KR20050021709A - 복합 비정질 코어 - Google Patents

복합 비정질 코어 Download PDF

Info

Publication number
KR20050021709A
KR20050021709A KR1020030058860A KR20030058860A KR20050021709A KR 20050021709 A KR20050021709 A KR 20050021709A KR 1020030058860 A KR1020030058860 A KR 1020030058860A KR 20030058860 A KR20030058860 A KR 20030058860A KR 20050021709 A KR20050021709 A KR 20050021709A
Authority
KR
South Korea
Prior art keywords
amorphous
core
iron
strips
strip
Prior art date
Application number
KR1020030058860A
Other languages
English (en)
Inventor
김문철
남궁정
이기안
Original Assignee
재단법인 포항산업과학연구원
(주)에이.티.씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원, (주)에이.티.씨 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020030058860A priority Critical patent/KR20050021709A/ko
Publication of KR20050021709A publication Critical patent/KR20050021709A/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/04Cores, Yokes, or armatures made from strips or ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

본 발명은 전자부품용으로 사용되는 비정질 코어를 자기적특성이 상이한 소재들을 혼합하여 제조함으로써 고효율화, 경량화, 저가격화를 달성해 낼 수 있도록 한 복합 비정질 코어에 관한 것으로, 용융상태의 액체금속으로부터 자기적특성이 상이한 철계 비정질 스트립 및 철계 나노결정립 비정질 스트립을 획득하여 사용처의 특성 및 크기에 맞게 구비하고; 구비된 2종류의 스트립을 각기 권취한 후 상기 철계 비정질 스트립은 410℃ 불활성가스 분위기에서, 상기 철계 나노결정립 비정질 스트립은 520℃ 불활성가스 분위기에서 1시간동안 열처리하여 잔류응력 제거 및 나노결정화하며 이어 열처리된 두개의 스트립을 혼합한 후 함침액에 침지 건조하여 코어 형상으로 고정한 다음 고유자기적 특성 부여를 위한 갭을 형성하고, 케이스에 조립하여 최종제품화하여 이루어진다.
본 발명에 따르면, 코어의 크기를 감소시켜 소형 코어의 제조가 가능하고, 정밀도가 높으며 사용범위도 확대되어 고효율적이고, 단일 비정질 코어들이 갖는 한계성인 투자율과 자속밀도 측면에서 매우 유리하며, 값이 매우 저렴한 장점이 있다.

Description

복합 비정질 코어{HYBRID AMORPHOUS CORE}
본 발명은 전자부품용으로 사용되는 비정질 코어를 자기적특성이 상이한 소재들을 혼합하여 제조함으로써 고효율화, 경량화, 저가격화를 달성해 낼 수 있도록 한 복합 비정질 코어에 관한 것이다.
일반적으로, 비정질(AMORPHOUS)이란 구성원자가 액체상태와 유사하게 무질서한 구조를 갖는 것으로 용융된 액상금속을 초당 백만 ℃ 정도의 매우 빠른 속도로 냉각하여 얻어지며, 이렇게 제조된 비정질 합금은 원자구조가 무질서하기 때문에 통상의 결정질 합금과는 여러가지 상이한 특성(연자성재료 분야에서)을 보이는데 이를테면, 저철손특성, 고투자율특성, 결정 자기이방성이 없는 특성 등이 그것이다.
이러한 비정질 합금은 그 주성분에 따라 철계, 니켈계, 코발트계로 분류되며, 주로 철계와 코발트계가 활용되고 있는데 철계 비정질합금은 포화자속밀도가 높고 철손이 작기 때문에 대용량 주상변압기나 수백 KHz 대역까지 사용하는 고주파용변압기 자기코어로 응용되고; 코발트계 비정질합금은 투자율이 높고 철손 및 보자력이 작아 고주파용 소형자기코어로 응용되거나 혹은 자기헤드용으로 많이 사용된다.
그런데, 이러한 비정질 합금으로 제조되는 코어들은 고자속밀도 및 저투자율을 갖는 철계 비정질합금 스트립이나 혹은 저자속밀도 및 고투자율을 갖는 코발트계 비정질합금 스트립 혹은 중자속밀도 및 고투자율을 갖는 철계 나노결정립 비정질합금 각각을 단독으로 권취하여 제조하였기 때문에 각 계가 갖는 자기적특성의 한계성을 극복할 수 없었으며, 특히 코발트계의 경우에는 값이 매우 비싸다는 단점이 있었다.
보다 구체적으로 살펴보면, 하기한 표 1은 전자부품용 코어로 사용되는 연자성 소재의 자기적특성을 대비한 것인데, 표 1에서와 같이 대부분의 전자부품용 코어는 퍼멀로이, 철계 나노결정립 비정질 스트립, 철계 비정질 스트립, 규소강판이 주로 사용되는데 규소강판의 경우에는 가격이 저렴하기는 하나 투자율이 적고, 퍼멀로이는 가격이 높은 단점이 있어 통상 특성이 좋고 가격도 저렴한 철계 혹은 철계 나노결정립 비정질 스트립을 코어로 제조하고 있다.
그러나, 도 1의 그래프에서와 같이, 철계 비정질 스트립은 초기 투자율이 낮고, 철계 나노결정립 비정질 스트립은 철계 비정질 스트립에 비하여 자속밀도가 낮아 비정질 코어의 사용성능상의 한계성을 드러내었다.
본 발명은 상술한 바와 같은 종래 비정질 코어가 갖는 한계성을 감안하여 이를 해결하고자 창출한 것으로, 높은 자속밀도를 갖는 철계 비정질 스트립과 높은 투자율을 갖는 철계 나노결정립 비정질 스트립을 혼합하여 코어를 제조함으로써 양자가 갖는 장점만을 골라내어 고효율적이면서도 자기적특성의 한계성 확장에 따른 광범위한 사용범위를 갖도록 개선된 그러한 형태의 복합 비정질 코어를 제공함에 그 목적이 있다.
본 발명은 상기한 기술적 과제를 달성하기 위하여, 전자부품용 비정질 코어에 있어서, 자기적특성이 서로 다른 2종 이상의 비정질 스트립을 상하방향으로 안착고정하거나 혹은 어느 하나의 비정질 스트립 내경에 다른 비정질 스트립을 삽입하는 형태 혹은 그 반대 형태로 혼합하여 이루어진 것을 특징으로 하는 복합 비정질 코어를 제공함에 그 특징이 있다.
또한, 본 발명은 상기 2종 이상의 비정질 스트립은 철계 비정질 스트립 및 철계 나노결정립 비정질 스트립인 것에도 특징이 있다.
이하에서는, 첨부도면을 참고하여 본 발명을 보다 상세하게 설명하기로 한다.
도 2의 (가),(나)는 본 발명에 따른 복합 비정질 코어의 외관 사시도이다.
본 발명 코어는 2종 이상의 자기적특성이 다른 비정질 스트립을 혼합하여 하나의 복합 비정질 코어를 제조하는 것으로 이를테면 도시와 같이, 철계 비정질 스트립(2)과 철계 나노결정립 비정질 스트립(3)을 동일직경을 갖도록 권취한 후 상하방향으로 배치하여 하나의 복합 비정질 코어(1)를 제조할 수 있다.
또한, 본 발명은 철계 비정질 스트립(2')과 철계 나노결정립 비정질 스트립(3')을 연결하여 하나의 복합 비정질 코어(1')를 제조할 수 있는데, 이때 그 내경부에는 철계 비정질 스트립(2')이 배치되도록 하고 외경부에는 철계 나노결정립 비정질 스트립(3')이 배치되도록 함이 바람직하며, 그 반대의 경우도 가능하다.
이와 같이, 본 발명에서는 사용될 전자부품 코어의 특성, 크기 등에 따라 그 길이, 폭, 형태 등이 결정되며, 결정된 정보에 의해 철계 비정질 스트립(2,2') 및 철계 나노결정립 스트립(3,3')이 권취되어 코어형태를 이루게 된다.
이때, 상기 철계 비정질 스트립(2,2')은 철계 나노결정립 스트립(3,3')이 갖는 낮은 자속밀도를 보상해 주게 되며, 반대로 철계 나노결정립 스트립(3,3')은 철계 비정질 스트립(2,2')이 갖는 낮은 투자율을 보상해 주게 된다.
예컨대, 도 3은 본 발명에 따른 복합 비정질 코어(MIXED CORE)와 단일 비정질 코어(철계 비정질 및 철계 나노결정립 비정질)의 자기특성을 비교한 그래프에서와 같이, 철계 비정질 코어(▲표시)는 낮은 자속밀도에서 초기 투자율이 낮고 전체적으로도 낮은 투자율을 나타내고 있으나 자속밀도는 15600 가우스로서 높은 값을 나타내고 있다.
반면에, 철계 나노결정립 비정질 코어(◆ 표시)는 낮은 자속밀도에서 초기 투자율이 높고 전체적으로도 높은 투자율을 나타내고 있으나 자속밀도는 12000 가우스로서 낮은 값을 나타내고 있다.
이를 개선한 본 발명 복합 비정질 코어(●표시)는 낮은 자속밀도에서도 높은 초기 투자율을 나타내며, 또한 전체적으로도 높은 투자율 특성을 가짐과 동시에 자속밀도도 14000 가우스로서 철계 비정질 코어나 철계 나노결정립 비정질 코어에 비해 현저히 개선된 우수한 자기적 특성이 나타남을 알 수 있다.
본 발명 복합 비정질 코어는 다음과 같이 제조된다.
먼저, 전자제품에 사용될 코어의 크기 및 특성을 설계한 후 그에 합당하도록 철계 비정질 스트립과 철계 나노결정립 스트립을 준비한다.
이어, 준비된 각 비정질 스트립을 권취하여 토로이달 혹은 사각형상의 코어형태로 제작한다.
제작된 두개의 코어는 각각 그 열처리특성이 다르므로 별개의 열처리가 필요하게 되는데 이를테면, 철계 비정질 스트립의 경우에는 불활성가스 분위기로 410℃에서 잔류응력을 제거하는 열처리를 행하도록 하고, 철계 나노결정립 스트립의 경우에는 520℃에서 나노결정화처리를 행하도록 하는데 각각 1시간씩 충분히 열처리하여 각 비정질 스트립에 잔류된 응력 제거 및 나노결정화가 이루어지도록 한다.
열처리가 완료되면 각 코어를 상하로 겹쳐 연결 배열하거나 혹은 내외부로 연결 배열하여 하나의 복합 비정질 코어를 제조한다.
제조된 본 발명 복합 비정질 코어는 용도에 따라 플라스틱 케이스에 삽입하거나 혹은 표면을 에폭시로 코팅하한 후 설계에 맞게 권선하여 사용토록 한다.
물론, 상술한 본 발명 코어의 제조과정은 일반적인 코어 제조과정중의 일부를 변경한 것인데, 통상적인 코어의 제조과정은 다음과 같다.
대부분의 연자성 코어들은 용융상태의 액체금속으로부터 비정질 스트립을 획득해내는 공정과, 획득된 비정질 스트립을 토로이달 혹은 사각형태로 권취하여 코어형태를 만드는 권취공정과, 권취된 코어형태의 비정질 합금에 기본적인 자기적특성 부여와 권취시의 응력을 해소하기 위한 열처리공정과, 열처리된 코어형태의 비정질 합금을 함침액에 침지한 후 건조시켜 코어형상을 유지하는 공정과, 형상이 만들어진 코어의 일부를 절개하여 고유자기적 특성을 부여하는 갭 형성 공정과, 갭이 형성된 코어를 케이스에 조립하여 최종제품으로 만드는 조립공정을 통하여 제조되게 된다.
따라서, 본 발명 복합 비정질 코어는 상술한 통상의 코어 제조공정중 열처리공정과 코어형태를 만들때에 2종 이상의 자기적특성이 서로 다른 비정질 스트립을 적절히 배열하는 고정이 바뀌거나 추가되어 재구성된 전혀 새로운 발명임을 알 수 있다.
이하, 본 발명의 실시예에 대하여 설명한다.
[실시예]
본 발명에 따라 제조된 복합 비정질 코어를 전류변압기로 사용하여 하기한 표 2에서와 같은 국내 표준규격을 기준으로 측정하였으며, 그 결과를 표 3에 나타내었다.
전류변압기의 경우에는 정밀도로 그 특성을 파악할 수 있는데 실제적인 전류오차를 나타내는 Ratio error(±%)와 전류의 극에서 발생하는 Phase error(±min.)의 오차 범위에 따라 그 정밀도를 0.1~0.3 클래스로 구분하고, 클래스가 낮을수록 정확도는 높아진다.
상기 표 3에서와 같이, 600/5A는 권선의 비율을 나타내며, 0.3, 0.5는 표 2에 근거한 정밀도(클래스)를 나타낸다.
정밀도 측정결과 규소강판 코어 및 철계 비정질 코어의 경우에는 0.5 클래스의 정밀도와 500/5A 이상의 높은 전류에서만 사용이 가능함을 알 수 있었고, 철계 나노결정립 코어는 0.3 클래스의 높은 정밀도를 가지지만 400/5A 이상에서 사용할 수 없음을 확인할 수 있었다.
그러나, 본 발명에 따른 복합 비정질 코어는 높은 정밀도는 물론 저전류에서부터 고전류에 이르기까지 모두 사용함을 확인할 수 있었다.
결국, 본 발명 코어는 다른 단일 코어들에 비해 정밀도의 향상 및 사용범위의 확대를 꾀할 수 있음은 물론 낮은 권취율의 사용도 가능하여 경량, 소형의 코어 제작에도 획기적으로 일조할 수 있음을 확인할 수 있었다.
이상에서 상세히 설명한 바와 같이, 본 발명은 다음과 같은 효과를 제공한다.
첫째, 코어의 크기를 감소시켜 소형 코어의 제조가 가능하다.
둘재, 정밀도가 높고 사용범위도 확대되어 고효율적이다.
세째, 단일 비정질 코어들이 갖는 한계성인 투자율과 자속밀도 측면에서 매우 유리하다.
네째, 값이 매우 저렴하다.
도 1은 일반적인 연자성 합금 스트립의 자기적특성을 보인 그래프,
도 2는 본 발명에 따른 코어의 형태를 보인 예시도,
도 3은 본 발명에 따른 코어의 자기적특성을 종래와 대비하여 보인 그래프.
♧ 도면의 주요 부분에 대한 부호의 설명 ♧
1,1'....복합 비정질 코어 2,2'....철계 비정질 코어
3,3'....철계 나노결정립 비정질 코어

Claims (2)

  1. 전자부품용 비정질 코어에 있어서,
    자기적특성이 서로 다른 2종 이상의 비정질 스트립이 상하방향으로 안착고정되거나 혹은 어느 하나의 비정질 스트립 내경에 다른 비정질 스트립이 삽입되는 형태로 조립되어 이루어진 것을 특징으로 하는 복합 비정질 코어.
  2. 청구항 1에 있어서,
    상기 2종 이상의 비정질 스트립은 철계 비정질 스트립 및 철계 나노결정립 비정질 스트립인 것을 특징으로 하는 복합 비정질 코어.
KR1020030058860A 2003-08-25 2003-08-25 복합 비정질 코어 KR20050021709A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030058860A KR20050021709A (ko) 2003-08-25 2003-08-25 복합 비정질 코어

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030058860A KR20050021709A (ko) 2003-08-25 2003-08-25 복합 비정질 코어

Publications (1)

Publication Number Publication Date
KR20050021709A true KR20050021709A (ko) 2005-03-07

Family

ID=37229900

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030058860A KR20050021709A (ko) 2003-08-25 2003-08-25 복합 비정질 코어

Country Status (1)

Country Link
KR (1) KR20050021709A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700105B1 (ko) * 2006-10-18 2007-03-28 채수경 건축물의 출입문 개폐구조
WO2018080129A1 (ko) * 2016-10-27 2018-05-03 주식회사 아모센스 변류기용 코어 및 이의 제조 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100700105B1 (ko) * 2006-10-18 2007-03-28 채수경 건축물의 출입문 개폐구조
WO2018080129A1 (ko) * 2016-10-27 2018-05-03 주식회사 아모센스 변류기용 코어 및 이의 제조 방법
CN109983552A (zh) * 2016-10-27 2019-07-05 阿莫善斯有限公司 用于电流互感器的芯部及该芯部的制造方法
CN109983552B (zh) * 2016-10-27 2021-07-16 阿莫善斯有限公司 用于电流互感器的芯部及该芯部的制造方法
US11322300B2 (en) 2016-10-27 2022-05-03 Amosense Co., Ltd Method for manufacturing a core for a current transformer

Similar Documents

Publication Publication Date Title
EP0042525B2 (en) Amorphous magnetic alloy
US7170378B2 (en) Magnetic core for high frequency and inductive component using same
JP5877486B2 (ja) 非晶質金属コアと、それを用いた誘導装置及びその製造方法
KR20080059357A (ko) 비결정 연자성 합금 및 상기 비결정 연자성 합금을 이용한인덕턴스 소자
JPH0696941A (ja) 部分ギャップ磁気コア装置
AU2005236929A1 (en) Magnetic core for stationary electromagnetic devices
CN107464649B (zh) 一种具有线性磁滞回线的磁芯
CN107109562A (zh) Fe基软磁性合金薄带以及使用其的磁心
CA3053494C (en) Fe-based, soft magnetic alloy
WO2014126220A1 (ja) Fe基ナノ結晶軟磁性合金を用いた環状磁心、及びそれを用いた磁性部品
JP2011171772A (ja) 間隙を設けた非晶質金属系の磁性コア
CN103258612A (zh) 一种低导磁磁芯及其制造方法和用途
CN104810139A (zh) 电抗器
US6144279A (en) Electrical choke for power factor correction
US20230368959A1 (en) Magnetic core and magnetic device
CN108603272A (zh) Fe基合金组合物、软磁性材料、磁性部件、电气电子相关部件和设备
KR20050021709A (ko) 복합 비정질 코어
EP1676284A1 (en) Controllable inductive device
EP0938106A1 (en) Coil
JPH05326240A (ja) 圧粉磁芯及びその製造方法
Günther et al. A user guide to soft magnetic materials
CN108292549B (zh) 软磁合金
CN110024059B (zh) 用于切割堆叠型变压器的变压器芯部和包括该变压器芯部的变压器
CN212847924U (zh) 一种磁芯、磁集成器件及其线路板、家用电器
CN1768397B (zh) 具有线形b-h回线的磁性工具

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application