KR20040108074A - 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서프리앰블 시퀀스 생성 장치 및 방법 - Google Patents

직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서프리앰블 시퀀스 생성 장치 및 방법 Download PDF

Info

Publication number
KR20040108074A
KR20040108074A KR1020030038815A KR20030038815A KR20040108074A KR 20040108074 A KR20040108074 A KR 20040108074A KR 1020030038815 A KR1020030038815 A KR 1020030038815A KR 20030038815 A KR20030038815 A KR 20030038815A KR 20040108074 A KR20040108074 A KR 20040108074A
Authority
KR
South Korea
Prior art keywords
complementary sequence
golay complementary
length
sequence
subcarriers
Prior art date
Application number
KR1020030038815A
Other languages
English (en)
Other versions
KR100770912B1 (ko
Inventor
서창호
주판유
박동식
조영권
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020030038815A priority Critical patent/KR100770912B1/ko
Priority to US10/868,410 priority patent/US7372910B2/en
Publication of KR20040108074A publication Critical patent/KR20040108074A/ko
Application granted granted Critical
Publication of KR100770912B1 publication Critical patent/KR100770912B1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0011Complementary
    • H04J13/0014Golay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/10Code generation
    • H04J13/102Combining codes
    • H04J13/107Combining codes by concatenation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/262Reduction thereof by selection of pilot symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2662Symbol synchronisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

본 발명은 제1개수의 부반송파들을 사용하는 직교 주파수 분할 다중 통신 시스템에서 길이 N의 골래이 상보 시퀀스와 길이 M의 골래이 상보 시퀀스를 이용하여 길이 M + N + k의 프리앰블 시퀀스를 생성하고, 상기 제1개수의 부반송파들 중 DC 성분과 부반송파들간 간섭 제거 성분에 대응되는 부반송파들에 널 데이터를 삽입하며, 상기 제1개수의 부반송파들중 상기 널 데이터가 삽입된 부반송파들 이외의 제2개수의 부반송파들 각각에 상기 프리앰블 시퀀스 구성 성분들 각각을 삽입한 후 역고속 푸리에 변환하여 최소 피크대 평균 전력비를 가지는 상기 프리앰블 시퀀스를 생성한다.

Description

직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서 프리앰블 시퀀스 생성 장치 및 방법{APPARATUS FOR GENERATING PREAMBLE SEQUENCES IN COMMUNICATION SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING SCHEME AND METHOD THEREOF}
본 발명은 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에 관한 것으로서, 특히 최소 피크대 평균 전력비를 가지는 프리앰블 시퀀스를 생성하는 장치 및 방법에 관한 것이다.
일반적으로 무선 통신 시스템(wireless communication system)은 무선 통신 서비스를 지원하는 시스템으로서, 기지국(Node B)과 사용자 단말기(UE: User Equipment)로 구성된다. 그리고, 상기 기지국과 상기 사용자 단말기는 전송 프레임(frame)을 사용하여 무선 통신 서비스를 지원한다. 따라서, 상기 기지국과 상기 사용자 단말기는 전송 프레임의 송신 및 수신을 위해 상호 동기를 획득하여야 하며, 상기 동기 획득을 위해서 상기 기지국은 상기 사용자 단말기가 상기 기지국에서 전송하는 프레임의 시작을 알 수 있도록 동기 신호를 전송한다. 그러면, 상기 사용자 단말기는 상기 기지국이 전송하는 동기신호를 수신하여 상기 기지국의 프레임 타이밍(frame timing)을 확인하고, 상기 확인된 프레임 타이밍에 따라서 수신되는 프레임을 복조하게 된다. 그리고 상기 동기신호는 기지국과 상기 사용자 단말기가 미리 약속하고 있는 특정 프리앰블 시퀀스(preamble sequence)를 사용하는 것이 일반적이다.
또한 상기 직교 주파수 분할 다중(OFDM: Orthogonal Frequency DivisionMultiplexing, 이하 "OFDM"이라 칭하기로 한다) 방식을 사용하는 통신 시스템(이하 "OFDM 통신 시스템"이라 칭하기로 한다)에서 사용되는 프리앰블 시퀀스는 피크대 평균 전력비(PAPR: Peak to Average Power Ratio, 이하 "PAPR"이라 칭하기로 한다)가 작은 것을 사용하며, 기지국에서 사용자 단말기로 전송하는 프리앰블은 긴 프리앰블로서 대략적 동기(coarse synchronization)를 수행하기 위해 필요한 프리앰블과, 미세 주파수 동기를 수행하기 위해 필요한 짧은 프리앰블을 연결하여 사용한다. 또한 상기 사용자 단말기에서 기지국으로 전송하는 프리앰블은 상기 짧은 프리앰블만을 이용하여 미세 주파수 동기를 획득하도록 한다. 여기서, 상기 OFDM 통신 시스템의 프리앰블 시퀀스로서 PAPR이 작은 것을 사용해야하는 이유를 설명하면 다음과 같다. 먼저, 상기 OFDM 통신 시스템은 다중 반송파(multi carrier) 통신 시스템으로서 다수의 반송파들, 즉 다수의 부반송파(sub-carrier)들을 사용하기 때문에 상기 부반송파들 각각의 직교성이 중요하게 여겨진다. 그래서, 상기 부반송파들 각각간에는 상호 직교성을 가지도록 위상(phase)이 설정되는데, 상기 부반송파들을 통한 신호 송수신 과정에서 상기 위상이 변경될 경우 상기 부반송파들간의 신호가 겹쳐질 수 있다. 이 경우 상기 위상 변경으로 인해 겹쳐진 신호의 크기는 상기 OFDM 통신 시스템에 구비되어 있는 증폭기(amplifier)의 선형 구간을 벗어나게 되고, 따라서 정상적인 신호 송수신이 불가능하기 때문에 상기 OFDM 통신 시스템은 최소의 PAPR을 가지는 프리앰블 시퀀스를 사용하는 것이다.
또한 상기 OFDM 통신 시스템에서는 하나의 프레임을 시간적으로 다중화하여 여러 사용자들, 즉 사용자 단말기들에 대한 데이터들을 전송한다. 상기 OFDM 통신시스템에서도 프레임의 시작을 알려주는 프레임 프리앰블이 프레임의 시작점에서부터 일정 구간동안 전송된다. 또한, 하나의 프레임 내에 상기 각 사용자들에게 전송하는 데이터가 불규칙적으로 전송될 수 있으므로 데이터의 시작을 알리는 버스트 프리앰블이 각 데이터의 앞부분에 존재한다. 따라서 사용자 단말기는 상기 데이터의 전송 시작점을 알기 위해서는 데이터 프리앰블을 수신하여야만 한다. 즉, 상기 사용자 단말기는 데이터의 수신을 위해 데이터의 시작점에 대한 동기를 맞추어야 하는데, 이를 위해서는 신호를 수신하기 전에 모든 시스템에서 공통으로 사용하는 프리앰블 시퀀스를 포착하여 동기를 맞추어야만 한다.
한편, 상기 OFDM 통신 시스템은 상기 OFDM 통신 시스템이 아닌 통신 시스템, 즉 상기 OFDM 방식을 사용하지 않는 통신 시스템과 소스 코딩(source coding) 방식과, 채널 코딩(channel coding) 방식 및 변조(modulation) 방식 등에 있어서 동일하다. 물론, 부호 분할 다중 접속(CDMA: Code Division Multiple Access, 이하 "CDMA"라 칭하기로 한다) 통신 시스템에서는 데이터를 확산(spreading)하여 전송하는 반면에, 상기 OFDM 통신 시스템은 데이터를 역고속 푸리에 변환(IFFT: Inverse Fast Fourier Transform, 이하 "IFFT"라 칭하기로 한다)한 후 보호 구간(Guard interval)을 삽입하는 형태로 전송함으로써, 상기 OFDM 통신 시스템은 상기 CDMA 통신 시스템에 비해서 광대역 신호를 비교적 간단한 하드웨어(hardware)로 전송할 수 있다. 즉, 상기 OFDM 통신 시스템은 데이터에 대한 변조를 수행한 후에는 다수의 비트(bit)/심볼(symbol)열을 묶어서 주파수 영역(frequency domain)에 해당하는 IFFT 입력으로 병렬화된 비트/심볼열을 입력하면 출력으로 IFFT되어진 시간영역(time domain) 신호가 출력된다. 여기서, 상기 출력된 시간영역 신호는 광대역 신호를 여러 개의 협대역(narrow band) 부반송파 신호로 멀티플렉싱한 것으로, 한 OFDM 심볼 구간동안 다수개의 변조 심볼들이 상기 IFFT 과정을 통해 전송된다.
그러나 상기 OFDM 통신시스템에서 상기와 같이 IFFT된 OFDM 심볼을 그대로 전송하게되면 이전 OFDM 심볼과 현재 OFDM 심볼간에 간섭(interference)을 피할 수 없다. 상기 심볼간 간섭을 제거하기 위해서 상기 보호 구간을 삽입하는 것이다. 상기 보호 구간은 일정 구간의 널(null) 데이터를 삽입하는 형태로 제안되었으나, 상기 보호 구간에 널 데이터를 전송하는 형태는 수신기에서 OFDM 심볼의 시작점을 잘못 추정하는 경우 부반송파간에 간섭이 발생하여 수신 OFDM 심볼의 오판정 확률이 높아지는 단점이 있다. 그래서 상기 보호구간을 시간 영역의 OFDM 심볼의 마지막 일정 비트들을 복사하여 유효 OFDM 심볼에 삽입하는 형태의 "Cyclic Prefix" 방식이나 혹은 시간 영역의 OFDM 심볼의 처음 일정 비트들을 복사하여 유효 OFDM 심볼에 삽입하는 "Cyclic Postfix" 방식이 제안되어 사용되고 있다. 여기서, 상기 Cyclic Prefix 방식 및 Cyclic Postfix 방식의 일정 비트들은 미리 설정된 설정 비트들로서 OFDM 통신 시스템에서 그 크기가 미리 결정된다. 상기 보호구간을 시간 영역의 한 OFDM 심볼의 일부분, 즉 한 OFDM 심볼의 처음 부분 혹은 마지막 부분을 복사하여 반복 배치하는 형태의 특성을 이용하여 수신기에서 수신 OFDM 심볼의 시간/주파수 동기를 잡는데 이용할 수도 있다.
한편, 송신기가 송신한 송신 신호는 무선 채널을 통과하면서 왜곡되고, 수신기는 상기 왜곡된 송신 신호를 수신하게 된다. 상기 수신기는 상기 송신 신호가 왜곡된 형태의 수신 신호를 상기 송신기와 수신기간에 미리 설정되어 있는 프리앰블 시퀀스를 이용하여 시간/주파수 동기를 획득하고, 채널 추정(channel estimation)한 후에 고속 푸리에 변환(FFT: Fast Fourier Transform, 이하 "FFT"라 칭하기로 한다)을 통해서 주파수 영역의 심볼로 복조한다. 이렇게 주파수 영역의 심볼들을 복조한 후, 상기 수신기는 상기 복조된 심볼들에 대해서 상기 송신기에서 적용한 채널 코딩에 상응하는 채널 디코딩(channel decoding) 및 소스 디코딩(source decoding)을 수행하여 정보 데이터로 복호한다.
상기 OFDM 통신 시스템은 프레임 타이밍 동기 및 주파수 동기와 채널 추정 모두에 있어 프리앰블 시퀀스를 이용한다. 물론 상기 OFDM 통신 시스템의 경우 프리앰블 이외에 보호 구간과 파일럿(pilot) 부반송파등을 이용하여 프레임 타이밍 동기 및 주파수 동기와 채널 추정 등을 수행하기도 한다. 상기 프리앰블 시퀀스의 경우 매 프레임 또는 데이터의 버스트의 시작부분에 미리 알고 있는(known) 심볼들이 전송되며 이때 추정된 시간/주파수/채널 정보를 데이터 전송 부분에서 보호 구간 및 파일럿 부반송파등의 정보를 이용하여 업데이트(update)하는데 사용한다.
그러면 여기서 도 1 및 도 2를 참조하여 통상적인 OFDM 통신 시스템에서 사용하고 있는 프리앰블 시퀀스 구조를 설명하기로 한다.
상기 도 1은 통상적인 OFDM 통신 시스템의 긴 프리앰블 시퀀스(long preamble sequence) 구조를 도시한 도면이다.
상기 도 1을 설명하기에 앞서, 현재 OFDM 통신 시스템에서는 순방향(DL: Down Link) 및 역방향(UL: Up Link) 모두에서 동일한 프리앰블 시퀀스를 사용하고있다. 상기 도 1을 참조하면, 상기 긴 프리앰블 시퀀스는 64 길이의 시퀀스가 4번, 128 길이의 시퀀스가 2번 반복된 형태를 가지며, OFDM 통신 시스템의 특성상 상기에서 설명한 바와 같은 Cyclic Prefix가 상기 64 길이의 시퀀스가 4번 반복된 형태의 시퀀스 전단과, 상기 128 길이의 시퀀스가 2번 반복된 형태의 시퀀스 전단에 첨가되어 있다. 또한, 상기에서 설명한 바와 같이 IFFT를 수행하기 이전의 신호들은 주파수 영역 신호들이며, IFFT를 수행한 이후의 신호들은 시간 영역 신호들인데, 상기 도 1에 도시한 긴 프리앰블 시퀀스는 IFFT를 수행한 이후의 시간 영역에서의 긴 프리앰블 시퀀스를 도시한 것이다.
한편, 상기 IFFT를 수행하기 이전의 주파수 영역에서의 긴 프리앰블 시퀀스를 나타내면 다음과 같다.
상기 주파수 영역에서의 긴 프리앰블 시퀀스들, 즉 S(-100:100), P(-100:100) 에 명시된 숫자는 IFFT 수행시 적용하는 부반송파 위치를 나타내는 것으로 이는 하기에서 도 3을 참조하여 설명할 것이므로 여기서는 그 상세한 설명을 생략하기로 한다. 상기 S(-100:100)은 64 길이의 시퀀스가 4번 반복된 형태의 주파수 영역 시퀀스를 나타내며, P(-100:100)은 128 길이의 시퀀스가 2번 반복된 형태의 주파수 영역 시퀀스를 나타낸다. 상기 S(-100:100) 및 P(-100:100)의 표현에서 sqrt(2)는 [root 2]root 2를 의미하며, sqrt(2)*sqrt(2)는 상기 S(-100:100) 및 P(-100:100)의 송신 전력(transmit power)을 증가시키기 위해 2단계로 증폭하는 것을 의미한다.
상기에서는 도 1을 참조하여 긴 프리앰블 시퀀스 구조를 설명하였으며, 다음으로 도 2를 참조하여 짧은 프리앰블 시퀀스 구조를 설명하기로 한다.
상기 도 2는 통상적인 OFDM 통신 시스템의 짧은 프리앰블 시퀀스(short preamble sequence) 구조를 도시한 도면이다.
상기 도 2를 참조하면, 상기 짧은 프리앰블 시퀀스는 128 길이의 시퀀스가 2번 반복된 형태를 가지며, OFDM 통신 시스템의 특성상 상기에서 설명한 바와 같은 Cyclic Prefix가 상기 128 길이의 시퀀스가 2번 반복된 형태의 시퀀스 전단에 첨가되어 있다. 또한, 상기 도 2에 도시한 짧은 프리앰블 시퀀스는 IFFT를 수행한 이후의 시간 영역에서의 짧은 프리앰블 시퀀스를 도시한 것이며, 주파수 영역에서의 짧은 프리앰블 시퀀스는 상기에서 설명한 P(-100:100)이다.
한편, 상기에서 설명한 바와 같은 긴 프리앰블 시퀀스는 다음과 같은 사항들을 고려하여 생성되어야만 한다.
(1) 낮은 PAPR을 가져야만 한다.
OFDM 통신 시스템의 송신기 전송단의 전력 증폭기(PA: Power Amplifier)의 전송효율을 최대로 하기 위해서 OFDM 심볼의 PAPR이 낮아야만 한다. 이는 상기에서 설명한 바와 같이 IFFT가 수행된 신호는 전력 증폭기로 입력되고, 상기 전력 증폭기의 비선형(non-linear) 특성 때문에 낮은 PAPR이 요구되는 것이다. OFDM 심볼의 PAPR은 전송단의 IFFT 출력단에 해당하는 OFDM의 시간 영역 심볼의 최대 전력과 평균전력의 비율이 작아야하고, 상기 최대 전력과 평균전력의 비율이 작기 위해서는 균일한 분포를 가져야한다. 이를 다시 말하면, 전송단의 IFFT의 입력단, 즉 주파수영역에서 상호상관이 작은 심볼을 조합하면 출력의 PAPR은 작아지는 것이다.
(2) 통신 초기화에 필요한 파라미터(parameter) 추정에 적합해야 한다.
상기 파라미터 추정은 채널 추정과, 주파수 옵셋(frequency offset) 추정과, 시간 오프셋(time offset) 추정을 포함한다.
(3) 낮은 복잡도(complexity)와 낮은 오버헤드(overhead)를 가져야한다.
(4) 대략적 주파수 옵셋 추정이 가능해야 한다.
상기와 같은 사항들을 고려하여 생성된 긴 프리앰블 시퀀스들의 기능을 설명하면 다음과 같다.
(1) 64 길이의 시퀀스가 4번 반복된 형태의 시퀀스는 시간 옵셋 추정과 대략적 주파수 옵셋 추정을 위해 사용된다.
(2) 128 길이의 시퀀스가 2번 반복된 형태의 시퀀스는 미세 주파수 옵셋과채널 추정을 위해 사용된다.
결과적으로 상기 긴 프리앰블 시퀀스는 상기 OFDM 통신 시스템에서 다음과 같은 용도로 사용된다.
(1) 순방향 프로토콜 데이터 유닛(PDU: Protocol Data Unit, 이하 "PDU"라 칭하기로 한다)의 첫 번째 프리앰블 시퀀스로 사용된다.
(2) 초기 레인징(Initial Ranging)에 사용된다.
(3) 주파수대역 요구 레인징(Bandwidth Request Ranging)에 사용된다.
그리고 상기 짧은 프리앰블 시퀀스는 상기 OFDM 통신 시스템에서 다음과 같은 용도로 사용된다.
(1) 역방향 데이터 프리앰블 시퀀스로 사용된다.
(2) 주기적 레인징(Periodic Ranging)에 사용된다.
한편, 상기 OFDM 통신 시스템에서 상기 초기 레인징과 주기적 레인징을 수행함으로써 정확한 동기를 획득할 수 있기 때문에, 상기 역방향 데이터 프리앰블 시퀀스는 채널 추정을 위한 목적으로 주로 사용된다. 상기 채널 추정에서 고려해야 할 사항은 PAPR, 성능 그리고 복잡도인데, 기존에 사용되고 있는 짧은 프리앰블 시퀀스의 경우 PAPR은 3.5805[dB]를 나타낸다. 그리고 채널 추정 알고리즘으로는 MMSE(Minimum Mean Square Error, 이하 "MMSE"라 칭하기로 한다)와 LS(Least Square, 이하 "LS"라 칭하기로 한다) 등 다양한 형태의 채널 추정 알고리즘이 사용될 수 있다.
그러면 여기서 도 3을 참조하여 통상적인 OFDM 통신 시스템에서 IFFT 수행시부반송파들과 프리앰블 시퀀스와의 매핑(mapping) 관계를 설명하기로 한다.
상기 도 3은 통상적인 OFDM 통신 시스템에서 IFFT 수행시 부반송파들과 프리앰블 시퀀스와의 매핑 관계를 개략적으로 도시한 도면이다.
상기 도 3은 OFDM 통신 시스템의 전체 부반송파들의 개수가 256개일 경우, 즉 -128번 부반송파 내지 127번까지의 256개의 부반송파들이 존재하고, 실제 사용되는 부반송파들의 개수가 200개일 경우, 즉 -100번,...,-1번,1번...,100번 까지의 200개의 부반송파들이 사용될 경우를 가정하고 있다. 상기 도 3에서 IFFT 전단의 입력 번호들은 주파수 성분들, 즉 부반송파들 번호를 나타낸다. 여기서, 상기 256개의 부반송파들중 200개의 부반송파들만, 즉 상기 256개의 부반송파들중 0번 부반송파와, -128번 부반송파 내지 -101번 부반송파와, 101번 부반송파 내지 127번 부반송파를 제외한 200개의 부반송파들만을 사용한다. 상기 0번 부반송파와, -128번 부반송파 내지 -101번 부반송파와, 101번 부반송파 내지 127번 부반송파들 각각에는 널 데이터(null data), 즉 0 데이터(0 data)를 삽입하여 전송하는데 그 이유를 설명하면 다음과 같다. 첫 번째로, 0번 부반송파에 널 데이터를 삽입하는 이유는 상기 0번 부반송파가 IFFT를 수행한 뒤에는 시간 영역에서 프리앰블 시퀀스의 기준점, 즉 시간 영역에서 DC 성분을 나타내기 때문이다. 또한 상기 -128번 부반송파 내지 -101번 부반송파까지의 28개의 부반송파들과, 101번 부반송파부터 127번 부반송파까지의 27개의 부반송파들에 널 데이터를 삽입하는 이유는 상기 -128번 부반송파 내지 -101번 부반송파까지의 28개의 부반송파들과, 101번 부반송파부터 127번 부반송파까지의 27개의 부반송파들이 주파수 영역에서 고주파(high frequency) 대역에 해당되기 때문에, 주파수 영역에서 보호 구간(guard interval)을 주기 위함이다.
그래서 주파수 영역의 프리앰블 시퀀스 S(-100:100) 혹은 P(-100:100)가 상기 IFFT에 입력되면, 상기 IFFT는 입력되는 주파수 영역의 프리앰블 시퀀스 S(-100:100) 혹은 P(-100:100)를 해당 부반송파들에 매핑시켜 IFFT를 수행함으로써 시간 영역의 프리앰블 시퀀스로 출력한다.
그러면 여기서 도 4를 참조하여 OFDM 통신 시스템의 송신기 구조를 설명하기로 한다.
상기 도 4는 OFDM 통신 시스템의 송신기 구조를 개략적으로 도시한 도면이다.
상기 도 4를 참조하면, 먼저 전송하고자 하는 정보 비트들(information bits)이 발생하면, 상기 정보 비트는 심볼 매핑기(symbol mapper)(411)로 입력된다. 상기 심볼 매핑기(411)는 상기 입력되는 정보 비트들을 미리 설정되어 있는 변조 방식으로 변조하여 심볼 변환한 뒤 직렬/병렬 변환기(serial to parallel converter)(413)로 출력한다. 여기서, 상기 변조 방식으로는 QPSK(Quadrature Phase Shift Keying) 방식 혹은 16QAM(Quadrature Amplitude Modulation) 방식 등이 사용될 수 있다. 상기 직렬/병렬 변환기(413)는 상기 심볼 매핑기(411)에서 출력하는 심볼을 입력하여 역고속 푸리에 변환기(Inverse Fast Fourier Transformer, 이하 "IFFT기"라 칭하기로 한다)(419)의 입력수인 A-포인트(A-point)에 일치하도록 병렬 변환한 후 선택기(selector)(417)로 출력한다. 그리고 프리앰블 시퀀스 생성기(preamble sequence generator)(415)는 제어기(도시하지 않음)의 제어에 따라 해당하는 프리앰블 시퀀스를 생성한 후 상기 선택기(417)로 출력한다. 상기 선택기(417)는 해당 시점의 스케줄링(scheduling)에 따라 상기 직렬/병렬 변환기(413)에서 출력하는 신호 혹은 상기 프리앰블 시퀀스 생성기(415)에서 출력한 신호 중 하나를 선택하여 IFFT기(419)로 출력한다.
상기 IFFT기(419)는 상기 선택기(417)에서 출력한 신호를 입력하여 A-포인트 IFFT를 수행하여 병렬/직렬 변환기(parallel to serial converter)(421)로 출력한다. 또한, 상기 병렬/직렬 변환기(421)로는 상기 IFFT기(419)에서 출력되는 신호 뿐만 아니라 Cyclic Prefix가 입력된다. 그러면 상기 병렬/직렬 변환기(421)는 상기 IFFT기(419)에서 출력한 신호와 상기 Cyclic Prefix를 직렬 변환하여 디지털/아날로그 변환기(digital to analog converter)(423)로 출력한다. 상기 디지털/아날로그 변환기(423)는 상기 병렬/직렬 변환기(421)에서 출력한 신호를 입력하여 아날로그 변환한 후 무선 주파수(RF: Radio Frequency, 이하 "RF"라 칭하기로 한다) 처리기(processor)(425)로 출력한다. 여기서, 상기 RF 처리기(425)는 필터(filter)와 전처리기(front end unit) 등을 포함하여 상기 디지털/아날로그 변환기(423)에서 출력한 신호를 실제 에어(air)상에서 전송 가능하도록 RF 처리한 후 안테나(antenna)를 통해 전송한다.
그러면 여기서, 통상적인 OFDM 통신 시스템에서 사용하고 있는 프리앰블 시퀀스와, 상기 프리앰블 시퀀스 생성 방법의 문제점을 설명하면 다음과 같다.
(1) 기존의 OFDM 통신 시스템에서 최소 PAPR을 가지는 프리앰블 시퀀스를 생성하기 위해서는 전체 검색 방법을 사용해야만 하는데, 상기 전체 검색 방법은 검색 시간이 길다는 문제점을 가진다.
상기 OFDM 통신 시스템에서 프리앰블 시퀀스의 길이가 X이고, 프리앰블 시퀀스의 각 성분(element)들이 가질 수 있는 값의 종류가 Y개 존재한다고 가정하기로 한다. 이 경우, 최소 PAPR을 가지는 프리앰블 시퀀스를 생성하기 위해서 전체 검색방법을 사용한다면, YX번의 검색을 해야 한다. 일 예로, Y가 2이고 X가 100일 경우, 최소 PAPR을 가지는 프리앰블 시퀀스를 생성하기 위해서는 2100번의 검색을 수행해야만 한다. 그러나, 2100번이라는 연산 횟수는 매우 큰 횟수로서 OFDM 통신 시스템에 엄청난 로드로 작용한다는 문제점이 있다.
(2) 기존 OFDM 통신 시스템에서 전체 검색 방법을 사용하지 않는 프리앰블 시퀀스 생성 방법으로는 골래이 상보 시퀀스(Golay Complementary Sequence)를 사용하여 프리앰블 시퀀스를 생성하는 방법이 존재한다. 상기 골래이 상보 시퀀스를 사용하여 프리앰블 시퀀스를 생성할 경우 상기 전체 검색 방법을 사용하여 프리앰블 시퀀스를 생성하는 경우에 비해 비교적 빠른 시간 내에 최소 PAPR을 가지는 프리앰블 시퀀스를 생성한다. 상기 골래이 상보 시퀀스를 사용하여 프리앰블 시퀀스를 생성할 경우 상기에서 설명한 바와 같이 비교적 빠른 시간 내에 최소 PAPR을 가지는 프리앰블 시퀀스를 생성할 수 있다는 장점이 존재하지만, 상기 골래이 상보 시퀀스를 사용하여 프리앰블 시퀀스를 생성하기 때문에 길이가로제한된다는 문제점이 있다. 여기서, 상기 프리앰블 시퀀스의 길이가 상기로 제한되는 이유는 상기 골래이 상보 시퀀스의 특성에 기인하는 것이다. 즉, 상기 골래이 상보 시퀀스의 길이가로 제한되기 때문에 상기 골래이 상보 시퀀스를 사용하여 생성한 프리앰블 시퀀스의 길이 역시로 제한되는 것이다. 그래서, 상기 골래이 상보 시퀀스의 길이 제한 조건이 상기 OFDM 통신 시스템에서 필요로 하는 프리앰블 시퀀스의 길이를 만족하지 못할 경우 사용될 수 없다는 문제점이 존재한다.
상기에서 설명한 바와 같은 문제점들을 고려하여 최소 PAPR을 가지면서도, 최단 시간내에 최소 연산 횟수로 프리앰블 시퀀스를 생성하는 방안에 대한 필요성이 대두되고 있다. 또한, 상기 OFDM 통신 시스템에서 필요로 하는 프리앰블 시퀀스의 길이를 만족할 수 있는 프리앰블 시퀀스를 생성하는 방안에 대한 필요성이 대두되고 있다.
따라서, 본 발명의 목적은 OFDM 통신 시스템에서 프리앰블 시퀀스를 생성하는 장치 및 방법을 제공함에 있다.
본 발명의 다른 목적은 OFDM 통신 시스템에서 최소 피크대 평균 전력비를 가지는 프리앰블 시퀀스를 생성하는 장치 및 방법을 제공함에 있다.
본 발명의 또 다른 목적은 OFDM 통신 시스템에서 연산 횟수를 최소화하여 최소 피크대 평균 전력비를 가지는 프리앰블 시퀀스를 생성하는 장치 및 방법을 제공함에 있다.
본 발명의 또 다른 목적은 OFDM 통신 시스템에서 복소 골래이 상보 시퀀스를 사용하여 프리앰블 시퀀스를 생성하는 장치 및 방법을 제공함에 있다.
본 발명의 또 다른 목적은 OFDM 통신 시스템에서 복소 골래이 상보 시퀀스를 사용하여 길이 제한이 존재하지 않는 프리앰블 시퀀스를 생성하는 장치 및 방법을 제공함에 있다.
상기한 목적들을 달성하기 위한 본 발명의 장치는; 제1개수의 부반송파들을 사용하는 직교 주파수 분할 다중 통신 시스템에서 프리앰블 시퀀스를 생성하는 장치에 있어서, 길이 N의 골래이 상보 시퀀스와 길이 M의 골래이 상보 시퀀스를 합성하여 길이 M + N + k의 프리앰블 시퀀스를 생성하는 프리앰블 시퀀스 생성기와, 상기 제1개수의 부반송파들 중 DC 성분과 부반송파들간 간섭 제거 성분에 대응되는 부반송파들에 널 데이터를 삽입하며, 상기 제1개수의 부반송파들중 상기 널 데이터가 삽입된 부반송파들 이외의 제2개수의 부반송파들 각각에 상기 프리앰블 시퀀스 구성 성분들 각각을 삽입한 후 역고속 푸리에 변환하는 역고속 푸리에 변환기를 포함함을 특징으로 한다.
상기한 목적들을 달성하기 위한 본 발명의 방법은; 제1개수의 부반송파들을 사용하는 직교 주파수 분할 다중 통신 시스템에서 프리앰블 시퀀스를 생성하는 방법에 있어서, 길이 N의 골래이 상보 시퀀스와 길이 M의 골래이 상보 시퀀스를 이용하여 길이 M + N + k의 프리앰블 시퀀스를 생성하는 과정과, 상기 제1개수의 부반송파들 중 DC 성분과 부반송파들간 간섭 제거 성분에 대응되는 부반송파들에 널 데이터를 삽입하며, 상기 제1개수의 부반송파들중 상기 널 데이터가 삽입된 부반송파들 이외의 제2개수의 부반송파들 각각에 상기 프리앰블 시퀀스 구성 성분들 각각을 삽입한 후 역고속 푸리에 변환하는 과정을 포함함을 특징으로 한다.
도 1은 통상적인 OFDM 통신 시스템의 긴 프리앰블 시퀀스(long preamble sequence) 구조를 도시한 도면
도 2는 통상적인 OFDM 통신 시스템의 짧은 프리앰블 시퀀스(short preamble sequence) 구조를 도시한 도면
도 3은 통상적인 OFDM 통신 시스템에서 IFFT 수행시 부반송파들과 프리앰블 시퀀스와의 매핑 관계를 개략적으로 도시한 도면
도 4는 OFDM 통신 시스템의 송신기 구조를 개략적으로 도시한 도면
도 5는 본 발명의 실시예에서의 기능을 수행하기 위한 프리앰블 시퀀스 생성기 구조를 도시한 도면
도 6은 본 발명의 실시예에 따른 복소 골래이 상보 시퀀스 생성 장치 내부 구조를 도시한 도면
도 7은 본 발명의 일 실시예에 따른 복소 골래이 상보 시퀀스를 IFFT 입력단에 매핑하는 규칙을 개략적으로 도시한 도면
도 8은 본 발명의 실시예에 따른 길이 104의 복소 골래이 상보 시퀀스를 256-포인트 IFFT 입력단에 매핑하는 규칙을 개략적으로 도시한 도면
도 9는 도 6의 골래이 상보 시퀀스 쌍 발생기(611) 내부 구조를 도시한 블록도
도 10은 길이 52의 골래이 상보 시퀀스 쌍 발생기 내부 구조를 도시한 블록도
도 11은 본 발명의 실시예에 따른 복소 골래이 상보 시퀀스 쌍 합성 규칙을 개략적으로 도시한 도면
도 12는 길이 52의 골래이 상보 시퀀스 쌍 [A, B]와 길이 52의 골래이 상보 시퀀스 쌍 [C, D]를 합성하여 길이 104의 복소 골래이 상보 시퀀스 쌍 [E, F, G, H]를 합성하는 과정을 개략적으로 도시한 도면
도 13은 도 9의 골래이 상보 시퀀스 켤레 쌍 발생기(915)의 내부 구조를 도시한 블록도
도 14는 본 발명의 실시예에 따른 OFDM 통신 시스템에서 IFFT 수행 시 부반송파들과 프리앰블 시퀀스와의 매핑 관계를 개략적으로 도시한 도면
도 15는 256개의 부반송파들을 가지는 OFDM 통신 시스템에서 IFFT 수행 시 부반송파들과 프리앰블 시퀀스와의 매핑 관계를 개략적으로 도시한 도면
도 16은 본 발명의 또 다른 실시예에 따른 프리앰블 시퀀스 매핑 과정을 도시한 도면
이하, 본 발명에 따른 첨부한 도면을 참조하여 상세히 설명한다. 하기의 설명에서는 본 발명에 따른 동작을 이해하는데 필요한 부분만이 설명되며 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.
본 발명은 전체 부반송파(sub-carrier)들의 개수가 A개이고, 실제 사용하는 부반송파들의 번호가 -B번,-B+1번,...,-1번,1번,...,B-1번,B번까지인 직교 주파수 분할 다중(OFDM: Orthogonal Frequency Division Multiplexing, 이하 "OFDM"이라 칭하기로 한다) 방식을 사용하는 통신 시스템(이하, "OFDM 통신 시스템"이라 칭하기로 한다)에서 최소 피크대 평균 전력비(PAPR: Peak to Average Power Ratio, 이하 "PAPR"이라 칭하기로 한다)를 가지는 프리앰블 시퀀스(preamble sequence) 생성 장치 및 방법을 제안한다. 여기서, 상기 OFDM 통신 시스템은 실제 부반송파들의 개수가 A개이지만, 상기 종래 기술 부분에서 설명한 바와 같이 시간 영역에서 DC 성분을 나타내는 0번 부반송파와, 주파수 영역에서의 고주파(high frequency) 대역, 즉 시간 영역에서의 보호 구간(Guard interval)을 나타내는 부반송파들(-A번 부반송파 내지 -B-1번 부반송파의 부반송파들과 B+1번 부반송파 내지 A-1번 부반송파의부반송파들)에 널 데이터(null data), 즉 0 데이터(0 data)를 삽입하기 때문에 실제 프리앰블 시퀀스가 삽입되는 부반송파들의 개수는 2B개가 되는 것이다. 또한, 본 발명에서 제안하는 프리앰블 시퀀스는 골래이 상보 시퀀스(Golay Complementary Sequence)와 복소 골래이 상보 시퀀스(Complex Golay Complementary Sequence)를 사용하여 길이 제한이 존재하지 않는 특성을 가지도록 한다.
상기 프리앰블 시퀀스는 상기 종래 기술 부분에서 설명한 바와 같이 긴 프리앰블 시퀀스(long preamble sequence)와 짧은 프리앰블 시퀀스(short preamble sequence)의 2가지 종류가 존재하며, 상기 긴 프리앰블 시퀀스는 길이 A/4의 시퀀스가 4번, 길이 A/2 의 시퀀스가 2번 반복된 형태를 가지며, OFDM 통신 시스템의 특성상 Cyclic Prefix가 상기 길이 A/4의 시퀀스가 4번 반복된 형태의 시퀀스의 전단과, 상기 길이 A/2의 시퀀스가 2번 반복된 형태의 시퀀스의 전단에 첨가되어 있다. 여기서 상기 A는 하기에서 설명할 역고속 푸리에 변환(IFFT: Inverse Fast Fourier Transform, 이하 "IFFT"라 칭하기로 한다)의 포인트(point), 즉 입력수 A를 나타낸다. 일 예로, 상기 IFFT가 256-포인트일 경우 상기 긴 프리앰블 시퀀스는 길이 256/4, 즉 길이 64의 시퀀스가 4번, 길이 256/2, 즉 길이 128의 시퀀스가 2번 반복된 형태를 가지게 된다. 또한 상기 짧은 프리앰블 시퀀스는 길이 A/2의 시퀀스가 2번 반복된 형태를 가지며, OFDM 통신 시스템의 특성상 상기에서 설명한 바와 같은 Cyclic Prefix가 상기 길이 A/2의 시퀀스가 2번 반복된 형태의 시퀀스의 전단에 첨가되어 있다.
그러면 여기서 본 발명에 따른 프리앰블 시퀀스 생성 방법을 설명하기로 한다.
먼저, 정보 심볼(information symbol)이 역고속 푸리에 변환(IFFT: Inverse Fast Fourier Transform, 이하 "IFFT"라 칭하기로 한다)된 후 전송되는 OFDM 시스템에서 상기 IFFT를 수행하기 전의 모든 입력단, 즉 모든 부반송파들에 골래이 상보 시퀀스가 입력되면, 상기 IFFT를 수행한 후의 특성은 상기 골래이 상보 시퀀스의 특성상 최소 PAPR을 가지게 된다. 여기서, 상기 골래이 상보 시퀀스는 임의의 시퀀스의 모든 간격에 대한 비주기적 자기 상관 함수(Aperiodic Autocorrelation Function)와 상보 시퀀스(complementary sequence)의 같은 간격에 대한 비주기적 자기 상관 함수의 합이 0이 되는 시퀀스를 나타낸다. 즉, 상기 골래이 상보 시퀀스는 다음과 같이 표기될 수 있다.
상기와 같은 조건을 만족하는들이 결국 골래이 상보 시퀀스 쌍(pair)들이 되는 것이다. 즉, 상기 골래이 상보 시퀀스는 2개의 시퀀스들이 하나의 쌍을 생성한다.
한편, 상기 복소 골래이 상보 시퀀스는 임의의 시퀀스의 모든 간격에 대한 비주기적 자기 상관 함수와 3개의 상보 시퀀스들의 같은 간격에 대한 비주기적 자기 상관 함수의 합이 0이 되는 시퀀스를 나타낸다. 즉, 상기 복소 골래이 상보 시퀀스는 다음과 같이 표기될 수 있다.
상기와 같은 조건을 만족하는 [A,B,C,D] 쌍이 결국 복소 골래이 상보 시퀀스 쌍(pair)이 되는 것이다. 즉, 상기 복소 골래이 상보 시퀀스는 4개의 시퀀스들이 하나의 쌍을 생성한다.
일 예로, 상기 IFFT가 256-포인트(point) IFFT일 경우, 상기 IFFT의 입력단에는 길이 256의 복소 골래이 상보 시퀀스가 입력되고, 상기 길이 256의 복소 골래이 상보 시퀀스를 구성하는 성분(element)들 각각이 상기 IFFT의 512 포인트들 각각에 대응되어 입력된다. 즉, -128번 부반송파부터 127번 부반송파까지의 256개의 부반송파들 각각에 상기 복소 골래이 상보 시퀀스를 구성하는 256개의 엘리먼트들 각각이 일대일 대응되어 IFFT가 수행된다.
그런데 실제 OFDM 통신 시스템에서는 IFFT 입력단에 DC 성분에 해당하는 부반송파, 즉 0번 부반송파와 보호 구간 성분에 해당하는 부반송파들에 널 데이터를 삽입해야만 한다. 그래서, 상기 복소 골래이 상보 시퀀스를 구성하는 엘리먼트들각각을 상기 IFFT의 모든 부반송파들 각각에 일대일로 매핑하여 삽입하는 것이 불가능하다. 상기에서 설명한 바와 같이, 복소 골래이 상보 시퀀스를 IFFT 입력단에 일대일 삽입하는 것이 불가능하기 때문에 본 발명은 상기 복소 골래이 상보 시퀀스를 OFDM 통신 시스템 특성을 살리도록 IFFT 입력단에 매핑하여 삽입하는 규칙을 제안한다.
<복소 골래이 상보 시퀀스 매핑 규칙>
복소 골래이 상보 시퀀스를 구성하는 각 성분들간에 일정한 간격을 유지하도록 IFFT 입력단의 특정 부반송파들에 삽입되고, 상기 골래이 상보 시퀀스를 구성하는 성분들 각각이 삽입되지 않은 나머지 부반송파들에 널 데이터를 삽입한 후, IFFT를 수행하면 그 출력의 PAPR은 6[dB]이하가 된다. 일 예로, 상기 IFFT 입력단에 복소 골래이 상보 시퀀스 성분들을 삽입하는 일정한 간격이 1이면, 상기 복소 골래이 상보 시퀀스를 구성하는 성분들 각각이 IFFT 입력단의 부반송파들 각각과 일대일 매핑(mapping)되어 연속적으로 삽입되는 경우를 의미한다. 즉, 길이 256의 복소 골래이 상보 시퀀스가 256-포인트 IFFT에 삽입될 때 상기 일정한 간격이 1이라면, 상기 복소 골래이 상보 시퀀스의 256개의 성분들 각각은 상기 IFFT의 256개의 부반송파들 각각에 삽입되는 것이다.
그런데, OFDM 통신 시스템에서는 DC 성분과 보호 구간 성분에 해당하는 부반송파들에는 항상 널 데이터가 삽입되어야 한다. 따라서 상기 복소 골래이 상보 시퀀스의 길이가 전체 부반송파들에서 상기 DC 성분과 보호 구간 성분에 해당하는 부반송파들을 제외한 나머지 부반송파들 개수의을 초과한다면 상기 복소 골래이 상보 시퀀스의 성분들 각각이 상기 IFFT의 입력으로 연속적으로 삽입되는 것은 불가능하다. 또 다른 예로, 상기 일정한 간격이 2라면 상기 복소 골래이 상보 시퀀스를 구성하는 성분들 각각이 IFFT 입력단의 부반송파들에 하나 걸러 삽입되는 구조를 지니게 된다. 그리고 상기 복소 골래이 상보 시퀀스의 성분들이 삽입되지 않은 나머지 부반송파들에는 전부 널 데이터가 삽입된다. 여기서, DC 성분에 해당하는 부반송파가 상기 복소 골래이 상보 시퀀스의 성분들이 삽입되는 부반송파 이외의 위치에 존재한다면, 상기 복소 골래이 상보 시퀀스가 IFFT 입력 단에 일정한 간격을 갖고 연속적으로 배치 될 수 있게 되고 결과적으로 IFFT를 수행한 후의 출력은 6[dB] 이하의 PAPR을 갖게 된다.
그러면 여기서, 짧은 프리앰블 시퀀스를 구성하는 성분들 각각이 256-포인트 IFFT 입력단의 -100번 부반송파에서 100번 부반송파까지의 위치에 하나 걸러 삽입되는 경우를 설명하면 다음과 같다. DC 성분, 즉 IFFT 입력단의 0번 부반송파에 널 데이터가 반드시 삽입되어야만 하므로 널 데이터가 아닌 +1 혹은 -1의 데이터가 IFFT 입력단에 일정한 간격으로 삽입되는 것은 불가능하다. 이는 상기 짧은 프리앰블 시퀀스를 구성하는 성분들을 삽입 시작하는 위치가 -100번부반송파이기 때문에, 상기 짧은 프리앰블 시퀀스의 구성 성분들을 하나 걸러 하나씩 삽입할 경우 상기 0번 부반송파에도 실제 상기 짧은 프리앰블 시퀀스의 구성 성분이 매핑되기 때문이다. 이와는 달리 짧은 프리앰블 시퀀스를 구성하는 성분들 각각이 256-포인트 IFFT입력단의 -99번 부반송파를 시작으로 상기 짧은 프리앰블 시퀀스의 구성 성분들을 하나 걸러 하나씩 삽입할 경우 상기 0번 부반송파에는 상기 짧은 프리앰블 시퀀스의 구성 성분이 매핑되지 않는다. 결국, 0번 부반송파에 짧은 프리앰블 시퀀스의 구성 성분이 매핑되지 않으면서도 일정한 간격을 가지고 상기 IFFT의 입력단에 상기 짧은 프리앰블 시퀀스의 모든 구성 성분들이 삽입되는 것이 가능하게 되며, 길이 100의 복소 골래이 상보 시퀀스는 256-포인트 IFFT의 입력단에 다음과 같이 삽입된다.
[-99,-97,...., -3,-1, 1, 3, ....,97,99]
그리고, 상기 [-99,-97,...., -3,-1, 1, 3, ....,97,99] 부반송파들 이외의 나머지 부반송파들, 즉 0번 부반송파와 -128번 부반송파 내지 -100번 부반송파의 부반송파들과 100번 부반송파 내지 127번 부반송파의 부반송파들에 널 데이터가 삽입되면 IFFT를 수행한 후 PAPR은 6[dB]이하가 된다.
본 발명에서는 상기에서 설명한 바와 같은 <복소 골래이 상보 시퀀스 매핑 규칙>을 이용하여 프리앰블 시퀀스를 생성한다. 또한, 본 발명은 상기 <복소 골래이 상보 시퀀스 매핑 규칙>을 지원 가능한 길이 104의 복소 골래이 상보 시퀀스를 생성하는 방안 역시 제안하며, 이는 하기에서 설명할 것이므로 여기서는 그 상세한 설명을 생략하기로 한다. 한편, 상기 설명에서는 짧은 프리앰블 시퀀스를 가지고 <복소 골래이 상보 시퀀스 매핑 규칙>을 설명하고 있어 길이 104의 골래이 상보 시퀀스를 일 예로 하였지만, OFDM 통신 시스템에서 사용하는 프리앰블 시퀀스의 길이는 상기 길이 104뿐만 아니라 다른 길이로도 존재할 수 있음은 물론이며, 도 7을참조하여 상기 <복소 골래이 상보 시퀀스 매핑 규칙>을 설명하기로 한다.
상기 도 7은 본 발명의 일 실시예에 따른 복소 골래이 상보 시퀀스를 IFFT 입력단에 매핑하는 규칙을 개략적으로 도시한 도면이다.
상기 도 7을 참조하면, 먼저 IFFT 입력단의 부반송파들의 개수가 A개인 OFDM 통신 시스템에서 [-B, -(B-1), ... , -1, 1, ... , B-1, B]의 부반송파들에만 데이터를 삽입하고, 나머지 부반송파들에는 널 데이터를 삽입하며, 복소 골래이 상보 시퀀스가 삽입되는 일정한 간격을 I(단,)라고 가정하기로 한다.
그러면 B = Ik + D(단,)가 되고, 따라서 IFFT 입력단의 [-(B-E), -(B-E-I), ... , B-F-I, B-F]의 부반송파들에 복소 골래이 상보 시퀀스의 구성 성분들 각각을 삽입하고, 나머지 부반송파들에는 널 데이터를 삽입한다. 상기에서 변수들, 즉 D, E, F에 대해서 설명하면 다음과 같다.
만약, 상기 B가 I의 배수인 경우, 즉 B = Ik인 경우 IFFT 입력단의 부반송파 매핑이 -B번 부반송파부터 시작한다면 반드시 0번 부반송파에 널 데이터가 아닌 +1 혹은 -1의 값이 삽입되어야만 한다. 그런데, 상기 B = Ik인 경우 0번 부반송파에는 널 데이터가 삽입되므로 복소 골래이 상보 시퀀스를 프리앰블 시퀀스로 매핑하는 것은 불가능하다. 이렇게, 0번 부반송파에 널 데이터가 삽입되는 경우를 제거하기 위해서 상기 IFFT 입력단에서 복소 골래이 상보 시퀀스의 성분들 각각이 삽입 시작되는 위치를 정하는 B를 Ik+D로 설정했다. 여기서,이면 모든 정수 B를 포함할 수 있게 된다. 그리고 0번 부반송파에 널 데이터가 아닌 +1 혹은 -1의 값이 매핑되는 현상을 제거하기 위해 E라는 변수를 정의한다. 또한, 상기 복소 골래이상보 시퀀스의 마지막 구성을 삽입하는 매핑 관계를 맞추기 위해 F라는 변수를 정의한다.
그러면 여기서 상기 복소 골래이 상보 시퀀스를 J라 표시하고, 상기 복소 골래이 상보 시퀀스 J를 IFFT한 후에 출력되는 프리앰블 시퀀스를 L이라고 표현하면, 하기 수학식 1과 같은 복소 골래이 상보 시퀀스의 매핑규칙이 성립한다.
상기 수학식 1에서, GPM(n)은 인덱스 함수(index function)로서, GPM(n)에서 n은 복소 골래이 상보 시퀀스를 구성하는 성분들의 인덱스를 나타내며, 상기 GPM(n)의 결과값은 프리앰블 시퀀스를 구성하는 성분들의 인덱스를 나타낸다. 그리고, 상기 GPM(n)을 나타내면 하기 수학식 2와 같다.
상기 수학식 2에서,이다. 즉, 상기 변수 i는 -B번, -(B-1)번, ... , -1번, 1번, ... ,B-1번, B번까지의 값을 가지며, i=GPM(n)을 만족시키는 n이 존재하면 J(n)을 IFFT의 입력단의 해당 부반송파에 삽입하고, 상기 i=GPM(n)을 만족시키는 n이 존재하지 않을 경우 IFFT의 입력단의 해당 부반송파에 널 데이터를 삽입한다. 그리고, 상기 변수 k는 -N과 -M중 작은 값보다 큰 정수, 즉를 만족하는 정수이다. 그러면, 여기서 상기에서 설명한 바와 같이복소 골래이 상보 시퀀스의 성분들 각각이 일정한 간격으로 IFFT의 입력단 부반송파들에 입력되면서도, DC 성분을 나타내는 0번 부반송파에 +1 혹은 -1의 데이터가 삽입되지 않도록 하는 상황을 고려하여 상기 변수들 D, E, F의 관계를 나타내면 다음과 같다.
(1) D = 0일 경우, E = 1, 2, ... , I-1이고 F=I-E가 되도록 설정한다.
이렇게 설정하는 이유는 D = E = 0이면 IFFT 입력단의 0번 부반송파에 널 데이터가 아닌 +1 혹은 -1이 삽입되기 때문이다.
(2) D = 1, ... , I-1일 경우, E=0, ... , I-1()이고 F는 ((B-F) mod I = D + E)가 되도록 설정한다. (단,)
이렇게 설정하는 이유는 0번 부반송파에 널 데이터가 아닌 +1 혹은 -1이 삽입되는 경우를 제거하기 위함이다.
상기 도 7에서는 일반적으로 A-포인트 IFFT에서 실제 -B번, -(B-1)번, ... , -1번, 1번, ... , B-1번, B번까지의 부반송파들을 사용하며, 복소 골래이 상보 시퀀스의 길이가 M+N+k이고, I의 간격으로 상기 복소 골래이 상보 시퀀스 성분들 각각이 상기 IFFT의 입력단에 매핑되는 경우를 설명하였다. 그리고, 실제 상기 복소 골래이 상보 시퀀스를 IFFT의 입력으로 매핑하여 프리앰블 시퀀스로 매핑하도록 하는 동작은 하기에서 설명할 복소 골래이 상보 시퀀스/프리앰블 시퀀스 매핑기(710)에서 수행되며, 상기 복소 골래이 상보 시퀀스/프리앰블 시퀀스 매핑기(710)와 다른 하드웨어(hardware) 구성들간의 연결 관계 역시 하기에서 설명할 것이므로 여기서는 그 상세한 설명을 생략하기로 한다.
그러면 다음으로 도 8을 참조하여 256-포인트 IFFT에서 실제 -103번, -101번, ... , -1번, 1번, ... , 101번, 103번까지의 부반송파들을 사용하며, 복소 골래이 상보 시퀀스의 길이가 104이고, 2의 간격으로 상기 복소 골래이 상보 시퀀스 성분들 각각이 상기 IFFT의 입력단에 매핑되는 경우를 설명하기로 한다.
상기 도 8은 본 발명의 실시예에 따른 길이 104의 복소 골래이 상보 시퀀스를 256-포인트 IFFT 입력단에 매핑하는 규칙을 개략적으로 도시한 도면이다.
상기 도 8을 참조하면, 상기 도 7에서 설명한 복소 골래이 상보 시퀀스 매핑 규칙에서 포인트값 A는 256이고, 실제 복소 골래이 상보 시퀀스가 매핑 시작되는 부반송파 위치를 결정하는 정수값 B는 104이고, 복소 골래이 상보 시퀀스의 성분들 각각을 삽입하는 일정한 간격 I는 2인 경우를 가정한다.
이 경우 상기 도 7에서 설명한 복소 골래이 상보 시퀀스 매핑 규칙에 의해 D는 0이 되고, 상기 D가 0이기 때문에 E는 1로, F = I - E = 2 - 1 = 1로 설정된다. 그러면 상기 인덱스 함수 GPM(n) = -(103 - 2n)(단,)가 되어 프리앰블 시퀀스를 구성하는 성분들 중 인덱스 [-103, -101, -99, -97, ... , -1, 1, ... , 97, 99, 101, 103]에 해당하는 성분들, 즉 IFFT 입력단의 256개의 부반송파들 중 [-103, -101, -99, -97, ... , -1, 1, ... , 97, 99, 101, 103]에 해당하는 부반송파들에 상기 길이 104의 복소 골래이 상보 시퀀스의 성분들 각각을 매핑시킨다. 상기 복소 골래이 상보 시퀀스의 성분들이 매핑되지 않은 나머지 부반송파들에는 널 데이터가 삽입된다.
상기 도 7 및 도 8에서는 복소 골래이 상보 시퀀스를 프리앰블 시퀀스로 생성하기 위해 IFFT 입력단의 부반송파들에 복소 골래이 상보 시퀀스를 매핑하는 규칙을 설명하였다. 다음으로 상기 프리앰블 시퀀스로 사용되는 복소 골래이 상보 시퀀스를 생성하는 방법을 설명하기로 한다.
먼저, 도 6은 본 발명의 실시예에 따른 복소 골래이 상보 시퀀스 생성 장치 내부 구조를 도시한 도면이다.
상기 도 6에서는 길이 M+N+k의 복소 골래이 상보 시퀀스를 생성하는 방안을 제안한다. 그리고 상기 길이 M+N+k의 복소 골래이 상보 시퀀스를 생성하는 장치 및 방법을 설명함에 있어 사용되는 파라미터들, 즉 "A", "B", "C","D", "E", "F", "G","H"와 같은 파라미터들은 상기 도 7 및 도 8에서 설명한 파라미터들과 실질적으로 상이한 파라미터들이며, 상기 "A", "B", "C","D"는 골래이 상보 시퀀스들을 나타내며, "E", "F", "G","H"는 복소 골래이 상보 시퀀스들을 나타낸다. 여기서, 상기 M, N은의 조건을 만족하는 정수이고, k는 -M과 -N 중 작은 값보다 큰 정수이다.
상기 도 6을 참조하면, 골래이 상보 시퀀스 쌍 발생기(611)는 제어기(도시하지 않음)로부터 변수 pNum0 값과 변수 seed0 값을 전달받고, 상기 전달받은 변수 pNum0 값과 변수 seed0 값에 상응하게 길이 N의 골래이 상보 시퀀스 쌍 [A, B]를 발생한다.
여기서, 상기 변수 pNum0은 0 ~ K-1 중의 어느 한 정수값을 가진다. 상기 변수 K는 길이 N의 프리미티브 골래이 상보 시퀀스(primitive golay complementary sequence) 쌍의 개수를 나타내며, 따라서 상기 변수 pNum0은 상기 K개의 프리미티브 골래이 상보 시퀀스 쌍들 중에서 사용할 프리미티브 골래이 상보 시퀀스 쌍을 선택해 주는 변수이다. 그리고, 상기 변수 K는 상기에서 설명한 변수 k, 즉 -M과 -N 중 작은 값보다 큰 정수인 변수 k와는 상이한 변수이다. 상기 변수 seed0은 0 ~ 63 중의 어느 한 정수값으로서, 상기 프리미티브 골래이 상보 시퀀스 쌍의 켤레 쌍을 선택해 주는 변수이다. 여기서, 상기 변수 seed0가 0 ~ 63 중의 어느 한 정수값을 가지는 이유는 골래이 상보 시퀀스 쌍이 64개의 켤레 쌍을 가지기 때문이다. 상기 프리미티브 골래이 상보 시퀀스 쌍은 상기 프리미티브 골래이 상보 시퀀스보다 더 짧은 길이의 골래이 상보 시퀀스 쌍의 합성으로 생성할 수 없는 골래이 상보 시퀀스 쌍을 의미한다. 한편, 상기 골래이 상보 시퀀스 쌍 발생기(611)가 실제 골래이 상보 시퀀스 쌍을 발생하는 과정은 하기 도 9에서 구체적으로 설명할 것이므로 여기서는 그 상세한 설명을 생략하기로 한다.
또한, 골래이 상보 시퀀스 쌍 발생기(613)는 변수 pNum1 값과 변수 seed1 값을 전달받고, 상기 전달받은 변수 pNum1 값과 변수 seed1 값에 상응하게 길이 M의 골래이 상보 시퀀스 쌍 [C, D]를 발생한다. 여기서, 상기 변수 pNum1은 0 ~ L-1 중의 어느 한 정수값을 가진다. 상기 변수 L은 길이 M의 프리미티브 골래이 상보 시퀀스 쌍의 개수를 나타내며, 따라서 상기 변수 pNum1은 길이 M의 프리미티브 골래이 상보 시퀀스 쌍의 켤레 쌍을 선택해주는 변수이다.
복소 골래이 상보 시퀀스 쌍 합성기(615)는 상기 골래이 상보 시퀀스 쌍 발생기(611)에서 발생한 길이 N의 골래이 상보 시퀀스 쌍 [A, B]와, 상기 골래이 상보 시퀀스 쌍 발생기(613)에서 발생한 길이 M의 골래이 상보 시퀀스 쌍 [C, D]를상기 제어기로부터 제공되는 복소 골래이 상보 시퀀스 쌍 합성 규칙에 의해 길이 M+N+k의 복소 골래이 상보 시퀀스 쌍 [E, F, G, H]를 발생한다. 상기 복소 골래이 상보 시퀀스 쌍 합성 규칙은 하기 도 11에서 설명할 것이므로 여기서는 그 상세한 설명을 생략하기로 한다.
마지막으로, 선택기(617)는 상기 제어기로부터 선택(select) 신호를 전달받고, 상기 전달받은 선택 신호에 상응하게 상기 복소 골래이 상보 시퀀스 쌍 합성기(615)에서 출력한 복소 골래이 상보 시퀀스 쌍 [E, F, G, H]중 어느 한 시퀀스를 선택하여 최종적인 길이 M + N + k의 복소 골래이 상보 시퀀스 J로 출력한다. 여기서, 상기 선택 신호는 0 ~3까지의 정수들 중 어느 한 정수값을 가지며, 상기 선택기(617)는 상기 선택 신호가 0이면 E, 1이면 F, 2이면 G, 3이면 F를 선택하여 상기 복소 골래이 상보 시퀀스 J로 출력한다.
그러면 여기서 상기 길이 M + N + k의 복소 골래이 상보 시퀀스를 상기 복소 골래이 상보 시퀀스 매핑 규칙에 상응하게 매핑하여 실제 프리앰블 시퀀스를 생성하는 과정을 도 5를 참조하여 설명하기로 한다.
상기 도 5는 본 발명의 실시예에서의 기능을 수행하기 위한 프리앰블 시퀀스 생성기 구조를 도시한 도면이다.
상기 도 5를 참조하면, 먼저, 프리앰블 시퀀스 생성기는 복소 골래이 상보 시퀀스 발생기(511)와, 복소 골래이 상보 시퀀스/프리앰블 시퀀스 매핑기(513)와, 선택기(515)로 구성된다. 상기 복소 골래이 상보 시퀀스 발생기(511)는 제어기로부터 변수 pNum0값과, 변수 pNum1값과, 변수 seed0값과, 변수 seed1값과,선택(select) 신호를 전달받고, 상기 전달받은 변수 pNum0값과, 변수 pNum1값과, 변수 seed0값과, 변수 seed1값과, 선택 신호를 가지고 길이 M + N + k의 복소 골래이 상보 시퀀스 J(0:(M + N + k - 1))를 발생한다.
여기서, 상기 복소 골래이 상보 시퀀스 발생기(511)의 실제 복소 골래이 상보 시퀀스 발생 과정은 상기 도 6에서 설명한 바와 같으므로 여기서는 그 상세한 설명을 생략하기로 한다. 이렇게 상기 복소 골래이 상보 시퀀스 발생기(511)에서 발생한 길이 M + N + k의 복소 골래이 상보 시퀀스 J(0: (M + N + k - 1))는 상기 복소 골래이 상보 시퀀스/프리앰블 시퀀스 매핑기(513)로 입력되고, 상기 복소 골래이 상보 시퀀스/프리앰블 시퀀스 매핑기(513)는 상기 길이 M + N + k의 복소 골래이 상보 시퀀스 J(0: (M + N + k - 1))와, 제어기로부터 전달되는 변수 interval값을 가지고 IFFT의 입력에 상응하게 매핑시켜 프리앰블 시퀀스를 발생한다. 여기서, Sg는 긴 프리앰블 시퀀스 중 앞 부분의 프리앰블 시퀀스에 삽입되는 시퀀스를 나타내며, Pg는 짧은 프리앰블 시퀀스에 삽입되는 시퀀스를 나타내며, 또한 "B"는 상기 도 7의 "B"와 동일한 값을 나타낸다. 또한, 상기 도 5를 설명함에 있어서는 상기 변수 interval을 2 또는 4로 설정하는 경우를 가정하여 설명하였지만, 상기 interval의 값은 상황에 따라 가변될 수 있음은 물론이다. 여기서, 상기 변수 interval이 4이면 Sg(-B:B)가, 상기 변수 interval이 2이면 Pg(-B:B)를 발생되는 것이다. 또한, 상기 복소 골래이 상보 시퀀스/프리앰블 시퀀스 매핑기(513)의 동작 역시 상기 도 7에서 설명하였으므로 여기서는 그 상세한 설명을 생략하기로 한다. 이렇게, 상기 복소 골래이 상보 시퀀스/프리앰블 시퀀스 매핑기(513)에서 출력되는Sg(-B:B) 혹은 Pg(-B:B)는 선택기(515)로 입력되고, 상기 선택기(515)는 상기 Sg(-B:B) 혹은 Pg(-B:B)중 상황에 따라 필요한 프리앰블 시퀀스를 선택하여 출력한다.
다음으로 상기 도 6에서 설명한 길이 N의 골래이 상보 시퀀스 쌍을 발생하는 골래이 상보 시퀀스 쌍 발생기(611)를 하기 도 9를 참조하여 설명하도록 한다.
상기 도 9는 도 6의 골래이 상보 시퀀스 쌍 발생기(611) 내부 구조를 도시한 블록도이다.
상기 도 9를 참조하면, 상기 도 6에서 설명한 바와 같이 길이 N의 프리미티브 골래이 상보 시퀀스 쌍들(911)의 개수를 K개라고 가정할 경우, 변수 pNum0은 0 ~ K-1까지의 정수들 중 어느 한 정수값이 된다. 그래서, 상기 변수 pNum0 값은 선택기(913)로 입력되고, 상기 선택기(913)는 상기 변수 pNum0 값을 가지고 상기 길이 N의 프리미티브 골래이 상보 시퀀스 쌍들(911)중 특정한 길이 N의 프리미티브 골래이 상보 시퀀스 쌍 [T0, T0 C]를 선택하여 골래이 상보 시퀀스 켤레 쌍 발생기(915)로 출력한다. 상기 골래이 상보 시퀀스 켤레 쌍 발생기(915)는 상기 선택기(913)에서 출력한 길이 N의 프리미티브 골래이 상보 시퀀스 쌍 [T0, T0 C]와, 제어기로부터 변수 seed0값을 전달받아 골래이 상보 시퀀스 켤레 쌍 [A, B]을 발생한다.
그러면, 여기서 일 예로 길이 52의 골래이 상보 시퀀스 쌍 발생기를 도 10을 참조하여 설명하기로 한다.
상기 도 10은 길이 52의 골래이 상보 시퀀스 쌍 발생기 내부 구조를 도시한 블록도이다.
상기 도 10을 참조하면, 먼저 길이 52의 프리미티브 골래이 상보 시퀀스는 1쌍 존재하는데, 상기 1쌍의 프리미티브 골래이 상보 시퀀스들(1011)을 나타내면 다음과 같다.
이와 같이 길이 52의 프리미티브 골래이 상보 시퀀스는 1쌍(1011) 존재하기 때문에, 상기 변수 pNum0는 0이고 , 선택기(1013)는 프리미티브 골래이 상보 시퀀스 쌍을 선택하여 [T0, T0 C]를 출력한다. 골래이 상보 시퀀스 켤레 쌍 발생기(1015)는 상기 선택기(1013)에서 출력한 [T0, T0 C]와 제어기로부터 전달되는 변수 seed0 값을 가지고 골래이 상보 시퀀스 켤레 쌍 [A, B]을 발생한다.
다음으로 상기 복소 골래이 상보 시퀀스 쌍 합성 규칙을 도 11을 참조하여 설명하기로 한다.
상기 도 11은 본 발명의 실시예에 따른 복소 골래이 상보 시퀀스 쌍 합성 규칙을 개략적으로 도시한 도면이다.
상기 도 11을 참조하면, 상기 도 6에서 설명한 복소 골래이 상보 시퀀스 쌍 합성기(615)는 복소 골래이 상보 시퀀스 쌍 합성 규칙에 상응하게 길이 M + N + k의 복소 골래이 상보 시퀀스 쌍을 합성한다. 상기 복소 골래이 상보 시퀀스 쌍 합성 규칙은 다음과 같다.
<복소 골래이 상보 시퀀스 쌍 합성 규칙>
상기 복소 골래이 상보 시퀀스 쌍 합성 규칙에서 ai과 bi은 길이 N의 골래이 상보 시퀀스 쌍 [A, B] 각각을 구성하는 성분들을 나타내며, ci과 di는 길이 M의 골래이 상보 시퀀스 쌍 [C, D] 각각을 구성하는 성분들을 나타내며, ei,fi,gi,hi는 길이 M + N + k의 복소 골래이 상보 시퀀스 쌍 [E, F, G,H] 각각을 구성하는 성분들을 나타낸다. 여기서, 상기 변수 i는 하기 수학식 3의 조건을 만족한다.
결과적으로, 상기 도 6에서 설명한 복소 골래이 상보 시퀀스 생성 장치에서 제어기가 상기 <복소 골래이 상보 시퀀스 쌍 합성 규칙>에 상응하게 부여하면, 상기 복소 골래이 상보 시퀀스 쌍 합성기(615)가 길이 N의 골래이 상보 시퀀스 쌍 [A, B]와, 길이 M의 골래이 상보 시퀀스 쌍 [C, D]를 합성하여 길이 M+N+k의 복소 골래이 상보 시퀀스 쌍 [E, F,G,H]를 발생하게 되는 것이다.
다음으로 도 12를 참조하여 길이 52의 골래이 상보 시퀀스 쌍 [A,B]와, 길이 52의 골래이 상보 시퀀스 쌍 [C, D]를 합성하여 길이 52 + 52 + 0, 즉 길이 104의 복소 골래이 상보 시퀀스 쌍 [E, F, G, H]를 생성하는 과정을 설명하기로 한다.
상기 도 12는 길이 52의 골래이 상보 시퀀스 쌍 [A, B]와 길이 52의 골래이 상보 시퀀스 쌍 [C, D]를 합성하여 길이 104의 복소 골래이 상보 시퀀스 쌍 [E, F, G, H]를 합성하는 과정을 개략적으로 도시한 도면이다.
상기 도 12를 참조하면, 상기 도 6에서 설명한 바와 같이 복소 골래이 상보 시퀀스 쌍 합성기(615)는 길이 104의 복소 골래이 상보 시퀀스 쌍 [E, F, G, H]를 생성할 때, 제어기로부터 <복소 골래이 상보 시퀀스 쌍 합성 규칙>에 상응하게 길이 104의 복소 골래이 상보 시퀀스 쌍 [E, F, G, H]를 합성한다. 또한, 상기 길이 104의 <복소 골래이 상보 시퀀스 쌍 합성 규칙>을 구체적으로 설명하면 다음과 같다.
<길이 104의 복소 골래이 상보 시퀀스 쌍 합성 규칙>
상기 <길이 104의 복소 골래이 상보 시퀀스 쌍 합성 규칙>에서 al과 bl은 길이 52의 골래이 상보 시퀀스 쌍 [A, B] 각각을 구성하는 성분들을 나타내며, ci과 di는 길이 52의 골래이 상보 시퀀스 쌍 [C, D] 각각을 구성하는 성분들을 나타내며,ei,fi,gi,hi는 길이 104 (52 + 52 + 0) 의 복소 골래이 상보 시퀀스 쌍 [E, F, G,H] 각각을 구성하는 성분들을 나타낸다.
다음으로 도 13을 참조하여 골래이 상보 시퀀스 켤레 쌍 발생기(915)의 내부 구조를 설명하기로 한다.
상기 도 13은 도 9의 골래이 상보 시퀀스 켤레 쌍 발생기(915)의 내부 구조를 도시한 블록도이다.
상기 도 13을 참조하면, 먼저 도 9에서 설명한 바와 같이 골래이 상보 시퀀스 켤레 쌍 발생기(915)는 제어기로부터 프리미티브 골래이 상보 시퀀스 쌍의 켤레 쌍을 선택해 주는 변수 seed 값을 전달받고, 상기 전달받은 변수 seed 값에 상응하게 골래이 상보 시퀀스 켤레 쌍을 발생한다. 상기 골래이 상보 시퀀스 켤레 쌍 발생기(617)가 상기 변수 seed 값에 따라 실제 골래이 상보 시퀀스 켤레 쌍을 발생하는 과정을 살펴보면 다음과 같다.
먼저, 상기 변수 seed 값은 2진수 변환기(1311)로 입력되고, 상기 2진수 변환기(1311)는 상기 변수 seed 값을 2진수로 변환한다. 여기서, 상기 변수 seed는 상기에서 설명한 바와 같이 골래이 상보 시퀀스 켤레 쌍이 64개의 켤레 쌍을 가지기 때문에 0 ~ 63 중의 어느 한 정수값을 가진다. 그래서, 상기 2진수 변환기(1311)는 상기 변수 seed 값을 6자리 2진수로 변환하고, 상기 변환된 2진수 6자리수들 각각을 bseed[n]으로 표현하기로 한다. 즉, bseed[0]은 상기 6자리수 2진수에서 20에 해당하는 자리수의 값을 나타내며, bseed[1]은 상기 6자리수 2진수에서 21에 해당하는 자리수의 값을 나타내며, bseed[2]은 상기 6자리수 2진수에서 22에 해당하는 자리수의 값을 나타내며, bseed[3]은 상기 6자리수 2진수에서 23에 해당하는 자리수의 값을 나타내며, bseed[4]은 상기 6자리수 2진수에서 24에 해당하는자리수의 값을 나타내며, bseed[5]은 상기 6자리수 2진수에서 25에 해당하는 자리수의 값을 나타낸다. 일 예로, 상기 변수 seed값이 3 이면, bseed[5]=0, bseed[4]=0, bseed[3]=0, bseed[2]=0, bseed[1]=1, bseed[0]=1이 된다.
이렇게, 상기 2진수 변환기(1311)가 상기 변수 seed값을 2진수 변환하여 bseed[5], bseed[4], bseed[3], bseed[2], bseed[1], bseed[0]을 출력하고, 상기 bseed[5], bseed[4], bseed[3], bseed[2], bseed[1], bseed[0] 각각은 골래이 상보 시퀀스 쌍 변환기(1313)와, 첫 번째 시퀀스 순서 변환기(1315)와, 두 번째 시퀀스 순서 변환기(1317)와, 첫 번째 시퀀스 부호 변환기(1319)와, 두 번째 시퀀스 부호 변환기(1321)와, 골래이 상보 시퀀스 쌍 홀수번째 부호 변환기(1323)로 입력된다.
한편, 상기 골래이 상보 시퀀스 쌍 변환기(1313)로는 길이 N의 프리미티브 골래이 상보 시퀀스 쌍 [T0, T0 C]이 입력된다. 상기 골래이 상보 시퀀스 쌍 변환기(1313)는 상기 2진수 변환기(1311)에서 출력한 bseed[5]값이 1이면, 상기 길이 N의 프리미티브 골래이 상보 시퀀스 쌍 [T0, T0 C]의 순서를 바꾸어서 [T0 C, T0]로 변환하여 [T1, T1 C]로 출력한다. 여기서, 상기 [T1, T1 C]는 상기 골래이 상보 시퀀스 쌍 변환기(1313)에서 출력하는 골래이 상보 시퀀스를 나타낸다. 이와는 반대로 상기 2진수 변환기(1311)에서 출력한 bseed[5]값이 0이면 상기 골래이 상보 시퀀스 쌍 변환기(1313)는 상기 길이 N의 프리미티브 골래이 상보 시퀀스 쌍 [T0, T0 C]의 순서를 바꾸지 않고 그대로 유지하여 [T1, T1 C]로 출력한다.
이렇게 상기 골래이 상보 시퀀스 쌍 변환기(1313)에서 출력한 [T1, T1 C]는 상기 첫 번째 시퀀스 순서 변환기(1315)로 입력된다. 상기 첫 번째 시퀀스 순서 변환기(1315)는 상기 [T1, T1 C]을 입력하여 상기 2진수 변환기(1311)에서 출력한 bseed[4]의 값이 1일 경우에는 상기 [T1, T1 C]의 첫 번째 시퀀스인 T1의 순서를 변환하여 T2로 발생하고, T1은 그대로 T2 C로 발생한다. 이와는 반대로 상기 2진수 변환기(1311)에서 출력한 bseed[4]의 값이 0일 경우 상기 첫 번째 시퀀스 순서 변환기(1315)는 [T1, T1 C]을 그대로 [T2, T2 C]로 발생한다.
이렇게 상기 첫 번째 시퀀스 순서 변환기(1315)에서 출력한 [T2, T2 C]는 상기 두 번째 시퀀스 순서 변환기(1317)로 입력된다. 상기 두 번째 시퀀스 순서 변환기(1317)는 상기 [T2, T2 C]을 입력하여 상기 2진수 변환기(1311)에서 출력한 bseed[3]의 값이 1일 경우에는 [T2, T2 C]의 두 번째 시퀀스인 T2 C의 순서를 변환하여 T3 c로 발생하고, T2은 그대로 T3로 발생한다. 이와는 반대로 상기 2진수변환기(1311)에서 출력한 bseed[3]의 값이 0일 경우 상기 두 번째 시퀀스 순서 변환기(1317)는 [T2, T2 C]을 그대로 [T3, T3 C]로 발생한다.
이렇게 상기 두 번째 시퀀스 순서 변환기(1315)에서 출력한 [T3, T3 C]는 상기 첫 번째 시퀀스 부호 변환기(1319)로 입력된다. 상기 첫 번째 시퀀스 부호 변환기(1319)는 상기 [T3, T3 C]을 입력하여 상기 2진수 변환기(1311)에서 출력한 bseed[2]의 값이 1일 경우에는 [T3, T3 C]의 첫 번째 시퀀스인 T3의 부호를 변환하여 T4로 발생하고, T3은 그대로 T4로 발생한다. 이와는 반대로 상기 2진수 변환기(1311)에서 출력한 bseed[2]의 값이 0일 경우 상기 첫 번째 시퀀스 부호 변환기(1319)는 [T3, T3 C]을 그대로 [T4, T4 C]로 발생한다.
이렇게 상기 첫 번째 시퀀스 부호 변환기(1319)에서 출력한 [T4, T4 C]는 상기 두 번째 시퀀스 부호 변환기(1321)로 입력된다. 상기 두 번째 시퀀스 부호 변환기(1321)는 상기 [T4, T4 C]을 입력하여 상기 2진수 변환기(1311)에서 출력한 bseed[1]의 값이 1일 경우에는 [T4, T4 C]의 두 번째 시퀀스인 T4 c의 부호를 변환하여 T5 c로 발생하고, T4은 그대로 T5로 발생한다. 이와는 반대로 상기 2진수변환기(1311)에서 출력한 bseed[1]의 값이 0일 경우 상기 두 번째 시퀀스 부호 변환기(1321)는 [T4, T4 C]을 그대로 [T5, T5 C]로 발생한다.
이렇게 상기 두 번째 시퀀스 부호 변환기(1321)에서 출력한 [T5, T5 C]는 상기 골래이 상보 시퀀스 쌍 홀수번째 부호 변환기(1323)로 입력된다. 상기 골래이 상보 시퀀스 쌍 홀수번째 부호 변환기(1323)는 상기 [T5, T5 C]을 입력하여 상기 2진수 변환기(1311)에서 출력한 bseed[0]의 값이 1일 경우에는 [T5, T5 C]의 두 시퀀스들 T5와 T5 c의 홀수번째 구성 성분들의 부호를 변환하여 T6와 T6 c로 발생한다. 이와는 반대로 상기 2진수 변환기(1311)에서 출력한 bseed[0]의 값이 0일 경우 상기 골래이 상보 시퀀스 쌍 홀수번째 부호 변환기(1323)는 [T5, T5 C]을 그대로 [T6, T6 C]로 발생한다. 결과적으로, 상기 골래이 상보 시퀀스 쌍 홀수번째 부호 변환기(1323)에서 출력하는 [T6, T6 C]가 상기 골래이 상보 시퀀스 켤레 쌍 발생기(617)의 출력이 되는 것이다. 이렇게, 상기 골래이 상보 시퀀스 쌍 변환기(1313)와, 첫 번째 시퀀스 순서 변환기(1315)와, 두 번째 시퀀스 순서 변환기(1317)와, 첫 번째 시퀀스 부호 변환기(1319)와, 두 번째 시퀀스 부호 변환기(1321)와, 골래이 상보 시퀀스 쌍 홀수번째 부호 변환기(1323)의 시퀀스 변환에 의해 발생되는 시퀀스들 역시 모두 골래이 상보 시퀀스 쌍의 특성을 가진다. 결과적으로, 상기 골래이 상보 시퀀스 쌍의 특성을 이용하여 64개의 골래이 상보 시퀀스 켤레 쌍들을 생성하는 것이 가능한 것이다.
다음으로 도 14를 참조하여 OFDM 통신 시스템에서 IFFT 수행시 부반송파들과 프리앰블 시퀀스와의 매핑 관계를 설명하기로 한다.
상기 도 14는 본 발명의 실시예에 따른 OFDM 통신 시스템에서 IFFT 수행 시 부반송파들과 프리앰블 시퀀스와의 매핑 관계를 개략적으로 도시한 도면이다.
상기 도 14는 상기 OFDM 통신 시스템의 전체 부반송파들의 개수가 A개이고, 상기 A개의 부반송파들중 실제 사용되는 부반송파들의 번호가 [-B,-B+1,...,-1,1,...,B-1,B]인 경우를 가정하여 설명하기로 한다. 상기 도 14에서 IFFT 입력단의 번호들은 상기 OFDM 통신 시스템의 부반송파들의 번호를 나타낸다. 그리고 상기에서 설명한 바와 같이 0번 부반송파가 IFFT를 수행한 뒤에는 시간 영역에서 프리앰블 시퀀스의 기준점, 즉 시간 영역에서 DC 성분을 나타내기 때문에 0번 부반송파에는 널 데이터를 삽입한다. 또한, 상기 실제 사용되는 2B개의 부반송파들과, 상기 O번 부반송파를 제외한 부반송파들, 즉 -A/2번 부반송파 내지 -(B+1)번 부반송파까지의 부반송파들과, (B+1)번 부반송파 내지 (A/2-1)번 부반송파까지의 부반송파들에도 역시 널 데이터가 삽입된다. 여기서, 상기 -A/2번 부반송파 내지 -(B+1)번 부반송파까지의 부반송파들과, (B+1)번 부반송파 내지 (A/2-1)번 부반송파까지의 부반송파들에 널 데이터가 삽입되는 이유는 상기에서 설명한 바와 같이 상기 -A/2번 부반송파 내지 -(B+1)번 부반송파까지의 부반송파들과, (B+1)번 부반송파 내지(A/2-1)번 부반송파까지의 부반송파들이 보호 구간에 해당하기 때문이다. 그래서, 주파수 영역의 프리앰블 시퀀스 Sg(-B:B) 혹은 Pg(-B:B)가 상기 IFFT에 입력되면, 상기 IFFT는 입력되는 주파수 영역의 프리앰블 시퀀스 Sg(-B:B) 혹은 Pg(-B:B)를 해당 부반송파들에 매핑시켜 IFFT를 수행하여 시간 영역의 프리앰블 시퀀스로 출력한다. 여기서, 긴 프리앰블 구간 중 앞 부분의 프리앰블 시퀀스 구간 일 경우 상기 Sg(-B:B)를 IFFT에 입력하고, 짧은 프리앰블 시퀀스 구간일 경우 상기 Pg(-B:B)를 IFFT에 입력하는 것이다.
다음으로 도 15를 참조하여 256개의 부반송파들을 가지는 OFDM 통신 시스템에서 IFFT 수행시 부반송파들과 프리앰블 시퀀스와의 매핑 관계를 설명하기로 한다.
상기 도 15는 256개의 부반송파들을 가지는 OFDM 통신 시스템에서 IFFT 수행 시 부반송파들과 프리앰블 시퀀스와의 매핑 관계를 개략적으로 도시한 도면이다.
상기 도 15를 설명함에 있어 -128번 부반송파 내지 127번 부반송파까지의 256개의 부반송파들이 존재하고, 실제 사용되는 부반송파들의 개수가 -104번, ... . -1번, 1번, ... , 104번까지의 208개라고 가정하기로 한다. 그리고 상기 도 13에서 설명한 바와 마찬가지로, 0번 부반송파는 DC 성분으로 작용하며, -128번 부반송파 내지 -105번 부반송파까지의 부반송파들과, 105번 부반송파 내지 127번 부반송파까지의 부반송파들은 보호 구간 성분으로 작용하기 때문에 널 데이터를 삽입한다. 그래서 주파수 영역의 프리앰블 시퀀스 Sg(-104:104) 혹은 Pg(-104:104)를 IFFT의 입력으로 삽입하고, 상기 IFFT는 입력된 Sg(-104:104) 혹은 Pg(-104:104)을IFFT 수행하여 시간영역의 프리앰블 시퀀스로 출력한다. 여기서, 긴 프리앰블 구간 중 앞 부분의 프리앰블 시퀀스 구간 일 경우 상기 Sg(-104:104)를 IFFT에 삽입하고, 짧은 프리앰블 시퀀스 구간일 경우 상기 Pg(-104:104)를 IFFT 입력 단에 삽입한다.
또한, 상기 Sg(-104:104) 혹은 Pg(-104:104)은 상기 도 5에서 설명한 바와 같은 프리앰블 시퀀스 생성기에서 발생되는데, 본 발명에서는 상기 프리앰블 시퀀스 생성기가 Pg(-104:104)를 생성하는 경우를 일 예로 설명하였다. 한편, 상기 프리앰블 시퀀스 생성기에서 발생한 모든 프리앰블 시퀀스들은 6[dB] 이하의 PAPR을 갖게 되는데, 상기 도 6에서 설명한 길이 M + N + k의 복소 골래이 상보 시퀀스 생성 장치에서 설명한 모든 변수값들, 즉 M, N, pNum0, pNum1, seed0, seed1, select 의 조합에 의해 나올 수 모든 복소 골래이 상보 시퀀스들의 PAPR들 중 가장 낮은 PAPR은 2.8666[dB]이다. 상기 2.8666[dB]의 PAPR을 가질 때의 복소 골래이 상보 시퀀스를 생성하는 파라미터들, 즉 M, N, pNum0, pNum1, seed0, seed1, select의 값은 많은 경우를 포함할 수 있는데, 여기서는 pNum0 = pNum1 = select = 0인 경우를 가정하여 가장 낮은 PAPR을 갖는 seed0과 seed1을 구하면 여러 값이 나올 수 있다. 그 중 seed0 = 1, seed1 = 4 인 경우 프리앰블 시퀀스를 Pg(-104:104)라고 표현하면, 상기 Pg(-104:104)는 다음과 같다.
상기 Pg(-104:104)를 살펴보면, 홀수번째 구성 성분들에는 +1 혹은 -1의 데이터가 삽입되고, 짝수번째 구성 성분들에는 널 데이터, 즉 0이 삽입된다는 것을 알 수 있다.
다음으로 도 16을 참조하여 본 발명에 따른 프리앰블 시퀀스 매핑 과정을 설명하기로 한다.
상기 도 16은 본 발명의 실시예에 따른 프리앰블 시퀀스 매핑 과정을 도시한 도면이다.
상기 도 16을 참조하면, 먼저 1611단계에서 OFDM 통신 시스템의 송신기는 송신할 신호 구간이 프리앰블 시퀀스 송신 구간인지 검사한다. 상기 검사 결과 상기 송신할 신호 구간이 프리앰블 시퀀스 송신 구간이 아닐 경우, 즉 데이터 송신 구간일 경우 상기 송신기는 1613단계로 진행한다. 상기 1613단계에서 상기 송신기는 송신하고자 하는 데이터를 IFFT 입력단의 해당 부반송파들에 매핑되도록 제어하고 상기 1611단계로 돌아간다.
한편, 상기 1611단계에서 검사 결과 상기 송신할 신호 구간이 프리앰블 시퀀스 송신 구간일 경우 상기 송신기는 1615단계로 진행한다. 상기 1615단계에서 상기 송신기는 상기 프리앰블 시퀀스 송신 구간이 긴 프리앰블 시퀀스 중 앞 부분의 프리앰블 시퀀스를 송신하는 구간인지 검사한다. 여기서, 상기 프리앰블 시퀀스 송신 구간이 긴 프리앰블 시퀀스 중 앞 부분의 프리앰블 시퀀스는 Sg(-B:B) 시퀀스를 의미한다. 상기 검사 결과 상기 프리앰블 시퀀스 송신 구간이 긴 프리앰블 시퀀스 중 앞 부분의 프리앰블 시퀀스를 송신하는 구간일 경우 상기 송신기는 1617단계로 진행한다.
상기 1617단계에서 상기 송신기는 상기 긴 프리앰블 시퀀스의 앞 부분의 프리앰블 시퀀스 Sg(-B:B)를 발생하여 IFFT 입력단의 해당 부반송파들에 매핑되도록 제어하고 상기 1611단계로 돌아간다. 이 때, 상기 -B:B 은 상기 OFDM 통신 시스템에서 실제 데이터가 사용되는 있는 부반송파들의 번호를 나타낸다. 한편, 상기 1615단계에서 상기 검사 결과 상기 프리앰블 시퀀스의 앞 부분의 프리앰블 시퀀스 Sg(-B:B)를 송신하는 구간이 아닌 경우, 즉 짧은 프리앰블 시퀀스 Pg(-B:B)를 송신할 구간일 경우 상기 송신기는 1619단계로 진행한다. 상기 1619단계에서 상기 송신기는 상기 짧은 프리앰블 시퀀스 Pg(-B:B)를 발생하여 IFFT 입력단의 해당 부반송파들에 매핑되도록 제어하고 상기 1611단계로 돌아간다.
상술한 바와 같은 본 발명은, OFDM 통신 시스템에서 최소 PAPR을 가지는 프리앰블 시퀀스 생성을 가능하게 한다는 이점을 가진다. 이렇게 최소 PAPR을 가지는 프리앰블 시퀀스 생성은 OFDM 통신 시스템 전체 성능을 향상시킨다는 이점을 가진다. 그리고, 본 발명은 복소 골래이 상보 시퀀스를 이용하여 프리앰블 시퀀스를 생성함으로써 최소 PAPR을 가지는 프리앰블 시퀀스를 최단 시간내에 최소 연산 횟수로 생성하는 것이 가능하다는 이점을 가진다. 또한, 본 발명은 복소 골래이 상보 시퀀스를 이용하여 프리앰블 시퀀스를 생성함으로써 길이 제한이 존재하지 않는 프리앰블 시퀀스 생성을 가능하게 한다는 이점을 가진다.

Claims (28)

  1. 제1개수의 부반송파들을 사용하는 직교 주파수 분할 다중 통신 시스템에서 프리앰블 시퀀스를 생성하는 장치에 있어서,
    길이 N의 골래이 상보 시퀀스와 길이 M의 골래이 상보 시퀀스를 합성하여 길이 M + N + k의 프리앰블 시퀀스를 생성하는 프리앰블 시퀀스 생성기와,
    상기 제1개수의 부반송파들 중 DC 성분과 부반송파들간 간섭 제거 성분에 대응되는 부반송파들에 널 데이터를 삽입하며, 상기 제1개수의 부반송파들중 상기 널 데이터가 삽입된 부반송파들 이외의 제2개수의 부반송파들 각각에 상기 프리앰블 시퀀스 구성 성분들 각각을 삽입한 후 역고속 푸리에 변환하는 역고속 푸리에 변환기를 포함함을 특징으로 하는 상기 장치.
  2. 제1항에 있어서,
    상기 프리앰블 시퀀스는 복소 골래이 상보 시퀀스임을 특징으로 하는 상기 장치.
  3. 제1항에 있어서,
    상기 k는 -N과 -M중 작은 값보다 큰 정수임을 특징으로 하는 상기 장치.
  4. 제1항에 있어서,
    상기 프리앰블 시퀀스 생성기는;
    길이 N의 골래이 상보 시퀀스와, 길이 M의 골래이 상보 시퀀스를 합성하여 상기 길이 M + N + k의 복소 골래이 상보 시퀀스를 발생하는 복소 골래이 상보 시퀀스 발생기와,
    상기 길이 M + N + k의 복소 골래이 상보 시퀀스를 구성하는 성분들 각각을 미리 설정된 설정 간격으로 상기 제2개수의 부반송파들에 매핑되도록 상기 프리앰블 시퀀스를 생성하는 복소 골래이 상보 시퀀스/프리앰블 시퀀스 매핑기를 포함함을 특징으로 하는 상기 장치.
  5. 제4항에 있어서,
    상기 복소 골래이 상보 시퀀스 발생기는;
    길이 N의 골래이 상보 시퀀스 쌍을 발생하는 제1골래이 상보 시퀀스 쌍 발생기와,
    길이 M의 골래이 상보 시퀀스 쌍을 발생하는 제2골래이 상보 시퀀스 쌍 발생기와,
    상기 길이 N의 골래이 상보 시퀀스 쌍과, 길이 M의 골래이 상보 시퀀스 쌍을복소 골래이 상보 시퀀스 쌍 합성 규칙에 상응하게 상기 길이 M + N + k의 복소 골래이 상보 시퀀스 쌍으로 합성하는 복소 골래이 상보 시퀀스 쌍 합성기와,
    상기 길이 M + N + k의 복소 골래이 상보 시퀀스 쌍중 어느 한 복소 골래이 상보 시퀀스를 상기 길이 M + N + k의 복소 골래이 상보 시퀀스로 선택하는 선택기를 포함함을 특징으로 하는 상기 장치.
  6. 제5항에 있어서,
    상기 제1골래이 상보 시퀀스 쌍 발생기는;
    길이 N의 프리미티브 골래이 상보 시퀀스 쌍들중 한 개의 프리미티브 골래이 상보 시퀀스 쌍을 선택하는 선택기와,
    상기 선택한 프리미티브 골래이 상보 시퀀스 쌍의 켤레 쌍들중 한 개의 프리미티브 골래이 상보 시퀀스 켤레 쌍을 선택하여 길이 N의 골래이 상보 시퀀스 쌍으로 발생하는 제1골래이 상보 시퀀스 켤레 쌍 발생기를 포함함을 특징으로 하는 상기 장치.
  7. 제5항에 있어서,
    상기 제2골래이 상보 시퀀스 쌍 발생기는;
    길이 M의 프리미티브 골래이 상보 시퀀스 쌍들중 한 개의 프리미티브 골래이상보 시퀀스 쌍을 선택하는 선택기와,
    상기 선택한 프리미티브 골래이 상보 시퀀스 쌍의 켤레 쌍들중 한 개의 프리미티브 골래이 상보 시퀀스 켤레 쌍을 선택하여 길이 M의 골래이 상보 시퀀스 쌍으로 발생하는 제2골래이 상보 시퀀스 켤레 쌍 발생기를 포함함을 특징으로 하는 상기 장치.
  8. 제5항에 있어서,
    상기 복소 골래이 상보 시퀀스 쌍 합성 규칙은 하기 <복소 골래이 상보 시퀀스 쌍 합성 규칙>에 상응하도록 상기 길이 M + N + k의 복소 골래이 상보 시퀀스 쌍을 합성하는 것임을 특징으로 하는 상기 장치.
    <복소 골래이 상보 시퀀스 쌍 합성 규칙>
    단, 상기 <복소 골래이 상보 시퀀스 쌍 합성 규칙>에서 ai과 bi은 길이 N의 골래이 상보 시퀀스 쌍 [A, B] 각각을 구성하는 성분들을 나타내며, ci과 di는 길이 M의 골래이 상보 시퀀스 쌍 [C, D] 각각을 구성하는 성분들을 나타내며, ei과 fi는 길이 M + N + k의 골래이 상보 시퀀스 쌍 [E, F] 각각을 구성하는 성분들을 나타내고, 상기 i, l, k는 하기 수학식 4의 조건을 만족함.
  9. 제4항에 있어서,
    상기 복소 골래이 상보 시퀀스/프리앰블 시퀀스 매핑기는 상기 길이 M + N + k의 복소 골래이 상보 시퀀스를 구성하는 성분들 중 +1 혹은 -1의 값을 가지는 성분들이 상기 제2개수의 부반송파들중 DC 성분에 대응되는 부반송파에 매핑되지 않도록 제어함을 특징으로 하는 상기 장치.
  10. 제4항에 있어서,
    상기 복소 골래이 상보 시퀀스/프리앰블 시퀀스 매핑기는 상기 길이 M + N + k의 복소 골래이 상보 시퀀스를 구성하는 성분들 중 +1 혹은 -1의 값을 가지는 성분들이 상기 제2개수의 부반송파들중 홀수번째 부반송파에 매핑되도록 제어함을 특징으로 하는 상기 장치.
  11. 제4항에 있어서,
    상기 복소 골래이 상보 시퀀스/프리앰블 시퀀스 매핑기는 상기 길이 M + N + k의 복소 골래이 상보 시퀀스를 구성하는 성분들 각각을 하기 수학식 5에 상응하게 미리 설정된 설정 간격으로 상기 제2개수의 부반송파들에 매핑되도록 제어함을 특징으로 하는 상기 장치.
    단, 상기 수학식 5에서 GPM(n)에서 n은 복소 골래이 상보 시퀀스를 구성하는 성분들의 인덱스를 나타내며, GPM(n)은 프리앰블 시퀀스를 구성하는 성분들의 인덱스를 나타냄.
  12. 제10항에 있어서,
    상기 GPM(n)은 하기 수학식 6으로 표현됨을 특징으로 하는 상기 장치.
    상기 수학식 6에서,이며, 상기 -B는 상기 제1개수의 부반송파들중 상기 널데이터가 삽입된 부반송파들을 제외한 부반송파들의 시작 부반송파 번호를 나타내며, B는 종료 부반송파 번호를 나타냄.
  13. 제4항에 있어서,
    상기 설정 간격은 하기 수학식 7과 같이 결정됨을 특징으로 하는 상기 장치.
    )
    상기 수학식 7에서 I는 상기 설정 간격을 나타내고, 변수 D = 0일 경우, E = 1, 2, ... , I-1이고 F = I-E가 되도록 설정하고, D = 1, ... , I-1일 경우, E=0, ... , I-1()이고 F는 ((B-F) mod I = D + E)가 되도록 설정함(단,).
  14. 제1항에 있어서,
    상기 프리앰블 시퀀스 생성기는 상기 제1개수가 256일 경우 하기 Pg(-104:104)와 같은 프리앰블 시퀀스를 생성함을 특징으로 하는 상기 장치.
    단, -n: n은 -n번째 부반송파에서 n번째 부반송파까지의 부반송파들을 나타냄.
  15. 제1개수의 부반송파들을 사용하는 직교 주파수 분할 다중 통신 시스템에서 프리앰블 시퀀스를 생성하는 방법에 있어서,
    길이 N의 골래이 상보 시퀀스와 길이 M의 골래이 상보 시퀀스를 이용하여 길이 M + N + k의 프리앰블 시퀀스를 생성하는 과정과,
    상기 제1개수의 부반송파들 중 DC 성분과 부반송파들간 간섭 제거 성분에 대응되는 부반송파들에 널 데이터를 삽입하며, 상기 제1개수의 부반송파들중 상기 널 데이터가 삽입된 부반송파들 이외의 제2개수의 부반송파들 각각에 상기 프리앰블시퀀스 구성 성분들 각각을 삽입한 후 역고속 푸리에 변환하는 과정을 포함함을 특징으로 하는 상기 방법.
  16. 제15항에 있어서,
    상기 프리앰블 시퀀스는 복소 골래이 상보 시퀀스임을 특징으로 하는 상기 방법.
  17. 제15항에 있어서,
    상기 k는 -N과 -M중 작은 값보다 큰 정수임을 특징으로 하는 상기 방법.
  18. 제15항에 있어서,
    상기 프리앰블 시퀀스를 생성하는 과정은;
    길이 N의 골래이 상보 시퀀스와, 길이 M의 골래이 상보 시퀀스를 합성하여 길이 M + N + k의 복소 골래이 상보 시퀀스를 발생하는 과정과,
    상기 길이 M + N + k의 복소 골래이 상보 시퀀스를 구성하는 성분들 각각을 미리 설정된 설정 간격으로 제1개수의 부반송파들 중 상기 제2개수의 부반송파들에 매핑되도록 상기 프리앰블 시퀀스를 생성하는 과정을 포함함을 특징으로 하는 상기방법.
  19. 제18항에 있어서,
    상기 길이 M + N + k의 복소 골래이 상보 시퀀스를 발생하는 과정은;
    길이 N의 골래이 상보 시퀀스 쌍을 발생하는 과정과,
    길이 M의 골래이 상보 시퀀스 쌍을 발생하는 과정과,
    상기 길이 N의 골래이 상보 시퀀스 쌍과, 길이 M의 골래이 상보 시퀀스 쌍을 복소 골래이 상보 시퀀스 쌍 합성 규칙에 상응하게 길이 M + N + k의 복소 골래이 상보 시퀀스 쌍으로 합성하는 과정과,
    상기 길이 M + N + k의 복소 골래이 상보 시퀀스 쌍중 어느 한 복소 골래이 상보 시퀀스를 상기 길이 M + N + k의 복소 골래이 상보 시퀀스로 선택하는 과정을 포함함을 특징으로 하는 상기 방법.
  20. 제19항에 있어서,
    상기 길이 N의 골래이 상보 시퀀스 쌍을 발생하는 과정은;
    길이 N의 프리미티브 골래이 상보 시퀀스 쌍들중 한 개의 프리미티브 골래이 상보 시퀀스 쌍을 선택하는 과정과,
    상기 선택한 프리미티브 골래이 상보 시퀀스 쌍의 켤레 쌍들중 한 개의 프리미티브 골래이 상보 시퀀스 켤레 쌍을 선택하여 길이 N의 골래이 상보 시퀀스 쌍으로 발생하는 과정을 포함함을 특징으로 하는 상기 방법.
  21. 제19항에 있어서,
    상기 길이 M의 골래이 상보 시퀀스 쌍을 발생하는 과정은;
    길이 M의 프리미티브 골래이 상보 시퀀스 쌍들중 한 개의 프리미티브 골래이 상보 시퀀스 쌍을 선택하는 과정과,
    상기 선택한 프리미티브 골래이 상보 시퀀스 쌍의 켤레 쌍들중 한 개의 프리미티브 골래이 상보 시퀀스 켤레 쌍을 선택하여 길이 M의 골래이 상보 시퀀스 쌍으로 발생하는 과정을 포함함을 특징으로 하는 상기 방법.
  22. 제19항에 있어서,
    상기 복소 골래이 상보 시퀀스 쌍 합성 규칙은 하기 <복소 골래이 상보 시퀀스 쌍 합성 규칙>에 상응하도록 상기 길이 M + N + k의 복소 골래이 상보 시퀀스 쌍을 합성하는 것임을 특징으로 하는 상기 방법.
    <복소 골래이 상보 시퀀스 쌍 합성 규칙>
    단, 상기 <복소 골래이 상보 시퀀스 쌍 합성 규칙>에서 ai과 bi은 길이 N의 골래이 상보 시퀀스 쌍 [A, B] 각각을 구성하는 성분들을 나타내며, ci과 di는 길이 M의 골래이 상보 시퀀스 쌍 [C, D] 각각을 구성하는 성분들을 나타내며, ei과 fi는 길이 M + N + k의 골래이 상보 시퀀스 쌍 [E, F] 각각을 구성하는 성분들을 나타내고, 상기 i, l, k는 하기 수학식 8의 조건을 만족함.
  23. 제18항에 있어서,
    상기 길이 M + N + k의 복소 골래이 상보 시퀀스를 구성하는 성분들 각각을상기 제2개수의 부반송파들에 매핑할 때 상기 길이 M + N + k의 골래이 상보 시퀀스를 구성하는 구성 성분들 중 +1 혹은 -1의 값을 가지는 성분들이 상기 제2개수의 부반송파들중 DC 성분에 대응되는 부반송파에 매핑되지 않도록 제어하는 과정을 더 함을 특징으로 하는 상기 방법.
  24. 제18항에 있어서,
    상기 길이 M + N + k의 복소 골래이 상보 시퀀스를 구성하는 성분들 각각을 상기 제2개수의 부반송파들에 매핑할 때 상기 길이 M + N + k의 복소 골래이 상보 시퀀스를 구성하는 구성 성분들 중 +1 혹은 -1의 값을 가지는 성분들이 상기 제2개수의 부반송파들중 홀수번째 부반송파에 매핑되도록 제어하는 과정을 더 포함함을 특징으로 하는 상기 방법.
  25. 제18항에 있어서,
    상기 길이 M + N + k의 복소 골래이 상보 시퀀스를 구성하는 성분들 각각을 상기 제2개수의 부반송파들에 매핑할 때 상기 길이 M + N + k의 복소 골래이 상보 시퀀스를 구성하는 구성 성분들 각각을 하기 수학식 9에 상응하게 매핑되도록 제어함을 특징으로 하는 상기 방법.
    단, 상기 수학식 9에서 GPM(n)에서 n은 복소 골래이 상보 시퀀스를 구성하는 성분들의 인덱스를 나타내며, GPM(n)은 프리앰블 시퀀스를 구성하는 성분들의 인덱스를 나타냄.
  26. 제24항에 있어서,
    상기 GPM(n)은 하기 수학식 10과 같이 결정됨을 특징으로 하는 상기 방법.
    상기 수학식 10에서,이며, 상기 -B는 상기 제1개수의 부반송파들중 상기 널데이터가 삽입된 부반송파들을 제외한 부반송파들의 시작 부반송파 번호를 나타내며, B는 종료 부반송파 번호를 나타냄.
  27. 제18항에 있어서,
    상기 설정 간격은 하기 수학식 11로 표현됨을 특징으로 하는 상기 방법.
    )
    상기 수학식 11에서 I는 상기 설정 간격을 나타내고, 변수 D = 0일 경우, E = 1, 2, ... , I-1이고 F=I-E가 되도록 설정하고, D = 1, ... , I-1일 경우, E=0, ... , I-1()이고 F는 ((B-F) mod I = D + E)가 되도록 설정함(단,).
  28. 제15항에 있어서,
    상기 제1개수가 256일 경우 하기 Pg(-104:104)와 같은 프리앰블 시퀀스가 생성됨을 특징으로 하는 상기 방법.
    단, -n: n은 -n번째 부반송파에서 n번째 부반송파까지의 부반송파들을 나타냄.
KR1020030038815A 2003-06-16 2003-06-16 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서프리앰블 시퀀스 생성 장치 및 방법 KR100770912B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020030038815A KR100770912B1 (ko) 2003-06-16 2003-06-16 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서프리앰블 시퀀스 생성 장치 및 방법
US10/868,410 US7372910B2 (en) 2003-06-16 2004-06-15 Apparatus and method for generating preamble sequences in an OFDM communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030038815A KR100770912B1 (ko) 2003-06-16 2003-06-16 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서프리앰블 시퀀스 생성 장치 및 방법

Publications (2)

Publication Number Publication Date
KR20040108074A true KR20040108074A (ko) 2004-12-23
KR100770912B1 KR100770912B1 (ko) 2007-10-26

Family

ID=33509720

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030038815A KR100770912B1 (ko) 2003-06-16 2003-06-16 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서프리앰블 시퀀스 생성 장치 및 방법

Country Status (2)

Country Link
US (1) US7372910B2 (ko)
KR (1) KR100770912B1 (ko)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6757659B1 (en) * 1998-11-16 2004-06-29 Victor Company Of Japan, Ltd. Audio signal processing apparatus
KR101015736B1 (ko) * 2003-11-19 2011-02-22 삼성전자주식회사 직교 주파수 분할 다중 방식의 이동통신 시스템에서선택적 전력 제어 장치 및 방법
US8433005B2 (en) * 2004-01-28 2013-04-30 Qualcomm Incorporated Frame synchronization and initial symbol timing acquisition system and method
US8724447B2 (en) * 2004-01-28 2014-05-13 Qualcomm Incorporated Timing estimation in an OFDM receiver
ES2255390B1 (es) * 2004-05-28 2008-02-01 Vicente Diaz Fuente Dispositivo y metodo de estimacion optima de la distorsion del medio de transmision mediante la emision secuencial de pares de secuencias complementarias en cuadratura.
US20060025079A1 (en) * 2004-08-02 2006-02-02 Ilan Sutskover Channel estimation for a wireless communication system
KR100724949B1 (ko) * 2005-05-03 2007-06-04 삼성전자주식회사 주파수 분할 다중접속 기반 무선통신 시스템에서 데이터와제어 정보의 다중화 방법 및 장치
US7697414B2 (en) * 2005-09-30 2010-04-13 Meshnetworks, Inc. System and method for achieving crest factor reduction for multi-carrier modulation in a wireless communication network
KR100770898B1 (ko) * 2006-09-29 2007-10-26 삼성전자주식회사 무선통신시스템에서 잡음 측정장치 및 방법
EP2090051B1 (en) * 2006-10-02 2012-06-13 Nxp B.V. Method and apparatus for generating data packets for transmission in an ofdm communication system
KR100862724B1 (ko) * 2006-12-06 2008-10-10 한국전자통신연구원 무선 통신 시스템의 파일롯 신호 송수신 장치 및 그 방법
ES2302638B1 (es) * 2006-12-21 2009-06-04 Vicente Diaz Fuente Metodo mejorado de codificacion y decodificacion con al menos dos pares de secuencias ortogonales.
EP2122954A2 (en) * 2007-01-15 2009-11-25 Koninklijke Philips Electronics N.V. Method of generating low peak-to-average power ratio ( papr) binary preamble sequences for ofdm systems
US8331480B2 (en) 2007-07-13 2012-12-11 Industrial Technology Research Institute Method of and generator for generating preamble sequences in communication systems
US20110044406A1 (en) * 2007-12-13 2011-02-24 Semiconductores, Investigacion Y Diseno, S.A. Signalling method and apparatus using frequency pilots based on complementary sequences
JP5610233B2 (ja) 2008-05-15 2014-10-22 マーベル ワールド トレード リミテッド データユニットのプリアンブルを、生成または処理するための方法
CN104104462B (zh) 2008-09-29 2017-09-22 马维尔国际贸易有限公司 物理层数据单元格式
US8264946B2 (en) * 2008-12-31 2012-09-11 Qualcomm Incorporated Methods and systems for PAPR reduction in SC-FDMA systems
EP2574221A2 (en) * 2010-05-05 2013-04-03 GCM Communications Technology Method and system for accurate synchronization of frequency, phase and symbol timing
WO2016187844A1 (en) * 2015-05-27 2016-12-01 Telefonaktiebolaget Lm Ericsson (Publ) A random access preamble signal construction
US10333669B2 (en) 2016-03-02 2019-06-25 Qualcomm Incorporated Apparatus and method for transmitting single channel, bonded channel, and MIMO OFDM frames with fields to facilitate AGC, timing, and channel estimation
CN109691048B (zh) * 2016-07-29 2021-07-20 杜塞尔多夫华为技术有限公司 将发送数据格式化为帧结构的发送机和方法
CN109923841B (zh) * 2016-11-04 2021-01-12 华为技术有限公司 一种参考信号配置方法、训练字段配置方法及装置
CN109274629B (zh) * 2018-11-19 2019-05-17 济南大学 Ofdm系统中峰值功率优化方法及发射系统
US10862608B2 (en) * 2018-12-04 2020-12-08 National Cheng Kung University Communication device and communication method
CN113950069A (zh) * 2020-07-15 2022-01-18 华为技术有限公司 一种数据传输方法及装置
CN113037677B (zh) * 2021-04-14 2022-03-01 清华大学深圳国际研究生院 一种基于abo-ofdm的低papr通信方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6567482B1 (en) * 1999-03-05 2003-05-20 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for efficient synchronization in spread spectrum communications
US7039036B1 (en) * 1999-04-01 2006-05-02 Texas Instruments Incorporated Reduced complexity primary and secondary synchronization codes with good correlation properties for WCDMA
DE50009481D1 (de) * 1999-04-29 2005-03-17 Siemens Ag Verfahren zur bildung bzw. ermittlung einer signalfolge, verfahren zur synchronisation, sendeeinheit und empfangseinheit
CA2276971A1 (en) * 1999-07-06 2001-01-06 Wen Tong Preamble using golay sequence for access channel in cellular communications systems
FR2814885B1 (fr) * 2000-10-03 2003-05-30 Mitsubishi Electric Inf Tech Methode de synchronisation de stations de base
KR100498919B1 (ko) * 2000-11-21 2005-07-04 삼성전자주식회사 무선통신시스템에서의 프리엠블 시퀀스 생성장치 및 방법
EP1481502B1 (en) * 2002-03-07 2008-05-14 Alvarion Ltd. Hierarchical preamble constructions for ofdma based on complementary sequences

Also Published As

Publication number Publication date
KR100770912B1 (ko) 2007-10-26
US7372910B2 (en) 2008-05-13
US20040252777A1 (en) 2004-12-16

Similar Documents

Publication Publication Date Title
KR100770912B1 (ko) 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서프리앰블 시퀀스 생성 장치 및 방법
KR100905572B1 (ko) 직교 주파수 분할 다중 방식을 사용하는 통신시스템에서 프리앰블 시퀀스 생성 장치 및 방법
KR100918764B1 (ko) 다수개의 송신 안테나들을 사용하는 직교 주파수 분할 다중 통신시스템에서 프리앰블 시퀀스 송수신 장치 및 방법
KR100557159B1 (ko) 직교 주파수 분할 다중 방식 통신시스템에서 프리앰블시퀀스 생성 장치 및 방법
KR100450936B1 (ko) 직교 주파수 분할 다중 방식을 사용하는 광대역 무선 접속통신시스템에서 프리앰블 시퀀스 생성 장치 및 방법
US20040066740A1 (en) Apparatus and method for generating preamble sequence in a OFDM communication system
KR20040087622A (ko) 직교 주파수 분할 다중 방식을 사용하는 통신시스템에서프리앰블 시퀀스 생성 장치 및 방법
KR101445388B1 (ko) 반복 코딩을 이용한 데이터 전송 방법
US20040114504A1 (en) Apparatus and method for generating a preamble sequence in an OFDM communication system
US20050105460A1 (en) Apparatus and method for generating a preamble sequence in an orthogonal frequency division multiplexing communication system
EP1955462A2 (en) Apparatus and method for transmitting data using a plurality of carriers
KR20050011292A (ko) 다수개의 송신 안테나들을 사용하는 직교 주파수 분할다중 통신시스템에서 프리앰블 시퀀스 생성 장치 및 방법
KR20040108076A (ko) 직교 주파수 분할 다중 방식을 사용하는 통신 시스템에서프리앰블 시퀀스 생성 장치 및 방법
KR20040108070A (ko) 직교 주파수 분할 다중 방식을 사용하는 통신시스템에서프리앰블 시퀀스 생성 장치 및 방법
KR20050018333A (ko) 직교 주파수 분할 다중 방식을 사용하는 통신시스템에서프리앰블 시퀀스 생성 장치 및 방법
US20060109924A1 (en) Apparatus and method for signal transmission/reception according to pilot modulation in a multi-carrier communication system
RU2391789C2 (ru) Способ и устройство для генерации и передачи кодовой последовательности в системе беспроводной связи
KR20050011057A (ko) 다수개의 송신 안테나들을 사용하는 직교 주파수 분할다중 접속 통신시스템에서 프리앰블 시퀀스 생성 장치 및방법
KR20050011058A (ko) 직교 주파수 분할 다중 접속 방식을 사용하는통신시스템에서 프리앰블 시퀀스 생성 장치 및 방법
KR20040097549A (ko) 직교 주파수 분할 다중 접속 방식을 사용하는통신시스템에서 프리앰블 시퀀스 생성 장치 및 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120927

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130927

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140929

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150925

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee