KR20040097611A - Performance-improving method of PET recycling polymer concrete to apply highly efficient nano particles - Google Patents

Performance-improving method of PET recycling polymer concrete to apply highly efficient nano particles Download PDF

Info

Publication number
KR20040097611A
KR20040097611A KR1020030029953A KR20030029953A KR20040097611A KR 20040097611 A KR20040097611 A KR 20040097611A KR 1020030029953 A KR1020030029953 A KR 1020030029953A KR 20030029953 A KR20030029953 A KR 20030029953A KR 20040097611 A KR20040097611 A KR 20040097611A
Authority
KR
South Korea
Prior art keywords
polymer concrete
concrete composition
nanomaterials
unsaturated polyester
aggregate
Prior art date
Application number
KR1020030029953A
Other languages
Korean (ko)
Other versions
KR100580597B1 (en
Inventor
조병완
Original Assignee
조병완
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조병완 filed Critical 조병완
Priority to KR20030029953A priority Critical patent/KR100580597B1/en
Publication of KR20040097611A publication Critical patent/KR20040097611A/en
Application granted granted Critical
Publication of KR100580597B1 publication Critical patent/KR100580597B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/18Waste materials; Refuse organic
    • C04B18/20Waste materials; Refuse organic from macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/08Flue dust, i.e. fly ash
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/06Unsaturated polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PURPOSE: Provided is a production method of recycled polyester(pet) polymer concrete with heat resistance and water repellency by using recycled pet-based unsaturated polyester resin and high performance nanomaterials. CONSTITUTION: The recycled pet polymer concrete composition comprises the components of: 5-30wt.% of recycled pet-based unsaturated polyester resin as a binder; 5-30wt.% of filling material such as potassium bicarbonate or fly ash for good adhesive power due to increase of viscosity; 40-90wt.% of aggregate containing fine aggregate(0.074-5mm size) and coarse aggregate(5-50mm size); and 0.01-30wt.% of nanomaterials having a 0.01nanometer-100micrometer size, wherein the nanomaterials for heat-resistance are borides, carbides or nitrides of metal selected from the group consisting of Si, Al, Zr, Sc, La, Se, Nd, Y, etc. and the nanomaterials for water repellency are F, SiO2, etc. The composition is produced by mixing the above materials and curing mixtures at room temperature(17-23deg.C) or 50-2000deg.C over 24hrs.

Description

고성능 나노소재를 이용한 피이티 재생 폴리머 콘크리트 조성물 및 이의 제조방법{Performance-improving method of PET recycling polymer concrete to apply highly efficient nano particles}Performance-improving method of PET recycling polymer concrete to apply highly efficient nano particles

본 발명은 고성능 나노소재를 응용한 PET 재생 폴리머 콘크리트 및 그 제조방법에 관한 것으로, 구체적으로는 폐 PET 재생불포화 폴리에스테르 수지를 이용하여 자원의 재활용과 환경보존 및 경제적 이득을 얻고, 고성능 나노소재를 이용하여 내화-내열성능 및 소수성-발수성을 향상시키기 위한 것이다.The present invention relates to a PET recycled polymer concrete using a high-performance nanomaterials and a method for manufacturing the same, specifically, by using waste PET regenerative unsaturated polyester resin to obtain resources recycling, environmental conservation and economic benefits, To improve the fire-heat resistance and hydrophobic-water repellency.

일반적으로 폴리머 콘크리트를 제조하는 방법에는 일반적으로 세가지 방법이 있다.In general, there are three methods for producing polymer concrete.

첫째방법으로는 기존의 포틀랜드 시멘트 결합제에 유기 고분자물을 첨가하여 강도를 보완한 PCC (Polymer- medified concrete)가 있다. 이 방법은 분산시킬수 있는 유화입자나 고분자 분말 또는 그 단량체를 시멘트 결합제와 혼합하고 물을 섞음으로써 시멘트의 수화작용과 동시에 시멘트층 위에 고분자 피막층이 형성되어 내부를 보호하는 구조로 이루어진다.The first method is PCC (Polymerized concrete), which supplements the strength by adding organic polymer to the existing Portland cement binder. This method consists of a structure that protects the interior by forming a polymer film layer on the cement layer at the same time as the hydration of the cement by mixing the emulsified particles, polymer powder or monomer thereof that can be dispersed with the cement binder and water.

두 번째 방법은 골재의 결합제로서 순수한 고분자물을 사용하는 PC (Polymer concrete)이다. 이 방법은 결합제로서 고분자를 사용하기 때문에 일반적으로 보통 콘크리트에 비해서 강도, 접착력, 내구성, 내후성 및 화학적 저항성이 뛰어난 것으로 평가된다.The second method is PC (Polymer concrete) using pure polymer as a binder of aggregate. Since this method uses a polymer as a binder, it is generally evaluated to be superior in strength, adhesion, durability, weather resistance, and chemical resistance to concrete.

세 번째방법으로는 이미 단단해진 시멘트로 이루어진 콘크리트물을 고분자 단량체로 함침시킨 PIC(Polymer Impergnated Concrete)가 있으나 실제 응용이 어렵고 비용이 많이 들어 잘 사용되고 있지는 않다.The third method is PIC (Polymer Impergnated Concrete) in which concrete material made of hardened cement is impregnated with polymer monomer, but it is not used well because it is difficult and expensive in practical application.

이상과 같은 폴리머 콘크리트는 결합제로 시멘트 대신에 고분자를 사용하기 때문에 수분이나 공기의 침투가 용이하지 않아서 외부환경에 대한 내구성이 뛰어나며, 고분자와 골재와의 강한 결합력으로 인해 일반 포틀랜드 시멘트를 결합제로 사용하는 시멘트 콘크리트에 비해서 압축 및 휨강도가 우수하다고 알려져 있다. 따라서 장기간 내구성이 요구되는 통신용 맨홀이나 방사성 폐기물 용기등의 제작에 사용되기도 하며, 일반 콘크리트로 만들어진 다리, 고속도로, 주차장등의 보수공사에 이용된다. 그러나 고분자수지로서 불포화 폴리에스테르수지를 사용하기 때문에 온도상승에 따른 역학적 특성이 저하되는 문제를 피할 수 없었다.Since the polymer concrete is used as a binder instead of cement, the polymer concrete is not easily penetrated by moisture or air, and thus has excellent durability against the external environment. It is known to have better compressive and flexural strength than cement concrete. Therefore, it can be used for the manufacture of communication manholes or radioactive waste containers requiring long-term durability, and it is also used for repairing bridges, highways and parking lots made of ordinary concrete. However, since the unsaturated polyester resin is used as the polymer resin, the problem of deterioration of mechanical properties due to temperature rise was inevitable.

이와 같이 종래 폴리머 콘크리트는 강도등의 역학적 특성이 우수하나, 불포화 폴리에스테르수지를 사용하기 때문에 온도상승에 따른 역학적 특성이 저하되는 문제와 수지의 경제성이 떨어지는 문제점이 있어 콘크리트 대용으로 사용하기에는 문제점이 있었다.As described above, the conventional polymer concrete has excellent mechanical properties such as strength. However, since unsaturated polyester resin is used, there is a problem that the mechanical properties decrease due to the temperature rise and the economical efficiency of the resin is poor. .

또한 종래의 폴리머 콘크리트는 기본적으로 생산비용이 커 고스란히 소비자가격에 반영되는 문제점도 제기되어 왔다.In addition, the conventional polymer concrete has been raised a problem that the production cost is basically reflected in the consumer price.

대부분의 합성 고분자는 가연성이며 연소시 유독 가스를 방출할 가능성이 크다. 따라서 오래 전부터 합성 수지의 개발과 함께 이에 난연성 및 불연성을 부여하기 위한 노력이 진행되어 왔다. 특히, 전기·전자 제품의 외장재 등으로 사용되는 합성 수지의 난연성 등급은 현재 대부분의 국가에서 법으로 규정되어 있다.Most synthetic polymers are flammable and are likely to release toxic gases on combustion. Therefore, for a long time, efforts have been made to impart flame retardancy and nonflammability with the development of synthetic resins. In particular, the flame retardant grades of synthetic resins used as exterior materials for electrical and electronic products are regulated by law in most countries.

난연제로서 염소나 브롬 등의 할로겐 화합물을 이용하는 기술이 있어 왔다. 그러나 할로겐 화합물은 화재시 각종 환경 오염 및 인체 위해성 물질 예컨대, 다이옥신, 퓨란(furan) 등을 방출하기 때문에, 현재에는 기존의 할로겐 난연제에 대한 각종 규제가 강화되고 있는 실정이며, 최근에는 유럽을 중심으로 환경 친화적인 비할로겐 계열의 난연제에 대한 요구가 확대되고 있다. 더구나, 안티몬의 사용은 플라스틱의 열안정성과 내후성을 저하시키므로, 사출기 내 체류시 물성이 급격히 열화하는 단점이 있었다.There has been a technique of using a halogen compound such as chlorine or bromine as a flame retardant. However, since halogen compounds emit various environmental pollutants and human hazards such as dioxin and furan during a fire, various regulations on existing halogen flame retardants have been strengthened. There is an increasing demand for environmentally friendly non-halogen flame retardants. Moreover, since the use of antimony lowers the thermal stability and weather resistance of the plastic, there is a disadvantage in that physical properties deteriorate rapidly during the stay in the injection molding machine.

상기와 같은 문제점을 보완하기 위하여, 인산 에스테르 화합물과 같은 인계 난연제를 플라스틱 성형시 사용하고 있으나, 이는 성형물 표면이 불량해지기 쉽고 내열성이 저하되는 문제점이 있었다. 특히 고온에서 장시간 방치되면 분해된 인산 에스테르 화합물이 인산 등으로 더욱 환원되어 성형물의 물성이 급격히 저하될 수 있다. 이러한 변화는 특히 올리고머 형태의 인산 에스테르의 경우에 심각하다. 대부분의 인계 화합물은 액상이거나 연화점이 낮아서 이를 합성 수지에 첨가하는 경우 가소제나 유연제 역할을 동시에 하게 된다. 또한 ABS, PP 또는 PE 등의 열가소성 수지나, 페놀수지, UPE 또는 에폭시 등의 열경화성 수지에서 유리 전이점을 낮추거나 이동을 일으켜서 열변형 온도나 내열성을 저하시킨다. 따라서 수지에 난연성을 부여하기 위해 수지에 인계 화합물을 첨가하면 수지의 물성이 저하되는 문제점이 있다. 특히, 높은 모듈러스나 강도를 요구하는 제품에 있어서는, 기존의 인계 화합물로서는 원하는 물성을 충족하기가 어려웠다. 따라서 인계 난연제는 최종 수지의 난연성과 내열성 향상에 효과적으로 작용하지 못한다. 이러한 이유들로 인해, 유해한 할로겐 화합물을 사용하지 않으면서도 수지의 안정된 물성을 유지한 채 난연성을 부여하는 효과적인 기술이 절실히 요구되고 있는 실정이었다.In order to supplement the above problems, a phosphorus flame retardant such as a phosphate ester compound is used in plastic molding, but this has a problem in that the surface of the molded product tends to be poor and the heat resistance is lowered. In particular, when left at a high temperature for a long time, the decomposed phosphate ester compound is further reduced to phosphoric acid, etc., so that the physical properties of the molded product may be drastically lowered. This change is particularly acute in the case of phosphate esters in oligomeric form. Most phosphorus compounds have a liquid or low softening point, and when added to a synthetic resin, they act as plasticizers or softeners. In addition, in the thermoplastic resin such as ABS, PP or PE, or the thermosetting resin such as phenol resin, UPE or epoxy, the glass transition point is lowered or moved to lower the heat deformation temperature or heat resistance. Therefore, when the phosphorus compound is added to the resin in order to impart flame retardancy to the resin, there is a problem that the physical properties of the resin are lowered. In particular, in products requiring high modulus and strength, it is difficult to satisfy desired physical properties as existing phosphorus compounds. Therefore, the phosphorus-based flame retardant does not effectively act to improve the flame resistance and heat resistance of the final resin. For these reasons, there is an urgent need for an effective technology for imparting flame retardancy while maintaining stable physical properties of resins without using harmful halogen compounds.

나노소재는 10-9m 수준의 원자조작이 가능하고, 이러한 나노상의 소재를 다른 소재에 첨가할 경우, 기존의 재료로는 구현할 수 없었던 미세단위의 조직을 구성할 수 있어 기존의 재료만을 이용한 경우보다 뛰어난 단위 성능의 구현을 가능하게 되고 나노소재의 이러한 특성을 이용하여 목적에 적합한 나노소재를 사용함으로써 폴리머 콘크리트의 내화-내열성능 및 소수성-발수성 등 내구성을 향상시킬 수 있다는 점을 착안하여 본 고안을 완성하였다.Nano-materials are capable of atomic manipulation of 10 -9 m level, and when these nano-phase materials are added to other materials, they can form microstructures that cannot be realized with conventional materials. The present invention is made possible to realize better unit performance and to improve the durability of polymer concrete such as fire resistance, heat resistance and hydrophobicity, water repellency by using nano material suitable for the purpose by utilizing these properties of nano material. Was completed.

● 내화-내열성능 소재(실리카, 알루미나, 지로코늄, 스칸듐, 란타늄, 세륨, 네오듐, 이트륨, 티타늄, 하프늄, 바나듐, 니오븀, 탄탈륨, 크로뮴, 몰리브덴, 텅스텐 및 그들의 혼합물로 구성된 군으로부터 선택된 금속 봉화물, 탄화물, 또는 질화물인 것을 나노소재화한 것을 특징으로하는 입자)Refractory-heat-resistant materials (silicon, alumina, zirconium, scandium, lanthanum, cerium, neodium, yttrium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten and mixtures thereof; Particles characterized by nanomaterializing water, carbide or nitride)

● 소수성-발수성 소재(불소,실리카등을 나노소재한 것을 특징으로 하는 입자)Hydrophobic-water-repellent material (particles characterized by nanomaterials such as fluorine and silica)

이에 본 발명자는 폐 PET를 재활용하여 재생 불포화폴리에스테르 수지를 결합재로 사용시 나타나는 문제점을 보완한 고성능 나노소재를 응용한 내화-내열성능이 우수한 폴리머 콘크리트의 제조방법을 제시하였다.The present inventors have proposed a method for producing polymer concrete having excellent fire resistance and heat resistance performance by applying high-performance nanomaterials to supplement waste problems by recycling waste PET using binder unsaturated unsaturated resin.

본 발명의 목적은 새로운 폴리머 콘크리트 조성물을 제공하는 것이다.It is an object of the present invention to provide a new polymer concrete composition.

또한 본 발명의 목적은 상기 조성물을 이용하여 저렴하고 내화-내열성 및 소수-발수성 등 내구성이 우수한 폴리머 콘크리트 및 이의 제조방법을 제공하는 것이다.It is also an object of the present invention to provide an inexpensive polymer concrete having excellent durability, such as refractory-heat resistance and hydrophobic-water repellency, and a manufacturing method thereof, using the composition.

상기 목적을 달성하기 위하여, 본 발명에서는 폐PET 재생 불포화 폴리에스테르 수지와 고성능 나노소재(0.01㎚-100㎛)를 포함하는 것을 특징으로 하는 폴리머 콘크리트 조성물을 제공한다.In order to achieve the above object, the present invention provides a polymer concrete composition comprising a waste PET regenerated unsaturated polyester resin and a high-performance nanomaterial (0.01nm-100㎛).

또한 본 발명에서는 상기 조성물로 제조되는 폴리머 콘크리트 및 이의 제조방법을 제공한다.In another aspect, the present invention provides a polymer concrete prepared by the composition and a method for producing the same.

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 의한 폴리머 콘크리트 조성물은 폐 PET 재생 불포화 폴리에스테르 수지와 고성능 나노소재를 포함하고 있는 것이 특징이다. 종래 폴리머 콘크리트에서는 열가소성 수지를 사용하였으나 강도 등의 기계적 특성이 불량하고 경화 수축이 발생하는 문제점이 있었다. 반면 본 고안에서는 열경화성 수지인 폐 PET 재생 불포화 폴리에스테르 수지를 사용함으로써 폴리머 콘크리트의 기계적 특성이 향상되었다. 또한 본 고안에 의한 고성능 나노소재를 사용함으로써 기존 일반 폴리머 콘크리트의 내화-내열성능 및 소수-발수성능을 개선하였다.The polymer concrete composition according to the present invention is characterized by containing a waste PET regenerated unsaturated polyester resin and a high performance nanomaterial. In the conventional polymer concrete, a thermoplastic resin was used, but mechanical properties such as strength were poor, and there was a problem in that curing shrinkage occurred. On the other hand, in the present invention, the mechanical properties of polymer concrete are improved by using waste PET regenerated unsaturated polyester resin, which is a thermosetting resin. In addition, by using the high-performance nanomaterials according to the present invention, the fire-resistance and heat-repellent performance of the existing general polymer concrete were improved.

구체적으로 폐 PET 재생 불포화 폴리에스테르 수지 5∼30중량%, 골재량 40∼90중량%, 충전재 5∼30중량% 및 고성능 나노소재 0.01∼30중량%, 전수지량에 대한 개시제(촉매)는 0.1~5.0%로 구성되는 것이 바람직하다.Specifically, 5-30% by weight of waste PET regenerated unsaturated polyester resin, 40-90% by weight aggregate, 5-30% by weight filler and 0.01-30% by weight high-performance nanomaterial, and the initiator (catalyst) for the total amount of resin were 0.1-5.0 It is preferably composed of%.

양생방법은 일반적인 상온양생(20± 3℃) 및 고온양생(50~200℃에서 24시간 이상 양생)을 실시하는 것이 바람직하다.The curing method is preferably performed at room temperature curing (20 ± 3 ℃) and high temperature curing (curing for 24 hours or more at 50 ~ 200 ℃).

수지의 함량이 너무 작으면 입자간 결합력이 약해지고 이에 따른 강도의 저하가 나타날 수 있으므로 상기와 같은 조성비가 되도록 첨가하는 것이 바람직하다.If the content of the resin is too small, it is preferable to add the composition ratio as described above, since the bonding strength between particles may be weakened and the strength may be lowered accordingly.

충전재가 전혀 포함되지 않으면 상기 조성물을 사용하여 경화체를 제조할 때 강도의 발현에 문제가 될 수 있으므로 첨가하는 것이 바람직하나 전체중량에 대한 50%는 넘지 않도록 하며, 본 발명에 있어서는 중탄산칼슘 또는 플라이 애쉬를 사용하는 것이 바람직하며 5~30%를 첨가한다.If the filler is not included at all, it may be a problem in the development of strength when preparing the cured product using the composition, but it is preferable to add it, but not more than 50% of the total weight, in the present invention calcium bicarbonate or fly ash Preference is given to adding 5-30%.

본 발명에 의한 상기 폴리머 콘크리트 조성물에서 사용된 열경화성 고분자 수지는 폐 PET 재생 불포화 폴리에스테르 수지로서 폐 PET 재생 불포화 폴리에스테르 수지란 폐 PET를 재활용하여 불포화 폴리에스테르 수지를 만든 것을 말하며, 수지의 생산에 사용되는 PET조각들은 대게 음료수병으로부터 얻어진다. 이때에 여러 중류의 특허성분이 유연성이나 강성을 부여하기 위해서 추가된다.The thermosetting polymer resin used in the polymer concrete composition according to the present invention refers to waste PET recycled unsaturated polyester resin, which is made of recycled waste PET to make unsaturated polyester resin, and used for the production of resin. PET pieces are usually obtained from drinking water bottles. At this time, several middle class patent components are added to give flexibility or rigidity.

일반적으로 폴리머 콘크리트에는 에폭시 수지, 폴리우레탄 수지, 아크릴레이트 수지, 불포화 폴리에스테르 수지 등의 고분자 수지가 사용되고 있다. 에폭시 수지는 경화 거동을 조절하기가 용이하지 않아서 실제 콘크리트 제작에 어려움이 따르기는 하지만, 반응시 낮은 수축율과 골재와의 강한 결합력 등의 장점을 갖고 있다. 폴리우레탄은 에폭시 수지와 마찬가지로 축합 반응을 통해 결합하기 때문에 경화 반응을 조절하기가 용이하지는 않은 면이 있다. 이에 비해서 아크릴레이트 수지나 불포화 폴리에스터 수지는 라디칼 반응을 통해서 경화가 일어나므로 용이하게 고형화를 조절할 수 있다. 특히 아크릴레이트 수지는 휘발성이 강하며 골재와의 결합력이 충분하지 않기도 하지만, 단량체로 주로 메틸 메타크릴레이트 (methyl methacrylate, MMA)를 사용하므로 낮은 점성으로 인해 쉽게 골재와 섞을 수 있다는 장점이 있다. 불포화 폴리에스테르는 폴리머 콘크리트 결합제로서 가장 널리 사용되는 물질로서, 골재와의 결합력이 좋고 분자량도 큰 장점이 있다. 액상의 불포화 폴리에스테르 등의 상기 고분자 수지는 하나의 분자에 여러 개의 미반응 이중 결합을 포함하고 있으며, 이 부분이 라디칼 반응을 하면서 경화를 유도하게 된다. 또한 불포화 폴리에스테르 외에도 스티렌 단량체를 수지 내부에 희석제로 첨가하여 수지의 점성을 낮춤으로써 작업성을 향상시킬 뿐만 아니라 가교도를 조절할 수 있다.Generally, polymer resins such as epoxy resins, polyurethane resins, acrylate resins and unsaturated polyester resins are used for polymer concrete. Epoxy resin is difficult to control the hardening behavior, but it is difficult to manufacture concrete, but it has advantages such as low shrinkage rate and strong bonding strength with the aggregate. Polyurethane is not easy to control the curing reaction because it is bonded through a condensation reaction like epoxy resin. On the other hand, since the acrylate resin or the unsaturated polyester resin is cured through a radical reaction, the solidification can be easily controlled. In particular, acrylate resins are highly volatile and may not have sufficient binding strength with aggregates, but since they mainly use methyl methacrylate (methyl methacrylate, MMA) as a monomer, they can be easily mixed with aggregates due to their low viscosity. Unsaturated polyester is the most widely used material as a polymer concrete binder, and has the advantage of good binding strength and high molecular weight. The polymer resin, such as a liquid unsaturated polyester, contains a plurality of unreacted double bonds in one molecule, and this part induces curing while undergoing a radical reaction. In addition to the unsaturated polyester, styrene monomer can be added to the inside of the resin as a diluent to lower the viscosity of the resin, thereby improving workability and controlling the degree of crosslinking.

폴리머 콘크리트에서도 골재를 사용하는 것은 일반 시멘트 콘크리트와 동일하다. 그러나 친수성인 골재가 수분을 흡수하면 폴리머 콘크리트에서는 골재를 둘러싼 결합재층과 골재 표면 사이에 수막이 형성되어 결합재와 골재간의 접착력을 약화시켜 강도가 저하되므로 함수량이 0.3% 이하가 되도록 건조시킬 필요가 있다. 본 발명에 의한 상기 폴리머 콘크리트 조성물에서 잔골재는 0.074~5mm인 것을 사용하고 굵은 골재는 5~50mm인 것을 사용한다.The use of aggregate in polymer concrete is the same as in normal cement concrete. However, when the hydrophilic aggregate absorbs moisture, in the polymer concrete, a water film is formed between the binder layer surrounding the aggregate and the aggregate surface, thereby weakening the adhesive strength between the binder and the aggregate, so that the strength is lowered. Therefore, it is necessary to dry the water content to 0.3% or less. . In the polymer concrete composition according to the present invention, the aggregate is 0.074 to 5 mm and the coarse aggregate is used to be 5 to 50 mm.

충전재는 단위체적당 수지의 사용량을 감소시키고 점성을 증가시켜 부착력을 크게 할 목적으로 미립 충진재를 사용한다. 점도를 감소시키기 위해서는 구형의 불활성 세립자가 유리하지만 증량이라는 점에서는 형상이 불규칙하여 비표면적이 큰 것일수록 유리하다.The filler is a particulate filler for the purpose of reducing the amount of resin used per unit volume and increasing the viscosity to increase the adhesion. In order to reduce the viscosity, spherical inert fine particles are advantageous, but in terms of increase in size, irregular shapes are more advantageous in that the specific surface area is larger.

본 발명의 고성능 나노소재는 내화-내열성 및 소수성-발수성을 가진 상기 언급한 소재면 모두 사용할 수 있으며, 일반적으로 미분말(0.01㎚-100㎛)및 액상이다. 바람직하기로는 내화-내열성 나노소재로는 실리카, 알루미나, 지르코니아, 스칸듐등 있고, 소수성-발수성 나노소재로는 불소계열, 실리카등 나노소재가 있다.The high-performance nanomaterials of the present invention can be used in all of the above-mentioned material surfaces having fire-heat resistance and hydrophobic-water repellency, and are generally fine powder (0.01 nm-100 μm) and liquid phase. Preferably, the refractory-heat-resistant nanomaterials include silica, alumina, zirconia, scandium, and the like, and the hydrophobic-hydrophobic nanomaterials include nanomaterials such as fluorine series and silica.

이하 본 발명을 실시예에 의하여 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

단, 하기 실시예들은 본 발명을 예시하는 것으로 본 발명의 내용이 실시예에 의해 한정되는 것은 아니다.However, the following examples are illustrative of the present invention, and the content of the present invention is not limited by the examples.

(실시예 1∼11) 고성능 나노소재를 응용한 폐 PET 재생 폴리머 콘크리트의 제조 및 특성(Examples 1 to 11) Fabrication and Characteristics of Waste PET Recycled Polymer Concrete Using High-Performance Nanomaterials

하기 표 1과 표 3와 같은 조성비의 폴리머 콘크리트 조성물을 혼합하여 폐 PET 재생불포화 폴리에스테르를 이용한 폴리머 콘크리트를 제조하였다.By mixing the polymer concrete composition of the composition ratio as shown in Table 1 and Table 3 to prepare a polymer concrete using waste PET regenerative unsaturated polyester.

성형 몰드는 알루미늄 금형(직경 75mm, 길이 150 mm)을 사용하여 제조하였다. 제조후 경화된 각각의 시험체는 20℃∼1000℃로 가열하여 강도등 역학적 특성을 확인하였다.Molding molds were produced using an aluminum mold (diameter 75 mm, length 150 mm). After the test, each of the cured test pieces was heated to 20 ° C. to 1000 ° C. to confirm mechanical properties such as strength.

결합제인 수지는 폐 PET 재생 불포화 폴리에스테르 수지를 사용하였고, 모래는 직경 0.2∼0.6 mm의 규사를 사용하였으며, 충전재로는 탄산칼슘 분말을 사용하였다.As the binder resin, waste PET regenerated unsaturated polyester resin was used, sand was used silica sand having a diameter of 0.2 to 0.6 mm, and calcium carbonate powder was used as a filler.

내화-내열성능 나노소재는 지르코니아 분말을 사용하였고, 소수성-발수성 나노소재는 불소분말을 사용하였다. 지르코니아는 내화재로써 효과적인 소재로 알려져 있는 물질이고, 불소는 소수-발수성에 효과적인 소재로 알려져있는 물질이다.Refractory-heat-resistant nanomaterials were used as zirconia powder, and hydrophobic-water-repellent nanomaterials were used as fluorine powder. Zirconia is a material known as an effective material as a fire retardant, and fluorine is a material known as an effective material for hydrophobicity.

경화제는 메틸에틸케톤 퍼록사이드 (Methyl ethyl ketone peroxide, MEKPO)를 사용하였고 경화촉진제는 코발트 옥토에이트 (Cobalt Octoate)를 사용하였다. 이하 모든 실시 예에서 특별한 언급이 없는 한 사용한 물질 및 금형은 이상 언급된 것과 같다.Methyl ethyl ketone peroxide (MEKPO) was used as a curing agent and cobalt octoate (Cobalt Octoate) was used as a curing accelerator. In all the examples below, the materials and molds used are as mentioned above unless otherwise specified.

각 재료는 무게로 계량하였으며 1회 계량분의 0.5%까지 읽을 수 있는 계량기를 사용하였다. 또한 배치 믹서기를 사용하여 혼합하였다. 이형제로 왁스를 사용하였고 외부진동기를 이용하여 다짐을 실시하였다.Each material was weighed and weighed up to 0.5% of the weight per batch. It was also mixed using a batch mixer. Wax was used as a release agent and compaction was performed using an external vibrator.

[표 1] 내화-내열 성능 나노소재를 첨가한 폴리머 콘크리트 조성물[Table 1] Polymer Concrete Composition with Fire-Resistant Performance Nanomaterials

실시예번호Example Number 수지 (UPE)(5-30%)Resin (UPE) (5-30%) 충전재(중탄산칼슘)(5-30%)Filler (calcium bicarbonate) (5-30%) 골 재 (40-90%)Aggregate (40-90%) 나노소재(0.01-30%)Nano material (0.01-30%) 굵은골재Coarse aggregate 잔골재Fine aggregate 내화-내열 성능개선소재(지르코니아)Fire-Resistant Performance Materials (Zirconia) 1One 1111 1111 3939 3939 00 22 1111 1111 36.536.5 36.536.5 55 33 1111 1111 3434 3434 1010 44 1111 1111 31.531.5 31.531.5 1515 55 1111 1111 2929 2929 2020 66 1313 1313 2727 2727 2020 77 1515 1515 2525 2525 2020

<실험예 1> 가열 온도에 따른 압축강도 측정Experimental Example 1 Measurement of Compressive Strength According to Heating Temperature

실시예 1~4에서 제작된 시험체에 대하여 강도를 측정하였다. 제작된 시험체는 상온양생(20± 3℃) 및 고온양생(100℃에서 24시간이상 양생)되었으며 일반 시멘트 콘크리트와는 달리 폴리머 콘크리트는 조강성이 우수하므로 재령 7일 양생한후 건조로에서 시험체를 하기 [표 2]의 온도로 가열후 압축강도를 측정하였다.The intensity | strength was measured about the test body produced in Examples 1-4. The fabricated specimens were cured at room temperature (20 ± 3 ℃) and high temperature (cured at 100 ℃ for more than 24 hours). Unlike general cement concrete, polymer concrete has good roughness. Compressive strength was measured after heating to the temperature of [Table 2].

압축시험은 각각 5개의 시험체를 UTM(압축시험기)에서 재하속도가 매초 2.5kgf/㎠가 되도록 하중을 가하여 파괴시 하중을 측정하였고 그 크기를 시험체 단면적으로 나누어 압축강도를 산출 및 평균하였다.In the compression test, five specimens were loaded in a UTM (compression tester) so that the loading speed was 2.5kgf / cm2 per second, and the load at break was measured. The size was divided by the cross section of the specimen to calculate and average the compressive strength.

그 결과를 하기 표 2에 나타내었다.The results are shown in Table 2 below.

[표 2] 가열 온도에 따른 압축강도[Table 2] Compressive strength according to heating temperature

실시예번호Example Number 압축강도(kg/㎠)Compressive strength (kg / ㎠) 20℃20 ℃ 60℃60 ℃ 100℃100 ℃ 300℃300 ℃ 500℃500 ℃ 700℃700 ℃ 1000℃1000 ℃ 상온양생Room temperature curing 고온양생High temperature curing 상온양생Room temperature curing 고온양생High temperature curing 상온양생Room temperature curing 고온양생High temperature curing 상온양생Room temperature curing 고온양생High temperature curing 상온양생Room temperature curing 고온양생High temperature curing 상온양생Room temperature curing 고온양생High temperature curing 상온양생Room temperature curing 고온양생High temperature curing 1One 825825 907907 541541 595595 172172 189189 8080 8888 3535 3838 1212 1313 55 55 22 831831 914914 786786 865865 747747 822822 612612 684684 456456 528528 298298 347347 3434 3838 33 838838 922922 793793 872872 754754 829829 675675 730730 548548 595595 327327 355355 6464 7676 44 847847 932932 821821 903903 805805 886886 767767 828828 649649 695695 430430 486486 106106 134134 55 851851 936936 849849 934934 842842 926926 808808 889889 688688 752752 402402 467467 137137 165165 66 886886 975975 867867 954954 841841 925925 804804 868868 674674 721721 463463 476476 9898 123123 77 901901 991991 784784 862862 811811 892892 724724 801801 593593 645645 379379 400400 8787 115115

(1) 내화-내열성능 나노소재 첨가에 따른 영향 (실시예 1∼실시예 5)(1) Effect of adding refractory-heat-resistant nanomaterials (Examples 1 to 5)

나노소재가 포함되지 않은 상기 실시예 1의 경우 제조된 경화체는 온도가 상승함에 따라 압축강도가 급격히 감소되었고, 나노소재를 포함한 실시예 2∼실시예 5에서 알수있듯이 본 고안에 의한 폴리머 콘크리트 경화체는 일반 폴리머 콘크리트에 비해 내화-내열성능이 매우 우수하고, 일반 시멘트 콘크리트와 비교하여 내화-내열성능이 더 우수함을 나타내었다.In the case of Example 1, the nanomaterial is not included, the cured product produced a sharp decrease in compressive strength as the temperature increases, and as shown in Examples 2 to 5 including the nanomaterial, the polymer concrete cured product according to the present invention It is shown that the heat-resistance performance is much better than that of general polymer concrete, and that the fire-resistance performance is better than that of general cement concrete.

(2) 폴리머 콘크리트 조성물의 수지량 변화에 의한 영향 (실시예 6∼실시예 7)(2) Influence by the resin amount change of the polymer concrete composition (Examples 6-7)

실시예 5∼실시예 7에서 알수있듯이 수지량이 늘어남에 따라 상온시 압축강도는 증가했지만, 상기 [표 2]에서 알수있듯이 수지량이 늘어날수록 내화-내열성능이 감소되는 것을 알 수 있다. 수지량이 증가될수록 내화-내열성 나노소재 또한 증가되어야 하는 것을 알 수 있다.As can be seen in Examples 5 to 7, the compressive strength at room temperature increased as the amount of resin increased, but as can be seen from [Table 2], it can be seen that the fire-resistant performance decreases as the amount of resin increases. As the amount of resin increases, it can be seen that the refractory-heat-resistant nanomaterial should also increase.

[표 3] 소수-발수 성능 나노소재를 첨가한 폴리머 콘크리트 조성물 및 결과TABLE 3 Polymer concrete compositions and results with hydrophobic-water repellent nanomaterials

실시예번호Example Number 수지 (UPE)(5-30%)Resin (UPE) (5-30%) 충전재(중탄산칼슘 or fly ash)(5-30%)Filling material (calcium bicarbonate or fly ash) (5-30%) 골 재 (40-90%)Aggregate (40-90%) 나노소재(0.01-30%)Nano material (0.01-30%) 접촉각(°)Contact angle (°) 굵은골재Coarse aggregate 잔골재Fine aggregate 소수-발수성능개선소재(불소)Water-Repellent Performance Improvement Material (Fluorine) 88 1111 1111 3939 3939 00 10°10 ° 99 1111 1111 31.531.5 31.531.5 55 8 ° 1010 1111 1111 3434 3434 1010 7 ° 1111 1111 1111 2929 2929 2020 5 °

(3) 소수-발수성능 나노소재 첨가에 따른 영향 (실시예 8∼실시예 11)(3) Effect of adding hydrophobic-water repellent nanomaterials (Examples 8 to 11)

본 실시예는 시편에 물을 떨어뜨려 물과 폴리머 콘크리트사이의 접촉각을 측정한 것이다.This example measures the contact angle between water and polymer concrete by dropping water on the specimen.

나노소재가 포함되지 않은 상기 실시예 8의 경우 제조된 경화체는 물과의 접촉각이 약 10°정도 나온 것을 확인할 수 있었다.In the case of Example 8, the nanomaterial was not included it was confirmed that the contact angle with the water came out about 10 °.

반면 나노소재를 포함한 실시예 9∼실시예 11의 경우, 제조된 경화체는 나노소재의 첨가량이 증가함에 따라 물과의 접촉각이 감소하는 것을 확인할수있었고, 나노소재량이 증가할수록 소수-발수 성능이 향상된다는 것을 알 수 있다.On the other hand, in Examples 9 to 11 including nanomaterials, the prepared cured product was found to decrease the contact angle with water as the amount of nanomaterial added increased. It can be seen that.

상기에서 살펴본 바와 같이, 본 발명에 의한 폴리머 콘크리트는 일반 불포화 폴리에스테르 수지를 사용한 폴리머 콘크리트와 비교하여 역학적 특성이 떨어지지 않으며, 경제적으로 우수하다. 또한, 나노소재를 첨가함으로써 일반 폴리머 콘크리트보다 우수한 내화-내열성능을 지니고 있으므로 일반적인 폴리머 콘크리트에서 문제점으로 지적되어온 열에 의한 역학적 특성이 저하되는 문제가 해결되었다. 또한 소수성 및 발수성능의 개선되었으며, 열전도도가 작아 단열 효과가 우수하다. 따라서 본 고안에 의한 폴리머 콘크리트는 일반 구조재로 사용될수 있으며, 건축구조재로 사용될 경우 구조재 외에 부가적으로 설치되는 내화-내열재료 및 방수재료의 소요량을 상당부분 낮출 수 있다.As described above, the polymer concrete according to the present invention does not deteriorate in mechanical properties as compared to polymer concrete using a general unsaturated polyester resin, it is economically excellent. In addition, since the addition of nanomaterials has better fire-resistance performance than general polymer concrete, the problem of deterioration of mechanical properties due to heat, which has been pointed out as a problem in general polymer concrete, has been solved. In addition, hydrophobic and water-repellent performance is improved, and the thermal conductivity is small, the heat insulation effect is excellent. Therefore, the polymer concrete according to the present invention can be used as a general structural material, and when used as a building structural material can significantly lower the requirements of the refractory-heat-resistant material and waterproof material additionally installed in addition to the structural material.

Claims (9)

폐 PET 재생 불포화 폴리에스테르 수지 5~30 중량%, 충전재 5~30 중량%, 골재 40~90 중량%, 내화-내열 성능 나노소재 0.01∼30%로 구성되는 폴리머 콘크리트 조성물Polymer concrete composition consisting of waste PET regenerated unsaturated polyester resin 5-30% by weight, filler 5-30% by weight, aggregate 40-90% by weight, fire-resistant heat-resistant nanomaterial 0.01-30% 제1항에 있어서, 상기 내화-내열성 나노소재는 실리카, 알루미나, 지로코늄, 스칸듐, 란타늄, 세륨, 네오듐, 이트륨, 티타늄, 하프늄, 바나듐, 니오븀, 탄탈륨, 크로뮴, 몰리브덴, 텅스텐 및 그들의 혼합물로 구성된 군으로부터 선택된 금속 봉화물, 탄화물, 또는 질화물등 내화-내열성능을 가진 물질을 나노소재화한 것을 특징으로 하는 폴리머 콘크리트 조성물The method of claim 1, wherein the refractory-heat-resistant nanomaterial is silica, alumina, zirconium, scandium, lanthanum, cerium, neodium, yttrium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten and mixtures thereof. Polymer concrete composition, characterized in that the nano-materialized material having a refractory-heat resistance, such as metal bead, carbide, or nitride selected from the group consisting of 폐 PET 재생 불포화 폴리에스테르 수지 5~30 중량%, 충전재 5~30 중량%, 골재 40~90 중량%, 소수-발수성능 나노소재 0.01∼30%로 구성되는 폴리머 콘크리트 조성물Polymer concrete composition consisting of waste PET regenerated unsaturated polyester resin 5-30 wt%, filler 5-30 wt%, aggregate 40-90 wt%, hydrophobic-water repellent nanomaterial 0.01-30% 제1항에 있어서, 상기 소수-발수성능 나노소재는 불소,실리카등 소수-발수성능을 가진 물질의 나노소재화한 것을 특징으로 하는 폴리머 콘크리트 조성물The polymer concrete composition according to claim 1, wherein the hydrophobic water-repellent nanomaterial is nanomaterialized of a hydrophobic-water repellent material such as fluorine and silica. 제2항 또는 제4항에 있어서, 상기 나노소재의 크기는 0.01㎚∼100㎛인 것을 특징으로 하는 폴리머 콘크리트 조성물The polymer concrete composition according to claim 2 or 4, wherein the nanomaterial has a size of 0.01 nm to 100 µm. 제 1항 또는 제 3항에 있어서, 결합재는 폐 PET 재생 불포화 폴리에스테르 수지를 사용하는 것을 특징으로 하는 폴리머 콘크리트 조성물The polymer concrete composition according to claim 1 or 3, wherein the binder uses waste PET regenerated unsaturated polyester resin. 제 1항 또는 제 3항에 있어서, 충전재는 중탄산칼슘 및 플라이 애쉬(fly-ash)인 것을 특징으로 하는 폴리머 콘크리트 조성물4. The polymer concrete composition according to claim 1 or 3, wherein the filler is calcium bicarbonate and fly ash. 제 1항 또는 제 3항에 있어서, 잔골재는 0.1~1.0mm인 것을 특징으로 하는 폴리머 콘크리트 조성물The polymer concrete composition according to claim 1 or 3, wherein the fine aggregate is 0.1 to 1.0 mm. 제 1항 또는 제 3항에 있어서, 상기 폴리머 콘크리트 조성물을 상온(20± 3℃) 또는 50~200℃에서 24시간 이상 양생하는 것을 특징으로 하는 폴리머 콘크리트의 제조방법The method for producing polymer concrete according to claim 1 or 3, wherein the polymer concrete composition is cured at room temperature (20 ± 3 ° C.) or at 50 to 200 ° C. for at least 24 hours.
KR20030029953A 2003-05-12 2003-05-12 Piti recycled polymer concrete composition using high-performance nanomaterial and manufacturing method thereof KR100580597B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20030029953A KR100580597B1 (en) 2003-05-12 2003-05-12 Piti recycled polymer concrete composition using high-performance nanomaterial and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20030029953A KR100580597B1 (en) 2003-05-12 2003-05-12 Piti recycled polymer concrete composition using high-performance nanomaterial and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20040097611A true KR20040097611A (en) 2004-11-18
KR100580597B1 KR100580597B1 (en) 2006-05-16

Family

ID=37375752

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20030029953A KR100580597B1 (en) 2003-05-12 2003-05-12 Piti recycled polymer concrete composition using high-performance nanomaterial and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100580597B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100600801B1 (en) * 2004-11-22 2006-07-18 김진희 Flame-retardant composite material comprising polyethylene terephthalate-based waste product particles and flame-retardant article therefrom
KR102629091B1 (en) * 2023-04-04 2024-01-24 주식회사 한화 Spalling-resistant high-strength concrete composition with PP fiber and PET mesh chips

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100600801B1 (en) * 2004-11-22 2006-07-18 김진희 Flame-retardant composite material comprising polyethylene terephthalate-based waste product particles and flame-retardant article therefrom
KR102629091B1 (en) * 2023-04-04 2024-01-24 주식회사 한화 Spalling-resistant high-strength concrete composition with PP fiber and PET mesh chips

Also Published As

Publication number Publication date
KR100580597B1 (en) 2006-05-16

Similar Documents

Publication Publication Date Title
Kumar A review on epoxy and polyester based polymer concrete and exploration of polyfurfuryl alcohol as polymer concrete
Gao et al. Unsaturated polyester resin concrete: A review
RU2552507C2 (en) Fibre-reinforced strong construction materials and coatings, containing inorganic binding agents
Martinez-Barrera et al. Polymer concretes: a description and methods for modification and improvement
Sivakumar Effect of polymer modification on mechanical and structural properties of concrete–an experimental investigation
BRPI0608808B1 (en) sheet molding compound paste formulation, sheet molding compound, article of manufacture, process for manufacturing composite molded parts of vehicles and construction, and method for manufacturing a article of manufacture
EP0742249B1 (en) Coating to enhance the surface properties of glass fiber reinforced plastics
Sarde et al. Effect of calcined kaolin clay on mechanical and durability properties of pet waste-based polymer mortar composites
KR100580597B1 (en) Piti recycled polymer concrete composition using high-performance nanomaterial and manufacturing method thereof
KR100376231B1 (en) Polymer concrete foam and preparation method thereof
KR101065252B1 (en) Polymer mortar compound for main body of manhole and polymer concrete compound for flange of manhole and manufacturing method of glass-fiber reinforced assembling manhole using the same compounds
KR101159547B1 (en) Polymer Concrete composition recycling waste expended polystyrene as a Shrinkage Reducing Agent, Polymer Concret and Manufacturing Method thereof
KR101665486B1 (en) Overlay pavement and reinforcing method for bridge deck by synthetic latex modified concrete based acrylate for concrete confusion
Abu-Jdayil et al. Jordanian clay-based heat insulator composites: mechanical properties
JPH04255709A (en) Synthetic resin composition for polymer concrete
EP4137317A1 (en) Polymer composite, use of said composite to prepare articles, method for preparing said composite and articles including said composite
KR100547946B1 (en) A manufacturing process of polymer concrete using unsaturated polyester resin based on PET wasted and glass wasted
US7141296B2 (en) Cast polymer and method of making the same
US7498374B2 (en) Cast polymer and method of making the same
KR100580595B1 (en) Performanced-improving method of PET recycling polymer concrete to apply highly efficient nano particles
KR20130002615A (en) The polymer concrete composition containing rapid-cooled steel slag as filler and fine aggregate and the manufacturing method thereof
Shi et al. Novel epoxy resin-bonded sand system: Mechanical strength, deterioration resistance, and failure mechanism
Dinakaran et al. Unsaturated Polyester Resin Clay Hybrid Nanocomposites
SALAMI INFLUENCE OF SORGHUM HUSK ASH AS MICRO-FILLER IN POLYMER CONCRETE
JP3858012B2 (en) Cement composite

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100330

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee