KR20050015442A - Method for the Deposition of Thin Layers by Metal Organic Chemical Vapor Deposition - Google Patents
Method for the Deposition of Thin Layers by Metal Organic Chemical Vapor DepositionInfo
- Publication number
- KR20050015442A KR20050015442A KR1020030054255A KR20030054255A KR20050015442A KR 20050015442 A KR20050015442 A KR 20050015442A KR 1020030054255 A KR1020030054255 A KR 1020030054255A KR 20030054255 A KR20030054255 A KR 20030054255A KR 20050015442 A KR20050015442 A KR 20050015442A
- Authority
- KR
- South Korea
- Prior art keywords
- thin film
- hafnium
- hafnium oxide
- reaction
- oxide thin
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02181—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Formation Of Insulating Films (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
본 발명은 산화하프늄 박막 증착방법에 관한 것으로, 보다 상세하게는 MOCVD 방법을 이용한 산화하프늄 박막 증착방법에 관한 것이다. The present invention relates to a hafnium oxide thin film deposition method, and more particularly to a hafnium oxide thin film deposition method using the MOCVD method.
종래, 반도체 소자, 절연막 등의 소재로 사용되는 실리콘, 지르코늄, 탄탈륨, 하프늄 등의 박막을 형성하는 방법으로 물리적 증착방법이 사용되었으나, 최근 반도체 소자의 초고밀도화 및 초집적화에 따른 요구조건을 만족시키기에는 문제점이 있다. 특히 상기 물리적 증착 방법에 의하여 형성된 박막은 단차피복성(step- coverage)에서 많은 문제점을 노출시키고 있다.Conventionally, physical vapor deposition has been used as a method of forming a thin film of silicon, zirconium, tantalum, hafnium, etc., which are used as materials for semiconductor devices, insulating films, and the like. Has a problem. In particular, the thin film formed by the physical vapor deposition method exposes many problems in step-coverage.
따라서, 반응챔버의 웨이퍼 상에 증착시키려는 소재를 포함하는 소스물질과 반응가스와의 화학적 반응(산화, 환원, 결합)에 의하여 박막을 증착하는 화학적 증착방식이 주로 이용되고 있다. 화학적 증착방식은 상기한 물리적 증착과 비교할 때 고신뢰도의 물성을 얻을 수 있고, 증착의 균일성 및 단차피복성 등에서 우수한 점에서 최근 소자의 초고밀도화, 소형화, 박막화 추세에 적합하다. Accordingly, a chemical vapor deposition method for depositing a thin film by chemical reaction (oxidation, reduction, bonding) between a source material including a material to be deposited on a wafer of a reaction chamber and a reaction gas is mainly used. The chemical vapor deposition method is suitable for the trend of ultra high density, miniaturization, and thinning of the device in recent years in that it is possible to obtain high reliability physical properties compared to the physical vapor deposition, and excellent in uniformity of deposition and step coverage.
특히, 최근에는 반응챔버에 상기 소스물질과 반응가스를 별개로 공급한 뒤 웨이퍼 상에서 반응시켜 증착시키는 원자층 증착(Atomic Layer Deposition, 이하, "ALD"라 한다.)방법이 개발되었다. In particular, an Atomic Layer Deposition (hereinafter referred to as "ALD") method has been developed in which the source material and the reaction gas are separately supplied to the reaction chamber and then reacted and deposited on the wafer.
상기 ALD방법을 간단히 설명하면 소스화합물(A 가스)를 박막이 증착될 웨이퍼 상의 표면에 흡착시키고, 퍼지가스에 의하여 제 1 퍼지단계를 실시하여 흡착된 A 분자의 단층막만을 남긴 뒤, 이후 상기 소스가스와 다른 반응물질(B)를 상기 A가스가 흡착된 웨이퍼 상에 흡착시켜 A 물질과 B 물질의 화학적 반응에 의한 박막 형성을 유도하고 다시 제 2 퍼지단계를 실시하여 흡착되지 않은 B 물질을 제거하는 데, 경우에 따라서는 박막의 두께가 원하는 정도가 될 때까지 위 단계를 반복하게 된다. Briefly describing the ALD method, the source compound (A gas) is adsorbed onto the surface of the wafer on which the thin film is to be deposited, and the first purge step is performed by the purge gas to leave only a single layer film of the adsorbed A molecule. Gas and other reactants (B) are adsorbed on the wafer on which the A gas is adsorbed to induce the formation of a thin film by chemical reaction of the A and B materials, and then perform a second purge step to remove the unadsorbed B materials In some cases, the above steps are repeated until the desired thickness of the thin film is obtained.
이런 ALD방법에 의하는 경우, 상기 A 물질과 B물질은 박막이 형성될 웨이퍼 표면 부근에서만 반응에 의하여 원하는 박막 형태로 만들 수 있어, 박막내의 불순물의 함량 감소, 두께의 균일성 등의 물성에서 우수한 박막을 형성할 수 있다.In this ALD method, the A material and the B material can be formed into a desired thin film by reaction only near the wafer surface on which the thin film is to be formed, which is excellent in physical properties such as reduction of the content of impurities in the thin film and uniformity of thickness. A thin film can be formed.
이와 같은 장점으로 인하여, 현재 소스물질인 테트라키스 에틸메틸아미노하프늄(Hf[N(C2H5)CH3]4, 이하, "TEMAH"라 한다")을 이용하여 산화하프늄 박막을 형성하는 데는 ALD방법이 사용되고 있다. 그러나, TEMAH를 이용하여 ALD법에 의하여 산화하프늄 박막을 형성하는 데는 다음과 같은 문제점이 있다.Due to these advantages, it is currently possible to form hafnium oxide thin films using tetrakis ethylmethylaminohafnium (Hf [N (C 2 H 5 ) CH 3 ] 4, hereinafter referred to as "TEMAH""). The ALD method is used, but there are problems in forming a hafnium oxide thin film by the ALD method using TEMAH.
상기한 바와 같이 ALD방법에는 TEMAH와 반응가스를 공급하는 단계 사이에 박막에 흡착되지 못한 물질들을 제거하기 위하여 비활성의 퍼지가스를 공급해야 하기 때문에 공정자체가 복잡해지고 이는 공정시간의 지연을 야기함으로써 공정의 효율성을 저해하게 된다. As described above, in the ALD method, inert purge gas must be supplied to remove materials that are not adsorbed on the thin film between the steps of supplying the TEMAH and the reaction gas, and the process itself becomes complicated, which causes a delay in the process time. Will hinder the efficiency of the system.
또한, ALD방법에 의할 때, TEMAH 또는 반응가스를 웨이퍼 기판상에 흡착하는 경우의 온도는 상기 TEMAH 또는 반응가스의 열분해온도보다 낮다. 즉, ALD법에 의할 경우 TEMAH의 열분해 온도이하이면서도 TEMAH가 웨이퍼 상에 흡착되는 온도보다는 높은 온도를 유지하면서 TEMAH를 웨이퍼 상에 흡착시켜야 한다. 따라서, 반응챔버내에서 고온의 흡착이 이루어질 수 없고, 이는 TEMAH의 흡착속도를 저하시킬 수밖에 없다. In addition, according to the ALD method, the temperature when the TEMAH or the reaction gas is adsorbed on the wafer substrate is lower than the thermal decomposition temperature of the TEMAH or the reaction gas. That is, according to the ALD method, the TEMAH should be adsorbed onto the wafer while maintaining the temperature below the temperature at which the TEMAH is adsorbed onto the wafer while being below the thermal decomposition temperature of the TEMAH. Therefore, high temperature adsorption cannot be made in the reaction chamber, which inevitably lowers the adsorption rate of TEMAH.
상기와 같은 공정의 복잡함과 흡착속도의 저하로 인하여 TEMAH를 소스물질로 하여 ALD방법에 의하여 산화하프늄막의 증착속도는 한계를 가질 수 밖에 없다. 이런 생산성의 저하로 인하여 낮은 두께(높은 커패시턴스)를 요구하는 MIS-DRAM과 같은 경우에는 문제가 없으나, RF 디바이스와 같은 높은 두께(낮은 커패시턴스)가 필수적으로 요구되는 경우에는 양산성이 떨어짐으로 인하여 비용상승의 요인이 될 수밖에 없다. Due to the complexity of the process and the lowering of the adsorption rate, the deposition rate of the hafnium oxide film is limited by the ALD method using TEMAH as a source material. This decrease in productivity is not a problem in the case of MIS-DRAM which requires low thickness (high capacitance), but in the case where a high thickness (low capacitance) such as an RF device is required, the cost is reduced due to poor productivity. It must be a factor for the rise.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 목적은 TEMAH를 소스물질로 하여 산화하프늄 박막을 증착하는 데 있어서, 박막 증착속도가 개선된 산화하프늄 박막 증착 방법을 제공하고자 하는 것이다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for depositing a hafnium oxide thin film in which a thin film deposition rate is improved in depositing a hafnium oxide thin film using TEMAH as a source material.
또한, 본 발명의 목적은 산화하프늄 박막 증착 공정을 단순화 하여 반도체 소자 제조 공정의 효율성 및 생산성을 증가시킬 수 있는 산화하프늄 박막 증착 방법을 제공하고자 하는 것이다. In addition, an object of the present invention is to provide a hafnium oxide thin film deposition method that can simplify the hafnium oxide thin film deposition process to increase the efficiency and productivity of the semiconductor device manufacturing process.
상기한 목적을 위하여, 본 발명은 하프늄을 포함하는 유기금속 소스물질과 반응가스를 화학반응에 의하여 산화하프늄 박막을 증착시키는 방법에 있어서, 상기 하프늄을 포함하는 유기금속 소스물질은 테트라키스 에틸 메틸 아미노 하프늄이고;상기 반응가스는 산소원자 또는 질소원자를 포함하는 가스이고; 상기 테트라키스 에틸 메틸 아미노 하프늄과 상기 반응가스를 동시에 반응 챔버내에 유입시키는 산화하프늄 박막 증착 방법을 제공한다.For the above purpose, the present invention is a method for depositing a hafnium oxide thin film of an organometallic source material and a reaction gas by a chemical reaction, the organometallic source material comprising hafnium is tetrakis ethyl methyl amino Hafnium; The reaction gas is a gas containing an oxygen atom or a nitrogen atom; A hafnium oxide thin film deposition method for simultaneously introducing the tetrakisethyl methyl amino hafnium and the reaction gas into a reaction chamber.
본 발명의 산화하프늄 박막 증착 방법에서, 상기 반응가스는 O2, O3, N2O, NH3 또는 NO 중에서 적어도 하나가 선택되는 것을 특징으로 한다.In the hafnium oxide thin film deposition method of the present invention, the reaction gas is characterized in that at least one selected from O 2 , O 3 , N 2 O, NH 3 or NO.
또한, 상기 산화하프늄 박막은 250 ~ 650℃의 온도, 0.1 ~ 10 Torr의 압력에서 증착된다.In addition, the hafnium oxide thin film is deposited at a temperature of 250 ~ 650 ℃, pressure of 0.1 ~ 10 Torr.
한편, 본 발명의 상기 유기금속 소스물질과 상기 반응가스의 반응에 의하여 산화하프늄 박막이 증착된 이후에 질소가스 또는 아르곤 가스와 같은 퍼지가스가 반응챔버내로 더욱 공급될 수 있다. Meanwhile, after the hafnium oxide thin film is deposited by the reaction of the organometallic source material and the reaction gas of the present invention, a purge gas such as nitrogen gas or argon gas may be further supplied into the reaction chamber.
이하, 본 발명의 바람직한 실시예에 대하여 보다 상세하게 설명한다.Hereinafter, the preferred embodiment of the present invention will be described in more detail.
본 발명은 TEMAH를 소스물질로 하고, 산소 또는 질소원자를 포함하는 반응가스를 반응챔버내에 동시에 공급하여 산화하프늄 박막을 형성한다. The present invention forms a hafnium oxide thin film by using TEMAH as a source material and simultaneously supplying a reaction gas containing oxygen or nitrogen atoms into the reaction chamber.
본 발명의 소스물질인 TEMAH는 분자량 411인 담황색의 유기금속화합물로서 비등점이 98℃(0.5 Torr)이다. 상기한 바와 같이, ALD방법을 사용하는 경우는 소스물질이 웨이퍼 상에 흡착될 수 있는 온도 이상이지만, 소스물질이 열분해되는 온도 이하에서 흡착이 일어나게 된다. 만약 열분해 온도이상으로 웨이퍼상에 흡착하고자 하는 경우에는 소스물질의 분해로 인하여 웨이퍼 상에 흡착되는 소스물질의 양이 감소하게 되고, 퍼징 과정에 의하여 챔버 밖으로 배출되는 물질의 양이 지나치게 많아지게 된다. 결과적으로 원하는 박막의 두께를 형성하기 위해서는 동일한 과정을 반복할 수밖에 없고, 이는 공정의 효율성 면에서 바람직하지 못하다. TEMAH, a source material of the present invention, is a pale yellow organometallic compound having a molecular weight of 411 and has a boiling point of 98 ° C. (0.5 Torr). As described above, when the ALD method is used, the adsorption occurs at a temperature above the temperature at which the source material can be adsorbed on the wafer, but below the temperature at which the source material is pyrolyzed. If it is desired to adsorb onto the wafer above the pyrolysis temperature, the amount of source material adsorbed on the wafer is reduced due to decomposition of the source material, and the amount of material discharged out of the chamber by the purging process is excessively large. As a result, the same process can only be repeated to form the desired thickness of the thin film, which is undesirable in view of the efficiency of the process.
그러나, 본 발명에서는 후술하는 바와 같이 소스물질인 TEMAH와 반응가스를 동시에 반응챔버에 공급한 뒤, 상기 TEMAH와 반응가스와의 화학적 반응에 의하여 산화하프늄 박막을 형성하기 때문에, 반응챔버의 온도를 TEMAH의 열분해 온도 이하로 유지할 필요가 없다. However, in the present invention, since the hafnium oxide thin film is formed by simultaneously supplying TEMAH and the reaction gas as the source material to the reaction chamber as described below, the chemical reaction between the TEMAH and the reaction gas, the temperature of the reaction chamber is TEMAH It is not necessary to keep below the pyrolysis temperature of.
즉, 소스물질인 상기 TEMAH와 반응가스의 반응성 및 격렬한 반응에 의하여 과도한 파티클(Particle)이 형성되는 것을 방지할 수 있는 한도에서 고온 반응이 가능하게 된다. 따라서, 본 발명에 의한 산화하프늄 박막의 형성은 ALD방법과 비교할 때 박막 증착 속도 및 박막 두께를 증가시킬 수 있는 것이다. 따라서, 본 발명의 산화하프늄 박막 제조공정에서는 낮은 커패시턴스(즉, 높은 두께)가 요구되는 RF 디바이스에서 생산성을 가질 수 있다.That is, high temperature reaction is possible to the extent that it is possible to prevent the formation of excessive particles by the reactive and violent reaction of the TEMAH and the reaction gas as a source material. Therefore, the formation of the hafnium oxide thin film according to the present invention can increase the thin film deposition rate and the thin film thickness as compared with the ALD method. Thus, the hafnium oxide thin film fabrication process of the present invention can be productive in RF devices where low capacitance (ie, high thickness) is required.
또한, 필요한 경우에는 상기 TEMAH와 반응가스의 반응온도를 적절한 온도로 낮추어 박막 형성 속도 및 박막 두께를 조절하게 되면, 높은 커패시턴스(낮은 두께)가 요구되는 소자, 예를 들어 MIS-DRAM에도 적용할 수 있음은 물론이다. In addition, if necessary, if the reaction temperature of the TEMAH and the reaction gas is lowered to an appropriate temperature to control the formation rate and thickness of the thin film, it can be applied to devices requiring high capacitance (low thickness), for example, MIS-DRAM. Of course.
한편, 본 발명에 사용된 상기 소스물질과 반응하여 산화하프늄막을 형성하는 반응가스는 산소 또는 오존가스와 같은 물질을 적어도 하나 이상 사용할 수 있다. 본 발명의 소스물질인 TEMAH와 반응가스의 반응과정은 하기 반응식 1과 같이 나타낼 수 있다. On the other hand, the reaction gas that reacts with the source material used in the present invention to form a hafnium oxide film may use at least one material such as oxygen or ozone gas. The reaction process of TEMAH as a source material of the present invention and the reaction gas may be represented as in Scheme 1 below.
반응식 1Scheme 1
TEMAH + O2 또는 O3 → HfO2 + 부산물(by-product)TEMAH + O 2 or O 3 → HfO 2 + by-product
또한, 형성되는 박막에 질소원자를 주입할 필요가 있는 경우에는 반응가스로서 질소원자를 포함하는 가스로서, NO, N2O 또는 NH3 가스를 적어도 하나 이상 선택하여 사용할 수 있음은 물론이다.In addition, when it is necessary to inject nitrogen atoms into the formed thin film, at least one of NO, N 2 O or NH 3 gas may be selected and used as a gas containing nitrogen atoms as the reaction gas.
또한, 상기 TEMAH와 반응가스의 화학적 반응에 의하여 웨이퍼 상에 흡착된 산화하프늄 박막 이외에 반응챔버의 내벽 등에 잔류하는 불순물을 제거할 필요가 있다. 이 경우에는 상기 소스물질과 상기 반응가스의 반응 이후에 아르곤(Ar) 또는 질소(N2) 가스와 같은 불활성 가스를 반응챔버안으로 공급하는 퍼징(purging) 공정을 거치게 된다.In addition, it is necessary to remove impurities remaining in the inner wall of the reaction chamber in addition to the hafnium oxide thin film adsorbed on the wafer by the chemical reaction of the TEMAH and the reaction gas. In this case, after the reaction between the source material and the reaction gas, a purging process is performed to supply an inert gas such as argon (Ar) or nitrogen (N 2 ) gas into the reaction chamber.
따라서, 본 발명에서는 ALD방법과 달리 소스물질인 TEMAH와 반응가스의 화학적 반응에 의하여 산화하프늄 박막이 증착된 이후에 한하여 퍼징 공정이 수행된다. 이는 상기한 바와 같이 박막 증착 온도 상승으로 인한 증착 두께 상승과 함께, 산화하프늄 박막 증착 공정의 효율성 및 생산성 향상이 가능하게 된다.Therefore, in the present invention, unlike the ALD method, the purging process is performed only after the hafnium oxide thin film is deposited by chemical reaction between the source material TEMAH and the reaction gas. As described above, it is possible to improve the efficiency and productivity of the hafnium oxide thin film deposition process together with the increase in the deposition thickness due to the increase in the thin film deposition temperature.
한편, 본 발명의 상기 소스물질과 상기 반응가스가 반응하여 산화하프늄막이 증착되는 반응챔버내의 온도 및 압력은 상기 반응가스의 종류, 상기 소스물질 및 반응가스의 유입속도, 유입비율에 따라 달라질 수 있으나, 각각 250 ~ 650℃, 0.1 ~ 10 Torr인 것이 바람직하다. Meanwhile, the temperature and pressure in the reaction chamber in which the hafnium oxide film is deposited by reacting the source material and the reaction gas may vary depending on the type of the reaction gas, the inflow rate of the source material and the reaction gas, and the inflow rate. It is preferable that they are 250-650 degreeC and 0.1-10 Torr, respectively.
또한, 상기 소스물질과 반응가스는 각각 별개의 경로를 통하여 반응챔버로 유입되는데, 각각 0.1 ~ 500mg/분 : 5~ 3000sccm의 유속으로 공급되는 것이 바람직하다. 그보다 낮은 유속으로 공급되는 경우에는 소스물질 또는 반응가스의 분해 및 결합에 의한 산화하프늄막의 형성이 너무 느리게 되어 공정의 효율성을 기대하기 힘들고, 그보다 높은 유속으로 공급되는 경우에는 소스물질과 반응가스와 과잉반응에 의하여 원하는 막의 두께보다 두껍게 되거나 파티클(particle)이 반응챔버 등에 증착될 수 있어, 박막 증착 후 세정과정에서 반응 잔류물이 반응챔버 내에 잔존할 수 있기 때문이다. In addition, the source material and the reaction gas are introduced into the reaction chamber through separate paths, respectively, preferably supplied at a flow rate of 0.1 to 500 mg / min: 5 to 3000 sccm. If the flow rate is lower than that, the formation of the hafnium oxide film by the decomposition and bonding of the source material or the reaction gas becomes too slow, so that it is difficult to expect the efficiency of the process. This is because the reaction may be thicker than the desired thickness of the film or particles may be deposited in the reaction chamber or the like, so that the reaction residue may remain in the reaction chamber during the cleaning process after the thin film deposition.
본 발명에 의한 산화하프늄 박막 공정은 박막 증착 온도가 ALD 방법에 비하여 상승하게 되어, 반응에 의하여 형성된 박막의 두께 상승 및 박막 증착 속도를 증가시킬 수 있다.In the hafnium oxide thin film process according to the present invention, the thin film deposition temperature is increased as compared to the ALD method, thereby increasing the thickness and the thin film deposition rate of the thin film formed by the reaction.
이런 박막 두께의 증가는 RF 디바이스와 같은 낮은 커패시턴스를 요구하는 소자의 제조에 있어서 생산성 및 경제성을 가질 수 있다. This increase in thin film thickness can have productivity and economy in the fabrication of devices requiring low capacitance, such as RF devices.
또한, 필요한 경우에는 반응온도를 낮추어 비교적 높은 커패시턴스를 요구하는 MIS-DRAM 등의 박막 증착에도 적용될 수 있다.In addition, if necessary, it can be applied to thin film deposition such as MIS-DRAM, which requires a relatively high capacitance by lowering the reaction temperature.
한편, 소스물질인 TEMAH와 반응가스를 동시에 공급하여 화학 반응에 의하여 박막을 형성하기 때문에, 반응성 물질을 공급하는 단계 사이에 퍼징 공정이 필요없게 되어 공정 속도 및 효율의 향상이 기대된다.On the other hand, since the TEMAH as the source material and the reaction gas are simultaneously supplied to form a thin film by chemical reaction, the purging process is unnecessary between the steps of supplying the reactive material, thereby improving the process speed and efficiency.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030054255A KR20050015442A (en) | 2003-08-06 | 2003-08-06 | Method for the Deposition of Thin Layers by Metal Organic Chemical Vapor Deposition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030054255A KR20050015442A (en) | 2003-08-06 | 2003-08-06 | Method for the Deposition of Thin Layers by Metal Organic Chemical Vapor Deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20050015442A true KR20050015442A (en) | 2005-02-21 |
Family
ID=37226230
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030054255A KR20050015442A (en) | 2003-08-06 | 2003-08-06 | Method for the Deposition of Thin Layers by Metal Organic Chemical Vapor Deposition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20050015442A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100766007B1 (en) * | 2003-11-07 | 2007-10-10 | 주식회사 무한 | METHOD FOR FORMING HfO2 FILM USING Hf Metal Organic Compound |
-
2003
- 2003-08-06 KR KR1020030054255A patent/KR20050015442A/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100766007B1 (en) * | 2003-11-07 | 2007-10-10 | 주식회사 무한 | METHOD FOR FORMING HfO2 FILM USING Hf Metal Organic Compound |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100385947B1 (en) | Method of forming thin film by atomic layer deposition | |
KR101379015B1 (en) | METHOD OF DEPOSITING Ru FILM USING PEALD AND DENSE Ru FILM | |
US7077904B2 (en) | Method for atomic layer deposition (ALD) of silicon oxide film | |
JP3687651B2 (en) | Thin film formation method | |
US6800542B2 (en) | Method for fabricating ruthenium thin layer | |
KR101427142B1 (en) | ALD of metal silicate films | |
US6451119B2 (en) | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition | |
KR100791334B1 (en) | Method of forming a metal oxide by atomic layer deposition | |
US20030183171A1 (en) | Apparatus and concept for minimizing parasitic chemical vapor deposition during atomic layer deposition | |
KR20020002579A (en) | A method for forming zirconium oxide film using atomic layer deposition | |
KR20090039083A (en) | Method of depositing ruthenium film | |
JP5639055B2 (en) | Method for forming a tantalum-containing layer on a substrate | |
KR20220028985A (en) | Depotisition inhibitor and method for forming dielectric layer using the same | |
KR100467369B1 (en) | Hydrogen barrier and method for fabricating semiconductor device having the same | |
KR101003700B1 (en) | Method of Forming Metal Oxidizing Thin Films by Atomic Layer Deposition | |
KR100531464B1 (en) | A method for forming hafnium oxide film using atomic layer deposition | |
KR20050015442A (en) | Method for the Deposition of Thin Layers by Metal Organic Chemical Vapor Deposition | |
KR101094379B1 (en) | Method for forming noble metal lyaer using ozone reactance gas | |
KR100582405B1 (en) | Capacitor and method for fabricating the same | |
KR100539963B1 (en) | Method for forming a insulating film in a semiconductor | |
KR20240058557A (en) | A processing improving agent for vacuum thin film, thin film improving composition containing thereof, method for forming thin film using the same, semiconductor substrate and semiconductor device prepared therefrom | |
TW202432873A (en) | Dielectric film activator, semiconductor substrate and semiconductor device manufactured using the same | |
KR20050002011A (en) | Method of forming insulating thin film for semiconductor device | |
KR20090066468A (en) | Process of forming thin film with improved physical properties | |
KR20050015441A (en) | Method for Deposition of Hafnium Oxide Thin Films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |