KR20050007441A - Ceramic honeycomb structural body and method of manufacturing the structural body - Google Patents

Ceramic honeycomb structural body and method of manufacturing the structural body Download PDF

Info

Publication number
KR20050007441A
KR20050007441A KR10-2004-7014509A KR20047014509A KR20050007441A KR 20050007441 A KR20050007441 A KR 20050007441A KR 20047014509 A KR20047014509 A KR 20047014509A KR 20050007441 A KR20050007441 A KR 20050007441A
Authority
KR
South Korea
Prior art keywords
partition wall
honeycomb structure
ceramic honeycomb
cell
structure according
Prior art date
Application number
KR10-2004-7014509A
Other languages
Korean (ko)
Other versions
KR100607480B1 (en
Inventor
히라이사다아키
가와에다카유키
가토야스시
Original Assignee
니뽄 가이시 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니뽄 가이시 가부시키가이샤 filed Critical 니뽄 가이시 가부시키가이샤
Publication of KR20050007441A publication Critical patent/KR20050007441A/en
Application granted granted Critical
Publication of KR100607480B1 publication Critical patent/KR100607480B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • B01J35/56
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/04Apparatus or processes for treating or working the shaped or preshaped articles for coating or applying engobing layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • C04B38/0009Honeycomb structures characterised by features relating to the cell walls, e.g. wall thickness or distribution of pores in the walls
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like

Abstract

본 발명의 세라믹 허니콤 구조체는 다공질 구조를 갖는 복수의 칸막이 벽에 의해 구획된 유체의 유로가 되는 복수의 셀로 이루어지는 셀 복합체와, 셀 복합체의 최외주에 위치하는 최외주 셀을 둘러싸서 유지하는 다공질 구조를 갖는 외벽을 구비한 세라믹 허니콤 구조체로서, 칸막이 벽 중 셀 복합체의 적어도 한 쪽의 셀 개구 단부에 위치하는 부분이 상기 적어도 한 쪽의 셀 개구 단부 이외의 부분(정규 칸막이 벽부)보다도 고강도이면서 단위 체적당의 기공률의 변동이 ±2% 이내인 강화 칸막이 벽부를 구성하여 이루어지는 것을 특징으로 하고, 강화 칸막이 벽부 전체에 관해서 균일하면서 우수한 내부식성을 갖는 것이다.The ceramic honeycomb structure according to the present invention comprises a cell composite composed of a plurality of cells serving as a flow path of a fluid partitioned by a plurality of partition walls having a porous structure, and a porous material surrounding the outermost circumferential cell positioned at the outermost circumference of the cell composite. A ceramic honeycomb structure having an outer wall having a structure, wherein a portion of the partition wall positioned at at least one cell opening end of the cell composite is higher than that of the at least one cell opening end (regular partition wall). It is characterized by comprising a reinforcement partition wall part having a variation in porosity per unit volume within ± 2%, and having uniform and excellent corrosion resistance with respect to the entire reinforcement partition wall part.

Description

세라믹 허니콤 구조체 및 그 제조 방법{CERAMIC HONEYCOMB STRUCTURAL BODY AND METHOD OF MANUFACTURING THE STRUCTURAL BODY}CERAMIC HONEYCOMB STRUCTURAL BODY AND METHOD OF MANUFACTURING THE STRUCTURAL BODY

배출 가스의 정화용 촉매 담체 등에 널리 이용되고 있는 세라믹 허니콤 구조체에 있어서는 해마다 강화되는 배출 가스 규제에 대응하기 위해, 보다 높은 정화 성능이 요구되고 있는 한편, 저연비화, 고출력화 등의 요청으로부터 압력 손실의 저감도 또한 요구되고 있다.Ceramic honeycomb structures widely used in catalyst carriers for purification of exhaust gas require higher purification performance in order to cope with the regulation of emission gas, which is reinforced year by year, while reducing pressure loss due to low fuel consumption, high output, and the like. Reduction is also required.

이러한 상황에서 허니콤 구조체의 칸막이 벽의 두께를 한층 더 얇게 하여, 허니콤 구조체의 셀 개구 단부면에 있어서의 개구율을 높여 압력 손실을 저감하고, 또한 칸막이 벽의 열용량을 저감하여 엔진 시동 후에 촉매를 조기에 활성화시켜 정화 성능을 향상시키는 움직임이 강해지고 있다.In such a situation, the thickness of the partition wall of the honeycomb structure is made thinner, the opening ratio at the cell opening end surface of the honeycomb structure is increased, pressure loss is reduced, and the heat capacity of the partition wall is reduced, so that the catalyst is started after the engine is started. There is a growing movement to activate early to improve purification performance.

한편, 이러한 허니콤 구조체의 박벽화의 진전과 함께 배출 가스 중에 혼입하는 여러 가지의 이물질이 허니콤 구조체의 셀 개구 단부에 존재하는 칸막이 벽에 충돌하여 칸막이 벽이 파손되는 부식 현상이 새로운 문제가 되고 있다.On the other hand, with the progress of the thinning of the honeycomb structure, various foreign matters mixed in the exhaust gas collide with the partition wall existing at the cell opening end of the honeycomb structure, and the corrosion phenomenon of the partition wall becomes a new problem. have.

무엇보다도, 이 문제에 대해서 이미 셀 개구 단부에 존재하는 칸막이 벽에, 다른 칸막이 벽부보다도 강도를 향상시킨 칸막이 벽 강화부(강화 칸막이 벽부)를 설치한 허니콤 구조체가 제안되어 있고(예컨대, 일본 특허 문헌 1 참조), 칸막이 벽 강화부를 설치하는 방법에 관해서도 여러 가지 검토되고 있다.Above all, a honeycomb structure is proposed in which a partition wall reinforcing part (reinforced partition wall part) having a higher strength than other partition wall parts is provided in the partition wall already existing at the cell opening end (for example, Japanese patent). Various methods are also examined about the method of installing a partition wall reinforcement part.

종래, 칸막이 벽 강화부를 설치하는 방법으로서는 코디에라이트화 원료를 주성분으로 하는 허니콤 구조의 기재를 소성한 후, 상기 기재의 셀 개구 단부에 존재하는 칸막이 벽에 코디에라이트화 원료를 분산매에 분산시킨 슬러리를 부착시킨 후, 건조, 소성하는 방법이 알려져 있다(예컨대, 특허 문헌 1 참조).Conventionally, as a method of providing a partition wall reinforcing portion, a substrate having a honeycomb structure containing a cordierite raw material as a main component is fired, and then the cordierite raw material is dispersed in the dispersion medium on the partition wall existing at the cell opening end of the substrate. The method of drying and baking after sticking the made slurry is known (for example, refer patent document 1).

그러나, 이 방법은 장시간이 걸리는 소성 공정이 기재의 소성과, 칸막이 벽 강화부를 설치하기 위한 소성이라는 2단계에서 필요하고 생산효율, 제품 비용 등에에 있어서 큰 과제를 남기는 것이었다.However, this method requires a long time firing process in two stages: the firing of the base material and the firing for installing the partition wall reinforcement part, and leave a big problem in production efficiency, product cost, and the like.

이것에 대하여, 허니콤 구조의 기재를 소성하기 전 단계에서 셀 개구 단부에 존재하는 칸막이 벽에 칸막이 벽 강화 재료를 분산매에 분산시킨 슬러리를 부착시킨 후, 건조, 소성함으로써 한 번의 소성으로 기재의 소성과 칸막이 벽 강화부의 형성을 행하는 방법이 시사되어 있다(예컨대, 특허 문헌 1 참조).On the other hand, in the step before baking a base material of a honeycomb structure, the slurry which disperse | distributed the partition wall reinforcement material to the dispersion medium was adhered to the partition wall which exists in the cell opening edge part, and it bakes the base material by one baking by drying and baking. And a method of forming a partition wall reinforcement part are suggested (for example, refer patent document 1).

그러나, 이 방법에 관해서는, 소성 전의 기재와 소성 후의 기재에 있어서의 재료 조성의 차이에 관련한 구체적인 검토는 아무것도 이루어져 있지 않은 것이 현재 상황이다. 특히, 소성전의 기재에는 통상, 칸막이 벽의 강도를 향상시키려는 등의 목적으로 첨가되는 유기 바인더 등이 존재하고 있지만, 이 유기 바인더의 대부분이 메틸셀룰로오스 등의 수용성 화합물이라는 점에 관해서는 아무것도 고려하지않았다.However, with regard to this method, the present situation is that nothing has been specifically studied regarding the difference in material composition between the base material before firing and the base material after firing. In particular, an organic binder or the like is usually added to the base material before firing for the purpose of improving the strength of the partition wall, but no consideration has been given to the fact that most of the organic binders are water-soluble compounds such as methylcellulose. .

이 때문에, 칸막이 벽 강화 재료를 물에 분산시킨 슬러리를 이용하여, 종래 소성 후에 행하고 있었던 칸막이 벽 강화부 형성 공정을 그대로 소성 전에 행하는 것은 유기 바인더가 슬러리 중에 용출하여, 얻어지는 허니콤 구조체의 칸막이 벽 등에 변형을 일으켜 아이소스태틱 강도(isostatic strength) 저하 등에 의해 실제 사용에서 견디지 못하는 것이 현재 상황이었다.For this reason, performing the partition wall reinforcement formation process conventionally performed after baking using the slurry which disperse | distributed the partition wall reinforcement material in water as it is before baking is the partition wall of the honeycomb structure etc. which are obtained by eluting an organic binder in a slurry. It is a current situation that a deformation occurs and cannot be tolerated in actual use due to a decrease in isostatic strength or the like.

또한, 분산매에 칸막이 벽 강화 재료를 분산시킨 슬러리에서는 그 물리적 성질상, 칸막이 벽 강화 재료가 침강 또는 응집하여 칸막이 벽 강화 재료의 분산성이 불충분해지기 쉽기 때문에, 형성되는 칸막이 벽 강화부에 강화 정도의 변동 또는 불균일화를 초래하기 쉬웠다. 이 때문에, 이 제조 방법에서는 칸막이 벽 강화부 전체에 대해서 균일한 내부식성을 갖는 세라믹 허니콤 구조체를 안정적으로 얻을 수 없다거나, 또는 칸막이 벽 강화 재료를 균일하게 분산시키기 위한 관리 부담이 증대한다고 하는 문제가 있었다.Further, in the slurry in which the partition wall reinforcing material is dispersed in the dispersion medium, the partition wall reinforcing material is easily precipitated or agglomerated due to its physical properties, so that the dispersibility of the partition wall reinforcing material is not easily deteriorated. It was easy to cause fluctuation or disproportionation of the. For this reason, in this manufacturing method, there is a problem that a ceramic honeycomb structure having a uniform corrosion resistance cannot be obtained stably over the entire partition wall reinforcement portion, or the management burden for uniformly distributing the partition wall reinforcement material increases. There was.

이것에 대하여, 칸막이 벽 강화 재료를 비수용성 분산매에 분산시킨 슬러리를 이용하면, 칸막이 벽 등의 변형에 의한 아이소스태틱 강도 저하 등에 관한 문제는 해결할 수 있다.On the other hand, by using the slurry which the partition wall reinforcing material was disperse | distributed to the water-insoluble dispersion medium, the problem regarding the isostatic strength fall etc. by deformation of a partition wall etc. can be solved.

그러나, 이 제조 방법에 있어서도 칸막이 벽 강화부 전체에 대해서 균일한 내부식성을 갖는 세라믹 허니콤 구조체를 안정적으로 얻을 수 없다거나 또는 슬러리 중 칸막이 벽 강화 재료를 균일하게 분산시키기 위한 관리 부담이 증대한다고 하는 문제 중 그 어느 것도 해결할 수 없다.However, even in this manufacturing method, it is impossible to stably obtain a ceramic honeycomb structure having uniform corrosion resistance to the entire partition wall reinforcement portion, or increase the management burden for uniformly dispersing the partition wall reinforcement material in the slurry. None of the problems can be solved.

[특허 문헌 1][Patent Document 1]

일본 특허 공개 2000-51710호 공보Japanese Patent Laid-Open No. 2000-51710

본 발명은 상술한 바와 같이 종래 기술의 문제점을 감안하여 이루어진 것으로서, 그 목적하는 바는 강화 칸막이 벽부 전체에 관해서 균일하며, 또한 우수한 내부식성을 갖는 세라믹 허니콤 구조체 및 생산성의 향상 및 제품의 저비용화를 대폭 개선하면서 칸막이 벽에 변형 등이 없는, 원하는 성능을 갖는 허니콤 구조체를 얻을 수 있고, 나아가서는 치밀하고 균일한 강화 칸막이 벽부를 정밀도 좋게 형성할 수 있는 세라믹 허니콤 구조체의 제조 방법을 제공하는 것에 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the prior art as described above, and an object thereof is to provide a ceramic honeycomb structure with high uniformity and excellent corrosion resistance, and to improve productivity and to reduce the cost of the product. It is possible to obtain a honeycomb structure having a desired performance without significantly deforming the partition wall while greatly improving the efficiency of the partition wall, and furthermore to provide a method for producing a ceramic honeycomb structure which can precisely form a dense and uniform reinforcement partition wall part with high accuracy. Is in.

본 발명은 세라믹 허니콤 구조체 및 그 제조 방법에 관한 것으로 정화 성능, 단부면의 내구성 및 캐닝성의 균형이 잡힌 자동차 배기 가스 정화용 담체 등으로서 적합한 세라믹 허니콤 구조체 및 그 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic honeycomb structure and a method for manufacturing the same, and to a ceramic honeycomb structure and a method for manufacturing the same, which are suitable as a carrier for purifying automobile exhaust gas having a balance in purifying performance, endurance, and canning.

도 1은 각 실시예 및 각 비교예의 세라믹 허니콤 구조체에 관해서 기공률1(제품간 교차)을 구할 때에 채취한 시료의 부위를 도시한 모식도.BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the site | part of the sample which was taken at the time of obtaining porosity 1 (cross-products) about the ceramic honeycomb structure of each Example and each comparative example.

도 2는 각 실시예 및 각 비교예의 세라믹 허니콤 구조체에 관해서, 기공률 2(강화 칸막이 벽부의 균일성)를 구할 때에 채취한 시료의 부위를 도시한 모식도.FIG. 2 is a schematic diagram showing a portion of a sample taken when the porosity 2 (uniformity of a reinforced partition wall part) is obtained for the ceramic honeycomb structures of each example and each comparative example. FIG.

도 3은 실시예 1의 제조 방법으로 얻어진 세라믹 허니콤 구조체에 있어서의 칸막이 벽의 일부 상태를 도시한 확대도.3 is an enlarged view showing a part of the partition wall in the ceramic honeycomb structure obtained by the manufacturing method of Example 1. FIG.

도 4는 비교예 2의 제조 방법으로 얻어진 세라믹 허니콤 구조체에 있어서의 칸막이 벽의 일부 상태를 도시한 확대도.4 is an enlarged view showing a part of the partition wall in the ceramic honeycomb structure obtained by the manufacturing method of Comparative Example 2. FIG.

도 5는 본 발명의 세라믹 허니콤 구조체의 일실시예를 모식적으로 도시한 설명도로서, 도 5a는 사시도, 도 5b는 평면도, 도 5c는 측면도를 각각 도시한 도면.5 is an explanatory view schematically showing an embodiment of the ceramic honeycomb structure of the present invention, Figure 5a is a perspective view, Figure 5b is a plan view, Figure 5c is a side view respectively.

도 6은 본 발명의 세라믹 허니콤 구조체의 다른 실시예를 모식적으로 도시한 부분 확대도.6 is a partially enlarged view schematically showing another embodiment of the ceramic honeycomb structured body of the present invention.

도 7은 본 발명의 세라믹 허니콤 구조체를 컨버터 용기에 내장한 예를 모식적으로 도시한 설명도.Fig. 7 is an explanatory diagram schematically showing an example in which the ceramic honeycomb structure of the present invention is incorporated in a converter container.

도 8은 부식 시험에 있어서의 엔진 회전수의 조건을 도시한 도면.8 is a diagram illustrating conditions of engine speed in a corrosion test.

도 9는 부식량의 측정 방법을 모식적으로 도시한 설명도.9 is an explanatory diagram schematically showing a method for measuring the amount of corrosion.

본 발명자는 전술한 문제점을 감안하여 예의 검토한 결과, 칸막이 벽 강화제로서, 실리콘오일과 같이 Si, Ti, Mg 및 Al로 이루어지는 군에서 선택되는 1종 이상의 원소를 구조 중에 갖는 화합물을 주성분으로 하는 것을 이용함으로써, 전술한 문제점을 해결할 수 있는 것을 발견하고, 본 발명을 완성하기에 이르렀다.As a result of earnestly examining in view of the above-mentioned problems, the present inventors have found that, as a partition wall reinforcing agent, a compound having as its main component a structure having at least one element selected from the group consisting of Si, Ti, Mg, and Al, such as silicon oil, in its structure By using it, it discovered that the above-mentioned problem could be solved and came to complete this invention.

즉, 본 발명에 따르면, 다공질 구조를 갖는 복수의 칸막이 벽에 의해 구획된 유체의 유로가 되는 복수의 셀로 이루어지는 셀 복합체와, 상기 셀 복합체의 최외주에 위치하는 최외주 셀을 둘러싸서 유지하는 다공질 구조를 갖는 외벽을 구비한 세라믹 허니콤 구조체로서, 상기 칸막이 벽 중 상기 셀 복합체의 적어도 한 쪽 셀 개구 단부에 위치하는 부분이 상기 적어도 한 쪽 셀 개구 단부 이외의 부분(정규 칸막이 벽부)보다도 고강도이며, 또한 단위 체적당 기공률의 변동이 ±2% 이내인 강화 칸막이 벽부를 구성하여 이루어지는 것을 특징으로 하는 세라믹 허니콤 구조체가 제공된다.That is, according to the present invention, a cell composite composed of a plurality of cells serving as a flow path of a fluid partitioned by a plurality of partition walls having a porous structure, and a porous material surrounding the outermost circumferential cell positioned at the outermost circumference of the cell composite. A ceramic honeycomb structure having an outer wall having a structure, wherein a part of the partition wall positioned at at least one cell opening end of the cell composite is higher than a portion other than the at least one cell opening end (regular partition wall part). In addition, there is provided a ceramic honeycomb structure, comprising a reinforcing partition wall having a variation in porosity per unit volume within ± 2%.

본 발명에 있어서는 강화 칸막이 벽부의 기공률(%)의 값이 정규 칸막이 벽부의 기공률(%)의 값보다 3% 이상 작은 것이 바람직하다. 본 발명에 있어서는 강화칸막이 벽부의 기공률이 30% 이하인 것이 바람직하다.In this invention, it is preferable that the value of the porosity (%) of a reinforced partition wall part is 3% or less smaller than the value of the porosity (%) of a normal partition wall part. In this invention, it is preferable that the porosity of a reinforced partition wall part is 30% or less.

본 발명에 있어서는 칸막이 벽의 최소 칸막이 벽 두께가 0.030∼0.076 mm인 것이 바람직하고, 강화 칸막이 벽부의 셀 개구 단부의 단부면으로부터 그 선단까지의 길이가 강화 칸막이 벽부 전체로서는 똑같지 않은 것이 바람직하다.In this invention, it is preferable that the minimum partition wall thickness of a partition wall is 0.030-0.076 mm, and it is preferable that the length from the end surface of the cell opening edge part of a reinforcement partition wall part to the front-end | tip is not the same as the whole reinforcement partition wall part.

본 발명에 있어서는 강화 칸막이 벽부의 칸막이 벽 두께가 정규 칸막이 벽부의 칸막이 벽 두께보다도 두꺼운 것이 바람직하다.In this invention, it is preferable that the partition wall thickness of a reinforcement partition wall part is thicker than the partition wall thickness of a regular partition wall part.

본 발명에 있어서는 최외주 셀을 기점 셀, 기점 셀보다 내측에 위치하는 3∼20번째의 범위 내의 어느 하나의 셀을 종점 셀, 종점 셀보다 내측에 위치하는 셀을 기본 셀로 했을 경우, 기점 셀 및 종점 셀 각각을 구성하는 칸막이 벽의 두께(Tr1, Tr3∼20)와, 기본 셀을 구성하는 칸막이 벽의 두께(Tc)가 1.10≤(Tr1, Tr3∼20)/Tc≤3.00의 관계를 만족하는 것이 바람직하다.In the present invention, when the outermost circumferential cell is a starting cell or any cell within the third to twenty-second range located inward from the starting cell, the starting cell and the cell located inside the ending cell are the starting cells, and The thicknesses (Tr 1 , Tr 3-20 ) of the partition walls constituting each of the end cells and the thicknesses (Tc) of the partition walls constituting the base cell are 1.10≤ (Tr 1 , Tr 3-20 ) /Tc≤3.00 It is desirable to satisfy the relationship.

본 발명에 있어서는 코디에라이트, 알루미나, 멀라이트, 질화규소, 알루미늄티타네이트, 지르코니아 및 탄화규소로 이루어지는 군에서 선택되는 1종 이상의 세라믹에 의해 구성되는 것이 바람직하다.In the present invention, it is preferably composed of at least one ceramic selected from the group consisting of cordierite, alumina, mullite, silicon nitride, aluminum titanate, zirconia and silicon carbide.

본 발명에 있어서는 유로에 수직인 단면 형상이 원, 타원, 장원, 사다리꼴, 삼각형, 사각형, 육각형 또는 좌우 비대칭인 이형 형상인 것이 바람직하고, 셀의유로에 수직인 단면 형상이 삼각형, 사각형 또는 육각형인 것이 바람직하다.In the present invention, the cross-sectional shape perpendicular to the flow path is preferably a circle, an ellipse, a manor, a trapezoid, a triangle, a square, a hexagon, or a bilateral asymmetric shape, and the cross-sectional shape perpendicular to the flow path of the cell is a triangle, a square, or a hexagon. It is preferable.

본 발명의 세라믹 허니콤 구조체는 자동차 배기 가스의 정화 촉매용 담체로 이용되는 것이 바람직하고, 칸막이 벽에 촉매 성분이 담지되어 외벽의 외주면에서 파지됨으로써 촉매 컨버터에 내장되는 것이 바람직하다.The ceramic honeycomb structure according to the present invention is preferably used as a carrier for purification catalysts for automobile exhaust gases, and is preferably embedded in a catalytic converter by carrying a catalyst component on a partition wall and holding it on the outer circumferential surface of the outer wall.

또한, 본 발명에 따르면 세라믹 재료를 주성분으로 한 배토를 이용하고, 복수의 칸막이 벽을 갖춘 허니콤 구조를 갖는 건조체인 기재를 얻어, 상기 칸막이 벽 중 상기 기재의 적어도 한 쪽 셀 개구 단부에 위치하는 부분에 칸막이 벽 강화제를 부착시킨 후, 소성하는 세라믹 허니콤 구조체의 제조 방법으로서 상기 칸막이 벽 강화제로 Si, Ti, Mg 및 Al로 이루어지는 군에서 선택되는 1종 이상의 원소를 구조 중에 갖는 화합물을 주성분으로 하는 것을 이용하는 것을 특징으로 하는 세라믹 허니콤 구조체의 제조 방법이 제공된다.Further, according to the present invention, a base material which is a dry body having a honeycomb structure having a plurality of partition walls using a clay material composed mainly of a ceramic material is obtained, and is located at at least one cell opening end of the base material among the partition walls. A method of manufacturing a ceramic honeycomb structure which is fired after attaching a partition wall reinforcement to a portion, wherein the partition wall reinforcement includes a compound having at least one element selected from the group consisting of Si, Ti, Mg and Al in the structure as a main component. There is provided a method for producing a ceramic honeycomb structure, characterized in that it is used.

본 발명에 있어서는 칸막이 벽 강화제의 주성분이 연소됨으로써 무기 산화물을 생성하는 화합물인 것이 바람직하고, 실록산 결합을 갖는 화합물인 것이 더 바람직하다. 구체적으로는 실리콘오일, 실리콘와니스, 알콕시올리고머 또는 이들 혼합물을 주성분으로 하는 칸막이 벽 강화제가 바람직하다.In this invention, it is preferable that it is a compound which produces | generates an inorganic oxide by burning the main component of a partition wall strengthening agent, and it is more preferable that it is a compound which has a siloxane bond. Specifically, a partition wall reinforcing agent based on silicone oil, silicone varnish, alkoxy oligomer or a mixture thereof is preferable.

또한, 칸막이 벽 강화제는 절대 점도가 1∼1OOOO mPa·s인 것이 바람직하고 이 절대 점도를 갖는 화합물을 주성분으로 하는 것이 바람직하다.The partition wall reinforcing agent preferably has an absolute viscosity of 1 to 100 000 mPa · s, and preferably contains a compound having this absolute viscosity as a main component.

또한, 본 발명에 있어서는 세라믹 재료로서, 각종 재료를 이용할 수 있지만, 그 원료의 종류에 따라 칸막이 벽 강화제의 종류를 선택하는 것이 바람직하며, 예컨대, 코디에라이트화 원료를 이용하는 경우에는 실리콘오일 등의 구조 중에 Si를갖는 화합물이 바람직하다.In addition, although various materials can be used as a ceramic material in this invention, it is preferable to select the kind of a partition wall reinforcement according to the kind of raw material, For example, when using a cordierite raw material, a silicon oil etc. Compounds having Si in the structure are preferred.

또한, 본 발명에 있어서, 배토에 주성분인 세라믹 재료에 더하여 수용성 유기 바인더를 함유시키는 경우에는, 특히 그 효과가 크며 구체적인 수용성 유기 바인더로서는 예컨대, 히드록시프로필메틸셀룰로오스, 메틸셀룰로오스, 히드록시에틸셀룰로오스, 카르복실메틸셀룰로오스, 폴리비닐알코올 및 폴리비닐아세탈로 이루어지는 군에서 선택되는 1종 이상의 수용성 화합물로 이루어지는 것을 들 수 있다.In addition, in the present invention, in the case of containing soil-soluble organic binder in addition to the ceramic material as the main component in the clay, the effect is particularly great, and specific water-soluble organic binders include, for example, hydroxypropylmethyl cellulose, methyl cellulose, hydroxyethyl cellulose, The thing which consists of 1 or more types of water-soluble compounds chosen from the group which consists of carboxymethyl cellulose, polyvinyl alcohol, and polyvinyl acetal is mentioned.

이하에서 본 발명의 실시예를 구체적으로 설명하겠지만, 본 발명은 이하의 실시예에 한정되는 것이 아니다. 본 발명의 세라믹 허니콤 구조체는 다공질 구조를 갖는 복수의 칸막이 벽에 의해 구획된 유체의 유로가 되는 복수의 셀로 이루어지는 셀 복합체와, 셀 복합체의 최외주에 위치하는 최외주 셀을 둘러싸서 유지한 다공질 구조를 갖는 외벽을 구비한 세라믹 허니콤 구조체로서, 칸막이 벽 중 셀 복합체의 적어도 한 쪽 셀 개구 단부에 위치하는 부분이 적어도 한 쪽 셀 개구 단부 이외의 부분(이하, 「정규 칸막이 벽부」라고 약기함)보다도 고강도이며, 또한, 단위 체적당의 기공률 변동(이하, 「기공률 최대 교차」라고 약기함)이 ±2% 이내인 강화 칸막이 벽부를 구성하여 이루어지는 것을 특징으로 하는 것이다. 이하에서 이에 대해 상세하게 설명한다.Examples of the present invention will be described in detail below, but the present invention is not limited to the following examples. The ceramic honeycomb structure according to the present invention comprises a cell composite composed of a plurality of cells serving as a flow path of a fluid partitioned by a plurality of partition walls having a porous structure, and a porous body surrounded by an outermost cell positioned at the outermost periphery of the cell composite. A ceramic honeycomb structure having an outer wall having a structure, wherein a part of the partition wall positioned at at least one cell opening end of the cell composite is a portion other than at least one cell opening end (hereinafter abbreviated as "regular partition wall part"). It is characterized by comprising a reinforcement partition wall having a higher strength than that and having a porosity variation (hereinafter abbreviated as "porosity maximum crossing") per unit volume within ± 2%. This will be described in detail below.

도 5는 본 발명의 세라믹 허니콤 구조체의 일실시예를 모식적으로 도시한 설명도로서, 도 5a는 사시도, 도 5b는 평면도, 도 5c는 측면도를 각각 나타낸다. 또한, 도 6은 본 발명의 세라믹 허니콤 구조체의 다른 실시예를 모식적으로 도시한 부분 확대도이다. 세라믹 허니콤 구조체(1)는 다공질 구조를 갖는 복수의 칸막이 벽[셀 칸막이 벽(2)]에 의해 구획된 유체의 유로가 되는 복수의 셀(3)로 이루어지는 셀 복합체와 셀 복합체의 최외주에 위치하는 최외주 셀(8)을 둘러싸서 유지하는다공질 구조를 갖는 외벽(4)을 구비하고 있다. 또, 도 6 중 부호2a는 외주 셀 칸막이 벽, 부호2b는 기본 셀 칸막이 벽, 부호(9)는 최외주에서 2번째 셀을 나타낸다.FIG. 5 is an explanatory view schematically showing an embodiment of the ceramic honeycomb structure of the present invention, FIG. 5A is a perspective view, FIG. 5B is a plan view, and FIG. 5C is a side view, respectively. 6 is a partially enlarged view schematically showing another embodiment of the ceramic honeycomb structure according to the present invention. The ceramic honeycomb structure 1 is composed of a cell composite composed of a plurality of cells 3 serving as a flow path of a fluid partitioned by a plurality of partition walls (cell partition walls 2) having a porous structure and at the outermost circumference of the cell composite. The outer wall 4 which has a porous structure surrounding and holding the outermost periphery cell 8 located is provided. In addition, in FIG. 6, the code | symbol 2a shows an outer periphery cell partition wall, the code | symbol 2b shows a basic cell partition wall, and the code | symbol 9 shows the 2nd cell from outermost periphery.

도 5에 도시한 실시예의 세라믹 허니콤 구조체(1)는 그 칸막이 벽[셀 칸막이 벽(2)] 중 셀 복합체의 적어도 한 쪽 셀 개구 단부(5)에 위치하는 부분이 정규 칸막이 벽부보다도 고강도인 강화 칸막이 벽부를 구성하고 있다. 따라서, 본 실시예의 세라믹 허니콤 구조체(1)는 우수한 내부식성을 갖는 것이다.In the ceramic honeycomb structure 1 of the embodiment shown in FIG. 5, a portion of the partition wall (cell partition wall 2) positioned at at least one cell opening end 5 of the cell composite has a higher strength than the regular partition wall portion. I construct a reinforcement partition wall part. Therefore, the ceramic honeycomb structure 1 of this embodiment has excellent corrosion resistance.

또한, 이 강화 칸막이 벽부의 기공률 최대 교차는 ±2% 이내로, 즉 균질성이 매우 높다. 따라서, 본 실시예의 세라믹 허니콤 구조체(1)는 그 강화 칸막이 벽부의 각 부위에 있어서의 부식 발생 용이성의 변동이 매우 적고, 국소적인 부식 현상을 회피할 수 있어 강화 칸막이 벽부 전체에 대해서 우수한 내부식성이 부여되어 있다.In addition, the maximum porosity crossing of the reinforcement partition walls is within ± 2%, that is, the homogeneity is very high. Therefore, the ceramic honeycomb structure 1 of this embodiment has very little variation in the ease of occurrence of corrosion in each part of the reinforced partition wall portion, and can avoid local corrosion phenomenon, thereby providing excellent corrosion resistance to the entire reinforced partition wall portion. Is given.

또한, 본 실시예의 세라믹 허니콤 구조체에 있어서는 보다 우수한 내부식성을 부여한다고 하는 관점에서, 강화 칸막이 벽부의 5개 부위 사이에 있어서의 기공률 최대 교차가 ±1.5% 이내인 것이 바람직하고, ±1% 이내인 것이 더욱 바람직하다. 또, 본 발명에서 말하는 「강화 칸막이 벽부의 기공률 최대 교차」란, 구체적으로는 강화 칸막이 벽부 내의 임의의 5개 부위 사이에 있어서의 단위 체적당 기공률의 변동을 말한다.In the ceramic honeycomb structure of the present embodiment, from the viewpoint of providing more excellent corrosion resistance, it is preferable that the maximum porosity crossing between the five portions of the reinforcing partition wall portion is within ± 1.5%, and within ± 1%. More preferably. In addition, the "porosity maximum intersection of a reinforced partition wall part" as used in this invention means the fluctuation | variation of the porosity per unit volume between five arbitrary parts in a reinforced partition wall part specifically ,.

본 실시예에 있어서는 강화 칸막이 벽부의 기공률(%) 값이 정규 칸막이 벽부의 기공률(%) 값보다 3% 이상 작은 것이 바람직하고, 5% 이상 작은 것이 더욱 바람직하며, 8% 이상 작은 것이 특히 바람직하다. 강화 칸막이 벽부의 기공률(%)의 값이 정규 칸막이 벽부의 기공률(%) 값보다 3% 미만으로 작은 것일 경우에는 충분한 내부식성이 발휘되기 어렵기 때문에 바람직하지 못하다. 또, 강화 칸막이 벽부의 기공률(%) 값의 정규 칸막이 벽부의 기공률(%) 값으로부터 본 작은 정도의 상한치에 관하여는 특히 한정되지 않지만, 약 12% 이하면 좋다.In this embodiment, the porosity (%) value of the reinforcement partition wall part is preferably 3% or more smaller than the porosity (%) value of the regular partition wall part, more preferably 5% or more small, particularly preferably 8% or less small. . If the value of the porosity (%) of the reinforcing partition wall part is less than 3% less than the value of the porosity (%) of the normal partition wall part, it is not preferable because sufficient corrosion resistance is hardly exerted. The upper limit of the small degree seen from the porosity (%) value of the normal partition wall portion of the reinforcement partition wall portion is not particularly limited, but may be about 12% or less.

또한, 본 실시예에 있어서는 내열충격성과 내부식성의 양 특성을 제공하는 것을 고려하여, 강화 칸막이 벽부의 기공률이 30% 이하인 것이 바람직하고, 13∼25%인 것이 더욱 바람직하며, 15∼23%인 것이 특히 바람직하고, 18∼21%인 것이 가장 바람직하다.In addition, in this embodiment, in consideration of providing both characteristics of thermal shock resistance and corrosion resistance, the porosity of the reinforcement partition wall portion is preferably 30% or less, more preferably 13-25%, and is 15-23%. It is especially preferable, and it is most preferable that it is 18 to 21%.

본 실시예에 있어서는 칸막이 벽의 최소 칸막이 벽 두께가 0.030∼0.076 mm인 것이 바람직하고, 0.030∼0.065 mm인 것이 더욱 바람직하다. 최소 칸막이 벽 두께를 이러한 수치 범위 내로 규정함으로써, 압력 손실을 저감하면서 경량화 및 열용량의 저감화에 의해 난기(暖機)시의 정화 성능을 향상시킬 수 있다.In the present embodiment, the minimum partition wall thickness of the partition wall is preferably 0.030 to 0.076 mm, more preferably 0.030 to 0.065 mm. By defining the minimum partition wall thickness within such a numerical range, it is possible to improve the purifying performance in warm air by reducing the weight loss and reducing the heat capacity while reducing the pressure loss.

또, 강화 칸막이 벽부는 내부식성과 저열용량과의 양립을 도모하는 점에 있어서 셀 개구 단부의 적어도 하나의 단부면으로부터 축방향으로 30 mm 이내의 범위의 일부 또는 전체로 설치되어 있는 것이 바람직하고, 1O mm 이내의 범위의 일부 또는 전체에 설치되어 있는 것이 더욱 바람직하다. 또한, 본 실시예의 세라믹 허니콤 구조체에 있어서, 강화 칸막이 벽부는 셀 개구 단부의 단부면으로부터 축 방향으로 같은 길이로 설치되어도 좋지만, 강화 칸막이 벽부의 셀 개구 단부의 단부면으로부터 그 선단까지의 길이가 강화 칸막이 벽부 전체로서는 똑같지 않은 것이 내부식성과 저열용량과의 양립을 도모하는 점 및 기공률이 변화하는 경계 부분의 응력 집중의 완화를 도모하는 점에 있어서 바람직하다.The reinforcement partition wall portion is preferably provided in a part or whole within a range of 30 mm in the axial direction from at least one end face of the cell opening end in terms of achieving compatibility between corrosion resistance and low heat capacity. It is more preferable that it is provided in part or all of the range within 10 mm. Further, in the ceramic honeycomb structure of the present embodiment, the reinforcement partition wall portion may be provided with the same length in the axial direction from the end face of the cell opening end portion, but the length from the end face of the cell opening end portion of the reinforcement partition wall portion to its tip is What is not the same as the whole reinforcement partition wall part is preferable at the point which aims at the compatibility with corrosion resistance and low heat capacity, and the point which aims at the relaxation of the stress concentration of the boundary part to which a porosity changes.

본 실시예에 있어서는 강화 칸막이 벽부의 칸막이 벽 두께가 정규 칸막이 벽부의 칸막이 벽 두께보다도 두꺼운 것이 바람직하다. 구체적으로는 강화 칸막이 벽부의 칸막이 벽 두께는 정규 칸막이 벽부의 칸막이 벽 두께의 1.20∼4.00배 두께인 것이 바람직하다. 또한, 강화 칸막이 벽부의 칸막이 벽 두께가 셀 개구 단부의 적어도 한 쪽 단부면으로부터 축방향으로 연속적 또는 단계적으로 얇아져져 정규 칸막이 벽부의 칸막이 벽 두께로 이행하고 있는 것이 응력 집중을 막는데 있어서 바람직하다. 또, 이러한 각종 강화 칸막이 벽부를 1종 단독으로 또는 2종 이상 조합하여 구성할 수 있다.In this embodiment, it is preferable that the partition wall thickness of the reinforcement partition wall part is thicker than the partition wall thickness of the regular partition wall part. Specifically, the partition wall thickness of the reinforcing partition wall portion is preferably 1.20 to 4.00 times the thickness of the partition wall thickness of the regular partition wall portion. In addition, it is preferable for the partition wall thickness of the reinforcement partition wall portion to be continuously or stepwise thinned in the axial direction from at least one end face of the cell opening end portion to the partition wall thickness of the regular partition wall portion to prevent stress concentration. Moreover, these various reinforced partition wall parts can be comprised individually by 1 type or in combination of 2 or more types.

본 발명에 있어서는 도 6에 도시한 실시예와 같이 외주부측의 셀 칸막이 벽(2a)을 두껍게 하는 것도 내부식성을 향상시키는 점에서 바람직하다. 또한, 외주부측의 셀 칸막이 벽(2a)을 두껍게 함으로써 아이소스태틱 강도의 향상이 도모되고, 캐닝시의 파지력을 강하게 할 수도 있기 때문에 캐닝성도 향상된다. 여기서 아이소스태틱 강도란 자동차 규격 JASO 규격 M505-87에 준거한 시험에 의해 파괴시의 가압 압력치로 표시되는 강도이다. 도 6에 있어서, 외벽(4)에 가장 근접하여 최외주 셀(8)이 있고, 최외주 셀(8)로부터 내측으로 2번째 셀(9)이 연속하고 있다. 최외주 셀의 칸막이 벽 두께를 Tr1로, 또한 이 2번째 셀(9)의 칸막이 벽 두께를 Tr2로 나타낸다. 도시하지는 않지만, 마찬가지로 5∼15번째의 범위 내의 어느 하나의 셀의 칸막이 벽의 두께를 Tr5 15로 나타낸다. 또, 셀 칸막이벽(2)은 외주 셀 칸막이 벽(2a)과 기본 셀 칸막이 벽(2b)으로 대별된다.In the present invention, as in the embodiment shown in Fig. 6, it is also preferable to thicken the cell partition wall 2a on the outer peripheral part side in terms of improving the corrosion resistance. In addition, by increasing the cell partition wall 2a on the outer circumferential side, the isostatic strength can be improved, and the gripping force at the time of canning can be enhanced, so the canning performance is also improved. Here isostatic strength is the intensity | strength expressed by the pressurized pressure value at the time of destruction by the test based on the automobile standard JASO standard M505-87. In FIG. 6, the outermost cell 8 is closest to the outer wall 4, and the second cell 9 is continuous inward from the outermost cell 8. The partition wall thickness of the outermost cell is denoted by Tr 1 , and the partition wall thickness of the second cell 9 is denoted by Tr 2 . Although not shown, similarly, the thickness of the partition wall of any cell in the 5th to 15th ranges is represented by Tr 5 to 15 . The cell partition wall 2 is roughly divided into an outer circumferential cell partition wall 2a and a basic cell partition wall 2b.

본 실시예에 있어서는 최외주 셀을 기점 셀, 기점 셀보다 내측에 위치하는 3∼20번째의 범위 내의 어느 하나의 셀을 종점 셀, 종점 셀보다 내측에 위치하는 셀을 기본 셀로 했을 경우, 기점 셀 및 종점 셀의 각각을 구성하는 칸막이 벽의 두께(Tr1, Tr3∼20)와 기본 셀을 구성하는 칸막이 벽의 두께(Tc)가 1.10≤(Tr1, Tr3∼20)/Tc≤3.00의 관계를 만족하는 것이 바람직하다. 이 값[(Tr1, Tr3 20)/Tc]이 1.10 미만이면, 내부식성의 향상에 기여하지 않고, 아이소스태틱 강도의 개선에도 기여하지 않기 때문에 캐닝성의 향상에 기여하지 않는다. 또한, 3.00을 넘으면, 열용량 및 압력 손실이 증대한다. 또한, 1 및 2번째 셀의 칸막이 벽 두께(Tr1, Tr2)를 특정한 비율로 두껍게 하여도 내부식성이나 아이소스태틱 강도의 향상에 기여하지 않고, 21번째 이후 특히 31번째 이후의 셀의 칸막이 벽 두께까지를 특정한 비율로 두껍게 하면, 압력 손실이 증대하는 동시에 세라믹 허니콤 구조체의 질량이 소정 이상으로 증대함으로써, 열용량도 증대하여 바람직하지 못하다.In the present embodiment, when the outermost circumferential cell is a starting cell or any cell in the 3rd to 20th ranges positioned inside the starting cell, the starting cell and the cell located inside the ending cell are the starting cells. And the thicknesses (Tr 1 , Tr 3-20 ) of the partition walls constituting each of the end cells and the thicknesses (Tc) of the partition walls constituting the basic cells are 1.10 ≦ (Tr 1 , Tr 3-20 ) /Tc≦3.00 It is desirable to satisfy the relationship of. If this value [(Tr 1 , Tr 3 to 20 ) / Tc] is less than 1.10, it does not contribute to improvement of corrosion resistance and does not contribute to improvement of isostatic strength, and therefore does not contribute to improvement of canning performance. Moreover, when it exceeds 3.00, heat capacity and pressure loss will increase. In addition, even if the partition wall thicknesses (Tr 1 , Tr 2 ) of the first and second cells are thickened at a specific ratio, they do not contribute to the improvement of the corrosion resistance or the isostatic strength, and the partition walls of the cells after the 21st, especially after the 31st, and the like. If the thickness is made thick at a specific ratio, the pressure loss increases and the mass of the ceramic honeycomb structure increases by more than a predetermined value, thereby increasing the heat capacity, which is undesirable.

또한, 본 실시예에 있어서는 셀 칸막이 벽 두께(Tr1, Tr3 20)의 각각을 기본 셀 칸막이 벽 두께(Tc) 사이에, 1.10≤(Tr1, Tr3∼20)/Tc≤2.50, 나아가서는 1.20≤(Tr1, Tr3∼20)/Tc≤1.60의 관계를 갖도록 더욱 제한된 조건으로 하는 것이 열용량이나 압력 손실을 고려했을 때에 실제 사용상 바람직하다.In the present embodiment, each of the cell partition wall thicknesses Tr 1 and Tr 3 to 20 is set to 1.10 ≦ (Tr 1 , Tr 3 to 20 ) /Tc≦2.50, between the basic cell partition wall thicknesses Tc. Furthermore, it is preferable in practical use to consider the heat capacity or the pressure loss in a more limited condition so as to have a relationship of 1.20 ≦ (Tr 1 , Tr 3 to 20 ) /Tc≦1.60.

본 실시예의 세라믹 허니콤 구조체는 예컨대 코디에라이트, 알루미나, 멀라이트, 질화규소, 알루미늄티타네이트, 지르코니아 및 탄화규소로 이루어지는 군에서 선택되는 1종 이상의 세라믹에 의해 구성된다.The ceramic honeycomb structure of this embodiment is made of, for example, at least one ceramic selected from the group consisting of cordierite, alumina, mullite, silicon nitride, aluminum titanate, zirconia and silicon carbide.

또한, 본 실시예의 세라믹 허니콤 구조체의 유로에 수직인 단면 형상으로서는 예컨대, 원, 타원, 장원, 사다리꼴, 삼각형, 사각형, 육각형 또는 좌우 비대칭인 이형 형상을 들 수 있다. 그 중에서도 원, 타원 또는 장원 중 어느 하나인 것이 바람직하다.Moreover, as a cross-sectional shape perpendicular | vertical to the flow path of the ceramic honeycomb structure of a present Example, the shape of a circle, an ellipse, an ellipse, a trapezoid, a triangle, a square, a hexagon, or a bilateral asymmetry is mentioned, for example. Especially, it is preferable that it is any of a circle, an ellipse, or a manor.

본 실시예의 세라믹 허니콤 구조체 셀의 유로에 수직인 단면 형상으로서는 삼각형 이상의 다각형상 예컨대, 정사각형, 직사각형 또는 육각형 등을 들 수 있다. 그 중에서도 삼각형, 사각형 또는 육각형 중 어느 하나인 것이 바람직하다.As a cross-sectional shape perpendicular | vertical to the flow path of the ceramic honeycomb structure cell of a present Example, a polygonal shape more than triangular, for example, a square, a rectangle, a hexagon, etc. are mentioned. Especially, it is preferable that it is any of a triangle, a square, or a hexagon.

본 실시예의 세라믹 허니콤 구조체의 용도에는 특별히 한정은 없고, 각종 필터나 촉매 담체 등의 각종 용도로 이용할 수 있지만, 자동차 배기 가스의 정화촉매용 담체에 이용하는 것이 특히 바람직하다. 또한, 본 실시예의 세라믹 허니콤 구조체는 도 7에 나타낸 바와 같이 촉매 컨버터 용기(11)에 내장하여 사용되는 것이 바람직하다. 여기서, 세라믹 허니콤 구조체(13)는 촉매 컨버터 용기(11)내에 그 외주면이 링(12)에 의해 파지되어 내장되고 있다. 링(12)을 구성하는 재질 등에는 특별히 제한은 없지만, 통상 금속 메쉬로 제조된 것이 사용된다. 또, 촉매 컨버터 용기(11)와 세라믹 허니콤 구조체(13)의 외주면 사이에는 매트, 크로스 등의 파지재(14)를 개재시키는 것이 바람직하다.The use of the ceramic honeycomb structure according to the present embodiment is not particularly limited, and can be used for various applications such as various filters and catalyst carriers, but it is particularly preferable to use the carrier for purification catalysts for automobile exhaust gas. In addition, it is preferable that the ceramic honeycomb structure of this embodiment is incorporated in the catalytic converter container 11, as shown in FIG. Here, the ceramic honeycomb structure 13 is embedded in the catalytic converter container 11 with its outer circumferential surface held by a ring 12. Although there is no restriction | limiting in particular in the material which comprises the ring 12, What is normally made of a metal mesh is used. Moreover, it is preferable to interpose the holding material 14, such as a mat and a cross, between the catalytic converter container 11 and the outer peripheral surface of the ceramic honeycomb structure 13.

다음에 본 발명의 세라믹 허니콤 구조체의 제조 방법의 일실시예에 관해서설명한다. 본 발명의 세라믹 허니콤 구조체의 제조 방법은 세라믹 재료를 주성분으로 한 배토를 이용하여 복수의 칸막이 벽을 갖춘 허니콤 구조를 갖는 미소성 건조체인 기재를 얻어, 칸막이 벽 중 기재의 적어도 한 쪽 셀 개구 단부에 위치하는 부분에 칸막이 벽 강화제를 부착시킨 후, 소성하는 세라믹 허니콤 구조체의 제조 방법으로서, 칸막이 벽 강화제로 Si, Ti, Mg, 및 Al로 이루어지는 군에서 선택되는 적어도 1종의 원소를 구조 중에 갖는 화합물을 주성분으로 하는 것을 이용하는 것을 특징으로 한다.Next, an embodiment of the manufacturing method of the ceramic honeycomb structure of the present invention will be described. The method for producing a ceramic honeycomb structure of the present invention obtains a substrate which is an unbaked dry body having a honeycomb structure having a plurality of partition walls by using clay containing ceramic material as a main component, and at least one cell opening of the substrate in the partition walls. A method for producing a ceramic honeycomb structure which is fired after attaching a partition wall reinforcement to a portion located at an end, wherein the partition wall reinforcement is formed of at least one element selected from the group consisting of Si, Ti, Mg, and Al. It is characterized by using what has a compound as a main component.

본 실시예에서는 한 번의 소성에 의해, 기재(정규 칸막이 벽부)의 소성과 강화 칸막이 벽부의 형성을 동시에 행할 수 있기 때문에 생산성의 향상 및 제품의 저비용화를 대폭 개선할 수 있다. 덧붙여, 칸막이 벽 강화제로서 소수성 화합물을 이용하기 때문에 칸막이 벽에 부착되었을 때에, 수용성 유기 바인더가 용해 및 팽윤하는 일이 없고 셀 꼬임 등의 칸막이 벽 변형이 없는 원하는 성능을 갖는 세라믹 허니콤 구조체를 얻을 수 있다.In this embodiment, since the firing of the base material (regular partition wall part) and the formation of the reinforcement partition wall part can be performed simultaneously by one firing, it is possible to greatly improve the productivity and the cost reduction of the product. In addition, since a hydrophobic compound is used as the partition wall reinforcing agent, a ceramic honeycomb structure having a desired performance can be obtained when the water-soluble organic binder does not dissolve and swell when attached to the partition wall and there is no deformation of the partition wall such as cell twisting. have.

또, 본 실시예에 있어서는 칸막이 벽 강화제로서, 칸막이 벽 강화에 기여하는 원소를 구조 중에 갖는 화합물을 이용하기 때문에 칸막이 벽 강화에 기여하는 원소가 그 물리 화학적 성형에 있어서, 항상 균일하게 배치되게 된다. 이 때문에, 특히 분산 등의 조치를 강구하는 일없이 균일한 강화 칸막이 벽부를 형성할 수 있어, 국소적인 부식 발생을 거의 막을 수 있다. 따라서, 강화 칸막이 벽부 전체의 평균 기공률을 동일하게 했을 경우에도 종래의 세라믹 허니콤 구조체보다도 내부식성이 보다 우수한 강화 칸막이 벽부를 형성할 수 있다. 또한, 상기 칸막이 벽 강화제를 이용함으로써 제품 사이에서 내부식성의 변동이 없어져, 내부식성이 우수한 세라믹 허니콤 구조체를 간결한 공정에 의해 안정적으로 얻을 수 있다. 이하, 각 공정마다 구체적으로 설명한다.In addition, in this embodiment, since the compound which has an element which contributes to partition wall reinforcement in a structure is used as a partition wall reinforcing agent, the element which contributes to partition wall reinforcement will always be arrange | positioned uniformly in the physicochemical shaping | molding. For this reason, a uniform reinforcement partition wall part can be formed especially without taking measures, such as dispersion | distribution, and it can hardly prevent local corrosion generation. Therefore, even when the average porosity of the whole reinforcement partition wall part is made the same, the reinforcement partition wall part which is more excellent in corrosion resistance than a conventional ceramic honeycomb structure can be formed. In addition, by using the partition wall reinforcing agent, there is no variation in corrosion resistance between products, and a ceramic honeycomb structure excellent in corrosion resistance can be stably obtained by a simple process. Hereinafter, it demonstrates concretely for every process.

본 실시예에 있어서는 우선, 세라믹 재료를 주성분으로 하는 배토를 이용하여, 복수의 칸막이 벽을 갖춘 허니콤 구조의 성형체를 제작한다.In the present embodiment, first, a molded article having a honeycomb structure having a plurality of partition walls is produced by using clay having a ceramic material as a main component.

본 실시예에 있어서는 세라믹 재료에 관해서 특별히 제한은 없고, 예컨대, 탄화규소, 탄화붕소, 탄화티탄, 탄화지르코늄, 질화규소, 질화붕소, 질화알루미늄, 알루미나, 지르코니아, 멀라이트, 코디에라이트화 원료, 티탄산알루미늄 및 사이알론으로 이루어지는 군에서 선택되는 1종 이상을 이용할 수 있다. 또, 칸막이 벽 강화제의 종류의 관계에 관해서는 후술한다.There is no restriction | limiting in particular regarding a ceramic material in this Example, For example, silicon carbide, boron carbide, titanium carbide, zirconium carbide, silicon nitride, boron nitride, aluminum nitride, alumina, zirconia, mullite, cordierite raw material, titanic acid One or more types selected from the group consisting of aluminum and sialon can be used. In addition, the relationship of the kind of partition wall reinforcement is mentioned later.

본 실시예에 있어서는 필요에 따라 다른 첨가물을 배토에 함유시켜도 좋고, 예컨대 수용성 유기 바인더, 결정 성장 조제, 분산제 또는 조공제 등을 함유시켜도 좋다. 또한, 수용성 유기 바인더로서는, 예컨대 히드록시프로필메틸셀룰로오스, 메틸셀룰로오스, 히드록시에틸셀룰로오스, 카르복실메틸셀룰로오스, 폴리비닐알코올 또는 폴리비닐아세탈 등을 들 수 있다. 또한, 결정 성장 조제로서는, 예컨대 마그네시아, 실리카, 산화이트륨 또는 산화철 등을 들 수 있고, 분산제로서는 예컨대, 에틸렌글리콜, 덱스트린, 지방산 비누 또는 폴리알코올 등을 들 수 있다. 또한, 조공제로서는 예컨대, 그래파이트, 밀가루, 전분, 페놀수지 또는 폴리에틸렌테레프탈레이트 등을 들 수 있다. 또, 이들 첨가제는 목적에 따라 1종 또는 2종 이상이 혼합되어 함유될 수 있다.In the present embodiment, other additives may be contained in the clay if necessary, and for example, a water-soluble organic binder, a crystal growth aid, a dispersant, or a pore-forming agent may be included. Moreover, as a water-soluble organic binder, hydroxypropyl methyl cellulose, methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol, polyvinyl acetal, etc. are mentioned, for example. Examples of the crystal growth aid include magnesia, silica, yttrium oxide and iron oxide. Examples of the dispersant include ethylene glycol, dextrin, fatty acid soap, polyalcohol, and the like. In addition, examples of the pore-forming agent include graphite, wheat flour, starch, phenol resin or polyethylene terephthalate. Moreover, these additives may be contained 1 type or in mixture of 2 or more types according to the objective.

또한, 본 실시예에서는 이미 설명한 바와 같이 칸막이 벽 강화제로서 소수성 화합물을 이용하기 때문에, 칸막이 벽에 부착했을 때에, 수용성 유기 바인더가 용해 및 팽윤하는 일이 없고, 셀 꼬임 등의 칸막이 벽 변형이 발생하는 일은 없다. 따라서, 상기 수용성 유기 바인더를 배토에 함유시키는 제조 방법으로 특히 바람직하게 적용할 수 있다.In addition, in the present embodiment, since the hydrophobic compound is used as the partition wall reinforcing agent as described above, the water-soluble organic binder does not dissolve and swell when adhered to the partition wall, and partition wall deformation such as cell twist occurs. There is no work. Therefore, it can apply especially preferably as a manufacturing method which makes the said water-soluble organic binder into a clay.

또한, 배토는 통상의 방법으로 제작하면 좋고, 예컨대, 세라믹 재료에 수용성 유기 바인더 등의 첨가물을 첨가한 원료에 물 등을 소정량 혼합하고 필요에 따라 다른 첨가물을 첨가한 후 니더(kneader), 가압 니더, 진공 토련기로 혼련, 토련하여 얻을 수 있다.In addition, the clay may be produced by a conventional method. For example, a predetermined amount of water or the like is mixed with a raw material to which an additive such as a water-soluble organic binder is added to a ceramic material, and other additives are added if necessary, followed by kneader or pressurization. It can be obtained by kneading and kneading with a kneader or a vacuum grinding machine.

본 실시예에 있어서는 허니콤 구조의 성형체를 얻는 방법(성형 방법)에 관해서도 특별히 제한은 없지만, 양산성이 우수한 점에서 압출 성형이 바람직하고, 예컨대 램식 압출 성형 장치 또는 2축 스크류식 연속 압출 성형 장치 등의 압출 성형 장치를 이용하여, 압출 성형하는 것이 바람직하다.Although there is no restriction | limiting in particular also about the method (molding method) which obtains the molded object of a honeycomb structure in this Example, Extrusion molding is preferable at the point which is excellent in mass productivity, for example, a ram type extrusion machine or a twin screw continuous extrusion machine. It is preferable to perform extrusion molding using extrusion apparatuses, such as these.

또한, 본 실시예에 있어서는 기재의 칸막이 벽 두께(정규 칸막이 벽부의 칸막이 벽 두께)에 관해서도 특별히 제한은 없고, 예컨대 칸막이 벽 두께 0.05 mm 이하의 기재로서도 칸막이 벽에 변형을 일으키지 않고 원하는 허니콤 구조를 갖는 성형체를 얻을 수 있다. 계속해서, 얻어진 성형체를 건조하여 허니콤 구조를 갖는 건조체인 기재를 얻는다. 성형체의 건조에는 적당한 건조 방법을 채용하여, 실질적으로 소성하지 않는 온도로 건조하면 좋다. 건조 방법으로서는, 예컨대 송풍 건조, 열풍 건조, 또는 마이크로파 건조 등을 들 수 있다. 또, 본 발명에 있어서「건조체」라고 할 때는 실질적인 소성이 이루어지지 않은 미소성 건조체를 의미한다.In addition, in this embodiment, there is no restriction | limiting in particular also about the partition wall thickness (the partition wall thickness of a regular partition wall part) of a base material, For example, even if a base material with a partition wall thickness of 0.05 mm or less, a desired honeycomb structure can be made without causing deformation to a partition wall. The molded object which has is obtained. Then, the obtained molded object is dried and the base material which is a dried body which has a honeycomb structure is obtained. What is necessary is just to employ | adopt an appropriate drying method for drying a molded object, and to dry at the temperature which is not baked substantially. As a drying method, ventilation drying, hot air drying, microwave drying, etc. are mentioned, for example. In addition, in this invention, when it means a "drying body", it means an unbaked dry body which is not substantially baked.

본 실시예로서는 다음에, 소성 전 단계에서 얻어진 기재(건조체)의 셀 개구 단부에 존재하는 복수의 칸막이 벽에 칸막이 벽 강화제를 부착한다.As a present Example, a partition wall reinforcing agent is affixed to the some partition wall currently existing in the cell opening edge part of the base material (drying body) obtained by the pre-firing step.

이 때, 본 실시예에서는 칸막이 벽 강화제로서 기재에 부착되었을 때에, 기재 구성 재료의 융점을 저하시키거나, 또는 칸막이 벽 세공 내에 침입하여 세공의 용적을 저하시키는 등에 의해, 단부에 존재하는 칸막이 벽을 치밀화하는 원소, 보다 구체적으로는 Si, Ti, Mg 및 Al로 이루어지는 군에서 선택되는 적어도 1종의 원소를 구조 중에 갖는 화합물이 주성분인 것을 이용한다.In this embodiment, when the cell wall is attached to the substrate as the partition wall reinforcing agent, the partition wall existing at the end portion is reduced by lowering the melting point of the substrate constituent material or infiltrating into the partition wall pores to reduce the volume of the pores. The compound which has a densified element, more specifically, the compound which has at least 1 sort (s) of element selected from the group which consists of Si, Ti, Mg, and Al in a structure as a main component is used.

본 실시예에 있어서, 이러한 칸막이 벽 강화제의 주성분이 되는 화합물로는 연소됨으로써 무기 산화물을 생성하는 화합물이 바람직하다.In this embodiment, as the compound which is the main component of such a partition wall reinforcing agent, a compound which produces an inorganic oxide by burning is preferable.

또한, Ti 또는 Al를 구조 중에 갖는 화합물로서는 예컨대, 아세트알콕시알루미늄디이소프로필레이트 등의 알루미네이트알콕시올리고머 또는 커플링제로서 이용되는 티타네이트알콕시올리고머 등이 바람직하다.Moreover, as a compound which has Ti or Al in a structure, the titanate alkoxy oligomer used as a coupling agent or aluminate alkoxy oligomers, such as acetoalkoxy aluminum diisopropylate, etc. are preferable, for example.

또한, Si를 구조 중에 갖는 화합물로서는 실록산 결합을 갖는 화합물 등이 좋고, 예컨대 실리콘오일, 실리콘와니스, 실리케이트알콕시올리고머 또는 이들의 혼합물 등이 바람직하다.Moreover, as a compound which has Si in a structure, the compound etc. which have a siloxane bond are preferable, For example, silicone oil, a silicone varnish, a silicate alkoxy oligomer, a mixture thereof, etc. are preferable.

또한, 실리콘오일로서는 예컨대, 디메틸실리콘오일, 메틸페닐실리콘오일, 메틸하이드로젠실리콘오일, 아미노변성실리콘오일, 에폭시변성실리콘오일, 카르복실변성실리콘오일, 카르비놀변성실리콘오일, 메타크릴변성실리콘오일, 머캅트변성실리콘오일, 페놀변성실리콘오일, 편말단반응성실리콘오일, 이종관능기변성실리콘오일, 폴리에테르변성실리콘오일, 메틸스티린변성실리콘오일, 알킬변성실리콘오일 또는 고급 지방산에스테르변성실리콘오일 등을 들 수 있다.As the silicone oil, for example, dimethyl silicone oil, methylphenyl silicone oil, methylhydrogen silicone oil, amino modified silicone oil, epoxy modified silicone oil, carboxy modified silicone oil, carbinol modified silicone oil, methacryl modified silicone oil, mercury Capped modified silicone oil, phenol modified silicone oil, single-ended reactive silicone oil, heterofunctional modified silicone oil, polyether modified silicone oil, methyl styrene modified silicone oil, alkyl modified silicone oil or higher fatty acid ester modified silicone oil have.

본 실시예에 있어서는 상기한 각종 화합물을 1종 단독으로 또는 2종 이상혼합하여 칸막이 벽 강화제를 조제하면 좋지만, 특히, 2종 이상 혼합하여 칸막이 벽 강화제를 조제하는 것이 바람직하다. 상기 화합물을 2종 이상 혼합하여 칸막이 벽 강화제를 조제하면, 여러 가지의 점성을 갖는 상기 화합물을 선택, 혼합할 수 있으므로 칸막이 벽 강화제의 점도를 임의로 조정할 수 있고, 칸막이 벽 강화제의 균일한 부착이 용이해진다. 또한, 임의로 상기 화합물을 선택, 혼합함으로써 원하는 내열충격성을 확보하면서, 칸막이 벽의 강화 정도를 임의로 제어할 수 있고, 칸막이 벽 두께 등에 따라서 원하는 내부식성을 부여할 수 있다.In the present embodiment, the above-described various compounds may be mixed alone or in combination of two or more thereof to prepare the partition wall reinforcing agent. In particular, it is preferable to mix the two or more types to prepare the partition wall reinforcing agent. When the partition wall reinforcing agent is prepared by mixing two or more of the compounds, the compound having various viscosities can be selected and mixed, so that the viscosity of the partition wall reinforcing agent can be arbitrarily adjusted, and the uniform adhesion of the partition wall reinforcing agent is easy. Become. Further, by arbitrarily selecting and mixing the above compounds, the degree of reinforcement of the partition wall can be arbitrarily controlled while ensuring the desired thermal shock resistance, and the desired corrosion resistance can be imparted according to the partition wall thickness or the like.

구체적으로는 예컨대, 디메틸실리콘오일에 실리케이트알콕시올리고머 또는 메틸하이드로젠실리콘오일을 혼합한 칸막이 벽 강화제를 이용하는 것이 바람직하다.Specifically, for example, it is preferable to use a partition wall reinforcing agent in which silicate alkoxy oligomer or methylhydrogen silicone oil is mixed with dimethyl silicone oil.

또한, 이러한 칸막이 벽 강화제에는 실리케이트알콕시올리고머(SAO) 또는 메틸하이드로젠실리콘오일(MHSO)과, 디메틸실리콘오일(DMSO)과의 혼합 비율(SAO 또는 MHSO/DMSO)이 10/90∼75/25(질량비)인 것이 바람직하고, 15/85∼50/50(질량비)인 것이 보다 바람직하며, 20/80∼50/50(질량비)인 것이 더욱 바람직하고, 25/75∼50/50(질량비)인 것이 특히 바람직하다. 혼합 비율이 이 범위이면 원하는 내열충격성을 확보하면서 내부식성이 우수한 세라믹 허니콤 구조체를 얻을 수 있다.In addition, the partition wall reinforcing agent is a silicate alkoxy oligomer (SAO) or methylhydrogen silicone oil (MHSO) and dimethyl silicone oil (DMSO) of the mixing ratio (SAO or MHSO / DMSO) of 10/90 to 75/25 ( Mass ratio), more preferably 15/85 to 50/50 (mass ratio), still more preferably 20/80 to 50/50 (mass ratio), and 25/75 to 50/50 (mass ratio) Is particularly preferred. If the mixing ratio is within this range, it is possible to obtain a ceramic honeycomb structure having excellent corrosion resistance while securing desired thermal shock resistance.

또한, 본 실시예에 있어서의 칸막이 벽 강화제는 전술한 실리콘오일 등의 화합물을 톨루엔 혹은 크실렌 등의 방향족 탄화수소, 석유에테르 혹은 케로신 등의 지방족 탄화수소, 등유 혹은 경유 등의 석유계 탄화수소, 이소프로필알코올, 라우릴알코올 혹은 부탄올 등의 알코올류 또는 휘발성 실리콘오일 등의 1종 또는 2종 이상을 포함하는 희석제에 의해 희석한 것이어도 좋다. 이러한 희석제의 첨가는 칸막이 벽의 강화 정도를 임의로 제어할 수 있고, 게다가 칸막이 벽 강화제의 점도를 임의로 조정할 수 있으므로 칸막이 벽 강화제의 균일한 부착이 용이해진다.In addition, the partition wall reinforcing agent in the present embodiment is a compound such as silicone oil, aromatic hydrocarbons such as toluene or xylene, aliphatic hydrocarbons such as petroleum ether or kerosene, petroleum hydrocarbons such as kerosene or diesel, isopropyl alcohol. And diluent containing 1 type (s) or 2 or more types, such as alcohols, such as lauryl alcohol or butanol, or volatile silicone oil, may be sufficient. The addition of such diluent can arbitrarily control the degree of reinforcement of the partition wall, and furthermore, the viscosity of the partition wall reinforcement can be arbitrarily adjusted, so that the uniform adhesion of the partition wall reinforcement is facilitated.

본 실시예에 있어서의 칸막이 벽 강화제는 절대 점도가 1∼1OOOO mPa·s인 것이 바람직하고, 1O∼1OOOmPa·s인 것이 보다 바람직하다.The partition wall reinforcing agent in the present embodiment preferably has an absolute viscosity of 100 to 100 mPa · s, more preferably 10 to 100 mPa · s.

일반적으로, 저점도 화합물은 중합도가 작고, 휘발하기 쉬운 경향이 있으며, 점도가 1 mPa·s 미만이면 칸막이 벽에 부착되어 소성했을 때에 CO2및 H2O와 동시에 칸막이 벽 강화제 속에 존재하는 Si 등의 유효 성분이 휘발해버려서, 강고한 강화칸막이 벽부를 형성하는 것이 어려워진다. 한편, 점도가 1OOOOmPa·s를 넘으면, 칸막이 벽 강화제를 칸막이 벽에 균일한 두께로 부착하기 어려워진다.In general, low-viscosity compounds have a low degree of polymerization and tend to be volatilized. When the viscosity is less than 1 mPa · s, Si, which is present in the partition wall reinforcement at the same time as CO 2 and H 2 O, is adhered to the partition walls and calcined. Since the active ingredient of volatilizes, it becomes difficult to form a strong reinforced partition wall part. On the other hand, when the viscosity exceeds 100 mPa · s, it becomes difficult to attach the partition wall reinforcing agent to the partition wall with a uniform thickness.

또한, 본 실시예에 있어서의 칸막이 벽 강화제는 세라믹 원료의 종류마다 바람직한 것을 선택하는 것이 바람직하며, 예컨대, 코디에라이트화 원료를 주성분으로 하는 배토에는 실리콘오일 등의 Si를 구조 중에 갖는 화합물을 선택하는 것이 바람직하다.In addition, it is preferable that the partition wall reinforcing agent in a present Example selects the thing suitable for every kind of ceramic raw material, For example, the compound which has Si, such as a silicon oil, in the structure is selected for the clay which has a cordierite raw material as a main component. It is desirable to.

본 실시예에 있어서 칸막이 벽 강화제를 칸막이 벽에 부착할 때는 칸막이 벽 강화제 중에 기재를 셀 개구 단부의 단부면으로부터 원하는 높이까지 침지하여 행하는 것이, 모든 칸막이 벽에 균일하게 칸막이 벽 강화제를 간단히 부착할 수 있고, 게다가 강화 칸막이 벽부를 설치하는 영역을 임의로 제어하는 것이 용이하다는점에서 바람직하다. 단, 균일하게 칸막이 벽 강화제를 부착하기 위해서는 침지 후 지나치게 부착된 칸막이 벽 강화제를 압축 공기 등에 의해 제거하는 것이 바람직하다. 또, 스프레이 도포로도 칸막이 벽 강화제의 균질 도포는 가능하지만 강화 칸막이 벽부를 설치하는 영역을 임의로 제어하는 것이 어렵다.In the present embodiment, when the partition wall reinforcement is attached to the partition wall, immersing the substrate in the partition wall reinforcement to the desired height from the end face of the cell opening end can easily attach the partition wall reinforcement uniformly to all the partition walls. Moreover, it is preferable at the point which it is easy to arbitrarily control the area | region which installs a reinforcement partition wall part. However, in order to uniformly adhere the partition wall reinforcing agent, it is preferable to remove the partition wall reinforcing agent that is excessively adhered after immersion by compressed air or the like. In addition, even when spray coating, homogeneous application of the partition wall reinforcing agent is possible, but it is difficult to arbitrarily control an area where the reinforcing partition wall is provided.

다음의 본 실시예에 있어서는 칸막이 벽 강화제를 부착한 허니콤 구조의 기재에 관해서, 적어도 한 번의 소성을 행함으로써 정규 칸막이 벽부의 소성(형성)과 강화 칸막이 벽부의 소성(형성)을 동시에 행한다.In the present embodiment described below, the baking (forming) of the regular partition wall portion and the baking (forming) of the reinforcement partition wall portion are performed simultaneously by performing at least one firing on the base material of the honeycomb structure to which the partition wall reinforcing agent is attached.

본 실시예에 있어서는 기재의 소성에 있어서, 기재 및 칸막이 벽 강화제를 미리 건조해 두는 것이 바람직하고, 건조 방법으로서는 송풍 건조, 열풍 건조, 또는 마이크로파 건조 등을 들 수 있다.In the present Example, in baking of a base material, it is preferable to dry a base material and a partition wall reinforcing agent beforehand, As a drying method, air drying, hot air drying, microwave drying, etc. are mentioned.

또한, 소성할 때의 조건에 대해서는 기재 및 칸막이 벽 강화제의 종류에 따라 적절하게 원하는 조건을 선택하는 것이 바람직하며, 예컨대 기재가 코디에라이트화 재료를 주성분으로 하고, 칸막이 벽 강화제가 실리콘오일 등의 Si를 구조 중에 갖는 화합물을 주성분으로 하는 경우에는 1300∼1500℃에서 소성하면 좋다.In addition, it is preferable to select conditions suitably according to the kind of base material and a partition wall reinforcement about the conditions at the time of baking, for example, a base material mainly uses a cordierite-ized material, and a partition wall reinforcement is made of silicone oil etc. What is necessary is just to bake at 1300-1500 degreeC when the compound which has Si in a structure is a main component.

이상, 본 실시예의 제조 방법에 관해서 각 공정마다 설명했지만 본 실시예의 제조 방법은 칸막이 벽에 변형 등을 일으키지 않고 한 번의 소성 공정으로 내부식성이 우수한 세라믹 허니콤 구조체를 안정되게 제조할 수 있어서 고생산성 및 제품의 대폭적인 저비용화를 달성할 수 있는 것이다.As mentioned above, although the manufacturing method of this Example was demonstrated for every process, the manufacturing method of this Example can stably manufacture the ceramic honeycomb structure excellent in corrosion resistance by one baking process, without causing deformation etc. to a partition wall, and is high productivity. And it is possible to achieve a significant cost reduction of the product.

이하에서, 본 발명을 실시예에 의해 더욱 구체적으로 설명하지만, 본 발명은 이들의 실시예에 의해 전혀 한정되지 않는다.Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited at all by these Examples.

(실시예1)Example 1

코디에라이트화 원료로 이루어지는 세라믹 원료 100 질량부에 대하여, 메틸셀룰로오스 8 질량부, 라우린산 칼륨 비누 0.5 질량부, 폴리에테르 2 질량부, 물 28 질량부를 혼합한 것을 연속 압출 성형기에 투입하여 허니콤 구조를 갖는 성형체를 얻어 이것을 건조함으로써 허니콤 구조를 갖는 기재(미소성의 건조체)를 제작했다.A mixture of 8 parts by mass of methyl cellulose, 0.5 parts by mass of potassium laurate soap, 2 parts by mass of polyether and 28 parts by mass of water was added to 100 parts by mass of the ceramic raw material composed of the cordierite raw material, and the honey was introduced into a continuous extrusion molding machine. The molded object which has a comb structure was obtained, and it dried and the base material (micro-baked dry body) which has a honeycomb structure was produced.

다음에, 얻어진 기재에 디메틸실리콘오일(신에츠카가크 고교 가부시키가이샤 제조, 상품명: KF96-100 CS, 절대 점도: 약 100 mPa·s)로 이루어진 칸막이 벽 강화제를 셀 개구 단부면으로부터 축방향으로 5 mm의 깊이로 침지시켜, 기재의 셀개구 단부에 존재하는 칸막이 벽에 칸막이 벽 강화제를 부착시켰다. 또한, 그 직후 실온의 압축 공기를 송풍하여, 지나치게 부착된 칸막이 벽 강화제를 배제했다.Next, a partition wall reinforcing agent composed of dimethyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KF96-100CS, absolute viscosity: about 100 mPa · s) was axially formed from the cell opening end face. Dipping to a depth of mm allowed the partition wall reinforcing agent to adhere to the partition wall present at the cell opening end of the substrate. In addition, immediately afterwards, compressed air at room temperature was blown to remove the adhered partition wall reinforcing agent.

다음에, 셀 개구 단부에 존재하는 칸막이 벽에 칸막이 벽 강화제를 부착시킨 허니콤 구조의 기재를 140O℃에서 4시간 동안 소성하고, 칸막이 벽 두께 0.064 mm, 직경 100 mm, 높이 100 mm이고 사각 셀의 밀도가 140셀/cm2인 개구율 85.5%의 원주형 세라믹 허니콤 구조체(촉매 미담지)를 제조했다. 또, 제조한 세라믹 허니콤 구조체의 정규 칸막이 벽부의 기공률은 27∼28%였다.Subsequently, the honeycomb structured substrate having the partition wall reinforcing agent attached to the partition wall existing at the cell opening end was baked at 140 ° C. for 4 hours, and the partition wall thickness was 0.064 mm, diameter 100 mm, height 100 mm, A cylindrical ceramic honeycomb structure (uncatalyzed catalyst) having an opening ratio of 85.5% having a density of 140 cells / cm 2 was prepared. Moreover, the porosity of the regular partition wall part of the manufactured ceramic honeycomb structure was 27 to 28%.

(실시예 2∼4)(Examples 2 to 4)

칸막이 벽 강화제로서, 메틸하이드로젠실리콘오일(신에츠카가크 고교 가부시키가이샤 제조, 상품명: KF99, 절대 점도: 20 mPa.s)과 디메틸실리콘오일(신에츠카가크 고교 가부시키가이샤 제조, 상품명: KF96L-0.65 CS, 절대 점도: 0.65 mPa·s)를 각각 10/90, 25/75, 50/50의 비율(질량비)로 혼합한 것을 이용한 것 이외는 실시예 1과 같은 형태로 하여 세라믹 허니콤 구조체를 제조했다.As the partition wall reinforcing agent, methylhydrogen silicone oil (manufactured by Shin-Etsuka Chemical Co., Ltd., brand name: KF99, absolute viscosity: 20 mPa.s) and dimethyl silicone oil (manufactured by Shin-Etsuka Chemical Co., Ltd., brand name: KF96L- The ceramic honeycomb structural body was formed in the same manner as in Example 1, except that 0.65 CS and absolute viscosity: 0.65 mPa · s) were mixed at a ratio (mass ratio) of 10/90, 25/75, and 50/50, respectively. Manufactured.

(실시예 5∼7)(Examples 5-7)

칸막이 벽 강화제로서, 실리케이트알콕시올리고머(신에츠카가크 고교 가부시키가이샤 제조, 상품명: KR-500, 절대 점도: 20 mPa·s)와 디메틸실리콘오일(신에츠카가크 고교 가부시키가이샤 제조, 상품명: KF96L-0.65 CS, 절대 점도: 0.65 mPa·s)를 각각 10/90, 25/75, 50/50의 비율(질량비)로 혼합한 것을 이용한 것 이외는 실시예 1과 같은 형태로 하여 세라믹 허니콤 구조체를 제조했다.As a partition wall reinforcing agent, silicate alkoxy oligomer (manufactured by Shin-Etsuka Chemical Co., Ltd., brand name: KR-500, absolute viscosity: 20 mPa · s) and dimethyl silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., brand name: KF96L- The ceramic honeycomb structural body was formed in the same manner as in Example 1, except that 0.65 CS and absolute viscosity: 0.65 mPa · s) were mixed at a ratio (mass ratio) of 10/90, 25/75, and 50/50, respectively. Manufactured.

(실시예 8∼10)(Examples 8 to 10)

칸막이 벽 강화제로서, 메틸하이드로젠실리콘오일(신에츠카가크 고교 가부시키가이샤 제조, 상품명: KF99, 절대 점도: 20 mPa.s)과 디메틸시리콘오일(신에츠카가크 고교 가부시키가이샤 제조, 상품명: KF96L-1000 CS, 절대 점도: 1000 mPa·s)을 각각 10/90, 25/75, 50/50의 비율(질량비)로 혼합한 것을 이용한 것 이외는 실시예 1과 같은 형태로 하여 세라믹 허니콤 구조체를 제조했다.As the partition wall reinforcing agent, methylhydrogen silicone oil (manufactured by Shin-Etsuka Chemical Co., Ltd., brand name: KF99, absolute viscosity: 20 mPa.s) and dimethyl silicone oil (manufactured by Shin-Etsuka Chemical Co., Ltd., brand name: KF96L Ceramic honeycomb structured in the same manner as in Example 1 except for using a mixture of -1000 CS and absolute viscosity: 1000 mPa · s at a ratio (mass ratio) of 10/90, 25/75, and 50/50, respectively. Prepared.

(실시예 11)(Example 11)

칸막이 벽 강화제로서, 메틸하이드로젠실리콘오일(신에츠카가크 고교 가부시키가이샤 제조, 상품명: KF99,절대 점도: 20 mPa·s)과, 등유(니혼 세키유 미쓰비시 가부시키가이샤 제조)를 25/75의 비율(질량비)로 혼합한 것을 이용한 것 이외는 실시예 1과 같은 형태로 하여 세라믹 허니콤 구조체를 제조했다.As a partition wall reinforcing agent, methylhydrogen silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., brand name: KF99, absolute viscosity: 20 mPa · s), and kerosene (Nihon Sekiyu Mitsubishi Corporation) are 25/75 A ceramic honeycomb structural body was produced in the same manner as in Example 1, except that the mixture was used in a proportion (mass ratio).

(비교예 1)(Comparative Example 1)

허니콤 구조의 기재에 칸막이 벽 강화제를 부착시키지 않는 것 이외는 실시예 1과 같은 형태로 하여 허니콤 구조체를 제조했다.A honeycomb structural body was produced in the same manner as in Example 1 except that the partition wall reinforcing agent was not attached to the base material of the honeycomb structural body.

(비교예 2)(Comparative Example 2)

분산매로서 물을 이용하여, 실리카(SiO2) 분말을 5 질량% 분산시킨 분산액 100 질량부에 분산제(알킬아세탈화폴리비닐알코올/세키스이 카가크 고교 가부시키가이샤 제조, 상품명: 에스레크 KW-3)를 0.5 질량부 첨가한 칸막이 벽 강화제를 이용한 것 이외는 실시예 1과 같은 형태로 하여 세라믹 허니콤 구조체를 제조했다.Using water as a dispersion medium, a silica (SiO 2) a dispersing agent to 100 parts by mass of the dispersion liquid was 5% by mass dispersion powder (alkyl acetalized polyvinyl alcohol / Sekisui car manufacturing manufactured by greater Kogyo K.K., trade name: S recreational KW-3 A ceramic honeycomb structural body was produced in the same manner as in Example 1, except that the partition wall reinforcing agent containing 0.5 parts by mass of) was used.

(비교예 3)(Comparative Example 3)

분산매로서 석유계 탄화수소(니혼 세키유 미쓰비시 가부시키가이샤 제조, 상품 명: 등유/쿠리세프오일 F8 혼합유, 주성분: 등유)를 이용하여, 실리카(SiO2) 분말을 5 질량% 분산시킨 분산액 100 질량부에, 분산제(폴리옥시알렌 그룹 중합체/니혼 유지 가부시키가이샤 제조, 상품명: 마리아림 AKM-0531)를 0.5 질량부 첨가한 칸막이 벽 강화제를 이용한 것 이외는 실시예 1과 같은 형태로 하여 세라믹 허니콤 구조체를 제조했다.100 mass dispersion of 5 mass% silica (SiO 2 ) powder dispersed using petroleum hydrocarbon (manufactured by Nippon Seki Oil Mitsubishi Corp., product name: kerosene / kurifsefoil F8 mixed oil, main ingredient: kerosene) as a dispersion medium. In the same manner as in Example 1, except that the partition wall reinforcing agent to which 0.5 parts by mass of a dispersant (polyoxyalene group polymer / Nihon Oil and Fats Co., Ltd., trade name: Mariarim AKM-0531) was added was added to the ceramic honeycomb. The comb structure was produced.

각 실시예 및 비교예로 얻어진 세라믹 허니콤 구조체에 관해서 기공률, 내부식성, 아이소스태틱 강도 및 내열충격성을 이하와 같이 평가했다.The porosity, corrosion resistance, isostatic strength and thermal shock resistance of the ceramic honeycomb structures obtained in the examples and the comparative examples were evaluated as follows.

1. 기공률 1(제품간 교차)1. Porosity 1 (cross between products)

각 실시예 및 각 비교예에 의해 얻어진 세라믹 허니콤 구조체 5개에 관해서 도 1에 나타낸 바와 같이, 그 강화 칸막이 벽부에 관해서 단부면의 거의 전면인 7Ocm2의 범위에서 측정용 시료(6)를 잘라내어 이하에 도시한 방법에 의해 각 측정 시료의 기공률을 측정하여 최대 교차를 구했다.Five ceramic honeycomb structures obtained by each example and each comparative example were cut out of the sample 6 for measurement in the range of 70 cm 2 which is almost the entire surface of the end face with respect to the reinforced partition wall portion. The porosity of each measurement sample was measured by the method shown below, and the maximum crossover was calculated | required.

2. 기공률 2(강화 칸막이 벽부의 균일성)2. Porosity 2 (uniformity of reinforced partition wall)

강화 칸막이 벽부 전체에 관해서 균일한 내부식성을 갖는지 아닌지의 평가로서, 도 2에 도시한 바와 같이 각 실시예 및 각 비교예에 의해 얻어진 하나의 세라믹 허니콤 구조체의 강화 칸막이 벽부에 관해서, 그 단부면의 중앙부 1개소와 그 외주부 4개소의 합계 5개소에서, 각각 9 cm2의 범위에서 측정용 시료(7)를 잘라내어, 이하에 도시한 방법으로 각 측정 시료의 기공률을 측정하여 그 최대 교차를 구했다.As an evaluation of whether or not the entire reinforcement partition wall has uniform corrosion resistance, the end face of the reinforcement partition wall of one ceramic honeycomb structure obtained by each example and each comparative example as shown in FIG. The sample 7 for measurement was cut out in the range of 9 cm <2> in 1 center part of 1 place and 4 outer peripheral parts in total, and the porosity of each measurement sample was measured by the method shown below, and the maximum crossover was calculated | required. .

3. 기공률의 측정3. Measurement of porosity

(1) 측정 시료를 150℃로 2시간 동안 건조한 후, 용기에 넣어 장치에 세팅했다.(1) The measurement sample was dried at 150 ° C. for 2 hours, and then placed in a container and set in the apparatus.

(2) 용기 내에 수은을 주입하고 규정의 세공 직경에 해당하는 압력을 가하여, 측정 시료에 흡수된 수은 용적을 구했다.(2) Mercury was inject | poured in the container, the pressure corresponding to the defined pore diameter was applied, and the volume of mercury absorbed by the measurement sample was calculated | required.

(3) 세공 분포는 압력과 흡수된 수은 용적으로부터 계산하여 구했다.(3) Pore distribution was calculated and calculated from pressure and absorbed mercury volume.

(4) 세공 용적은 68.6 Mpa(700 kgf/cm2)의 압력을 가하여 흡수된 수은 용적으로부터 계산하여 구했다.(4) The pore volume was calculated by calculating the volume of mercury absorbed by applying a pressure of 68.6 Mpa (700 kgf / cm 2 ).

(5) 기공률은 총세공 용적으로부터 이하의 식으로 구했다.(5) Porosity was calculated | required by the following formula from total pore volume.

기공률(%)= 총세공 용적(1 g 당)×100/[총 세공 용적(1 g 당)+1/2.52]Porosity (%) = total pore volume (per g) x 100 / [total pore volume (per g) + 1 / 2.52]

4. 내부식성4. Corrosion resistance

4 기통, 배기량 1.8 리터의 가솔린 엔진 배기 포트에 세라믹 허니콤 구조체가 파지, 수용된 금속 캔을 접속했다. 즉, 샘플을 엔진의 바로 근처에 배치했다. 다음은 도 8에 표시되는 조건으로 엔진을 운전하고, 회전수가 6000 rpm이 되었을 때에 연마 입자(탄화규소, GC320, 평균 입자 직경 50 μm)를 0.1 g 투입했다. 추가로 도 8에 표시되는 조건으로 엔진 운전을 계속하여 130초를 1 사이클로서, 2 사이클에 한 번 연마 입자를 투입하여 이것을 연속적으로 반복했다. 합계 연마 입자 투입량을 약 2 g∼16 g 정도까지 바꿔 여러 번 시험을 행하고, 그 결과로부터 연마 입자 투입량이 10 g 때의 세라믹 허니콤 구조체의 부식량(풍식체적)을 산출했다.A four-cylinder, 1.8-liter gasoline engine exhaust port was connected to a metal can in which a ceramic honeycomb structure was held and housed. That is, the sample was placed in the immediate vicinity of the engine. Next, the engine was operated under the conditions shown in FIG. 8, and 0.1 g of abrasive grains (silicon carbide, GC320, an average particle diameter of 50 μm) was added when the rotation speed reached 6000 rpm. Furthermore, the engine operation was continued on the conditions shown in FIG. 8, 130 seconds was used as 1 cycle, and abrasive grain was thrown in once every 2 cycles, and this was repeated continuously. The total abrasive grain loading was changed to about 2 g to 16 g and tested several times. From the results, the amount of corrosion (air volume) of the ceramic honeycomb structure when the abrasive grain loading was 10 g was calculated.

부식량은 도 9에 나타낸 바와 같이 세라믹 허니콤 구조체(1)의 부식량을 측정하는 측의 가공 단부면에 고무 시트를 감아, 그 속에 직경 1.5 mm의 세라믹 제조 비드(20)를 약 3 mm의 높이로 깔아 채운 후 회수하여 비드 체적을 측정하고, 부식 시험 후 비드 체적과 시험 전 비드 체적과의 차를 구하여, 이것을 3회 행한 평균치 부식량으로 했다. 또한, 평가는 각 실시예 및 각 비교예로 얻어진 세라믹 허니콤 구조체 3개에 관해서 행하고, 부식 발생량이 총 3 cc를 넘은 경우를 실제 사용에 견딜 수 없는 것으로 하여 ×, 부식 발생량이 2 cc 이하의 것과 3 cc를 넘는 것이 혼재한 경우를 △, 부식 발생량이 총 2∼3 cc의 경우를 ○, 부식 발생량이 총 2 cc미만의 경우를 ◎라고 평가했다.As shown in FIG. 9, a rubber sheet is wound around the processing end surface of the side which measures the corrosion amount of the ceramic honeycomb structure 1, and the ceramic manufacturing bead 20 of diameter 1.5mm in it is about 3 mm. After filling it with height, it collect | recovered and measured the bead volume, the difference between the bead volume after a corrosion test and the bead volume before a test was calculated | required, and it was set as the average amount of corrosion performed 3 times. In addition, evaluation is performed about the three ceramic honeycomb structures obtained by each Example and each comparative example, and the case where corrosion generation amount exceeded 3 cc total cannot be tolerated actual use, and corrosion generation amount is 2 cc or less. (Triangle | delta) was evaluated for the case where the thing and more than 3 cc were mixed, (circle) and the case where corrosion generation amount was 2-3 cc in total, and the case where corrosion generation amount is less than 2 cc in total.

5. 아이소스태틱 강도5. Isostatic strength

자동차 규격 JASO 규격 M 505-87에 준거한 시험을 실시함으로써 파괴시의 가압 압력치를 측정하여, 이 값을 아이소스태틱 강도(kg/cm2)로 했다.The pressurized pressure value at the time of breaking was measured by carrying out the test based on the automobile standard JASO standard M 505-87, and this value was made into isostatic strength (kg / cm <2> ).

6. 내열충격성6. Thermal shock resistance

세라믹 허니콤 구조체를 전기로로 소정 온도까지 가열한 후 20℃의 실온 분위기에서 추출하고, 추출 직후의 고온 상태 및 냉풍에 의한 냉각 후(20℃의 상태)의 상태에서 열 충격에 의한 크랙 등의 결함이 발생하고 있는지를 눈으로 확인하여 관찰했다. 관찰에 의해 결함 발생이 확인되지 않는 경우는 가열 온도를 더욱 상승시켜 결함이 발생하는 온도까지 시험을 반복하고, 결함 발생이 확인된 한계 온도를 확인하여, 내열충격성을 평가했다.The ceramic honeycomb structure is heated to a predetermined temperature in an electric furnace and then extracted in a room temperature atmosphere at 20 ° C., and defects such as cracks due to thermal shock in the state of high temperature immediately after extraction and after cooling by cold wind (state at 20 ° C.) It was observed by eye to see if this occurred. When the observation did not confirm the occurrence of a defect, the heating temperature was further increased, the test was repeated until the temperature at which the defect occurred, the limit temperature at which the occurrence of the defect was confirmed, and the thermal shock resistance was evaluated.

(평가)(evaluation)

칸막이 벽 강화제를 이용하지 않는 비교예 1의 제조 방법에서는, 얻어진 세라믹 허니콤 구조체 5개의 칸막이 벽 단부의 기공률이 모두 27∼28%로 크고, 내부식성은 실제 사용에 견딜 수 없는 것이 확인되었다.In the manufacturing method of the comparative example 1 which does not use a partition wall reinforcing agent, it was confirmed that the porosity of the partition wall edge part of five obtained ceramic honeycomb structures is all 27-28%, and corrosion resistance cannot endure actual use.

또한, 실리카(SiO2) 분말을 물에 분산시킨 칸막이 벽 강화제를 이용하는 비교예 2의 제조 방법에서는, 도 4에 나타낸 바와 같이 얻어진 세라믹 허니콤 구조체의 칸막이 벽에 육안으로 분명히 확인할 수 있을 정도의 현저한 변형이 확인되어, 얻어진 세라믹 허니콤 구조체 5개의 아이소스태틱 강도도, 3∼5 kg/cm2로 모두 매우작아 실제 사용에 견딜 수 있는 것이 아니었다. 또한, 5개의 세라믹 허니콤 구조체 사이에서, 강화 칸막이 벽부에서의 평균 기공률의 최대 교차가 5%가 되고, 내부식성도 1.2∼3.2 cc로 제품 사이에서 변동이 컸다. 또한, 하나의 세라믹 허니콤 구조체 내에도 기공률의 최대 교차가 5%로 크고, 후술하는 실시예로 얻어지는 세라믹 허니콤 구조체에 비하여 국소적인 부식 현상이 일어나기 쉽기 때문에 강화 칸막이 벽부 전체의 평균 기공률이 동일한 경우에는 내부식성이 보다 낮은 것이 시사되었다.In addition, in the manufacturing method of Comparative Example 2 using the partition wall reinforcing agent in which silica (SiO 2 ) powder was dispersed in water, the remarkable degree that can be clearly seen visually on the partition wall of the ceramic honeycomb structure obtained as shown in FIG. Deformation was confirmed, and the isostatic strengths of the five obtained ceramic honeycomb structures were also very small at 3 to 5 kg / cm 2 and were not able to withstand actual use. In addition, between the five ceramic honeycomb structures, the maximum crossover of the average porosity at the reinforcing partition wall was 5%, and the corrosion resistance was 1.2 to 3.2 cc, which caused a great variation between the products. In addition, even in one ceramic honeycomb structure, the maximum crossing rate of porosity is 5%, and since the local corrosion phenomenon is likely to occur as compared with the ceramic honeycomb structure obtained in the examples described later, the average porosity of the entire reinforced partition wall is the same. The lower corrosion resistance was suggested.

마찬가지로, 실리카(SiO2) 분말을 석유계 탄화수소에 분산시킨 칸막이 벽 강화제를 이용하는 비교예 3의 제조 방법에서는, 얻어진 5개의 세라믹 허니콤 구조체 사이에서 강화 칸막이 벽부 전체의 평균 기공률의 최대 교차가 8%가 되고, 내부식성도 1.1∼3.5 cc로 제품 사이에서 변동이 보다 컸다. 또한, 하나의 세라믹 허니콤 구조체 내에도 기공률의 최대 교차가 7%로 보다 크고, 강화 칸막이 벽부에 국소적인 부식 현상이 보다 일어나기 쉬운 것이 시사되었다.Similarly, in the manufacturing method of Comparative Example 3 using the partition wall reinforcing agent in which silica (SiO 2) powder was dispersed in petroleum hydrocarbon, the maximum crossover of the average porosity of the entire reinforcing partition wall portion between the five ceramic honeycomb structures obtained was 8%. The corrosion resistance was also 1.1-3.5 cc, which caused more variation between products. In addition, it was suggested that even in one ceramic honeycomb structure, the maximum crossing rate of porosity is larger than 7%, and local corrosion phenomenon is more likely to occur in the reinforcement partition wall.

이것에 대하여, Si를 구조 중에 갖는 화합물로 이루어진 칸막이 벽 강화제를 칸막이 벽에 부착하는 각 실시예의 제조 방법에서는, 도 3에 나타낸 바와 같이(도 3은 실시예 1로 얻어진 세라믹 허니콤 구조체를 나타냄), 칸막이 벽의 변형이 없고, 아이소스태틱 강도도 21 kg/cm2이상으로 실제 사용에 전혀 문제가 없었다. 더욱이, 강화 칸막이 벽부 전체의 평균 기공률은 14∼24%로 미강화부에 대하여 3∼13% 낮고, 내부식성이 큰 것이 시사되었다. 또한, 5개의 세라믹 허니콤 구조체 사이에서 강화 칸막이 벽부 전체의 평균 기공률의 최대 교차가 1%로서, 변동이 매우 작고, 내부식성도 모두 3 cc 이하인 것이 확인되었다. 또한, 하나의 세라믹 허니콤 구조체 내에서도 기공률의 최대 교차가 1% 이하로 균일한 강화 칸막이 벽부가 형성되어 있어, 강화 칸막이 벽부에 국소적인 부식 현상이 일어나기 어렵고, 강화칸막이 벽부 전체로서 내부식성이 향상되고 있는 것이 시사되었다.On the other hand, in the manufacturing method of each Example which attaches the partition wall reinforcement which consists of a compound which has Si in a structure to a partition wall, as shown in FIG. 3 (FIG. 3 shows the ceramic honeycomb structure obtained by Example 1). There is no deformation of the partition wall, and the isostatic strength is 21 kg / cm 2 or more, so there is no problem in actual use. Furthermore, it was suggested that the average porosity of the entire reinforcement partition wall was 14 to 24%, 3 to 13% lower than that of the unreinforced portion, and large corrosion resistance. Moreover, it was confirmed that the maximum crossing of the average porosity of the whole reinforcement partition wall part among 5 ceramic honeycomb structures is 1%, the fluctuation | variation is very small, and all corrosion resistance is 3 cc or less. In addition, even in one ceramic honeycomb structure, a uniform reinforcement partition wall portion is formed with a maximum intersection of porosity of 1% or less, so that local corrosion phenomenon hardly occurs in the reinforcement partition wall, and the reinforcement partition improves corrosion resistance as a whole. It was suggested.

또한, 메틸하이드로젠실리콘오일과 디메틸실리콘오일을 혼합한 칸막이 벽 강화제를 칸막이 벽에 부착하는 실시예 2∼4, 8∼10의 제조 방법, 실리케이트알콕시올리고머와 디메틸실리콘오일을 혼합한 칸막이 벽 강화제를 칸막이 벽에 부착하는 실시예 5∼7의 제조 방법 및 메틸하이드로젠실리콘오일과 등유를 혼합한 칸막이 벽 강화제를 칸막이 벽에 부착히는 실시예 11의 제조 방법에서는 메틸하이드로젠실리콘오일 또는 실리케이트알콕시올리고머의 함유율을 크게함으로써 강화 칸막이 벽부 전체의 평균 기공률도 저하되는 경향이 인정되었다.Furthermore, the manufacturing method of Examples 2-4, 8-10 which attach a partition wall reinforcement which mixed methylhydrogen silicone oil and dimethyl silicone oil to a partition wall, and the partition wall reinforcement which mixed silicate alkoxy oligomer and dimethyl silicone oil In the manufacturing method of Examples 5 to 7 adhering to the partition wall and the manufacturing method of Example 11, in which the partition wall reinforcing agent mixed with methylhydrogen silicone oil and kerosene is attached to the partition wall, methylhydrogen silicone oil or silicate alkoxy oligomer It was recognized that the tendency of decreasing the average porosity of the whole reinforcement partition wall part also by increasing the content rate of is.

구체적으로는 메틸하이드로젠실리콘오일 또는 실리케이트알콕시올리고머를 25% 이상으로 한 실시예 3, 4, 6, 7, 9∼11에서 얻어진 세라믹 허니콤 구조체에서는 평균 기공률이 21% 이하인 강화 칸막이 벽부를 얻을 수 있어, 균일한 기공률을 갖는 효과도 더해져 내부식성이 매우 컸다. 한편, 메틸하이드로젠실리콘오일 또는 실리케이트알콕시올리고머를 50%로 한 실시예 4, 7, 10에서 얻어진 세라믹 허니콤 구조체에서는 평균 기공률이 각각 14∼15%, 16∼17%, 14∼15%인 강화 칸막이 벽부를 얻을 수 있어 내부식성이 더욱 컸다. 또, 어떤 실시예 및 비교예에서도, 얻어진 세라믹 허니콤 구조체는 내열 충격 온도 70℃ 이상으로 실제 사용상 충분한 내열충격성이 인정되었다. 이용한 칸막이 벽 강화제 및 평가 결과를 표 1에 통합하여 나타낸다.Specifically, in the ceramic honeycomb structure obtained in Examples 3, 4, 6, 7, 9 to 11, wherein methylhydrogensilicone oil or silicatealkoxy oligomer is 25% or more, a reinforced partition wall having an average porosity of 21% or less can be obtained. In addition, the effect which has a uniform porosity was added, and corrosion resistance was very large. On the other hand, in the ceramic honeycomb structures obtained in Examples 4, 7 and 10 with 50% methylhydrogensilicone oil or silicatealkoxy oligomer, the reinforcement having an average porosity of 14-15%, 16-17% and 14-15%, respectively. The partition wall part can be obtained, which is more corrosion resistant. Moreover, also in any Example and the comparative example, the obtained ceramic honeycomb structure was recognized the heat shock resistance sufficient in actual use in heat shock temperature 70 degreeC or more. The partition wall reinforcing agent used and the evaluation results are shown in Table 1.

[표1]Table 1

이상, 설명한 바와 같이 본 발명에 따르면, 생산성의 향상 및 제품의 저비용화를 대폭 개선하면서 칸막이 벽에 변형 등이 없는, 원하는 성능을 갖는 허니콤 구조체를 얻을 수 있다. 덧붙여, 치밀하고 균일한 강화 칸막이 벽부를 정밀도 좋게 형성할 수 있어, 내부식성에 우수한 세라믹 허니콤 구조체를 안정적으로 얻을 수 있다. 물론, 얻어진 세라믹 허니콤 구조체는 강화 칸막이 벽부 전체에 관해서 매우 균일한 기공률을 갖고, 국소적인 부식 현상을 거의 완전히 회피할 수 있기 때문에 보다 우수한 내부식성을 갖는다.As described above, according to the present invention, it is possible to obtain a honeycomb structure having a desired performance without significantly deforming the partition wall while greatly improving the productivity and the cost reduction of the product. In addition, a dense and uniform reinforcement partition wall portion can be formed with high precision, and a ceramic honeycomb structure excellent in corrosion resistance can be stably obtained. Of course, the obtained ceramic honeycomb structure has a very uniform porosity with respect to the entire reinforcement partition wall portion, and has better corrosion resistance because local corrosion phenomenon can be almost completely avoided.

Claims (20)

다공질 구조를 갖는 복수의 칸막이 벽에 의해 구획된 유체의 유로가 되는 복수의 셀로 이루어지는 셀 복합체와, 상기 셀 복합체의 최외주에 위치하는 최외주셀을 둘러싸서 유지하는 다공질 구조를 갖는 외벽을 구비한 세라믹 허니콤 구조체로서,A cell composite including a plurality of cells serving as a flow path of a fluid partitioned by a plurality of partition walls having a porous structure, and an outer wall having a porous structure surrounding and holding the outermost circumferential cell positioned at the outermost circumference of the cell composite. As a ceramic honeycomb structure, 상기 칸막이 벽 중 상기 셀 복합체의 적어도 한 쪽 셀 개구 단부에 위치하는 부분이 상기 적어도 한 쪽 셀 개구 단부 이외의 부분(정규 칸막이 벽부)보다도 고강도이며, 또한 단위 체적당 기공률의 변동이 ±2% 이내인 강화 칸막이 벽부를 구성하여 이루어지는 것을 특징으로 하는 세라믹 허니콤 구조체.The portion of the cell wall located at at least one cell opening end of the cell composite has a higher strength than the portion other than the at least one cell opening end (normal partition wall part), and the variation in porosity per unit volume is within ± 2%. A ceramic honeycomb structure, comprising a phosphor reinforced partition wall. 제1항에 있어서, 상기 강화 칸막이 벽부의 기공률(%)의 값은 상기 정규 칸막이 벽부의 기공률(%) 값보다 3% 이상 작은 것인 세라믹 허니콤 구조체.The ceramic honeycomb structure according to claim 1, wherein a value of the porosity (%) of the reinforcing partition wall portion is at least 3% smaller than a value of the porosity (%) of the regular partition wall portion. 제1항 또는 제2항에 있어서, 상기 강화 칸막이 벽부의 기공률은 30% 이하인 것인 세라믹 허니콤 구조체.The ceramic honeycomb structure according to claim 1 or 2, wherein a porosity of the reinforcing partition wall portion is 30% or less. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 칸막이 벽의 최소 칸막이 벽 두께는 0.030∼0.076 mm인 것인 세라믹 허니콤 구조체.The ceramic honeycomb structure according to any one of claims 1 to 3, wherein the minimum partition wall thickness of the partition wall is 0.030 to 0.076 mm. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 강화 칸막이 벽부의 셀 개구 단부의 단부면으로부터 선단까지의 길이가 상기 강화 칸막이 벽부 전체로서는 동일하지 않은 세라믹 허니콤 구조체.The ceramic honeycomb structure according to any one of claims 1 to 4, wherein the length from the end face to the tip of the cell opening end of the reinforcement partition wall portion is not the same as the entire reinforcement partition wall portion. 제1항 내지 제5항 중 어느 한 항에 있어서, 상기 강화 칸막이 벽부의 칸막이 벽 두께는 상기 정규 칸막이 벽부의 칸막이 벽 두께보다도 두꺼운 것인 세라믹 허니콤 구조체.The ceramic honeycomb structure according to any one of claims 1 to 5, wherein the partition wall thickness of the reinforcing partition wall portion is thicker than the partition wall thickness of the regular partition wall portion. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 최외주 셀을 기점 셀, 상기 기점 셀보다 내측에 위치하는 3∼20 번째의 범위 내의 어느 하나의 셀을 종점 셀, 상기 종점 셀보다 내측에 위치하는 셀을 기본 셀로 한 경우,The cell according to any one of claims 1 to 6, wherein any one cell within a third to twenty-second range in which the outermost circumferential cell is located inside the starting cell and the starting cell is located inside the end cell and the end cell. If the cell located at is the default cell, 상기 기점 셀 및 상기 종점 셀의 각각을 구성하는 칸막이 벽의 두께(Tr1, Tr3∼20)와 상기 기본 셀을 구성하는 칸막이 벽의 두께(Tc)가 1.10≤(Tr1, Tr3∼20)/Tc≤ 3.00의 관계를 만족하는 것인 세라믹 허니콤 구조체.The thicknesses Tr 1 and Tr 3 to 20 of the partition walls constituting each of the starting and end cells and the thickness Tc of the partition walls constituting the basic cell are 1.10 ≦ (Tr 1 , Tr 3 to 20). Ceramic honeycomb structure, which satisfies the relationship of) /Tc≦3.00. 제1항 내지 제7항 중 어느 한 항에 있어서, 코디에라이트, 알루미나, 멀라이트, 질화규소, 알루미늄티타네이트, 지르코니아 및 탄화규소로 이루어지는 군에서 선택되는 1종 이상의 세라믹에 의해 구성되는 것인 세라믹 허니콤 구조체.The ceramic according to any one of claims 1 to 7, which is composed of at least one ceramic selected from the group consisting of cordierite, alumina, mullite, silicon nitride, aluminum titanate, zirconia, and silicon carbide. Honeycomb structure. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 유로에 수직인 단면 형상은 원, 타원, 장원, 사다리꼴, 삼각형, 사각형, 육각형 또는 좌우 비대칭인 이형 형상인 것인 세라믹 허니콤 구조체.The ceramic honeycomb structure according to any one of claims 1 to 8, wherein the cross-sectional shape perpendicular to the flow path is a shape of a circle, an ellipse, a manor, a trapezoid, a triangle, a square, a hexagon, or a bilateral asymmetry. 제1항 내지 제9항 중 어느 한 항에 있어서, 상기 셀의 유로에 수직인 단면 형상은 삼각형, 사각형 또는 육각형인 것인 세라믹 허니콤 구조체.10. The ceramic honeycomb structure according to any one of the preceding claims, wherein the cross-sectional shape perpendicular to the flow path of the cell is triangular, square or hexagonal. 제1항 내지 제10항 중 어느 한 항에 있어서, 자동차 배기 가스의 정화 촉매용 담체에 이용되는 세라믹 허니콤 구조체.The ceramic honeycomb structure according to any one of claims 1 to 10, which is used for a carrier for purification catalysts for automobile exhaust gas. 제1항 내지 제11항 중 어느 한 항에 있어서, 상기 칸막이 벽에 촉매 성분이 담지되어, 상기 외벽의 외주면에서 파지됨으로써 촉매 컨버터에 내장되는 세라믹 허니콤 구조체.The ceramic honeycomb structure according to any one of claims 1 to 11, wherein a catalyst component is supported on the partition wall and held on an outer circumferential surface of the outer wall to be embedded in a catalytic converter. 세라믹 재료를 주성분으로 한 배토를 이용하여, 복수의 칸막이 벽을 갖춘 허니콤 구조를 갖는 건조체인 기재를 얻어, 상기 칸막이 벽 중 상기 기재의 적어도 한 쪽 셀 개구 단부에 위치하는 부분에 칸막이 벽 강화제를 부착시킨 후 소성하는 세라믹 허니콤 구조체의 제조 방법으로서,Using a clay material composed mainly of ceramic material, a substrate having a honeycomb structure having a plurality of partition walls is obtained, and a partition wall reinforcing agent is applied to a portion of the partition wall located at at least one cell opening end of the substrate. As a method for producing a ceramic honeycomb structure that is baked after being adhered, 상기 칸막이 벽 강화제로서, Si, Ti, Mg 및 Al로 이루어지는 군에서 선택되는 1종 이상의 원소를 구조 중에 갖는 화합물을 주성분으로 하는 것을 이용하는 것을 특징으로 하는 세라믹 허니콤 구조체의 제조 방법.A method for producing a ceramic honeycomb structural body, comprising as a partition wall reinforcing agent a compound having as a main component a compound having at least one element selected from the group consisting of Si, Ti, Mg, and Al in its structure. 제13항에 있어서, 상기 칸막이 벽 강화제의 주성분은 연소되어, 무기 산화물을 생성하는 화합물인 것인 세라믹 허니콤 구조체의 제조 방법.The method for producing a ceramic honeycomb structure according to claim 13, wherein the main component of the partition wall reinforcing agent is a compound which is burned to produce an inorganic oxide. 제13항 또는 제14항에 있어서, 상기 칸막이 벽 강화제의 주성분은 실록산 결합을 갖는 화합물인 것인 세라믹 허니콤 구조체의 제조 방법.The method for producing a ceramic honeycomb structure according to claim 13 or 14, wherein the main component of the partition wall reinforcing agent is a compound having a siloxane bond. 제13항 내지 제15항 중 어느 한 항에 있어서, 상기 칸막이 벽 강화제의 주성분은 실리콘오일, 실리콘와니스, 알콕시올리고머 또는 이들의 혼합물인 것인 세라믹 허니콤 구조체의 제조 방법.The method for producing a ceramic honeycomb structure according to any one of claims 13 to 15, wherein the main component of the partition wall reinforcing agent is silicone oil, silicone varnish, alkoxy oligomer or a mixture thereof. 제13항 내지 제16항 중 어느 한 항에 있어서, 상기 칸막이 벽 강화제의 절대 점도는 1∼10000 mPa·s인 것인 세라믹 허니콤 구조체의 제조 방법.The method for producing a ceramic honeycomb structural body according to any one of claims 13 to 16, wherein an absolute viscosity of the partition wall reinforcing agent is 1 to 10000 mPa · s. 제13항 내지 제17항 중 어느 한 항에 있어서, 상기 세라믹 재료는 코디에라이트화 원료인 것인 세라믹 허니콤 구조체의 제조 방법.The method for producing a ceramic honeycomb structure according to any one of claims 13 to 17, wherein the ceramic material is a cordierite raw material. 제13항 내지 제18항 중 어느 한 항에 있어서, 상기 배토는 수용성 유기 바인더를 함유하는 것인 세라믹 허니콤 구조체의 제조 방법.The method for producing a ceramic honeycomb structure according to any one of claims 13 to 18, wherein the clay contains a water-soluble organic binder. 제19항에 있어서, 상기 수용성 유기 바인더는 히드록시프로필메틸셀룰로오스, 메틸셀룰로오스, 히드록시에틸셀룰로오스, 카르복실메틸셀룰로오스, 폴리비닐알코올 및 폴리비닐아세탈로 이루어지는 군에서 선택되는 1종 이상의 수용성 화합물로 이루어지는 것인 세라믹 허니콤 구조체의 제조 방법.The method of claim 19, wherein the water-soluble organic binder is composed of at least one water-soluble compound selected from the group consisting of hydroxypropyl methyl cellulose, methyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, polyvinyl alcohol and polyvinyl acetal. Method for producing a ceramic honeycomb structure.
KR1020047014509A 2002-03-15 2003-02-25 Ceramic honeycomb structural body and method of manufacturing the structural body KR100607480B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPJP-P-2002-00072488 2002-03-15
JP2002072488 2002-03-15
JP2003002960A JP4294964B2 (en) 2002-03-15 2003-01-09 Manufacturing method of ceramic honeycomb structure
JPJP-P-2003-00002960 2003-01-09
PCT/JP2003/002055 WO2003078121A1 (en) 2002-03-15 2003-02-25 Ceramic honeycomb structural body and method of manufacturing the structural body

Publications (2)

Publication Number Publication Date
KR20050007441A true KR20050007441A (en) 2005-01-18
KR100607480B1 KR100607480B1 (en) 2006-08-02

Family

ID=28043729

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020047014509A KR100607480B1 (en) 2002-03-15 2003-02-25 Ceramic honeycomb structural body and method of manufacturing the structural body

Country Status (9)

Country Link
US (1) US7413717B2 (en)
EP (1) EP1486305B1 (en)
JP (1) JP4294964B2 (en)
KR (1) KR100607480B1 (en)
CN (1) CN100482429C (en)
AU (1) AU2003211675A1 (en)
BR (1) BR0308468A (en)
CA (1) CA2477837A1 (en)
WO (1) WO2003078121A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101382511B1 (en) * 2006-01-27 2014-04-07 히타치 긴조쿠 가부시키가이샤 Method for manufacturing ceramic honeycomb filter

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082574B2 (en) * 2002-08-21 2008-04-30 日本碍子株式会社 Manufacturing method of honeycomb structure
US20090010817A1 (en) * 2004-10-12 2009-01-08 Ngk Insulators, Ltd. Honeycomb filter
CN100386150C (en) * 2005-08-17 2008-05-07 云南菲尔特环保科技有限公司 Carrier of ceramics catalyst, and microparticles collection device of constituting the carrier and their preparation method
KR100667028B1 (en) * 2005-10-04 2007-01-10 희성엥겔하드주식회사 A scr catalytic converter without nh3 or urea injection
EP1955751A4 (en) * 2005-10-25 2009-12-23 Ngk Insulators Ltd Honeycomb filter
JP4788497B2 (en) * 2005-12-27 2011-10-05 株式会社デンソー Hex honeycomb structure
US7674513B2 (en) * 2006-03-31 2010-03-09 Corning Incorporated Crack-resistant ceramic honeycomb structures
FR2931697B1 (en) * 2008-05-29 2011-04-29 Saint Gobain Ct Recherches CATALYTIC FILTER OR SUPPORT BASED ON SILICON CARBIDE AND ALUMINUM TITANATE
JP2010227818A (en) * 2009-03-26 2010-10-14 Ngk Insulators Ltd Honeycomb structure and honeycomb catalyst
US20100304041A1 (en) * 2009-05-29 2010-12-02 Tonia Havewala Fletcher Method For Coating Honeycomb Bodies
JP2011162430A (en) * 2010-01-14 2011-08-25 Shin-Etsu Chemical Co Ltd Water-soluble binder for ceramic molding and ceramic molding composition using the same
JP5757297B2 (en) * 2013-01-23 2015-07-29 トヨタ自動車株式会社 Catalytic converter
JP6540260B2 (en) * 2015-06-18 2019-07-10 株式会社デンソー Honeycomb structure and automotive catalytic converter
JP6587565B2 (en) * 2016-03-17 2019-10-09 日本碍子株式会社 Honeycomb structure
JP6788515B2 (en) * 2017-02-02 2020-11-25 日本碍子株式会社 Sealed honeycomb structure
WO2019108918A1 (en) * 2017-11-30 2019-06-06 Corning Incorporated Ceramic articles with bleed-through barrier and methods of manufacture thereof
JP7114886B2 (en) * 2017-12-07 2022-08-09 株式会社デンソー honeycomb structure
US11534937B2 (en) 2017-12-22 2022-12-27 Corning Incorporated Extrusion dies
JP6881337B2 (en) * 2018-01-30 2021-06-02 株式会社デンソー Honeycomb structure and mold
US11666897B2 (en) 2018-05-31 2023-06-06 Corning Incorporated Honeycomb bodies with multi-zoned honeycomb structures and co-extrusion manufacturing methods
WO2020005665A1 (en) * 2018-06-29 2020-01-02 Corning Incorporated Honeycomb bodies with controlled porosity gradient and firing methods thereof
JP7119970B2 (en) * 2018-12-12 2022-08-17 トヨタ自動車株式会社 POSITION DETECTION METHOD AND POSITION DETECTION DEVICE

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54150406A (en) 1978-05-18 1979-11-26 Nippon Soken Ceramic honeycomb structure
JPS5599344A (en) 1979-01-26 1980-07-29 Mitsubishi Petrochem Co Ltd End part reinforced abrasion-resistant catalyst molding for denitration
US4255316A (en) * 1979-04-26 1981-03-10 Dow Corning Corporation Ceramifiable silicone adhesives
JPS56129043A (en) * 1980-03-14 1981-10-08 Ngk Insulators Ltd Honeycomb structure of ceramic
US4416675A (en) * 1982-02-22 1983-11-22 Corning Glass Works High capacity solid particulate filter apparatus
US4902216A (en) * 1987-09-08 1990-02-20 Corning Incorporated Extrusion die for protrusion and/or high cell density ceramic honeycomb structures
JP2608641B2 (en) 1991-03-20 1997-05-07 日本碍子株式会社 Honeycomb catalyst for purifying exhaust gas and method for producing the same
US6040266A (en) * 1994-02-22 2000-03-21 Ultramet Foam catalyst support for exhaust purification
JPH08224720A (en) 1995-02-22 1996-09-03 Nippon Soken Inc Production of fiber reinforced honeycomb structure
EP0745416B1 (en) * 1995-06-02 2003-09-17 Corning Incorporated Device for removal of contaminants from fluid streams
JP3060539B2 (en) * 1996-08-07 2000-07-10 株式会社デンソー Ceramic honeycomb structure and method of manufacturing the same
US6217832B1 (en) * 1998-04-30 2001-04-17 Catalytica, Inc. Support structures for a catalyst
JP3867439B2 (en) 1998-06-03 2007-01-10 株式会社デンソー Honeycomb structure and manufacturing method thereof
JP3394449B2 (en) 1998-06-18 2003-04-07 日本碍子株式会社 Thin-walled honeycomb structure and method of reinforcing the same
JP3803850B2 (en) 1999-02-25 2006-08-02 日立造船株式会社 Curing treatment method for catalyst gas inflow end
US6381362B1 (en) * 1999-04-08 2002-04-30 Tata America International Corporation Method and apparatus for including virtual ads in video presentations
JP2001226173A (en) 1999-12-07 2001-08-21 Denso Corp Manufacturing process of honeycomb structure
JP4259703B2 (en) 1999-12-07 2009-04-30 株式会社デンソー Ceramic honeycomb structure and manufacturing method thereof
DE19962544A1 (en) * 1999-12-23 2001-07-19 Degussa Process for coating a ceramic honeycomb body
JP2001220245A (en) 2000-02-07 2001-08-14 Kousha:Kk Method for extrusion molding ceramic material
JP2002070545A (en) 2000-08-25 2002-03-08 Ibiden Co Ltd Storage structure for ceramic honeycomb structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101382511B1 (en) * 2006-01-27 2014-04-07 히타치 긴조쿠 가부시키가이샤 Method for manufacturing ceramic honeycomb filter

Also Published As

Publication number Publication date
JP2003334455A (en) 2003-11-25
AU2003211675A1 (en) 2003-09-29
CA2477837A1 (en) 2003-09-25
CN1652907A (en) 2005-08-10
KR100607480B1 (en) 2006-08-02
CN100482429C (en) 2009-04-29
JP4294964B2 (en) 2009-07-15
BR0308468A (en) 2005-05-03
US7413717B2 (en) 2008-08-19
US20050106083A1 (en) 2005-05-19
WO2003078121A1 (en) 2003-09-25
EP1486305B1 (en) 2014-07-02
EP1486305A4 (en) 2007-08-29
EP1486305A1 (en) 2004-12-15

Similar Documents

Publication Publication Date Title
KR100607480B1 (en) Ceramic honeycomb structural body and method of manufacturing the structural body
US10377673B2 (en) Production method of ceramic honeycomb structure, and ceramic honeycomb structure
JP4459476B2 (en) Porous honeycomb structure and manufacturing method thereof
US7939157B2 (en) Honeycomb structure and method for manufacturing the same
EP1598102B1 (en) Ceramic honeycomb structure
JP2613729B2 (en) Ceramic honeycomb structure, method of manufacturing the same, and coating material therefor
US7449427B2 (en) Honeycomb structured body
JP5808619B2 (en) Honeycomb structure and honeycomb catalyst body
JP4545383B2 (en) Ceramic honeycomb structure and manufacturing method thereof
JP4393199B2 (en) Honeycomb structure and manufacturing method thereof
JP2003095768A (en) Honeycomb structure and method of manufacturing the same
EP2130808A1 (en) Process for producing ceramic honeycomb structure
JP5785406B2 (en) Honeycomb structure
JP6824770B2 (en) Honeycomb structure
CN108568159A (en) Honeycomb structure
JP6013243B2 (en) Honeycomb catalyst body
JP6581917B2 (en) Honeycomb structure
JP2004074700A (en) Manufacturing method for honeycomb structure
ZA200406928B (en) Ceramic honeycomb structural body and method of manufacturing the structural body
ZA200408025B (en) Ceramics honeycomb structural body and method of manufacturing the structural body.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090630

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee