KR20050020941A - Spattering target - Google Patents

Spattering target Download PDF

Info

Publication number
KR20050020941A
KR20050020941A KR1020040063507A KR20040063507A KR20050020941A KR 20050020941 A KR20050020941 A KR 20050020941A KR 1020040063507 A KR1020040063507 A KR 1020040063507A KR 20040063507 A KR20040063507 A KR 20040063507A KR 20050020941 A KR20050020941 A KR 20050020941A
Authority
KR
South Korea
Prior art keywords
sputtering target
oxide
lattice constant
density
target
Prior art date
Application number
KR1020040063507A
Other languages
Korean (ko)
Other versions
KR100660589B1 (en
Inventor
오노나오키
Original Assignee
미쓰이 긴조꾸 고교 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰이 긴조꾸 고교 가부시키가이샤 filed Critical 미쓰이 긴조꾸 고교 가부시키가이샤
Publication of KR20050020941A publication Critical patent/KR20050020941A/en
Application granted granted Critical
Publication of KR100660589B1 publication Critical patent/KR100660589B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE: To provide a sputtering target in which since a ratio of Archimedes density(AD) to theoretical density(TD) calculated from lattice constant obtained by X ray diffraction is greater than a prescribed value, generation of nodule is suppressed, particularly specific resistance is greater than a prescribed value, and nodule is further reduced if the lattice constant is not greater than a prescribed value. CONSTITUTION: In a sputtering target formed of sintered oxide containing indium oxide as a principal component, the sputtering target is characterized in that Archimedes density AD(g/cm¬3) of the sintered oxide and theoretical density TD(g/cm¬3) calculated from lattice constant obtained by X ray diffraction have a relation of AD/TD>0.995, wherein the AD and the TD have a relation of AD/TD>0.998, wherein bulk resistance of the sintered oxide is 1.5x10¬-4 §Ùcm or more, wherein the lattice constant is 1.01285 nm or less, and wherein the sintered oxide additionally contains tin oxide.

Description

스패터링 타깃{SPATTERING TARGET}Sputtering Target {SPATTERING TARGET}

본 발명은 스패터링 타깃에 관한 것이며, 노듈(nodule)의 발생을 억제하도록 연구된 것이다.The present invention relates to sputtering targets and has been studied to suppress the generation of nodule.

일반적으로 박막을 성막하는 방법의 하나로서 스패터링법이 알려져 있다. 스패터링법이란 스패터링 타깃을 스패터링함으로써 박막을 얻는 방법이며, 대면적화가 용이하고, 고성능의 막을 효율좋게 성막할 수 있기 때문에, 공업적으로 이용되고 있다. 또 근년, 스패터링의 방식으로서, 반응성 가스 중에서 스패터링을 행하는 반응성 스패터링법이나, 타깃의 이면에 자석을 설치하여 박막 형성의 고속화를 도모하는 마그네트론 스패터링법 등도 알려져 있다.In general, the sputtering method is known as one of methods for forming a thin film. The sputtering method is a method of obtaining a thin film by sputtering a sputtering target, and since it is easy to enlarge a large area and can form a high performance film efficiently, it is used industrially. Moreover, in recent years, as a method of sputtering, the reactive sputtering method which sputters in reactive gas, the magnetron sputtering method which speeds up thin film formation by providing a magnet on the back surface of a target, etc. are also known.

이와 같은 스패터링법에서 사용되는 박막 중, 특히 산화인듐-산화주석(In2O3-SnO2의 복합 산화물, 이하 「ITO」라 함) 막은, 가시광 투과성이 높고, 또한 도전성이 높기 때문에, 투명 도전막으로서 액정표시 장치나 유리의 결로방지용 발열막, 적외선 반사막 등에 폭 넓게 사용되고 있다.Among the thin films used in such a sputtering method, an indium tin oxide (composite oxide of In 2 O 3 -SnO 2 , hereinafter referred to as "ITO") film is particularly transparent because of its high visible light transmittance and high conductivity. As a conductive film, it is widely used for a liquid crystal display device, a condensation prevention heating film, an infrared reflecting film, etc. of glass.

이 때문에 보다 효율좋게 저 코스트로 성막하기 위해서, 현재에도 스패터 조건이나 스패터 장치 등의 개량이 날마다 행해지고 있어, 장치를 여하히 효율적으로 가동시킬 것인지가 중요하게 된다.For this reason, in order to form a film more efficiently at low cost, improvement of a spatter condition, a spatter apparatus, etc. is performed every day now, and it becomes important whether a device is operated efficiently anyway.

이와 같은 ITO 스패터링에 있어서는, 새로운 스패터링 타깃을 세트한 후, 초기 아크(이상 방전)가 없어져서 제품을 제조할 수 있을 때까지의 시간이 짧음과, 한번 세트한 후 어느 정도의 기간동안 사용할 수 있는지(적산 스패터링 시간:타깃 라이프)가 문제로 된다.In such ITO sputtering, after a new sputtering target is set, the time until the initial arc (abnormal discharge) disappears and a product can be manufactured is short, and it can be used for a certain period after setting it once. Whether there is (accumulated spatter time: target life) becomes a problem.

종래 스패터링 타깃의 초기 아크는, 타깃 표면을 연마하여 평활하게 하면 할수록 저감된다고 해서, 표면을 평활하게 한 표면 연마 타깃이 주류로 되어 있다.The initial arc of the conventional sputtering target is reduced as the target surface is polished and smoothed, so that the surface polishing target having the smoothed surface becomes the mainstream.

또 스패터링을 연속적으로 행하면, 타깃 표면에 노듈이라는 흑색의 부착물이 생기고, 이것이 이상방전(異常放電)의 원인으로 되거나, 파티클의 발생원으로 되거나 한다. 따라서 박막결함을 방지하기 위해서는, 정기적인 노듈 제거가 필요하게 되어 생산성의 저하로 이어지는 등의 문제가 있다.In addition, when sputtering is performed continuously, black deposits, called nodules, are formed on the target surface, which causes abnormal discharge or particles to be generated. Therefore, in order to prevent thin film defects, there is a problem that regular nodule removal is required, leading to a decrease in productivity.

예를 들면 타깃의 표면 조도(粗度)를 소정의 범위 내로 하는 동시에, 밀도와 벌크 저항을 소정의 범위로 함으로써 아킹(arcking)이나 노듈의 발생을 방지하고자 하는 기술이 개발되어 있다(특허문헌1 참조). 또 표면 조도를 소정의 범위로 설정함으로써 아킹이나 노듈의 발생을 방지하고자 하는 기술도 개발되어 있다(특허문헌2 참조). 그러나 이와 같은 소정의 표면 조도를 갖는 ITO 스패터링 타깃을 제조하기 위해서는, 소결 후 연삭에 의해서 두께를 조정한 후, 서서히 고운 연마 지석(砥石)을 사용하여 3∼4회의 연마공정이 필요하게 되어, 제조시간 및 코스트가 커진다는 등의 문제가 있었다.For example, techniques for preventing arcing and nodule generation have been developed by keeping the surface roughness of the target within a predetermined range and by setting the density and bulk resistance within a predetermined range (Patent Document 1). Reference). Moreover, the technique which tries to prevent generation | occurrence | production of arcing and a nodule by setting surface roughness to a predetermined range is also developed (refer patent document 2). However, in order to manufacture an ITO sputtering target having such a predetermined surface roughness, after adjusting the thickness by grinding after sintering, three to four polishing steps are required using a gradually fine abrasive grindstone, There have been problems such as increased manufacturing time and cost.

한편 X선 회절에 의해서 면 간격이 소정의 범위에 있는 회절면을 갖는 상(相)이 형성되고, 또한 이 상의 회절 피크의 적분(積分)강도를 소정의 범위로 기재한 ITO 타깃이 제안되어 있으나(특허문헌3 참조), 기판온도가 낮은 조건에 있어서도 비저항치가 낮은 ITO 막을 성막할 수 있다는 것이다.On the other hand, an ITO target has been proposed in which a phase having a diffractive surface having a plane interval in a predetermined range is formed by X-ray diffraction, and an integral intensity of the diffraction peak of the phase in a predetermined range is proposed. (See Patent Document 3) The ITO film having a low specific resistance can be formed even under a condition where the substrate temperature is low.

[특허문헌1] 일본특허 제2750483호 공보[Patent Document 1] Japanese Patent No. 2750483

[특허문헌2] 일본특허 제3152108호 공보[Patent Document 2] Japanese Patent No. 3152108

[특허문헌3] 일본특허 제2979648호 공보[Patent Document 3] Japanese Patent No. 2979648

본 발명은 산화물 소결체의 밀도 및 전기전도도가 노듈의 발생과 관계되지만, 특히 아르키메데스 밀도 AD(g/cm3)와 X선 회절에 의해서 구한 격자정수로부터 산출되는 이론밀도 TD와의 비가 노듈의 발생과 깊은 관계를 나타냄을 알아내어, 노듈의 발생을 억제해서 초기 안정성을 현저하게 향상시키고, 또한 저 코스트로 제조할 수 있는 스패터링 타깃을 제공하는 것을 과제로 한다.In the present invention, the density and electrical conductivity of the oxide sintered body are related to the generation of nodules, but in particular, the ratio between the theoretical density TD calculated from the Archimedes density AD (g / cm 3 ) and the lattice constant determined by X-ray diffraction and the generation of the nodules It is a problem to find out that a relationship is shown and to provide the sputtering target which can suppress generation | occurrence | production of a nodule, remarkably improve initial stability, and can manufacture at low cost.

상기 과제를 해결하는 본 발명의 제 1태양은, 산화인듐을 주성분으로 하는 산화물 소결체로 되는 스패터링 타깃에 있어서, 상기 산화물 소결체의 아르키메데스 밀도 AD(g/cm3)와 X선 회절에 의해서 구한 격자정수로부터 산출되는 이론밀도 TD(g/cm3)가 AD/TD >0.995의 관계에 있는 것을 특징으로 하는 스패터링 타깃이다.The 1st aspect of this invention which solves the said subject is the grating calculated | required by the Archimedes density AD (g / cm <3> ) and X-ray diffraction of the said oxide sintered compact in the sputtering target which becomes an oxide sintered compact containing indium oxide as a main component. It is a sputtering target characterized by the theoretical density TD (g / cm < 3 >) calculated from an integer being in the relationship of AD / TD> 0.995.

이와 같은 제 1태양에서는, 아르키메데스 밀도 AD와 X선 회절에 의해서 구한 격자정수로부터 산출되는 이론밀도 TD와의 비가 소정의 값보다 크기 때문에, 노듈의 발생이 억제된다.In such a first aspect, the generation of nodules is suppressed because the ratio between the Archimedes density AD and the theoretical density TD calculated from the lattice constant determined by X-ray diffraction is larger than a predetermined value.

본 발명의 제 2태양은, 제 1태양에 있어서 상기 AD 및 상기 TD가 AD/TD>0.998의 관계에 있는 것을 특징으로 하는 스패터링 타깃이다.According to a second aspect of the present invention, in the first aspect, the AD and the TD have a relationship of AD / TD> 0.998, and is a sputtering target.

이와 같은 제 2태양에서는, 아르키메데스 밀도 AD와 X선 회절에 의해서 구한 격자정수로부터 산출되는 이론밀도 TD의 비가 0.998보다 커서 노듈이 더 억제된다.In this second aspect, the ratio of the theoretical density TD calculated from the lattice constant determined by the Archimedes density AD and the X-ray diffraction is greater than 0.998, so that the nodule is further suppressed.

본 발명의 제 3태양은, 제 1 또는 2태양에 있어서, 상기 산화물 소결체의 벌크 저항이 1.5×1O-4Ω·cm 이상임을 특징으로 하는 스패터링 타깃이다.According to a third aspect of the present invention, in the first or second aspect, a bulk resistance of the oxide sintered body is 1.5 × 10 −4 Ω · cm or more, which is a sputtering target.

이와 같은 제 3태양에서는, 벌크 저항이 소정의 값보다 크기 때문에 노듈이 더 억제된다.In this third aspect, the nodule is further suppressed because the bulk resistance is larger than the predetermined value.

본 발명의 제 4태양에서는, 제 1∼3 중의 어느 태양에 있어서, 상기 격자정수가 1.01285nm 이하임을 특징으로 하는 스패터링 타깃이다.In a fourth aspect of the present invention, in any one of the first to third aspects, the grating constant is 1.01285 nm or less, which is a sputtering target.

이와 같은 제 4태양은, 격자정수가 소정의 값보다 작기 때문에 노듈의 발생이 더 억제된다.In this fourth aspect, the generation of nodules is further suppressed because the lattice constant is smaller than a predetermined value.

본 발명의 제 5태양은, 제 1∼4 중의 어느 태양에 있어서 상기 격자정수가, 1.01280nm 이하임을 특징으로 하는 스패터링 타깃이다.A 5th aspect of this invention is a sputtering target characterized by the said lattice constant in any one of 1st-4 which is 1.01280 nm or less.

이와 같은 제 5태양에서는, 격자정수가 1.01280nm 이하이므로 노듈의 발생이 더 억제된다.In the fifth aspect, generation of nodules is further suppressed because the lattice constant is 1.01280 nm or less.

본 발명의 제 6태양은, 제 1∼5 중의 어느 태양에 있어서, 상기 산화물 소결체가 산화주석을 더 함유하는 것을 특징으로 하는 스패터링 타깃이다.The sixth aspect of the present invention is the sputtering target according to any one of the first to fifth aspects, wherein the oxide sinter further contains tin oxide.

이와 같은 제 6태양에서는, 산화물 소결체가 산화주석을 함유한 ITO 타깃이므로 노듈의 발생이 억제된다.In the sixth aspect, generation of nodules is suppressed because the oxide sintered body is an ITO target containing tin oxide.

본 발명에서 아르키메데스 밀도 AD(g/cm3)라 함은, 실제의 산화물 소결체에 대해서, 치환법, 즉 아르키메데스 법에 의해서 측정되는 밀도를 말하고, 본 발명에서는 실온에서 물을 사용하여 측정했다. 한편 이론밀도 TD(g/cm3)는 X선 회절에 의해서 구한 격자정수로부터 산출되는 것으로서, 예를 들면 철망간광 구조의(Ino.905 Sno.095)2O3에 있어서 산소결손 등의 격자 결함이 없다고 가정하여 산출한 것이다. 구체적으로는 예를 들면 (622), (662), (840), (761), (844), (864) 면에서의 회절 피크 데이터를 사용하여 정밀화 계산을 실시함으로써, 격자정수의 계산을 행할 수 있다.In the present invention, the Archimedes density AD (g / cm 3 ) refers to the density measured by the substitution method, that is, the Archimedes method, with respect to the actual oxide sintered body, and in the present invention, measured using water at room temperature. On the other hand, the theoretical density TD (g / cm 3 ) is calculated from the lattice constant determined by X-ray diffraction, for example, oxygen deficiency in (O o 905 Sn o . 095 ) 2 O 3 of iron manganese light structure. It is calculated on the assumption that there is no lattice defect. Specifically, for example, the lattice constant is calculated by performing refinement calculation using diffraction peak data on the planes (622), (662), (840), (761), (844), and (864). Can be.

본 발명에서는 AD/TD>0.995, 바람직하기로는 AD/TD>0.998로 된다. 이와 같은 밀도비를 갖는 산화물 소결체를 얻기 위해서는, 후에 예시하는 제조공정에서, 산소 분압이 될 수 있는 한 높은 분위기 하에서 소결할 필요가 있으나, 밀도비는 원료 분말의 종류, 입경, 원료 분말의 프레스압, 소결시의 분위기, 소결온도 등 여러 가지 조건에 의해서 변화할 수 있는 것이다. 어떻든 제조 후, 아르키메데스 법에 의한 밀도의 측정 및 X선 회절에 의한 이론밀도의 산출을 행함으로써, 노듈이 억제된 것인지의 여부를 판단할 수 있다.In the present invention, AD / TD> 0.995, preferably AD / TD> 0.998. In order to obtain an oxide sintered body having such a density ratio, it is necessary to sinter in an atmosphere as high as possible in the partial pressure of oxygen in the manufacturing process illustrated later, but the density ratio is a kind of raw powder, a particle diameter, and a press pressure of the raw powder. It can be changed by various conditions, such as the sintering atmosphere and sintering temperature. In any case, it is possible to judge whether or not the nodule is suppressed by measuring the density by the Archimedes method and calculating the theoretical density by X-ray diffraction after production anyway.

또 본 발명의 스패터링 타깃에서는 산화물 소결체의 벌크 저항은, 1.5×1O-4Ω·cm 이상임이 바람직하다. 즉 벌크 저항이 클수록 노듈이 억제된다. 한편 상술한 바와 같이 높은 산소분압의 분위기 하에서 소결할수록, 벌크 저항이 저하되는 경향이 있으므로, 벌크저항을 부가적인 지표로 할 필요가 있다. 또 벌크 저항이 작아질수록, DC 마그네트론에 의한 스패터링을 행할 때에 바람직하지 않게 된다.Moreover, in the sputtering target of this invention, it is preferable that the bulk resistance of an oxide sintered compact is 1.5 * 10 <-4> ( ohm) * cm or more. In other words, as the bulk resistance increases, the nodule is suppressed. On the other hand, as described above, the bulk resistance tends to decrease as the sintering is carried out in an atmosphere of high oxygen partial pressure, so the bulk resistance needs to be an additional index. In addition, the smaller the bulk resistance, the less preferable it is when sputtering with a DC magnetron.

또 산화물 소결체 중의 산소농도가 커질수록, 격자정수가 낮아짐이 알려져 있고, 따라서 격자정수가 소정의 값보다 작다는 점도 부수적인 지표로 된다. 즉 본 발명에 있어서는 격자정수가 1.01285nm 이하, 바람직하기로는 1.01280nm 이하임이 요망되며, 이에 의해서 노듈의 발생이 더 억제된다.It is also known that the larger the oxygen concentration in the oxide sintered body, the lower the lattice constant, and therefore, the lattice constant is smaller than a predetermined value. That is, in the present invention, it is desired that the lattice constant is 1.01285 nm or less, preferably 1.01280 nm or less, whereby the generation of nodules is further suppressed.

여기서 본 발명에 의한 스패터링 타깃의 제조방법의 일례를 세라믹스 타깃을 예로서 설명한다.Here, an example of the manufacturing method of the sputtering target by this invention is demonstrated to a ceramic target as an example.

먼저 원료로 되는 분말을, 소망한 배합율로 혼합하여 종래부터 공지된 각종 습식법 또는 건식법을 사용하여 성형하여 소성한다.First, the powder used as a raw material is mixed at a desired blending ratio, and is molded and fired using various conventionally known wet or dry methods.

건식법으로서는 콜드 프레스(Cold Press) 법이나 핫 프레스(Hot Press)법 등을 들 수 있다. 콜드 프레스 법에서는, 혼합분말을 성형 틀에 충전하여 성형체를 제조하고, 대기 분위기 하 또는 산소 분위기 하에서 소성·소결시킨다. 핫 프레스 법에서는 혼합분말을 성형 틀 내에서 직접 소결시킨다.As a dry method, a cold press method, a hot press method, etc. are mentioned. In the cold press method, a mixed powder is filled into a molding die to produce a molded product, which is calcined and sintered in an air atmosphere or an oxygen atmosphere. In the hot press method, the mixed powder is directly sintered in a mold.

습식법으로서는, 예를 들면 여과성형법(일본 특개평11-286002호 공보 참조)을 사용하는 것이 바람직하다. 이 여과성형법은 세라믹스 원료 슬러리로부터 수분을 감압 배수하여, 성형체를 얻기 위한 비수용성 재료로 되는 여과식 성형 틀로서, 1개 이상의 물 빼기 구멍을 갖는 성형용 아래 틀과, 이 성형용 아래 틀의 위에 재치한 통수성을 갖는 필터와, 이 필터를 실링하기 위한 실링재를 거쳐서 상면 측에서 끼어 지지하는 성형용 틀 프레임으로 되고, 상기 성형용 아래 틀, 성형용 틀 프레임, 실재, 및 필터가 각각 분해할 수 있도록 조립되어 있고, 그 필터 면(面) 측에서만 슬러리 중의 수분을 감압 배수하는 여과식 성형 틀을 사용하여, 혼합분말, 이온 교환수와 유기 첨가제로 되는 슬러리를 제조하고, 이 슬러리를 여과식 성형 틀에 주입하고, 그 필터 면 측에서만 슬러리 중의 수분을 감압 배수하여 성형체를 제작하여, 얻어진 세라믹스 성형체를 건조 탈지 후, 고온에서 소성한다.As the wet method, for example, it is preferable to use a filtration molding method (see Japanese Patent Laid-Open No. 11-286002). This filtration molding method is a filtration type mold which is a water-insoluble material for depressurizing and draining water from a ceramic raw material slurry to obtain a molded body. The filtration mold has a mold for molding having one or more water draining holes and a mold for molding. And a molding frame which is sandwiched from the upper surface side through a filter having a water permeability and a sealing material for sealing the filter, and wherein the molding lower frame, the molding frame, the actual material, and the filter are disassembled, respectively. And a slurry made of mixed powder, ion-exchanged water and an organic additive using a filtration type mold that is assembled so that the water in the slurry can be drained under reduced pressure only on the filter face side thereof, and the slurry is filtered. After pouring into a mold, and dehydrating and draining moisture in the slurry only at the filter face side, a molded article was produced, and after drying and degreasing the obtained ceramic molded article, Firing at high temperature.

각 방법에 있어서, 소성온도는 예를 들면 ITO 타깃의 경우에는, 1300∼1600℃가 바람직하고, 더 바람직하로는 1450∼1600℃이다. 그 후 소정 치수로 성형·가공을 위한 기계가공을 실시하여 타깃으로 한다.In each method, 1300-1600 degreeC is preferable in the case of an ITO target, for example, More preferably, it is 1450-1600 degreeC. After that, machining is carried out for molding and processing to a predetermined dimension to be a target.

실시예Example

이하 본 발명을 실시예 에 의해서 설명하겠으나, 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to Examples, but is not limited thereto.

(시험품 1∼5)(Test Items 1 to 5)

산화인듐 분말과 산화주석 분말을 In2O3: SnO2=9O:1Owt%의 비율로 혼합하고, 바인더를 첨가 후, 140mmφ의 금형으로 프레스 성형했다. 프레스 성형된 성형체를 자연 건조하여 바인더의 탈지를 행한 후, 산소 분위기 하에서 0.1MPa(게이지 압), 소성온도 1550℃, 유지시간 8시간으로 소성을 행함으로써 얻은 양산품 5종류를 준비했다.The indium oxide powder and the tin oxide powder were mixed at a ratio of In 2 O 3 : SnO 2 = 9O: 1Owt%, and after the addition of the binder, press molding was carried out with a mold of 140 mmφ. The press-molded compacts were naturally dried to degrease the binder, and five kinds of mass products obtained by firing at 0.1 MPa (gauge pressure), firing temperature 1550 ° C. and holding time of 8 hours in an oxygen atmosphere were prepared.

이들의 판재로부터, 직경 101.6mm로 잘라내어, 표면을 다이아몬드 지석#1000으로 평면연삭반으로 마무리하여, 5mm의 두께로 했다.From these board | plate materials, it cut out to diameter 101.6mm, finished the surface with the diamond grindstone # 1000 with the planar grinding mill, and made it the thickness of 5 mm.

연삭 후의 타깃을 In로 동제 백킹 플레이트에 본딩하여 시험품 1∼5의 타깃으로 했다.The target after grinding was bonded to the copper backing plate with In, and it was set as the target of the test articles 1-5.

(시험예 1)(Test Example 1)

시험품 1∼5의 타깃을 스패터 장치에 장착하고, 하기 조건으로 스패터를 행하여, 랜드 마크 테크놀로지사의 아크 카운터로, 스패터시에 발생하는 아킹의 누적 발생회수를 아킹 모니터로 카운트했다. 그 결과를 표 1에 나타냈다.The targets of the test products 1 to 5 were attached to the spatter apparatus, and spattering was carried out under the following conditions, and the cumulative occurrence of arcing occurring at the time of spattering was counted with an arcing monitor by Landmark Technology Inc. The results are shown in Table 1.

스패터 조건: Spatter Condition:

프로세스 압력(Ar)=0.4Pa  Process pressure (Ar) = 0.4 Pa

산소 분압(O2)=2.7mPaOxygen partial pressure (O 2 ) = 2.7mPa

투입 전력=2W/cm2 Input power = 2W / cm 2

투입 적산전력량=6OWhr/cm2 Input integrated power amount = 6OWhr / cm 2

아킹 모니터:랜드 마크 테크놀로지사 제의 μArc Monitor (MAM Genesis)Arcing monitor: μArc Monitor (MAM Genesis) made by Landmark Technology

아크 모니터 조건:Arc monitor condition:

검출 모드: 에너지   Detection mode: energy

아크 검출전압: 10OV   Arc detection voltage: 10OV

대-중 에너지 경계: 5omJ  Mass-Popular Boundaries: 5omJ

하드 아크 최저시간: 100μs  Hard arc minimum time: 100 μs

(시험예 2)(Test Example 2)

스패터 후의 각 타깃을 백킹 플레이트로부터 박리한 후, X선 회절법에 의한 격자정수 및 밀도, 또 아르키메데스 법에 의한 밀도 및 벌크 저항을 측정했다. X선 회절 장치에는 맥 사이엔스사 제의 MXP18을 사용하고, 격자정수의 계산에는, (622), (662), (840), (761), (844), (864) 면에서의 회절 피크 데이터를 사용하여 정밀화 계산을 실시했다. 또 벌크 저항은 Hall계측기(도요 테크니카사 제의 Resitest8200)로 측정했다. 이들의 결과도 합하여 표1에 나타냈다.After each target after spatter was peeled from the backing plate, the lattice constant and density by the X-ray diffraction method, and the density and bulk resistance by the Archimedes method were measured. MXP18 manufactured by McScience Co., Ltd. is used for the X-ray diffraction apparatus, and diffraction peaks on the planes (622), (662), (840), (761), (844) and (864) are calculated for the lattice constant. Refinement calculations were performed using the data. In addition, the bulk resistance was measured by the Hall measuring instrument (Resitest8200 by Toyo Technica). These results were also shown in Table 1 together.

[표 1]TABLE 1

시험품 1Test article 1 시험품 2Test article 2 시험품 3Test article 3 시험품 4Test article 4 시험품 5Test article 5 격자정수(nm)Lattice constant (nm) 1.012811.01281 1.012591.01259 1.012711.01271 1.012861.01286 1.013011.01301 X선회절법에 의한 밀도TD(g/cm3)Density TD by X-ray Diffraction Method (g / cm 3 ) 7.1227.122 7.1277.127 7.1247.124 7.1217.121 7.1187.118 알키메데스밀도AD(g/cm3)Alchemedes density AD (g / cm 3 ) 7.1007.100 7.1117.111 7.1347.134 7.1057.105 7.0697.069 AD/TDAD / TD 0.9970.997 0.9980.998 1.0011.001 0.9980.998 0.9930.993 비저항(mΩ· cm)Specific resistance (mΩcm) 0.1720.172 0.1590.159 0.1920.192 0.1410.141 0.1230.123 누적 아크 회수Cumulative arc recovery 3232 2525 2020 7878 103103

이상의 결과, 밀도비가 0.995보다 큰, 바람직하기로는 0.998보다 클 경우에는, 노듈이 억제되므로, 누적 아크 회수가 저감되고, 또 그 중에서도 비저항이 0.15mΩ·cm보다 작으면, 아크 회수가 다소 많아지고, 또 격자정수가 1.01285 이하, 바람직하기로는 1.01280 이하이면 아크 회수가 다소 적어지는 것을 알 수 있었다.As a result, when the density ratio is larger than 0.995, preferably larger than 0.998, the nodule is suppressed, so that the cumulative arc number is reduced, and in particular, when the specific resistance is smaller than 0.15 m? · Cm, the arc number is somewhat increased, In addition, it was found that the lattice constant is less than 1.01285, preferably less than 1.01280, so that the number of arcs is slightly reduced.

본 발명의 스패터링 타깃은, 아르키메데스 밀도 AD와 X선 회절에 의해서 구한 격자정수로부터 산출되는 이론밀도 TD의 비가 소정의 값보다 크기 때문에, 노듈의 발생이 억제되고, 특히 비저항(比抵抗)이 소정의 값보다 크고, 또 격자정수가 소정의 값 이하이면, 더 노듈이 저감된다는 효과를 나타낸다.Since the ratio of the theoretical density TD calculated from the lattice constant determined by Archimedes density AD and X-ray diffraction is larger than the predetermined value, the spattering target of the present invention is suppressed in the generation of nodules, and in particular, the specific resistance is predetermined. If the value is larger than and the lattice constant is less than or equal to the predetermined value, the nodule is further reduced.

Claims (9)

산화인듐을 주성분으로 하는 산화물 소결체로 되는 스패터링 타깃에 있어서, 상기 산화물 소결체의 아르키메데스(Archimedes) 밀도 AD(g/cm3)와 X선 회절에 의해서 구한 격자정수로부터 산출되는 이론밀도 TD(g/cm3)가 AD/TD>0.995의 관계에 있는 것을 특징으로 하는 스패터링 타깃.In the sputtering target which consists of an oxide sinter which has an indium oxide as a main component, the theoretical density TD (g / cm) computed from the Archimedes density AD (g / cm <3> ) of the said oxide sintered compact, and the lattice constant calculated by X-ray diffraction. A sputtering target, wherein cm 3 ) is in a relationship of AD / TD> 0.995. 제 1항에 있어서,The method of claim 1, 상기 AD 및 상기 TD가 AD/TD>0.998의 관계에 있는 것을 특징으로 하는 스패터링 타깃.And the AD and the TD are in a relationship of AD / TD> 0.998. 제 1항에 있어서,The method of claim 1, 상기 산화물 소결체의 벌크 저항이 1.5×10 -4 Ω·cm 이상임을 특징으로 하는 스패터링 타깃.The bulk resistance of the oxide sintered body is 1.5 × 10 -4 A sputtering target characterized by being Ω · cm or more. 제 2항에 있어서,The method of claim 2, 상기 산화물 소결체의 벌크 저항이, 1.5×10-4Ω·cm 이상임을 특징으로 하는 스패터링 타깃.The bulk resistance of the said oxide sintered compact is 1.5x10 <-4> ( ohm) * cm or more, The sputtering target characterized by the above-mentioned. 제 1∼4 중의 어느 항에 있어서, The method according to any one of claims 1 to 4, 상기 격자정수가 1.01285nm 이하임을 특징으로 하는 스패터링 타깃.Sputtering target, characterized in that the lattice constant is 1.01285nm or less. 제 4항에 있어서, The method of claim 4, wherein 상기 격자정수가 1.01280nm 임을 특징으로 하는 스패터링 타깃.Sputtering target, characterized in that the lattice constant is 1.01280nm. 제 1∼4 중의 어느 항에 있어서,The method according to any one of claims 1 to 4, 상기 산화물 소결체가 산화주석을 더 함유하는 것을 특징으로 하는 스패터링 타깃.A sputtering target, wherein the oxide sinter further contains tin oxide. 제 5항에 있어서,The method of claim 5, 상기 산화물 소결체가 산화주석을 더 함유하는 것을 특징으로 하는 스패터링 타깃.A sputtering target, wherein the oxide sinter further contains tin oxide. 제 6항에 있어서, The method of claim 6, 상기 산화물 소결체가 산화주석을 더 함유하는 것을 특징으로 하는 스패터링 타깃.A sputtering target, wherein the oxide sinter further contains tin oxide.
KR1020040063507A 2003-08-18 2004-08-12 Spattering target KR100660589B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2003-00294604 2003-08-18
JP2003294604A JP4357236B2 (en) 2003-08-18 2003-08-18 Sputtering target

Publications (2)

Publication Number Publication Date
KR20050020941A true KR20050020941A (en) 2005-03-04
KR100660589B1 KR100660589B1 (en) 2006-12-21

Family

ID=34371123

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040063507A KR100660589B1 (en) 2003-08-18 2004-08-12 Spattering target

Country Status (3)

Country Link
JP (1) JP4357236B2 (en)
KR (1) KR100660589B1 (en)
TW (1) TWI302168B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337505A (en) 2005-09-01 2012-02-01 出光兴产株式会社 Sputtering target, transparent conductive film, transparent electrode, electrode substrate, and method for producing same

Also Published As

Publication number Publication date
JP2005060798A (en) 2005-03-10
KR100660589B1 (en) 2006-12-21
TW200508410A (en) 2005-03-01
JP4357236B2 (en) 2009-11-04
TWI302168B (en) 2008-10-21

Similar Documents

Publication Publication Date Title
JP4960244B2 (en) Oxide material and sputtering target
KR101080527B1 (en) Sputtering target, transparent conductive film and transparent electrode
KR101514766B1 (en) Sputtering target and transparent conductive film
CA2623404A1 (en) Sputtering target, low resistivity, transparent conductive film, method for producing such film and composition for use therein
KR100814321B1 (en) Oxide sintered body and preparation process thereof, sputtering target and transparent electroconductive films
JP4481239B2 (en) Sputtering target for high resistance transparent conductive film, high resistance transparent conductive film and method for producing the same
JP2001131736A (en) Sputtering target and method of manufacture
KR101317080B1 (en) Process for producing izo sputtering target
KR100948557B1 (en) ???2 sputtering target and process for producing same
JP2007231392A (en) Sputtering target consisting of oxide sintered body, and its manufacturing method
KR100660589B1 (en) Spattering target
KR100814320B1 (en) Method for producing sputtering target
KR101038244B1 (en) SnO2-BASED SPUTTERING TARGET AND SPUTTERED FILM
KR102375637B1 (en) Oxide sintered compact and sputtering target
JPWO2018211792A1 (en) Sputtering target for transparent conductive film
WO2019187269A1 (en) Oxide sintered body, sputtering target, and transparent conductive film
KR100628542B1 (en) The sinter of metal oxide compound and use thereof
JP5999049B2 (en) Deposition tablet, method for producing the same, and method for producing oxide film
JP2015003846A (en) Oxide sintered body, production method thereof and oxide film
KR100495886B1 (en) Ito sputtering target
JP2007238365A (en) Oxide sintered compact, its manufacturing method, sputtering target and transparent conductive film
JP2003055760A (en) Ito sputtering target and its manufacturing method
JP2022143917A (en) Sputtering target, method for manufacturing the same, and optical function film
CN112567065A (en) Oxide sputtering target and method for producing oxide sputtering target
JP2014234323A (en) Oxide sintered body and method of producing the same, and oxide film

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121121

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20131118

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20141120

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20151118

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20161123

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20171114

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20181121

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20191120

Year of fee payment: 14