KR20050025210A - Method of ohmic contact to p type zno - Google Patents

Method of ohmic contact to p type zno Download PDF

Info

Publication number
KR20050025210A
KR20050025210A KR1020030062237A KR20030062237A KR20050025210A KR 20050025210 A KR20050025210 A KR 20050025210A KR 1020030062237 A KR1020030062237 A KR 1020030062237A KR 20030062237 A KR20030062237 A KR 20030062237A KR 20050025210 A KR20050025210 A KR 20050025210A
Authority
KR
South Korea
Prior art keywords
zinc oxide
metal layer
ohmic contact
type zinc
oxide semiconductor
Prior art date
Application number
KR1020030062237A
Other languages
Korean (ko)
Other versions
KR100588486B1 (en
Inventor
박성주
임재홍
황대규
오진용
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020030062237A priority Critical patent/KR100588486B1/en
Publication of KR20050025210A publication Critical patent/KR20050025210A/en
Application granted granted Critical
Publication of KR100588486B1 publication Critical patent/KR100588486B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

A method of forming an ohmic contact of a P type ZnO semiconductor is provided to reduce ohmic contact resistance by forming a Ni/Ag thin film on the P type ZnO semiconductor. A P type ZnO semiconductor layer(120) is deposited on an aluminium oxide substrate(110). A transition metal film(130) is formed on the P type ZnO semiconductor layer. A noble metal film(140) is deposited on the transition metal film. The P type ZnO semiconductor layer contains one or more selected from a group consisting of Li, Na, K, N, P, As, Sb, Bi, Al, Ga, In, and Sn. The transition metal film contains one or more selected from a group consisting of Ni, Pd, Mn, Re, Co, Rh, Fe, Ru, Cr, Mo, W, V, Nb, Ta, Zn, Cd, and Hg.

Description

p형 아연 산화물 반도체의 오믹 접촉 형성방법{Method of ohmic contact to p type ZnO}Method of forming ohmic contact of an oxide zinc oxide semiconductor {Method of ohmic contact to p type ZnO}

본 발명은 p형 아연 산화물 반도체의 오믹 접촉 형성방법에 관한 것이다. The present invention relates to a method for forming an ohmic contact of a p-type zinc oxide semiconductor.

현재까지는 n형 아연 산화물 반도체가 투명전극(transparent electrode), 바리스터 소자(varistors) 등의 광소자 및 전자소자에서 일반적으로 사용되어왔다. 상기 n형 아연 산화물 반도체는 GaN와 비슷한 물질 고유의 특성을 가지고 있어서 최근에는 차세대 자외선 및 청색 발광물질로 주목을 받고 있다. Until now, n-type zinc oxide semiconductors have been generally used in optical devices and electronic devices such as transparent electrodes and varistors. Since the n-type zinc oxide semiconductor has intrinsic properties similar to that of GaN, it has recently attracted attention as a next generation ultraviolet and blue light emitting material.

2001년 김한기외 3명은 'n형 산화 아연계 반도체를 이용한 발광다이오드용 금속 전극 및 그의 제조 방법'(출원번호 10-2001-0022331) 에서 타이타늄과 금을 전극으로 이용하여 n형 아연 산화물 반도체의 오믹 접촉을 시도하였다. In 2001, Kim Han-ki and three others reported that the metal electrode for a light emitting diode using an n-type zinc oxide-based semiconductor and its manufacturing method (Application No. 10-2001-0022331) used titanium and gold as an electrode for the ohmic of an n-type zinc oxide semiconductor. An attempt was made to contact.

하지만, 고품위, 고신뢰성을 가지는 p형 아연 산화물 반도체가 개발되지 않아 오믹 접촉 형성에 대한 연구와 논문은 전무한 상태였다. However, no high quality, highly reliable p-type zinc oxide semiconductors have been developed, so there are no studies and articles on ohmic contact formation.

또한, 1999년 MIYAMOTO KAZUHIRO외 3명은 '반도체 소자 제조방법'에서 p형 아연 산화물계 단결정층에 대한 금속 접합에 대하여 발표를 하였다. 그러나, 이 연구에서 사용되어진 p형 아연 산화물계 단결정층은 아연산화물과 아연테릴륨 층이 교대로 적층된 구조이거나 n형과 p형 불순물이 같이 도핑된 것으로 본 발명의 기술 분야에서 통상의 지식을 가진 자라면 이것이 p형 아연산화물 반도체가 아닌 것을 알 수 있다. In 1999, MIYAMOTO KAZUHIRO and three others presented a metal junction to a p-type zinc oxide-based single crystal layer in the 'semiconductor device manufacturing method'. However, the p-type zinc oxide-based single crystal layer used in this study is a structure in which zinc oxide and zinc terryllium layers are alternately stacked, or doped with n-type and p-type impurities, and thus have common knowledge in the technical field of the present invention. If you have one, you know that it is not a p-type zinc oxide semiconductor.

이러한 상황에서 '인(phosphorous) 불순물의 열적활성화를 통한 p형 아연 산화물 반도체 구현(김경국 등)'이 응용물리 학회지[Applied physics letters, 2003]에 게재되어 재현성과 신뢰성을 갖는 p형 아연 산화물 반도체를 제작함으로써 아연 산화물 반도체를 이용한 발광소자를 향한 연구가 가속화되고 있는 추세이다. In this situation, the implementation of p-type zinc oxide semiconductor through thermal activation of phosphorous impurity (Kim Kook-Kook et al.) Was published in the Applied Physics Letters, 2003 to find a p-type zinc oxide semiconductor with reproducibility and reliability. As a result, research toward light emitting devices using zinc oxide semiconductors has been accelerated.

따라서, 아연 산화물 반도체에서 우수한 특성을 갖는 광소자 및 전자소자를 개발하기 위해서는 p형 아연 산화물 반도체의 오믹 접촉 시스템의 개발이 필수 불가결한 상태이다. Therefore, in order to develop an optical device and an electronic device having excellent characteristics in a zinc oxide semiconductor, development of an ohmic contact system of a p-type zinc oxide semiconductor is indispensable.

본 발명의 목적은 발광소자 및 전자소자 제작시 사용되어지는 p형 아연 산화물 반도체 위에 니켈/금 금속 박막층을 형성시켜 오믹 접촉 저항을 낮춤으로써 소자의 특성 및 신뢰성을 향상시키기 위한 필수요소인 열적, 전기적, 구조적으로 우수한 오믹 접촉 형성 방법을 제공하는 데 있다. An object of the present invention is to form a nickel / gold metal thin film layer on a p-type zinc oxide semiconductor used in manufacturing a light emitting device and an electronic device, thereby lowering ohmic contact resistance. To provide a structurally excellent ohmic contact forming method.

상기의 목적을 달성하기 위하여 본 발명의 p형 아연 산화물 반도체의 오믹 접촉 형성방법은 산화 알루미늄 기판 상부에 p형 아연 산화물층을 적층하는 과정, 상기 p형 아연 산화물층 상부에 전이금속층을 적층하는 과정, 상기 전이금속층 상부에 귀금속층을 적층하는 과정을 포함한다.In order to achieve the above object, the method of forming an ohmic contact of a p-type zinc oxide semiconductor according to the present invention includes a process of laminating a p-type zinc oxide layer on an aluminum oxide substrate and a process of laminating a transition metal layer on the p-type zinc oxide layer. , Laminating a precious metal layer on the transition metal layer.

본 발명에서 p형 아연 산화물은 아연 산화물과 아연 테릴륨(ZnTe) 또는 아연 셀레늄(ZnSe)이 교대로 적층되는 것이 아닌, 아연 산화물 반도체에 리튬(Li), 나트륨(Na), 칼륨(K), 질소(N), 인(P), 비소(As), 안티모니(Sb), 비스무스(Bi), 알루미늄(Al), 갈륨(Ga), 인듐(In), 주석(Sn)에서 선택되는 1종이상의 불순물을 도핑하여 형성되는 것이 바람직하다.In the present invention, the p-type zinc oxide is not alternately stacked with zinc oxide and zinc teryllium (ZnTe) or zinc selenium (ZnSe), lithium (Li), sodium (Na), potassium (K), One selected from nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), bismuth (Bi), aluminum (Al), gallium (Ga), indium (In) and tin (Sn) It is preferably formed by doping the impurities in the phase.

본 발명에서 전이금속층은 니켈(Ni), 팔라듐(Pd), 망간(Mn), 레늄(Re), 코발트(Co), 로듐(Rh), 철(Fe), 루세늄(Ru), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 바나듐(V), 니오븀(Nb), 탄탈륨(Ta), 아연(Zn), 카드뮴(Cd), 수은(Hg)에서 선택되는 1종 이상의 금속이 포함되는 것이 바람직하다.In the present invention, the transition metal layer is nickel (Ni), palladium (Pd), manganese (Mn), rhenium (Re), cobalt (Co), rhodium (Rh), iron (Fe), ruthenium (Ru), chromium (Cr ), Molybdenum (Mo), tungsten (W), vanadium (V), niobium (Nb), tantalum (Ta), zinc (Zn), cadmium (Cd), mercury (Hg) It is desirable to be.

본 발명에서 귀금속층에는 니켈(Ni), 팔라듐(Pd), 망간(Mn), 레늄(Re), 코발트(Co), 로듐(Rh), 철(Fe), 루세늄(Ru), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 바나듐(V), 니오븀(Nb), 탄탈륨(Ta), 아연(Zn), 카드뮴(Cd), 수은(Hg), 금(Au), 백금(Pt), 팔라듐(Pd), 이리듐(Ir), 로듐(Rh), 루세늄(Ru) 오스뮴(OS), 은(Ag)에서 선택되는 1종 이상의 금속이 포함되는 것이 바람직하다.In the present invention, the precious metal layer includes nickel (Ni), palladium (Pd), manganese (Mn), rhenium (Re), cobalt (Co), rhodium (Rh), iron (Fe), ruthenium (Ru), and chromium (Cr). ), Molybdenum (Mo), tungsten (W), vanadium (V), niobium (Nb), tantalum (Ta), zinc (Zn), cadmium (Cd), mercury (Hg), gold (Au), platinum (Pt) ), Palladium (Pd), iridium (Ir), rhodium (Rh), ruthenium (Ru) osmium (OS), silver (Ag) is preferably included at least one metal.

본 발명에서 전이금속층과 귀금속층은 인듐(In) 또는 InK, InZn, InLi 및 InNi 중 선택되는 1종의 인듐화합물이 물리기상증착 또는 화학기상증착 방법에 의하여 증착되는 것이 바람직하다.In the present invention, the transition metal layer and the noble metal layer are preferably indium (In) or at least one indium compound selected from InK, InZn, InLi, and InNi by physical vapor deposition or chemical vapor deposition.

본 발명은 산화 알루미늄 기판 상부에 p형 아연 산화물층을 적층하는 과정, 및 상기 p형 아연 산화물층 상부에 금속층을 적층하는 과정을 포함한다.The present invention includes laminating a p-type zinc oxide layer on an aluminum oxide substrate, and laminating a metal layer on the p-type zinc oxide layer.

본 발명에서 상기 금속층은 니켈(Ni), 팔라듐(Pd), 망간(Mn), 레늄(Re), 코발트(Co), 로듐(Rh), 철(Fe), 루세늄(Ru), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 바나듐(V), 니오븀(Nb), 탄탈륨(Ta), 아연(Zn), 카드뮴(Cd), 수은(Hg), 금(Au), 백금(Pt), 이리듐(Ir), 오스뮴(OS), 은(Ag)에서 선택되는 1종 이상의 금속이 포함되는 것이 바람직하다.In the present invention, the metal layer is nickel (Ni), palladium (Pd), manganese (Mn), rhenium (Re), cobalt (Co), rhodium (Rh), iron (Fe), ruthenium (Ru), chromium (Cr ), Molybdenum (Mo), tungsten (W), vanadium (V), niobium (Nb), tantalum (Ta), zinc (Zn), cadmium (Cd), mercury (Hg), gold (Au), platinum (Pt) ), One or more metals selected from iridium (Ir), osmium (OS) and silver (Ag) is preferably included.

본 발명에서 전이금속층 ,귀금속층 및 금속층의 두께는 1~1,000㎚ 인 것이 바람직하다.In the present invention, the thickness of the transition metal layer, the noble metal layer and the metal layer is preferably 1 to 1,000 nm.

본 발명에서 전이금속층, 귀금속층 및 금속층은 100℃ ∼1200℃ 의 온도에서 1초∼3시간 동안 열처리하여 형성되는 것이 바람직하다.In the present invention, the transition metal layer, the noble metal layer and the metal layer are preferably formed by heat treatment for 1 second to 3 hours at a temperature of 100 ℃ to 1200 ℃.

이하 첨부한 도면을 참조하여 본 발명을 상세하게 설명하고자 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일 실시예에 따른 p형 아연 산화물 반도체의 금속전극을 개략적으로 나타낸 도면이다.1 is a view schematically showing a metal electrode of a p-type zinc oxide semiconductor according to an embodiment of the present invention.

상기 실시예에서, 금속박막은 기판층(110), p형 아연 산화물 반도체층(120), 전이금속층(130), 귀금속층(140)을 포함한다. In the above embodiment, the metal thin film includes a substrate layer 110, a p-type zinc oxide semiconductor layer 120, a transition metal layer 130, and a noble metal layer 140.

도 1을 참조하면, 본 발명은 사파이어(α-Al2O3) 기판층(110) 위에 형성된 p형 아연 산화물 반도체층(120)과 p형 아연 산화물 반도체 위에 형성된 전이금속층(130)과 귀금속층(140)으로 구성된다.Referring to FIG. 1, the present invention provides a p-type zinc oxide semiconductor layer 120 formed on a sapphire (α-Al 2 O 3 ) substrate layer 110 and a transition metal layer 130 and a noble metal layer formed on a p-type zinc oxide semiconductor. 140.

상기의 구성에 의해서 금속박막은 다음과 같은 특성을 가진다.By the above configuration, the metal thin film has the following characteristics.

저항resistance 5.3 ~ 5.4 ohm-cm5.3 to 5.4 ohm-cm 홀 이동도Hall mobility 2.0 ~ 2.3 ㎤/V-S2.0 to 2.3 cm 3 / V-S 홀 농도Hall concentration 1 ± 0.2x1018/㎤1 ± 0.2x10 18 / cm3

상기의 결과는 상온에서의 (002)면 방향의 사파이어(α-Al2O3) 기판 위에 성장한 p형 산화아연 반도체를 열처리 한 후에 전기적 특성을 측정한 것이다. 이는 기존의 청색 발광다이오드로 쓰이는 질화 갈륨(GaN) 반도체보다 우수한 전기적 특성을 나타내는 것으로 산화아연 반도체를 광소자 이용을 가능케 할 수 있음을 나타낸다.The above results were obtained by measuring the electrical properties after heat treatment of the p-type zinc oxide semiconductor grown on the sapphire (α-Al 2 O 3 ) substrate in the (002) plane direction at room temperature. This exhibits superior electrical characteristics than gallium nitride (GaN) semiconductors, which are used as conventional blue light emitting diodes, and suggests that zinc oxide semiconductors can be used as optical devices.

상기 전이금속층과 귀금속층은 하나의 금속층으로 대치되는 것도 가능하다. 상기 대치된 금속층은 상기 전이금속층과 귀금속층에 포함되는 동일한 원소를 포함하는 것이 바람직하다.The transition metal layer and the noble metal layer may be replaced by one metal layer. The replaced metal layer preferably includes the same element included in the transition metal layer and the noble metal layer.

도 2는 본 발명의 일 실시예에 따른 오믹 접촉용 금속박막의 제조방법을 설명하기 위한 공정도이다. 2 is a process chart for explaining a method of manufacturing a metal thin film for ohmic contact according to an embodiment of the present invention.

상기 실시예에서, 제조방법은 세척 및 건조단계, 패턴형성 및 사진공정단계, 금속 박막 증착 단계, 리프트 오프단계를 포함한다.In the above embodiment, the manufacturing method includes a washing and drying step, a pattern forming and photographic process step, a metal thin film deposition step, and a lift off step.

도 2를 참조하면, 본 발명은 표면 세척과 c-TLM 패턴 형성을 통하여 마련된 아연 산화물 반도체 기판 위에 오믹 전극 금속을 증착, 열처리하는 과정으로 이루어진다.Referring to FIG. 2, the present invention consists of a process of depositing and heat treating an ohmic electrode metal on a zinc oxide semiconductor substrate prepared through surface cleaning and c-TLM pattern formation.

상기의 과정은 이하 실시예를 통하여 좀 더 상세하게 살펴보도록 한다. 다만 이 실시예는 본 발명의 내용을 이해하기 위해 제시되는 것일 뿐 본 발명의 권리범위가 이들 실시예에 한정되어지는 것으로 해석되어져서는 아니 된다.The above process will be described in more detail with reference to the following examples. However, this embodiment is only presented to understand the content of the present invention and should not be construed that the scope of the present invention is limited to these embodiments.

<실시예><Example>

p형 아연 산화물 반도체를 트리클로로에칠렌(TCE), 아세톤, 에탄올, 메탄올, 증류수 순으로 초음파세척기 안에서 5분씩 세척을 한 후에 사진공정을 통하여 c-TLM 패턴을 형성한다. 이렇게 준비된 반도체 기판을 진공챔버 속에 장입하여 PVD(physical vapor deposision) 또는 CVD(physical vapor deposition)를 통하여 제 1 금속 박막과 제 2 금속 박막을 연속적으로 증착한다. The p-type zinc oxide semiconductor was washed in an ultrasonic cleaner for 5 minutes in the order of trichloroethylene (TCE), acetone, ethanol, methanol, and distilled water, and then c-TLM pattern was formed through a photographic process. The semiconductor substrate thus prepared is charged into a vacuum chamber to continuously deposit the first metal thin film and the second metal thin film through physical vapor deposition (PVD) or physical vapor deposition (CVD).

이때, 제 1 금속 박막은 1~5,000 nm의 두께를 지니며, 니켈(Ni), 팔라듐(Pd), 레늄(Re), 코발트(Co), 크롬(Cr), 철(Fe), 망간(Mn) 중에서 선택되는 1종 이상의 금속을 포함하는 것이 바람직하다.At this time, the first metal thin film has a thickness of 1 ~ 5,000 nm, nickel (Ni), palladium (Pd), rhenium (Re), cobalt (Co), chromium (Cr), iron (Fe), manganese (Mn) It is preferred to include at least one metal selected from

상기 금속 중 보다 바람직하게는 니켈(Ni)이 선택될 수 있다.More preferably, nickel (Ni) may be selected among the metals.

또한, 제 2 금속 박막은 1 에서 5,000 nm의 두께를 지니며, 금(Au), 백금(Pt), 이리듐(Ir), 로듐(Rh), 루세늄(Ru) 중에서 선택되는 1종 이상의 금속을 포함하는 것이 바람직하다. In addition, the second metal thin film has a thickness of 1 to 5,000 nm and includes at least one metal selected from gold (Au), platinum (Pt), iridium (Ir), rhodium (Rh), and ruthenium (Ru). It is preferable to include.

상기 금속 중 보다 바람직하게는 금(Au)이 선택될 수 있다.More preferably, gold (Au) may be selected among the metals.

상기와 같이 금속 박막을 형성한 후 아세톤으로 리프트오프(lift-off) 공정을 시행하여 c-TLM 패턴을 갖는 오믹 다이오드를 제작하며, 오믹 조건을 찾기 위하여 급속가열로(Rapid Thermal Annealing; RTA)에서 산화 분위기 하에서 약 600℃ 온도로 약 30초간 열처리하여 저(低) 저항 오믹 접촉 특성을 얻는다. After forming a metal thin film as described above, a lift-off process is performed with acetone to manufacture an ohmic diode having a c-TLM pattern, and in a rapid thermal annealing (RTA) to find ohmic conditions. A low resistance ohmic contact property is obtained by heat treatment at an temperature of about 600 ° C. for about 30 seconds under an oxidizing atmosphere.

도 3은 본 발명의 일 실시예에 따른 니켈/금 금속 박막의 오믹 접촉 형성에 의한 전류-전압 특성을 타나낸 것으로, (410)의 직선은 열처리하기 전의 전류-전압 그래프이며, (420)의 직선은 열처리 후의 전류-전압 그래프이다. 3 illustrates a current-voltage characteristic by forming ohmic contact of a nickel / gold metal thin film according to an embodiment of the present invention. A straight line 410 is a current-voltage graph before heat treatment. The straight line is the current-voltage graph after heat treatment.

도 4는 본 발명의 일 실시예에 따른 니켈/금 금속 박막의 원소의 분포도를 나타낸 것이다. Figure 4 shows the distribution of the elements of the nickel / gold metal thin film according to an embodiment of the present invention.

도 4(a)는 열처리 전의 원소의 분포도를 나타낸 것이며, 도 4(b)는 열처리 후의 원소의 분포도를 나타낸 것이다. FIG. 4 (a) shows the distribution of the elements before the heat treatment, and FIG. 4 (b) shows the distribution of the elements after the heat treatment.

열처리 전과 후의 아연 산화물 반도체와 금속 박막 원소들의 분포도를 살펴보면, 열처리 후에는 니켈이 산화분위기 하에서 열처리를 수행하여 p형 반도체인 니켈 산화물이 되며, 이것은 p형 아연 산화물 반도체에 더 많은 홀을 공급한다.Looking at the distribution of the zinc oxide semiconductor and the metal thin film elements before and after the heat treatment, after the heat treatment, nickel is subjected to heat treatment under an oxidizing atmosphere to become nickel oxide, a p-type semiconductor, which supplies more holes to the p-type zinc oxide semiconductor.

또한, p형 아연산화물 반도체내에는 아연이 확산되었다. 상기 아연 산화물 반도체의 아연의 공공(vacancy)은 정공을 공급한다. 여기에서 p형 아연 산화물의 표면에 더 많은 정공 농도를 야기해 금속과 반도체간의 접촉장벽에 관계없이 터널링(tunnelling)에 의하여 전류가 흐르게 된다.In addition, zinc diffused into the p-type zinc oxide semiconductor. The vacancy of zinc in the zinc oxide semiconductor supplies holes. Here, more hole concentrations are generated on the surface of the p-type zinc oxide, and current flows through tunneling regardless of the contact barrier between the metal and the semiconductor.

본 발명에 이용되는 니켈은 높은 일 함수(work function)를 갖는 금속으로 p형 아연 산화물과 접촉시 낮은 금속 반도체 접촉 장벽을 형성하고 이로 인해 캐리어의 흐름을 용이하게 한다. 그리고, 열처리 공정을 통해 산화분위기의 산소와 전이금속인 니켈이 반응하여 니켈 산화물을 형성하고 p형 반도체를 형성시켜 정공의 공급을 용이하게 한다. 상기 아연 산화물 반도체의 아연은 확산되어 표면 캐리어 농도를 증가시켜 비접촉 저항(specific contact resistance)이 10-2 내지 10-4ohm-㎠ 정도인 낮은 저항의 오믹 접촉을 얻을 수 있다. 즉, 1 x 1018㎤의 도핑 농도에서 니켈 산화물의 형성과 아연 확산으로 낮은 접촉 저항을 얻을 수 있게 한다.Nickel used in the present invention is a metal having a high work function and forms a low metal semiconductor contact barrier upon contact with p-type zinc oxide, thereby facilitating the flow of carriers. In addition, through the heat treatment process, oxygen in the oxidation atmosphere reacts with the transition metal nickel to form nickel oxide and form a p-type semiconductor to facilitate the supply of holes. The zinc of the zinc oxide semiconductor is diffused to increase the surface carrier concentration, thereby obtaining a low ohmic contact having a specific contact resistance of about 10 −2 to 10 −4 ohm-cm 2. That is, at the doping concentration of 1 x 10 18 cm 3, the formation of nickel oxide and zinc diffusion make it possible to obtain low contact resistance.

전술한 실시예에서 아연 산화물 반도체의 특성과 니켈/금으로 증착된 아연 산화물 반도체위의 금속 박막의 오믹 특성 및 열적 특성을 나타냈으나, 제 1 금속 박막을 전이금속, 제 2 금속박막을 귀금속과 같이 여타의 금속을 오믹 접촉으로 이용하는 것도 가능하다In the above-described embodiment, the ohmic and thermal properties of the metal thin film on the zinc oxide semiconductor deposited with nickel / gold are shown, but the first metal thin film is transition metal and the second metal thin film is noble metal. It is also possible to use other metals for ohmic contact.

상술한 바와 같이 본 발명에 의하면 p형 아연 산화물 반도체를 이용한 광소자 및 전자소자의 구현이 가능하며, 상온과 600℃의 비교적 낮은 온도에서 오믹접촉 형성이 가능하기 때문에 기존의 화합물 반도체에서 쓰이는 고온 열처리에 의한 소자성능의 저하를 막을 수 있다. As described above, according to the present invention, an optical device and an electronic device using a p-type zinc oxide semiconductor can be implemented, and high temperature heat treatment used in a conventional compound semiconductor is possible because ohmic contact can be formed at a relatively low temperature of 600 ° C. The fall of the device performance by this can be prevented.

또한, 오믹 접촉의 우수한 열적, 전기적 특성들은 금속과 계면사이에서의 전기적 손실을 줄여 주며, 이로 인한 광학적 특성상의 퇴화를 막아 주므로 현재 실용화되지 못하고 있는 차세대 청색 발광 물질로 각광을 받고 있는 산화아연 산화물 반도체의 발광소자 및 레이저 다이오드 개발 및 초고속 전자소자 개발 등에 있어서 고품위 광소자와 전자소자 개발을 구현하는데 큰 파급효과 및 기술력 향상이 기대된다.In addition, the excellent thermal and electrical properties of ohmic contacts reduce the electrical losses between the metal and the interface, thereby preventing the deterioration of the optical properties. In the development of light emitting devices and laser diodes, and the development of ultra-high speed electronic devices, the development of high-quality optical devices and electronic devices is expected to have a large ripple effect and technological improvement.

상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야의 숙련된 당업자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.As described above, although described with reference to a preferred embodiment of the present invention, those skilled in the art will be variously modified and modified within the scope of the present invention without departing from the spirit and scope of the present invention described in the claims below. It will be appreciated that it can be changed.

도 1은 본 발명의 일 실시예에 따른 금속전극과 오믹접촉을 형성하고 있는 p형 아연 산화물 반도체를 개략적으로 나타낸 도면이다.1 is a schematic view of a p-type zinc oxide semiconductor forming ohmic contact with a metal electrode according to an exemplary embodiment of the present invention.

도 2는 본 발명의 일 실시예에 따른 오믹 접촉용 금속박막의 제조방법을 나타낸 공정도이다. 2 is a process chart showing a method of manufacturing a metal thin film for ohmic contact according to an embodiment of the present invention.

도 3은 본 발명의 일 실시예에 따른 니켈/금 금속 박막의 오믹 접촉 형성시 열처리하기 전/후의 전류-전압 그래프이다.3 is a current-voltage graph before and after heat treatment when forming an ohmic contact of the nickel / gold metal thin film according to an embodiment of the present invention.

도 4(a)는 열처리 전의 니켈/금 금속 박막의 원소의 분포도를 나타낸 것이다. 4 (a) shows the distribution of elements of the nickel / gold metal thin film before heat treatment.

도 4(b)는 본 발명의 일 실시예에 따른 열처리 후의 니켈/금 금속 박막의 원소의 분포도를 나타낸 것이다. Figure 4 (b) shows the distribution of the elements of the nickel / gold metal thin film after the heat treatment according to an embodiment of the present invention.

{도면의 주요부호에 대한 설명}{Description of major symbols in the drawing}

110 : 기판층 120 : p형 아연 산화물 반도체층110 substrate layer 120 p-type zinc oxide semiconductor layer

130 : 전이금속층 140 : 귀금속층130: transition metal layer 140: precious metal layer

Claims (9)

산화 알루미늄 기판 상부에 p형 아연 산화물층을 적층하는 과정, 상기 p형 아연 산화물층 상부에 전이금속층을 적층하는 과정, 상기 전이금속층 상부에 귀금속층을 적층하는 과정을 포함하는 p형 아연 산화물 반도체의 오믹 접촉 형성방법.Stacking a p-type zinc oxide layer on an aluminum oxide substrate, laminating a transition metal layer on the p-type zinc oxide layer, and laminating a noble metal layer on the transition metal layer. Ohmic contact formation method. 제 1항에 있어서, p형 아연 산화물층은 아연 산화물 반도체에 리튬(Li), 나트륨(Na), 칼륨(K), 질소(N), 인(P), 비소(As), 안티모니(Sb), 비스무스(Bi), 알루미늄(Al), 갈륨(Ga), 인듐(In), 주석(Sn)에서 선택되는 1종 이상의 불순물이 포함되는 것을 특징으로 하는 p형 아연 산화물 반도체의 오믹 접촉 형성방법.The method of claim 1, wherein the p-type zinc oxide layer is a lithium oxide (Li), sodium (Na), potassium (K), nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb) ), Bismuth (Bi), aluminum (Al), gallium (Ga), indium (In), tin (Sn) is one or more impurities selected from p-type zinc oxide semiconductor, ohmic contact forming method comprising . 제 1항에 있어서, 전이금속층은 니켈(Ni), 팔라듐(Pd), 망간(Mn), 레늄(Re), 코발트(Co), 로듐(Rh), 철(Fe), 루세늄(Ru), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 바나듐(V), 니오븀(Nb), 탄탈륨(Ta), 아연(Zn), 카드뮴(Cd), 수은(Hg)에서 선택되는 1종 이상의 금속이 포함되는 것을 특징으로 하는 p형 아연 산화물 반도체의 오믹 접촉 형성방법.The method of claim 1, wherein the transition metal layer is nickel (Ni), palladium (Pd), manganese (Mn), rhenium (Re), cobalt (Co), rhodium (Rh), iron (Fe), ruthenium (Ru), At least one selected from chromium (Cr), molybdenum (Mo), tungsten (W), vanadium (V), niobium (Nb), tantalum (Ta), zinc (Zn), cadmium (Cd), and mercury (Hg) A method of forming an ohmic contact of a p-type zinc oxide semiconductor, characterized in that a metal is contained. 제 1항에 있어서, 귀금속층에는 니켈(Ni), 팔라듐(Pd), 망간(Mn), 레늄(Re), 코발트(Co), 로듐(Rh), 철(Fe), 루세늄(Ru), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 바나듐(V), 니오븀(Nb), 탄탈륨(Ta), 아연(Zn), 카드뮴(Cd), 수은(Hg), 금(Au), 백금(Pt), 팔라듐(Pd), 이리듐(Ir), 로듐(Rh), 루세늄(Ru) 오스뮴(OS), 은(Ag)에서 선택되는 1종 이상의 금속이 포함되는 것을 특징으로 하는 p형 아연 산화물 반도체의 오믹 접촉 형성방법.The method of claim 1, wherein the precious metal layer is nickel (Ni), palladium (Pd), manganese (Mn), rhenium (Re), cobalt (Co), rhodium (Rh), iron (Fe), ruthenium (Ru), Chromium (Cr), Molybdenum (Mo), Tungsten (W), Vanadium (V), Niobium (Nb), Tantalum (Ta), Zinc (Zn), Cadmium (Cd), Mercury (Hg), Gold (Au), P-type comprising at least one metal selected from platinum (Pt), palladium (Pd), iridium (Ir), rhodium (Rh), ruthenium (Ru) osmium (OS), silver (Ag) A method of forming ohmic contact of a zinc oxide semiconductor. 제 1항에 있어서, 전이금속층과 귀금속층은 인듐(In) 또는 InK, InZn, InLi 및 InNi 중 선택되는 1종의 인듐화합물이 물리기상증착 또는 화학기상증착 방법에 의하여 증착되는 것을 특징으로 하는 p형 아연 산화물 반도체의 오믹 접촉 형성방법.According to claim 1, wherein the transition metal layer and the noble metal layer is indium (In) or one of the indium compound selected from InK, InZn, InLi and InNi is deposited by physical vapor deposition or chemical vapor deposition method p. A method of forming ohmic contact of a zinc oxide semiconductor. 산화 알루미늄 기판 상부에 p형 아연 산화물층을 적층하는 과정, 및 상기 p형 아연 산화물층 상부에 금속층을 적층하는 과정을 포함하는 p형 아연 산화물 반도체의 오믹 접촉 형성방법.And depositing a p-type zinc oxide layer on the aluminum oxide substrate, and laminating a metal layer on the p-type zinc oxide layer. 제 6항에 있어서, 상기 금속층은 니켈(Ni), 팔라듐(Pd), 망간(Mn), 레늄(Re), 코발트(Co), 로듐(Rh), 철(Fe), 루세늄(Ru), 크롬(Cr), 몰리브덴(Mo), 텅스텐(W), 바나듐(V), 니오븀(Nb), 탄탈륨(Ta), 아연(Zn), 카드뮴(Cd), 수은(Hg), 금(Au), 백금(Pt), 이리듐(Ir), 오스뮴(OS), 은(Ag)에서 선택되는 1종 이상의 금속이 포함되는 것을 특징으로 하는 p형 아연 산화물 반도체의 오믹 접촉 형성방법.The method of claim 6, wherein the metal layer is nickel (Ni), palladium (Pd), manganese (Mn), rhenium (Re), cobalt (Co), rhodium (Rh), iron (Fe), ruthenium (Ru), Chromium (Cr), Molybdenum (Mo), Tungsten (W), Vanadium (V), Niobium (Nb), Tantalum (Ta), Zinc (Zn), Cadmium (Cd), Mercury (Hg), Gold (Au), A method of forming an ohmic contact of a p-type zinc oxide semiconductor, comprising at least one metal selected from platinum (Pt), iridium (Ir), osmium (OS), and silver (Ag). 제 1항 내지 제 7항 중 어느 한 항에 있어서, 층의 두께는 1~1,000㎚ 인 것을 특징으로 하는 p형 아연 산화물 반도체의 오믹 접촉 형성방법.The method of forming an ohmic contact of a p-type zinc oxide semiconductor according to any one of claims 1 to 7, wherein the layer has a thickness of 1 to 1,000 nm. 제 1항 내지 제 7항 중 어느 한 항에 있어서, 전이금속층, 귀금속층, 금속층은 100℃ ∼1200℃ 의 온도에서 1초∼3시간 동안 열처리하여 형성되는 것을 특징으로 하는 p형 아연 산화물 반도체의 오믹 접촉 형성방법.The p-type zinc oxide semiconductor according to any one of claims 1 to 7, wherein the transition metal layer, the noble metal layer, and the metal layer are formed by heat treatment at a temperature of 100 ° C to 1200 ° C for 1 second to 3 hours. Ohmic contact formation method.
KR1020030062237A 2003-09-05 2003-09-05 Method of ohmic contact to p type ZnO KR100588486B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030062237A KR100588486B1 (en) 2003-09-05 2003-09-05 Method of ohmic contact to p type ZnO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030062237A KR100588486B1 (en) 2003-09-05 2003-09-05 Method of ohmic contact to p type ZnO

Publications (2)

Publication Number Publication Date
KR20050025210A true KR20050025210A (en) 2005-03-14
KR100588486B1 KR100588486B1 (en) 2006-06-12

Family

ID=37383648

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030062237A KR100588486B1 (en) 2003-09-05 2003-09-05 Method of ohmic contact to p type ZnO

Country Status (1)

Country Link
KR (1) KR100588486B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716784B1 (en) * 2005-12-06 2007-05-14 광주과학기술원 Light emitting device and method of manufacturing the same
KR100884883B1 (en) * 2007-06-26 2009-02-23 광주과학기술원 Zinc Oxide Semiconductor and Method of manufacturing the same
KR20180135635A (en) 2017-06-13 2018-12-21 한국과학기술연구원 Paste for ohmic contact to p-type semiconductor and method for forming ohmic contact to p-type semiconductor using the same
CN115188875A (en) * 2022-09-13 2022-10-14 泉州三安半导体科技有限公司 Light emitting device and light emitting element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205629A (en) * 2013-04-11 2014-10-30 株式会社エヌ・エル・エー Composition for reducing blood neutral lipid and functional foods containing composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716784B1 (en) * 2005-12-06 2007-05-14 광주과학기술원 Light emitting device and method of manufacturing the same
KR100884883B1 (en) * 2007-06-26 2009-02-23 광주과학기술원 Zinc Oxide Semiconductor and Method of manufacturing the same
KR20180135635A (en) 2017-06-13 2018-12-21 한국과학기술연구원 Paste for ohmic contact to p-type semiconductor and method for forming ohmic contact to p-type semiconductor using the same
US10685762B2 (en) 2017-06-13 2020-06-16 Korea Institute Of Science And Technology Paste for ohmic contact to P-type semiconductor and method for forming ohmic contact to P-type semiconductor using the same
CN115188875A (en) * 2022-09-13 2022-10-14 泉州三安半导体科技有限公司 Light emitting device and light emitting element

Also Published As

Publication number Publication date
KR100588486B1 (en) 2006-06-12

Similar Documents

Publication Publication Date Title
JP5164291B2 (en) Thin film electrode and manufacturing method thereof
EP1523047B1 (en) Nitride-based semiconductor light emitting device and method of manufacturing the same
KR100601945B1 (en) Top emitting light emitting device and method of manufacturing thereof
JP2001196633A (en) Gallium nitride-based group 13-15 compound semiconductor element and electrode for elements
JP2005223326A (en) Electrode layer, light-emitting device provided with the same, and manufacturing method for the electrode layer
KR100707167B1 (en) Thin film electrode for ohmic contact using materials capable of making the binary and ternary p-type thermo-electronic oxide thin films for high-quality optical devices related to Al,InGaN and method
US20050121685A1 (en) Flip-chip light emitting diode and method of manufacturing the same
KR100588486B1 (en) Method of ohmic contact to p type ZnO
KR20050095721A (en) Gan-based iii - v group compound semiconductor light emitting device and method of fabricating the same
KR20060007948A (en) Top emitting light emitting device and method of manufacturing thereof
US7022597B2 (en) Method for manufacturing gallium nitride based transparent conductive oxidized film ohmic electrodes
KR100515652B1 (en) Transparant Electrode Film for Ohmic Contact of p-GaN Semiconductor
CN107706277B (en) Manufacturing method of transparent conducting layer and light emitting diode thereof
KR100622998B1 (en) Preparation Method of Ohmic Contact to Compound Semiconductor Using ZnO
KR100764458B1 (en) Electrode layer, light generating device comprising the same and method of forming the same
KR20050020513A (en) Transparant Film Electrode for Ohmic Contact of p-Type Semiconductor Comprising N, Ga for High-quality Light Emitting Diodes and Laser Diodes
KR100538041B1 (en) light emitting device and method of manufacturing the same
KR100611642B1 (en) Top emitting light emitting device and method of manufacturing thereof
KR100716784B1 (en) Light emitting device and method of manufacturing the same
KR100574105B1 (en) Top emitting light emitting device and method of manufacturing thereof
KR100574104B1 (en) Flip-chip light emitting device and method of manufacturing thereof
KR20050031471A (en) Light emitting device and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130410

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140326

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee