에는 게이트절연막이 존재하고, 또한 워드라인(33) 양측의 반도체기판(31)에는 트랜지스터의 소스/드레인영역이 형성될 것이다.As shown in FIG. 2A, an isolation layer 32 defining an active region is formed on the semiconductor substrate 31, and a word line 33 is formed on the semiconductor substrate 31. Although not shown, a gate insulating film is present under the word line 33 as is well known, and a source / drain region of a transistor may be formed in the semiconductor substrate 31 on both sides of the word line 33.
다음으로, 워드라인(33)을 포함한 반도체 기판(31) 상부에 제1층간절연막(34)을 형성한 후, 제1층간절연막(34)을 관통하여 반도체 기판(31)의 일부에 연결되는 비트라인콘택(35)과 비트라인(36)을 형성한다.Next, after the first interlayer insulating film 34 is formed on the semiconductor substrate 31 including the word line 33, the bit is connected to a part of the semiconductor substrate 31 through the first interlayer insulating film 34. The line contact 35 and the bit line 36 are formed.
이어서, 비트라인(36)을 포함한 전면에 제2층간절연막(37)을 형성한 후, 제2층간절연막(37)과 제1층간절연막(34)을 동시에 관통하여 반도체 기판(31)의 나머지 일부분에 접하는 스토리지노드콘택(38)을 형성한다. 여기서, 스토리지노드콘택(38)은 예를 들어, 폴리실리콘플러그(polysilicon-plug), 티타늄실리사이드(Ti-silicide) 및 티타늄나이트라이드(TiN)의 순서로 적층된 구조물로서, 이들의 형성 방법은 생략하기로 한다. Subsequently, after the second interlayer insulating film 37 is formed on the entire surface including the bit line 36, the second interlayer insulating film 37 and the first interlayer insulating film 34 are simultaneously penetrated to rest the remaining portion of the semiconductor substrate 31. A storage node contact 38 is in contact with each other. Here, the storage node contact 38 is, for example, a structure laminated in the order of polysilicon plug, titanium silicide, and titanium nitride, and a method of forming them is omitted. Let's do it.
다음으로, 스토리지노드콘택(38)을 포함한 제2층간절연막(37) 상에 하부전극을 이룰 도전막(39)과 하드마스크(40)를 순차적으로 형성한다. 여기서, 하부전극을 이루는 도전막(39)은 적층 구조로서, 예를 들면, 이리듐(Ir), 이리듐산화막(IrO2), 및 백금(Pt)의 순서로 적층된 막이다. 그리고, 하드마스크(40)는 하부전극 패터닝시 하드마스크로 이용하기 위한 것으로, 하드마스크(40)는 티타늄나이트라이드막(TiN)으로 형성한다. 이때, 하드마스크(40)로 이용되는 티타늄나이트라이드막은 50Å∼1000Å의 두께로 증착한다.Next, the conductive layer 39 and the hard mask 40 that form the lower electrode are sequentially formed on the second interlayer insulating layer 37 including the storage node contact 38. The conductive film 39 constituting the lower electrode is a stacked structure, for example, a film laminated in the order of iridium (Ir), iridium oxide film (IrO 2 ), and platinum (Pt). The hard mask 40 is used as a hard mask when patterning the lower electrode, and the hard mask 40 is formed of a titanium nitride film TiN. At this time, the titanium nitride film used as the hard mask 40 is deposited to a thickness of 50 kPa to 1000 kPa.
다음으로, 하드마스크(40) 상에 하부전극을 정의하기 위한 감광막패턴(41)을 형성한 후, 감광막패턴(41)을 식각배리어로 하여 하드마스크(40)를 식각한다.Next, after the photoresist pattern 41 is formed on the hard mask 40 to define the lower electrode, the hard mask 40 is etched using the photoresist pattern 41 as an etch barrier.
도 2b에 도시된 바와 같이, 감광막패턴(41)을 제거한 후, 식각처리된 하드마스크(40)를 식각배리어로 하여 도전막(39)을 식각하여 하부전극(39a)을 형성한다.As shown in FIG. 2B, after removing the photoresist pattern 41, the conductive layer 39 is etched using the etched hard mask 40 as an etch barrier to form the lower electrode 39a.
상기한 바와 같이 하부전극(39a) 형성시 하드마스크(40)는 일부분 소모되어 하부전극(39a) 상에 두께가 감소하여 잔류한다. As described above, when the lower electrode 39a is formed, the hard mask 40 is partially consumed and the thickness remains on the lower electrode 39a.
도 2c에 도시된 바와 같이, 이웃한 하부전극(39a)간 분리를 위한 분리절연막(42)을 전면에 형성한다. 이때, 분리절연막(42)은 HDP(High Density Plasma) 산화막, BPSG, SOG 또는 PSG로 형성하며, 1000Å∼10000Å의 두께로 형성한다.As shown in FIG. 2C, a separation insulating film 42 for separating between adjacent lower electrodes 39a is formed on the entire surface. At this time, the isolation insulating film 42 is formed of an HDP (High Density Plasma) oxide film, BPSG, SOG, or PSG, and has a thickness of 1000 kPa to 10,000 kPa.
도 2d에 도시된 바와 같이, 하드마스크(40)의 표면이 드러날때까지 화학적기계적연마(CMP) 또는 에치백 공정을 진행하여 분리절연막(42)을 평탄화시킨다. 이때, 하드마스크(40)가 하부전극(39a) 상부를 캡핑(capping)하고 있으므로 화학적기계적연마 또는 에치백 공정시 하부전극(39a) 표면이 손실되는 것을 방지한다.As illustrated in FIG. 2D, the chemical insulating polishing (CMP) or etch back process is performed until the surface of the hard mask 40 is exposed to planarize the isolation insulating layer 42. At this time, since the hard mask 40 caps the upper portion of the lower electrode 39a, the surface of the lower electrode 39a is prevented from being lost during chemical mechanical polishing or etch back process.
도 2e에 도시된 바와 같이, 하부전극(39a) 상에 잔류하는 하드마스크(40)를 제거한다. 여기서, 하드마스크(40)를 제거하는 이유는, 하드마스크(40)를 제거하지 않고 잔류시키는 경우에 후속 강유전체막 성장과 열처리 과정에서 하드마스크(40)의 금속성분이 산화되어 리프팅(Lifting) 및 분극값의 급격한 열화를 초래하여 신뢰성을 저하시키기 때문이다.As shown in FIG. 2E, the hard mask 40 remaining on the lower electrode 39a is removed. Here, the reason for removing the hard mask 40 is that when the hard mask 40 is left without being removed, the metal component of the hard mask 40 is oxidized during the subsequent ferroelectric film growth and heat treatment, thereby lifting and This is because the rapid deterioration of the polarization value leads to a decrease in reliability.
하드마스크(40) 제거시 SC-1 케미컬과 같은 습식식각용액을 이용한 습식식각 공정을 이용하며, 하드마스크(40) 제거시 산화막질인 분리절연막(42)이 쉽게 제거됨에 따라 하부전극 (39a) 표면이 드러나는 시점까지 분리절연막(42)의 일부가 제거되어 평탄화된다. 이처럼, 하드마스크(40) 제거를 위해 이용되는 습식식각용액은 금속막을 식각하면서 산화막을 식각할 수 있는 용액을 이용한다.When the hard mask 40 is removed, a wet etching process using a wet etching solution such as SC-1 chemical is used, and when the hard mask 40 is removed, an oxide insulating separation layer 42 is easily removed, so that the lower electrode 39a is removed. A part of the isolation insulating film 42 is removed and planarized until the surface is exposed. As such, the wet etching solution used for removing the hard mask 40 uses a solution capable of etching the oxide layer while etching the metal layer.
상기한 바와 같은 하드마스크(40) 제거시에 이용되는 SC-1 케미컬은 NH4OH/H2O2/H2O의 혼합액으로서 금속막과의 반응성이 우수하기 때문에 하드마스크(40)로 사용된 티타늄나이트라이드막을 쉽게 제거할 수 있다. 더불어, SC-1 케미컬은 하부전극(39a)에 플라즈마손실을 가하지 않으므로 표면이 매우 균일한 하부전극(39a)을 얻을 수 있다.SC-1 chemical used for removing the hard mask 40 as described above is a mixed solution of NH 4 OH / H 2 O 2 / H 2 O, which is used as the hard mask 40 because of excellent reactivity with the metal film. The titanium nitride film can be easily removed. In addition, since SC-1 chemical does not apply a plasma loss to the lower electrode 39a, the lower electrode 39a having a very uniform surface can be obtained.
전술한 바와 같은 일련의 공정에 의해 하부전극(39a)을 분리절연막(42)에 에워싸이는 형태로 형성하므로써 캐패시터의 단차에 따른 마스크작업의 부담 및 평탄화의 어려움, 그리고 상하부전극간 단락을 방지할 수 있는 장점을 갖는다.By forming the lower electrode 39a in the form of being surrounded by the isolation insulating film 42 by a series of steps as described above, it is possible to prevent the burden and planarization of the mask work due to the step difference of the capacitor, and short circuit between the upper and lower electrodes. Has the advantage.
한편, 하드마스크(40)를 플라즈마를 이용한 건식식각법으로 제거하는 경우에는 하드마스크(40) 제거후에 드러나는 하부전극(39a)이 플라즈마로 인한 손상을 받기 때문에 반드시 습식식각 공정을 이용한다.On the other hand, when the hard mask 40 is removed by a dry etching method using plasma, since the lower electrode 39a exposed after removing the hard mask 40 is damaged by plasma, a wet etching process is necessarily used.
도 2f에 도시된 바와 같이, 하드마스크(40) 제거후에 평탄화된 구조를 갖는 구조 전면에 강유전체막(43)을 50Å∼3000Å의 두께로 성장시키고, 강유전체막(44)상에 상부전극(45)을 형성한다. 여기서, 강유전체막(43)은 표면이 매우 균일한 하부전극(39a) 상에서 성장되므로 균일한 성장 특성을 얻는다.As shown in FIG. 2F, after the hard mask 40 is removed, the ferroelectric film 43 is grown to a thickness of 50 Å to 3000 에 on the entire structure having the planarized structure, and the upper electrode 45 on the ferroelectric film 44. To form. Here, the ferroelectric film 43 is grown on the lower electrode 39a having a very uniform surface, thereby obtaining uniform growth characteristics.
한편, 강유전체막(43)으로는 SBT[SrBi2Ta2O9], SBTN[SrBi2(Ta 1-x, Nbx)2O9], BTO(Bi4Ti3O12), BLT[Bi1-x, Lax)Ti3 O12] 또는 PZT[(Pb, Zr)TiO3]중에서 선택된 하나이거나 이들의 조합막이며, 강유전체막(43)은 스핀코팅(Spin coating)법 또는 LSMCD(Liquid Source Mixed Chemical Deposition)법을 이용하여 50Å∼3000Å의 두께로 형성된다.On the other hand, as the ferroelectric film 43, SBT [SrBi 2 Ta 2 O 9 ], SBTN [SrBi 2 (Ta 1-x , Nb x ) 2 O 9 ], BTO (Bi 4 Ti 3 O 12 ), BLT [Bi 1-x , La x ) Ti 3 O 12 ] or PZT [(Pb, Zr) TiO 3 ] or a combination thereof, and the ferroelectric film 43 is spin coated or LSMCD (Liquid). It is formed to a thickness of 50 ~ 3000 ~ by using a Source Mixed Chemical Deposition) method.
그리고, 상부전극(45)은 화학기상증착법(CVD), 물리기상증착법(PVD), 원자층증착법(Atomic Layer Deposition; ALD) 및 플라즈마원자층증착법(Plasma Enhanced ALD; PEALD) 중에서 선택된 하나의 증착법을 이용하여 증착되며, 백금(Pt), 이리듐(Ir), 루테늄(Ru), 텅스텐(W), 이리듐산화막, 루테늄산화막, 텅스텐나이트라이드막 또는 티타늄나이트라이드막 중에서 선택된 하나이거나 이들의 복합구조물을 이용한다.In addition, the upper electrode 45 may be formed by depositing one selected from chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), and plasma enhanced layer deposition (PEALD). It is deposited by using one of platinum (Pt), iridium (Ir), ruthenium (Ru), tungsten (W), iridium oxide film, ruthenium oxide film, tungsten nitride film or titanium nitride film or a composite structure thereof. .
전술한 실시예에서는 적층 구조의 하부전극을 예로 들었으나, 하부전극이 금속막 단일층인 경우에도 적용가능하다. 이때, 금속막은 실시예와 동일하게 Pt, Ru, Ir, W 또는 WN 중에서 선택된다.In the above-described embodiment, the lower electrode of the stacked structure is taken as an example, but it is also applicable to the case where the lower electrode is a single metal layer. At this time, the metal film is selected from Pt, Ru, Ir, W or WN as in the embodiment.
본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다. Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.
상술한 본 발명은 분리절연막의 화학적기계적연마 또는 에치백 공정시 하부전극 표면의 손상을 하드마스크가 보호하므로써 하부전극의 표면이 매우 균일하여 후속 강유전체막의 불균일한 성장을 방지하여 균일한 캐패시터 성능을 얻을 수 있는 효과가 있다. According to the present invention described above, the hard mask protects the surface of the lower electrode during the chemical mechanical polishing or etch back process of the isolation insulating layer so that the surface of the lower electrode is very uniform, thereby preventing uneven growth of the subsequent ferroelectric film, thereby obtaining uniform capacitor performance. It can be effective.
도 1a 내지 도 1c는 종래 기술에 따른 강유전체메모리소자의 제조 방법을 도시한 공정 단면도,1A to 1C are cross-sectional views illustrating a method of manufacturing a ferroelectric memory device according to the prior art;
도 2a 내지 도 2f는 본 발명의 실시예에 따른 강유전체 메모리 소자의 제조 방법을 도시한 공정 단면도.2A to 2F are cross-sectional views illustrating a method of manufacturing a ferroelectric memory device according to an embodiment of the present invention.
*도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings
31 : 반도체기판 32 : 소자분리막31: semiconductor substrate 32: device isolation film
33 : 워드라인 34 : 제1층간절연막33: word line 34: first interlayer insulating film
35 : 비트라인콘택 36 : 비트라인35: bit line contact 36: bit line
37 : 제2층간절연막 38 : 스토리지노드콘택37: second interlayer insulating film 38: storage node contact
39a : 하부전극 40 : 하드마스크39a: lower electrode 40: hard mask
42 : 분리절연막 43 ; 강유전체막42: isolation insulating film 43; Ferroelectric film
44 : 상부전극 44: upper electrode
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030076250A KR20050041185A (en) | 2003-10-30 | 2003-10-30 | Method for fabricating ferroelectric random access memory having bottom electrode isolated by dielectric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030076250A KR20050041185A (en) | 2003-10-30 | 2003-10-30 | Method for fabricating ferroelectric random access memory having bottom electrode isolated by dielectric |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20050041185A true KR20050041185A (en) | 2005-05-04 |
Family
ID=37242693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030076250A KR20050041185A (en) | 2003-10-30 | 2003-10-30 | Method for fabricating ferroelectric random access memory having bottom electrode isolated by dielectric |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20050041185A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8969178B2 (en) | 2012-09-13 | 2015-03-03 | Samsung Electronics Co., Ltd. | Method of manufacturing large area gallium nitride substrate |
-
2003
- 2003-10-30 KR KR1020030076250A patent/KR20050041185A/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8969178B2 (en) | 2012-09-13 | 2015-03-03 | Samsung Electronics Co., Ltd. | Method of manufacturing large area gallium nitride substrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6825082B2 (en) | Ferroelectric memory device and method of forming the same | |
US7371589B2 (en) | Ferroelectric random access memory capacitor and method for manufacturing the same | |
US7173301B2 (en) | Ferroelectric memory device with merged-top-plate structure and method for fabricating the same | |
KR100418573B1 (en) | Method for fabricating semiconductor device | |
KR100399072B1 (en) | Method for fabricating ferroelectric memory device | |
US7029983B2 (en) | Methods of forming MIM type capacitors by forming upper and lower electrode layers in a recess that exposes a source/drain region of a transistor and MIM capacitors so formed | |
US20060157763A1 (en) | FeRAM device and method for manufacturing the same | |
JP2003086771A (en) | Capacitive element, and semiconductor device and its manufacturing method | |
KR100442103B1 (en) | Fram and method of forming the same | |
US6410345B1 (en) | Method for manufacturing a ferroelectric memory device | |
KR20050041185A (en) | Method for fabricating ferroelectric random access memory having bottom electrode isolated by dielectric | |
KR100629692B1 (en) | Method for manufacturing ferroelectric random access memory device | |
US6919212B2 (en) | Method for fabricating ferroelectric random access memory device with merged-top electrode-plateline capacitor | |
KR100420405B1 (en) | Capacitor making methods of ferroelectric random access memory | |
KR100847040B1 (en) | Semiconductor device and process for fabricating same | |
KR100846364B1 (en) | Method for fabricating embedded Ferroelectric memory device with hydrogen diffusion barrier | |
KR100866709B1 (en) | Manufacturing method for capacitor of semiconductor device | |
JP2002190581A (en) | Semiconductor device and manufacturing method therefor | |
KR100968428B1 (en) | Fabricating method for protecting loss of area of ferroelectric capacitor | |
KR20050002028A (en) | Ferroelectric capacitor with bottom electrode to prevent oxidation of barrier metal and method of fabricating the same | |
KR20040107766A (en) | Semiconductor memory device and method for manufacturing the same | |
KR20030023142A (en) | Method for fabricating semiconductor device | |
KR20040008638A (en) | Method for fabricating Ferroelectric Random Access Memory with bottom electrode isolated by dielectric | |
KR20040008627A (en) | Ferroelectric Random Access Memory and method for fabricating the same | |
KR20030057672A (en) | Ferroelectric Capacitor and method for fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid |