KR102629091B1 - Spalling-resistant high-strength concrete composition with PP fiber and PET mesh chips - Google Patents

Spalling-resistant high-strength concrete composition with PP fiber and PET mesh chips Download PDF

Info

Publication number
KR102629091B1
KR102629091B1 KR1020230043999A KR20230043999A KR102629091B1 KR 102629091 B1 KR102629091 B1 KR 102629091B1 KR 1020230043999 A KR1020230043999 A KR 1020230043999A KR 20230043999 A KR20230043999 A KR 20230043999A KR 102629091 B1 KR102629091 B1 KR 102629091B1
Authority
KR
South Korea
Prior art keywords
pet
fiber
strength
concrete composition
fibers
Prior art date
Application number
KR1020230043999A
Other languages
Korean (ko)
Inventor
이창현
김정수
구경모
김영진
Original Assignee
주식회사 한화
에코프렌즈(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한화, 에코프렌즈(주) filed Critical 주식회사 한화
Priority to KR1020230043999A priority Critical patent/KR102629091B1/en
Application granted granted Critical
Publication of KR102629091B1 publication Critical patent/KR102629091B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0675Macromolecular compounds fibrous from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0683Polyesters, e.g. polylactides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/06Macromolecular compounds fibrous
    • C04B16/0616Macromolecular compounds fibrous from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B16/0625Polyalkenes, e.g. polyethylene
    • C04B16/0633Polypropylene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • C04B2201/52High compression strength concretes, i.e. with a compression strength higher than about 55 N/mm2, e.g. reactive powder concrete [RPC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

본 발명은 건설현장에서 다량 발생하는 폐 PET 망을 자원화하여 콘크리트 폭렬 방지 수단으로 적용한 내폭렬 고강도 콘크리트 조성물에 관한 것이다.
본 발명은 「설계기준 압축강도 50 MPa 이상의 고강도 콘크리트 조성물로서, PP 섬유 0.3~0.5 kg/㎥ 및 폐 PET 망을 소정의 크기로 절단한 PET망칩 0.2~0.4 kg/㎥ 이 혼입된 것을 특징으로 하는 내폭렬 고강도 콘크리트 조성물」을 제공한다.
The present invention relates to a high-strength, explosion-resistant concrete composition in which waste PET nets generated in large quantities at construction sites are recycled and applied as a means of preventing concrete explosion.
The present invention is a high-strength concrete composition with a design standard compressive strength of 50 MPa or more, which is characterized by mixing 0.3 to 0.5 kg/m3 of PP fiber and 0.2 to 0.4 kg/m3 of PET mesh chips obtained by cutting waste PET mesh into a predetermined size. Provides a “explosion-resistant high-strength concrete composition.”

Description

PP 섬유 및 PET망칩이 복합적용된 내폭렬 고강도 콘크리트 조성물{Spalling-resistant high-strength concrete composition with PP fiber and PET mesh chips}Spalling-resistant high-strength concrete composition with PP fiber and PET mesh chips}

본 발명은 건설현장에서 다량 발생하는 폐 PET 망을 자원화하여 콘크리트 폭렬 방지 수단으로 적용한 내폭렬 고강도 콘크리트 조성물에 관한 것이다.The present invention relates to a high-strength, explosion-resistant concrete composition in which waste PET nets generated in large quantities at construction sites are recycled and applied as a means of preventing concrete explosion.

PET 섬유는 Polyethylene Terephthalate의 약자로, 폴리에스터 섬유 중 하나이다. PET 섬유는 열가소성과 내구성이 뛰어나며, 경도가 높고 빛에 강한 특성 때문에 의류, 침구, 자동차 내부 재질 등 다양한 분야에서 사용된다. PET fiber stands for Polyethylene Terephthalate and is one of the polyester fibers. PET fiber has excellent thermoplasticity and durability, and is used in various fields such as clothing, bedding, and automobile interior materials due to its high hardness and light resistance.

또한 PET 섬유는 경량이면서도 높은 인장강도를 가지고 있기 때문에, 안전망으로 사용하기에 적합하여 다양한 크기와 형태의 망으로 제작되어, 건설 현장에서 낙하방지망, 수직보호망 등으로 많이 사용된다.In addition, PET fiber is lightweight and has high tensile strength, so it is suitable for use as a safety net. It is manufactured into nets of various sizes and shapes, and is widely used as fall prevention nets and vertical protection nets at construction sites.

그러나, 현재 건설현장에서 사용 후 폐기된 PET 망은 다양한 색상과 다량의 이물질 문제, 선별적인 폐기 및 수거 문제 등으로 인하여 2018년까지는 재활용한 사례는 없는 것으로 조사되었으며, 실제 재활용하고 있는 관련산업(업체)도 없는 것으로 조사되었다(조현대, 정재동, "건설현장에서 사용된 수직보호망의 재활용 타당성 분석에 관한 연구", J. Korea Inst. Build. Constr. Vol. 18, No. 5. p.486. 2018.10.).However, it was found that PET nets discarded after use at construction sites have not been recycled until 2018 due to problems with various colors, large amounts of foreign substances, and selective disposal and collection. Related industries (companies) that are actually recycling ) was found to be absent (Hyundae Cho, Jae-dong Jeong, "Study on the feasibility of recycling vertical protection nets used at construction sites", J. Korea Inst. Build. Constr. Vol. 18, No. 5. p.486. 2018.10.).

폐 PET 망은 PET 재질의 특성상 각종 이물질의 부착으로 인하여 현재 국내 현장 기술로는 사출이 되지 않으며, 압출 방식(원사방사공정)으로 재활용이 가능하지만 압출 방식의 특성상 폐 PET 망에 부착되어 있는 이물질을 완벽하게 제거하여야 하나, 건설현장에서 사용한 폐 PET 망의 경우 굳은 콘크리트 및 각종 이물질 부착으로 인하여 이를 제거하는데 소요되는 비용이 크고 완벽하게 제거하는 것이 곤란하다. 또한 재활용에 따른 2차 폐기물의 발생 및 이의 처리비용 등으로 현실적, 경제적 측면에서 재활용이 어려울 것으로 여겨져 왔다(조현대, 정재동 위 논문 p.486.).Due to the nature of the PET material, waste PET nets cannot be extruded using current domestic field technology due to the attachment of various foreign substances. Although they can be recycled through extrusion (yarn spinning process), due to the nature of the extrusion method, foreign substances attached to the waste PET net are removed. It must be completely removed, but in the case of waste PET mesh used at construction sites, the cost of removing it is high and it is difficult to completely remove it due to hardened concrete and various foreign substances attached. In addition, recycling has been considered difficult from a practical and economic perspective due to the generation of secondary waste and its disposal costs due to recycling (Hyundae Cho, Jae-dong Jeong, p. 486 of the above paper).

한편, 압축강도 50 MPa 이상의 고강도 콘크리트는 고강도 발현을 위해 콘크리트 구조체 내 공극이 적어 화재시 내부 수증기압에 의해 콘크리트 표면이 탈락하는 폭렬이 문제될 수 있다. 이에 50 MPa 이상의 고강도 콘크리트를 기둥, 보 등에 적용할 때에는 내화 성능 확보가 필수적이며, 콘크리트에 섬유를 혼입하여 화재 시 혼입된 섬유가 증발하여 내부 수증기압 배출 경로를 형성시키는 폭렬 제어 기술이 적용되고 있다.On the other hand, high-strength concrete with a compressive strength of 50 MPa or more has small voids within the concrete structure to develop high strength, so in the event of a fire, there may be a problem of spalling, in which the concrete surface falls off due to internal water vapor pressure. Accordingly, when applying high-strength concrete of 50 MPa or more to columns, beams, etc., it is essential to secure fire resistance, and detonation control technology is being applied in which fibers are mixed into concrete and the incorporated fibers evaporate in the event of a fire to form an internal water vapor pressure discharge path.

고강도 콘크리트의 폭렬 제어를 위해서는 통상적으로 PP(Polypropylene) 섬유 0.9 kg/㎥를 혼입시키며(등록특허 10-1061950 등), PP 섬유와 나일론(Nylon) 섬유를 혼합하여 0.6~0.7 kg/㎥를 혼입시켜 섬유 혼입량을 줄이면서 폭렬 제어 성능을 유지하고, PP섬유만을 적용할 때 보다 콘크리트 조성물의 유동성은 향상되도록 개선된 기술(등록특허 10-1064558 등)도 공지되어 있다.To control the spalling of high-strength concrete, 0.9 kg/㎥ of PP (Polypropylene) fiber is usually mixed (registered patent 10-1061950, etc.), and 0.6 to 0.7 kg/㎥ of PP fiber and nylon fiber are mixed. Improved technologies (patent registration 10-1064558, etc.) are also known to maintain spalling control performance while reducing the amount of fiber mixed, and to improve the fluidity of the concrete composition compared to when only PP fibers are applied.

PET 섬유는 [도 1]에 나타난 바와 같이 나일론 섬유와 열적 특성(TGA 분석 : 온도 상승에 따른 섬유의 증발량(폭렬제어성능 관련))이 유사한 것으로 파악되므로, 본 발명에서는 폐 PET 망을 고강도 콘크리트 폭렬 제어를 위한 섬유로 활용하는 방안을 검토하였다. As shown in [Figure 1], PET fibers are found to have similar thermal properties (TGA analysis: evaporation amount of fibers (related to explosion control performance) according to temperature increase) with nylon fibers, and therefore, in the present invention, waste PET nets are used to prevent high-strength concrete explosions. We reviewed ways to use the fiber for control.

선행 연구 중에는 폐 PET 병으로부터 생산된 재생 PET 섬유를 혼입한 콘크리트의 강도 및 균열저항 특성을 연구한 사례가 있으나 폐 PET망 재활용이나 폭렬 제어와는 무관하다.Among the previous studies, there was a study on the strength and crack resistance characteristics of concrete mixed with recycled PET fibers produced from waste PET bottles, but this was unrelated to waste PET network recycling or explosion control.

1. 등록특허 10-0644083 "콘크리트 폭열제어용 섬유"1. Registered Patent 10-0644083 “Fiber for controlling concrete detonation” 2. 공개특허 10-2011-0078937 "보강섬유가 포함된 폭열방지 및 내화성이 우수한 콘크리트"2. Publication Patent No. 10-2011-0078937 “Concrete with excellent heat resistance and fire resistance containing reinforcing fibers” 3. 등록특허 10-1061950 "철근콘크리트구조용 초고강도 고내화성 콘크리트"3. Registered Patent 10-1061950 “Ultra-high-strength, highly fire-resistant concrete for reinforced concrete structures” 4. 등록특허 10-1064558 "고내화성 초고강도·초유동 콘크리트용 시멘트 결합재의 조성물"4. Registered Patent 10-1064558 “Composition of cement binder for highly fire-resistant, ultra-high-strength, super-fluid concrete”

1. 조현대, 정재동, "건설현장에서 사용된 수직보호망의 재활용 타당성 분석에 관한 연구", J. Korea Inst. Build. Constr. Vol. 18, No. 5. pp.479~488. 2018.10.1. Hyundae Cho, Jaedong Jeong, "Study on the feasibility analysis of recycling of vertical protection nets used at construction sites", J. Korea Inst. Build. Constr. Vol. 18, no. 5. pp.479~488. 2018.10. 2. 김성배, 김현영, 이나현, 김장호, "재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 강도 및 균열저항 특성", 구조물진단학회지 제14권 제1호, pp.102~108. 2010.01.2. Seong-Bae Kim, Hyun-Young Kim, Na-Hyeon Lee, and Jang-Ho Kim, "Strength and crack resistance characteristics of fiber-reinforced concrete mixed with recycled PET fibers", Journal of Structural Diagnostics, Vol. 14, No. 1, pp.102-108. 2010.01.

본 발명은 건설현장에서 대량 발생하는 폐 PET 망을 자원화하는 방법을 제공하기 위한 것으로, 폐 PET 망을 콘크리트 폭렬 제어 수단으로 적용한 내폭렬 고강도 콘크리트 조성물을 제공함에 그 목적이 있다.The present invention is intended to provide a method of recycling waste PET nets generated in large quantities at construction sites, and the purpose of the present invention is to provide a high-strength, high-strength concrete composition that is burst-resistant using waste PET nets as a means of controlling concrete spalling.

전술한 과제 해결을 위해 본 발명은 「설계기준 압축강도 50 MPa 이상의 고강도 콘크리트 조성물로서, PP 섬유 0.3~0.5 kg/㎥ 및 폐 PET 망을 소정의 크기로 절단한 PET망칩 0.2~0.4 kg/㎥ 이 혼입된 것을 특징으로 하는 내폭렬 고강도 콘크리트 조성물」을 제공한다.In order to solve the above-mentioned problems, the present invention is a high-strength concrete composition with a compressive strength of 50 MPa or more as a design standard, comprising 0.3 to 0.5 kg/m3 of PP fiber and 0.2 to 0.4 kg/m3 of PET network chips obtained by cutting waste PET mesh into a predetermined size. Provided is a “cracking-resistant high-strength concrete composition characterized by mixing.”

상기 PET망칩은 가로 2.5~3.5 mm, 세로 7~9 mm의 장방형으로 제작할 수 있으며, 고정된 칼날에 폐 PET 망이 지나가며 PET 섬유가 풀리지 않는 상태로 절단되도록 할 수 있다.The PET mesh chip can be manufactured in a rectangular shape with a width of 2.5 to 3.5 mm and a length of 7 to 9 mm, and the waste PET mesh can be passed through a fixed blade to cut the PET fibers without unraveling.

상기 PET망칩은 결합재, 잔골재 및 굵은골재의 건비빔 과정에 투입되어, 건비빔 과정에서 마찰에 의해 30~70 wt%가 PET 섬유로 풀려 분산되도록 할 수 있다.The PET network chip can be added to the dry mixing process of binder, fine aggregate, and coarse aggregate, and 30 to 70 wt% can be released and dispersed into PET fibers by friction during the dry mixing process.

본 발명에 따르면 건설현장에서 대량 발생하는 폐 PET 망을 자원화하여 고강도 콘크리트의 폭렬 제어 수단으로 적용함으로써 환경부하를 저감하고, 경제성을 향상시키며, 고강도 콘크리트 조성물의 내화성능을 향상시킬 수 있다.According to the present invention, by recycling waste PET nets generated in large quantities at construction sites and applying them as a means to control spalling of high-strength concrete, it is possible to reduce environmental load, improve economic efficiency, and improve fire resistance performance of high-strength concrete compositions.

[도 1]은 PP 섬유, 나일론 섬유 및 PET 섬유에 대한 TGA 분석 결과를 나타낸 그래프이다.
[도 2]는 PET망칩의 건비빔 전 후 상태를 모사하여 PET망칩을 손으로 비빈 후 촬영한 사진이다.
[도 3]은 본 발명을 적용한 공시체에 대한 간이 내화시험 과정을 촬영한 사진이다.
[도 4]는 본 발명을 적용한 공시체에 대한 간이 내화시험 시 가열로 내부에서의 경시적 온도변화를 나타낸 그래프이다.
[도 5] 내지 [도 15]는 본 발명이 적용된 기둥부재에 대한 방재시험연구원의 내화성능 시험성적서를 장별로 첨부한 것이다.
[Figure 1] is a graph showing the results of TGA analysis for PP fiber, nylon fiber, and PET fiber.
[Figure 2] is a photo taken after rubbing the PET net chip by hand, simulating the state before and after dry mixing of the PET net chip.
[Figure 3] is a photograph of a simple fire resistance test process for a specimen to which the present invention is applied.
[Figure 4] is a graph showing the temperature change over time inside the heating furnace during a simple fire resistance test on a specimen to which the present invention was applied.
[FIGS. 5] to [FIG. 15] show fire resistance performance test reports from the Disaster Prevention Testing Institute for pillar members to which the present invention is applied, attached for each chapter.

본 발명은 설계기준 압축강도 50 MPa 이상의 고강도 콘크리트 조성물로서, PP 섬유 0.3~0.5 kg/㎥ 및 폐 PET 망을 가로 2.5~3.5 mm, 세로 7~9 mm 사이즈로 절단한 PET망칩 0.2~0.4 kg/㎥ 이 혼입된 것을 특징으로 하는 내폭렬 고강도 콘크리트 조성물을 제공한다.The present invention is a high-strength concrete composition with a compressive strength of 50 MPa or more as a design standard, and consists of 0.3 to 0.5 kg/㎥ of PP fiber and 0.2 to 0.4 kg/㎥ of PET network chips cut from waste PET net into 2.5 to 3.5 mm width and 7 to 9 mm length. Provides a burst-resistant, high-strength concrete composition characterized by mixing ㎥.

[발명의 배경이 되는 기술] 부분에서 언급한 바와 같이 50 MPa 이상의 고강도 콘크리트를 기둥, 보 등에 적용할 때에는 내화 성능 확보가 필수적이다. As mentioned in the [Background Technology of the Invention] section, securing fire resistance performance is essential when applying high-strength concrete of 50 MPa or more to columns, beams, etc.

화재 발생 시 콘크리트가 100~200℃ 온도범위에서 가열될 때부터 콘크리트 내부 수분이 기화하여 수증기압이 발생하고, 폭렬 제어 조치가 이루어지지 않은 경우에는 300~400℃ 온도범위에서 수증기 응축 및 폭렬이 발생한다. 고강도 콘크리트는 강도 발현을 위해 결합재량이 580~680 kg/㎥ 으로 다량 소요되는 반면 콘크리트 매트릭스가 밀실하게 채워지기 때문이다.In the event of a fire, when concrete is heated in the temperature range of 100~200℃, the moisture inside the concrete evaporates and vapor pressure is generated. If explosion control measures are not taken, water vapor condenses and explodes in the temperature range of 300~400℃. . This is because high-strength concrete requires a large amount of binder (580 to 680 kg/㎥) to develop strength, while the concrete matrix is tightly filled.

[도 1]에 도시된 바와 같이, 폭렬 제어용으로 많이 활용되는 PP 섬유는 융점이 300℃ 이하에서 형성되어 400℃에 이르기전 대부분 소실되기 이루어지기 때문에, 콘크트에 PP 섬유를 혼입함으로써 폭렬 발생 전에 수증기압 배출 경로를 형성시킬 필요가 있다. 본 발명에서도 설계기준 압축강도 50 MPa 이상의 고강도 콘크리트 조성물 PP 섬유가 0.3~0.5 kg/㎥ 혼입된다. As shown in [Figure 1], PP fibers, which are widely used for detonation control, are formed at a melting point of 300°C or lower and are mostly lost before reaching 400°C. Therefore, by mixing PP fibers into the concrete, they are prevented from occurring before detonation occurs. It is necessary to form a water vapor pressure discharge path. In the present invention, 0.3 to 0.5 kg/㎥ of PP fiber is incorporated into the high-strength concrete composition with a design standard compressive strength of 50 MPa or more.

다만, 콘크리트가 400℃ 이상으로 가열될 때에도 수증기 발생이 지속되므로, PP 섬유 혼입량을 줄이는 대신 400℃ 부근에서 융점이 형성되면서 기화가 이루어지는 나일론 섬유를 함께 혼입하여 가열 온도별 수증기압에 대한 단계적 완충이 이루어지도록 하여 폭렬 제어 효과의 효율성을 높이고 PP 섬유 혼입에 의해 저하되는 유동성 보상이 이루어지도록 할 수 있다.However, since water vapor continues to be generated even when concrete is heated above 400℃, instead of reducing the amount of PP fibers, nylon fibers, which vaporize as their melting point is formed around 400℃, are mixed together to achieve a gradual buffering of the water vapor pressure at each heating temperature. By doing so, the efficiency of the detonation control effect can be increased and the fluidity deteriorated by the inclusion of PP fibers can be compensated for.

본 발명은 건설현장에서 대량 발생하는 폐 PET 망의 자원화 방안을 도출한 것으로, PET 섬유의 열적 특성이 나일론 섬유와 유사하다는 점에서 착안한 것이다.The present invention derives a plan to recycle waste PET nets generated in large quantities at construction sites, and is based on the fact that the thermal properties of PET fibers are similar to nylon fibers.

PP 섬유, 나일론 섬유, PET 섬유의 원사 가격을 대비하더라도 약 5:7:2 수준으로 PET 섬유의 경제성이 크게 높으며, 폐 PET 망을 재활용한다면 경제성 향상은 물론 환경 부하 저감에도 이바지할 수 있다.Even when comparing the yarn prices of PP fiber, nylon fiber, and PET fiber, the economic feasibility of PET fiber is significantly higher at about 5:7:2, and recycling waste PET net can not only improve economic efficiency but also contribute to reducing environmental load.

다만, 건설현장에서 갱폼에 결합되는 수직망, 낙하방지망 등으로 활용되는 PET 망은 다수의 PET 섬유 다발이 1실(yarn)을 이루고 이러한 실이 위사, 경사를 이루도록 배치하고 상대적으로 가는 두께의 엮음실로 엮어 망상(網狀)으로 제작한다. 섬유 혼입에 의한 폭렬 제어 메커니즘은 콘크리트 매트릭스 내에 섬유가 고르게 분산되어 있는 상태에서 내부 수증기압 역시 고르게 배출되도록 하는 것이므로, PET 망이 PET 섬유로 제직된 것이라도, 망상 제직 구조가 유지되는 상태에서는 섬유 상태로 콘크리트에 혼입된 경우와 동일한 폭렬 제어 메커니즘을 기대하기는 어렵다.However, PET nets used as vertical nets and fall prevention nets attached to gang forms at construction sites are made up of multiple PET fiber bundles forming one yarn, and these yarns are arranged to form the weft and warp yarns, and are woven with a relatively thin thickness. It is woven with thread and made into a net. The explosion control mechanism caused by fiber mixing ensures that the internal water vapor pressure is also discharged evenly while the fibers are evenly distributed within the concrete matrix. Therefore, even if the PET net is woven with PET fibers, it remains in the fiber state as long as the network weave structure is maintained. It is difficult to expect the same explosion control mechanism as when mixed into concrete.

그러나 폐 PET 망을 수거하여 망상의 제직 구조를 해체하여 섬유 상태로 만드는 것은 기술적으로, 경제적으로 불가능에 가깝다. 이에 본 발명에서는 폐 PET 망을 소정의 크기로 절단한 '칩(Chip)' 형태의 PET망칩을 콘크리트 조성물에 첨가하되, 상기 PET망칩을 결합재, 잔골재 및 굵은골재의 건비빔 과정에 투입하여, 건비빔 과정에서 마찰에 의해 30~70 wt%가 PET 섬유로 풀려 분산되도록 하였다. [도 2]는 PET망칩의 건비빔 전 후 상태를 모사하여 PET망칩을 손으로 비빈 후 촬영한 사진이다. 이에 따라 상기 PET망칩에서 풀려 분산된 PET 섬유는 PP 섬유와 함께 가열 온도별로 발생하는 수증기를 단계적으로 배출시키도록 하고, 칩 상태로 남은 일부는 내부 수증기압에 대한 댐퍼 기능을 수행하도록 하는 새로운 폭렬 제어 메커니즘이 작동하도록 하였다.However, it is technically and economically close to impossible to collect waste PET nets, dismantle the weaving structure of the nets, and turn them into fibers. Accordingly, in the present invention, PET network chips in the form of 'chips', which are waste PET networks cut to a predetermined size, are added to the concrete composition, and the PET network chips are input into the dry mixing process of binder, fine aggregate, and coarse aggregate, During the mixing process, 30 to 70 wt% was loosened and dispersed into PET fibers by friction. [Figure 2] is a photo taken after rubbing the PET net chip by hand, simulating the state before and after dry mixing of the PET net chip. Accordingly, a new detonation control mechanism allows the PET fibers released and dispersed from the PET network chip to gradually discharge the water vapor generated at each heating temperature along with the PP fibers, and the part remaining in the chip state functions as a damper for internal water vapor pressure. I got this to work.

본 발명에서는 전술한 바와 같이, PP 섬유를 일반적인 경우보다 적게 0.3~0.5 kg/㎥ 혼입시키는 대신 폐 PET 망을 소정의 크기로 절단한 PET망칩을 0.2~0.4 kg/㎥ 혼입시킨다. 상기 PET망칩은 비중이 1.3~1.4 범위에서 측정된다.In the present invention, as described above, instead of mixing 0.3 to 0.5 kg/m3 of PP fiber than in the general case, 0.2 to 0.4 kg/m3 of PET network chips cut from waste PET net to a predetermined size are mixed. The specific gravity of the PET network chip is measured in the range of 1.3 to 1.4.

상기 PET망칩의 사이즈는 필요에 따라 설정할 수 있으나, 과대한 사이즈는 PET방칩의 분산 및 폭렬 제어 메커니즘 발현에 불리하고, 과소한 사이즈는 절단 작업에 어려움을 야기한다. 또한, 상기 PET망칩은 결합재, 굵은골재 및 잔골재를 건비빔 하는 과정에서 일부가 PET 섬유 가닥으로 풀려 분산되므로, 상기 PET망칩을 장방형으로 제작하면 풀려 분산되는 PET 섬유 역시 길이 기준 2종으로 구분된다. 분산되는 모든 PET 섬유의 길이가 동일한 것보다는 장섬유와 단섬유가 혼합될 때 콘크리트 매트릭스 내 수중기압 배출 경로가 더욱 고르게 형성된다. The size of the PET network chip can be set as needed, but an excessive size is disadvantageous for the development of the dispersion and explosion control mechanism of the PET network chip, and an undersized size causes difficulty in cutting work. In addition, the PET network chip is partially unwound and dispersed into PET fiber strands during the process of dry mixing the binder, coarse aggregate, and fine aggregate, so when the PET network chip is manufactured in a rectangular shape, the PET fibers that are unwound and dispersed are also divided into two types based on length. When long fibers and short fibers are mixed, rather than when all dispersed PET fibers have the same length, the water pressure discharge path within the concrete matrix is formed more evenly.

따라서 상기 PET망칩은 2.5~3.5 mm, 세로 7~9 mm 범위의 장방형으로 제작하여, 건비빔 과정에서 풀려 분산되는 PET 섬유 가닥은 길이 7~9 mm 범위의 장섬유와 길이 2.5~3.5 mm 범위의 단섬유로 구분되도록 하는 것이 바람직하다. 아울러, 혼입되는 PP 섬유의 길이를 10~15 mm 범위에서 적용함으로써 섬유 길이 단계별 조합에 의한 수중기압 배출 경로 분산이 이루어지도록 할 수 있다.Therefore, the PET network chip is manufactured in a rectangular shape with a length of 2.5 to 3.5 mm and a length of 7 to 9 mm, and the PET fiber strands that are unraveled and dispersed during the dry mixing process are divided into long fibers with a length of 7 to 9 mm and a length of 2.5 to 3.5 mm. It is desirable to separate them into single fibers. In addition, by applying the length of the mixed PP fiber in the range of 10 to 15 mm, it is possible to distribute the water pressure discharge path by combining the fiber lengths at each stage.

또한 상기 PET망칩은 말 그대로 칩 상태이므로 혼입 과정에서 섬유간 얽힘에 관한 우려는 배제되며, 건비빔이 진행되면서 PET망칩에서 PET 섬유가 시간을 두고 풀려 분산되는 것이므로 믹싱 과정에서의 얽힘도 최소화되어 분산성이나 유동성에 문제를 일으키지 않는다.In addition, since the PET network chip is literally in a chip state, concerns about entanglement between fibers during the mixing process are excluded. As the dry mixing progresses, the PET fibers are released and dispersed in the PET network chip over time, so entanglement during the mixing process is also minimized. It does not cause problems with acidity or fluidity.

폐 PET 망을 작두 방식으로 칼날을 내려눌러 절단하면 절단면이 거칠어지면서 PET 섬유가 미리 풀리게 되는데, PET망칩 가장자리가 풀린 상태에서는 섬유 간 얽힘은 물론, 골재까지 PET망칩에 엉키게 되어 분산성 및 유동성이 크게 저하된다. 이에 본 발명에서는 고정된 칼날에 폐 PET 망이 지나가며 절단되도록 하는 공정을 적용하여 PET망칩에서 PET 섬유가 풀리지 않는 상태가 유지되도록 하고, 건비빔 진행에 따라 비로소 PET 섬유가 풀리며 분산되도록 할 수 있다.When a waste PET network is cut by pressing down the blade using a blade method, the cut surface becomes rough and the PET fibers are released in advance. When the edge of the PET network chip is released, not only the fibers are entangled, but even the aggregate is entangled in the PET network chip, reducing dispersibility and fluidity. greatly deteriorated. Accordingly, in the present invention, a process is applied in which the waste PET net is cut as it passes by a fixed blade to maintain a state in which the PET fibers do not unravel from the PET net chip, and as the dry mixing progresses, the PET fibers can be unwound and dispersed. .

이하에서는 구체적인 시험예와 함께 본 발명을 설명한다.Below, the present invention will be described along with specific test examples.

아래 [표 1]은 설계강도(재령 28일 압축강도) 60 MPa인 고강도 콘크리트 조성물에 폭렬 제어용 섬유를 첨가하여 콘크리트 기초물성(플로우, 압축강도)을 검토한 것이다.[Table 1] below examines the basic concrete properties (flow, compressive strength) by adding spalling control fiber to a high-strength concrete composition with a design strength (28-day compressive strength) of 60 MPa.

1차 시험에서는 결합재량을 650 kg/㎥로 고정하고, 섬유를 혼입하지 않은 시험체(Plain), 통상적인 폭렬 제어 수단으로 적용되는 바와 같이 PP 섬유를 0.9 kg/㎥ 혼입한 시험체(PP 0.9), PP 섬유 혼입량을 0.5 kg/㎥으로 줄이는 대신 PET 섬유를 0.4 kg/㎥ 첨가한 시험체(PP 0.5 + PET-F 0.4), 위의 PP 0.5 + PET-F 0.4 시험체에서 PET 섬유 대신 PET망칩(폐 PET 망을 가로 3 cm, 세로 8 cm의 장방형으로 절단한 것, 이하 동일)을 첨가한 시험체(PP 0.5 + PET-C 0.4) 및 PP 섬유 혼입량을 0.3 kg/㎥으로 더 줄이고 PET망칩 혼입량도 0.3 kg/㎥으로 줄인 시험체(PP 0.3 + PET-C 0.3)를 구분 시험하였다.In the first test, the binder amount was fixed at 650 kg/㎥, a test specimen (Plain) without fiber mixed in, a test specimen mixed with 0.9 kg/㎥ PP fiber (PP 0.9) as applied as a normal detonation control measure, Instead of reducing the amount of PP fiber mixed to 0.5 kg/㎥, 0.4 kg/㎥ of PET fiber was added (PP 0.5 + PET-F 0.4). In the above PP 0.5 + PET-F 0.4 test specimen, PET net chips (waste PET) were used instead of PET fiber. The net was cut into a rectangle measuring 3 cm wide and 8 cm long; the same applies hereinafter) and the test specimen (PP 0.5 + PET-C 0.4) was added. The amount of PP fiber was further reduced to 0.3 kg/㎥, and the amount of PET network chips was also reduced to 0.3 kg. Test specimens (PP 0.3 + PET-C 0.3) reduced to /㎥ were separately tested.

Plain 시험체와 대비할 때, 나머지 시험체들은 재령 7일 압축강도가 동등한 수준에서 큰 변화 없이 나타났으나(PET 섬유, PET망칩을 적용한 경우는 약간 상승), 재령 28일 압축강도는 소폭 저하되는 것으로 나타났다. 그러나 모든 시험예에서 설계강도 60 MPa 기준은 충족되었다. 플로우값은 PP 0.9 시험체에서 저하되고, PP 0.5 + PET-F 0.4 시험체에서 더욱 저하되어 PET 섬유를 적용하는 것이 유동성면에서 불리한 것으로 파악되었으나, PET망칩을 적용한 PP 0.5 + PET-C 0.4 시험체에서 플로우값이 증가하여 유동성이 일부 회복된 것이 파악되고, PP 0.3 + PET-C 0.3 시험체에서는 플로우값이 plain 시험체와 동일하게 나타났다.When compared to the Plain test specimen, the compressive strength of the remaining test specimens at 7 days of age showed no significant change at the same level (slightly increased when PET fiber and PET network chips were applied), but the compressive strength at 28 days of age showed a slight decrease. However, the design strength standard of 60 MPa was met in all test examples. The flow value decreased in the PP 0.9 test specimen and further decreased in the PP 0.5 + PET-F 0.4 test specimen, so it was found that applying PET fiber was disadvantageous in terms of fluidity. However, the flow value in the PP 0.5 + PET-C 0.4 test specimen with PET network chips was found to be low. It was found that the fluidity was partially restored as the value increased, and the flow value of the PP 0.3 + PET-C 0.3 test specimen was the same as that of the plain specimen.

2차 시험에서는 상기 Plain 시험체, PP 섬유 0.5 kg/㎥와 PET망칩 0.2 kg/㎥를 혼입한 시험체(PP 0.5 + PET-C 0.2), PP 섬유량을 0.3 kg/㎥으로 낮추고 PET망칩을 0.2 kg/㎥를 혼입한 시험체(PP 0.3 + PET-C 0.2)를 구분 시험하였다. 상기 PP 0.5 + PET-C 0.2 시험체는 결합재량을 680 kg/㎥으로 증량하여 물성 변화를 검토하였다.In the second test, the plain test specimen was mixed with 0.5 kg/㎥ of PP fiber and 0.2 kg/㎥ of PET net chips (PP 0.5 + PET-C 0.2), the amount of PP fiber was lowered to 0.3 kg/㎥ and PET net chips were added to 0.2 kg. Test specimens mixed with /㎥ (PP 0.3 + PET-C 0.2) were separately tested. For the PP 0.5 + PET-C 0.2 test specimen, the change in physical properties was examined by increasing the binder amount to 680 kg/㎥.

Plain 시험체와 대비할 때, 나머지 시험체들 모두 재령 7일 압축강도는 동등한 수준으로 나타났고, 재령 28일 압축강도는 PP 0.5 + PET-C 0.2 시험체에서 설계기준강도가 충족되는 범위 안에서 약간의 저하가 있었으나, 결합재량을 680 kg/㎥으로 증량함에 따라 Plain 시험체와 동등하게 나타났다. 플로우값은 Plain 보다는 저하되나 PP 섬유만을 혼입하는 경우보다는 증가하는 것으로 파악된다.When compared to the Plain test specimen, the compressive strength at 7 days of age for all the remaining test specimens was found to be at the same level, and the compressive strength at 28 days showed a slight decrease within the range where the design standard strength was met in the PP 0.5 + PET-C 0.2 test specimen. , as the binder amount was increased to 680 kg/㎥, it was found to be equivalent to the plain test specimen. It is understood that the flow value is lower than Plain, but increases compared to the case where only PP fibers are mixed.

위의 시험체들을 대상으로 [도 3]에 도시된 바와 같이 간이 내화시험을 통해 폭렬 제어성능을 확인하였다. [도 4]는 가열로 내부에서의 경시적 온도변화를 나타낸 그래프이다. 가열로 내부 온도 변화는 KS F 2257-1 기준에 따라 제어하였다.The explosion control performance of the above test specimens was confirmed through a simple fire resistance test as shown in [Figure 3]. [Figure 4] is a graph showing the temperature change over time inside the heating furnace. Temperature changes inside the heating furnace were controlled according to KS F 2257-1 standards.

위 1,2차 시험의 시험체은 Plain 시험체를 제외한 모든 시험체에서 폭렬이 발생하지 않았으나, 시험체별로 표면 균열 발생 상태에 차이가 나타났다. 다만 표면 균열 여부는 내화 성능 기준 지표가 아니므로 해당 시험 결과는 큰 의미가 부여되지 않는 참고사항이다. In the first and second tests above, no explosion occurred in all test specimens except for the Plain specimen, but there were differences in the state of surface cracking for each test specimen. However, since surface cracks are not an indicator of fire resistance performance, the test results are for reference only and do not have much meaning.

아래 [표 2]는 시험체별 간이 내화시험 후 상태를 나타낸 것이다. Plain 시험체를 제외한 모든 시험체에서 폭렬이 발생하지 않은 것이 확인되며, 특히 PP 0.5 + PET-C 0.2 시험체는 표면 균열도 나타나지 않아 통상적인 폭렬 제어 수단을 적용한 PP 0.9 시험체 보다 양호한 대응이 이루어진 것으로 사료된다.[Table 2] below shows the status after the simple fire resistance test for each specimen. It was confirmed that no explosion occurred in all test specimens except the Plain specimen. In particular, the PP 0.5 + PET-C 0.2 specimen showed no surface cracks, so it is believed that a better response was achieved than the PP 0.9 specimen to which conventional explosion control measures were applied.

국토해양부 고시 제2008-334호 「고강도 콘크리트 기둥·보의 내화성능 관리 기준」에 따라 본 발명에 따라 PP 섬유와 PET망칩이 복합 적용된 기둥부재(부재명 : C19)에 대한 내화성능확인 시험(비재하 3시간 가열)을 진행하였다.In accordance with the Ministry of Land, Transport and Maritime Affairs Notice No. 2008-334, “Fire resistance performance management standards for high-strength concrete columns and beams,” a fire resistance performance confirmation test (B) was conducted on a column member (member name: C19) to which PP fiber and PET mesh chips were applied in combination according to the present invention. Heating for 3 hours was carried out.

아래 [표 3]은 60 MPa 고강도 콘크리트 기둥부재 제작을 위한 시험체의 콘크리트 배합표이다. 굵은골재 최대치수 25 ㎜, 재령 28일 압축강도 60 MPa, 슬럼프 플로우 600 ㎜ 규격으로 배합설계하였다. 시험체 콘크리트의 결합재량은 시멘트 477 kg/㎥, 고로슬래그 미분말(S/P) 135 kg/㎥, 플라이애시(F/A) 68 kg/㎥으로 총 680 kg/㎥이다. 물결합재비는 25~28 wt%에서 정하는 것이 바람직하며, 본 시험체 콘크리트는 배합수량을 179 kg/㎥으로 하여 물결합재비 26.3 wt%가 되도록 하였다. 잔골재량은 600~650 kg/㎥, 800~850 kg/㎥ 범위에서 정할 수 있으며, 본 시험체 콘크리트는 잔골재량 648 kg/㎥, 굵은골재량 kg/㎥으로 하고 잔골재율은 44.0 vol%가 되도록 하였다. 감수제(AD)는 결합재량 대비 1~2 wt% 범위에서 첨가하는 것이 바람직하며, 본 시험체 콘크리트는 감수제(AD)를 결합재량 대비 1.2 wt% 적용하여 8.17 kg/㎥ 첨가하였다.[Table 3] below is the concrete mix table of the test specimen for manufacturing 60 MPa high-strength concrete column members. The mix was designed with a maximum coarse aggregate size of 25 mm, a 28-day compressive strength of 60 MPa, and a slump flow of 600 mm. The binding material of the test specimen concrete is 477 kg/㎥ of cement, 135 kg/㎥ of blast furnace slag powder (S/P), and 68 kg/㎥ of fly ash (F/A), for a total of 680 kg/㎥. It is desirable to set the wave mixture ratio at 25 to 28 wt%, and for this test concrete, the mixing water amount was set to 179 kg/㎥, resulting in a wave mixture ratio of 26.3 wt%. The amount of fine aggregate can be set in the range of 600~650 kg/㎥ and 800~850 kg/㎥, and for this test concrete, the amount of fine aggregate was 648 kg/㎥, the amount of coarse aggregate was kg/㎥, and the fine aggregate rate was 44.0 vol%. It is desirable to add water reducing agent (AD) in the range of 1 to 2 wt% compared to the binder, and for this test concrete, 8.17 kg/㎥ of water reducing agent (AD) was added at 1.2 wt% compared to the binder.

기둥부재는 가로 1,100 ㎜, 세로 1,000 ㎜, 높이 1,500 ㎜로 제작하였으며, 철근 피복두께 50 ㎜를 확보하여 배근하고, 온도측정을 위한 열전대는 높이 750 ㎜ 구간 9개 지점에 설치하였다([도 10]에 나타난 제작도면 참조). 시험은 온도 6±1 ℃, 상대습도 53±2 %RH인 실내에서 진행하였으며, 3시간 내화성능을 만족하는 것으로 나타났다.The column member was manufactured with a width of 1,100 mm, a length of 1,000 mm, and a height of 1,500 mm, and the reinforcing bar cover thickness of 50 mm was secured and placed, and thermocouples for temperature measurement were installed at 9 points in the 750 mm height section ([Figure 10] (see production drawing shown in). The test was conducted indoors at a temperature of 6 ± 1 ℃ and a relative humidity of 53 ± 2 %RH, and it was found to satisfy the 3-hour fire resistance performance.

[도 5] 내지 [도 15]는 위의 내화성능확인 시험에 대한 방재시험연구원의 시험성적서를 장별로 첨부한 것이다. [도 7]로 첨부한 시험성적서 3페이지에 표기된 "PET섬유"는 본 발명에 따라 폐 PET 망을 가로 3 cm, 세로 8 cm의 장방형으로 절단한 PET망칩임을 밝혀둔다.[Figures 5] to [Figure 15] show the Disaster Prevention Testing Research Institute's test reports for the above fire resistance performance confirmation test attached by chapter. It should be noted that the "PET fiber" indicated on page 3 of the test report attached as [Figure 7] is a PET mesh chip obtained by cutting waste PET mesh into a rectangular shape of 3 cm wide and 8 cm long according to the present invention.

본 발명은 위에서 언급한 바와 같이 시험예와 관련하여 설명되었으나, 본 발명의 요지를 벗어남이 없는 범위 내에서 다양한 수정 및 변형이 가능하며, 다양한 분야에서 사용 가능하다. 따라서 본 발명의 청구범위는 이전 발명의 진정한 범위 내에 속하는 수정 및 변형을 포함한다.Although the present invention has been described in relation to test examples as mentioned above, various modifications and variations are possible without departing from the gist of the present invention, and can be used in various fields. Accordingly, the scope of the present invention includes modifications and variations falling within the true scope of the foregoing invention.

해당 없음Not applicable

Claims (4)

설계기준 압축강도 50 MPa 이상의 고강도 콘크리트 조성물로서,
PP 섬유 0.3~0.5 kg/㎥ 및
폐 PET 망을 가로 2.5~3.5 mm, 세로 7~9 mm의 장방형으로 절단한 PET망칩 0.2~0.4 kg/㎥ 이 혼입된 것을 특징으로 하는 내폭렬 고강도 콘크리트 조성물.
A high-strength concrete composition with a design standard compressive strength of 50 MPa or more,
PP fiber 0.3~0.5 kg/㎥ and
An explosion-resistant, high-strength concrete composition characterized by mixing 0.2 to 0.4 kg/㎥ of PET mesh chips, which are waste PET nets cut into rectangular shapes measuring 2.5 to 3.5 mm in width and 7 to 9 mm in length.
삭제delete 제1항에서,
상기 PET망칩은 고정된 칼날에 폐 PET 망이 지나가며 PET 섬유가 풀리지 않는 상태로 절단된 것을 특징으로 하는 내폭렬 고강도 콘크리트 조성물.
In paragraph 1:
The PET network chip is an explosion-resistant, high-strength concrete composition, characterized in that the waste PET network passes through a fixed blade and is cut in a state in which the PET fibers are not unraveled.
제1항 또는 제3항에서,
상기 PET망칩은 결합재, 잔골재 및 굵은골재의 건비빔 과정에 투입되어, 건비빔 과정에서 마찰에 의해 30~70 wt%가 PET 섬유로 풀려 분산되는 것을 특징으로 하는 내폭렬 고강도 콘크리트 조성물.
In paragraph 1 or 3:
The PET network chip is input into the dry mixing process of binder, fine aggregate, and coarse aggregate, and 30 to 70 wt% is released and dispersed into PET fibers by friction during the dry mixing process. A high-strength concrete composition that resists bursting.
KR1020230043999A 2023-04-04 2023-04-04 Spalling-resistant high-strength concrete composition with PP fiber and PET mesh chips KR102629091B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230043999A KR102629091B1 (en) 2023-04-04 2023-04-04 Spalling-resistant high-strength concrete composition with PP fiber and PET mesh chips

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230043999A KR102629091B1 (en) 2023-04-04 2023-04-04 Spalling-resistant high-strength concrete composition with PP fiber and PET mesh chips

Publications (1)

Publication Number Publication Date
KR102629091B1 true KR102629091B1 (en) 2024-01-24

Family

ID=89717885

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230043999A KR102629091B1 (en) 2023-04-04 2023-04-04 Spalling-resistant high-strength concrete composition with PP fiber and PET mesh chips

Country Status (1)

Country Link
KR (1) KR102629091B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040097611A (en) * 2003-05-12 2004-11-18 조병완 Performance-improving method of PET recycling polymer concrete to apply highly efficient nano particles
KR100644083B1 (en) 2005-06-27 2006-11-10 삼성물산 주식회사 The fibres for preventing the spalling of concrete
KR100899838B1 (en) * 2008-12-12 2009-05-27 주식회사 엠코 Concrete composition having high performance and fire-resistant
KR20110078937A (en) 2009-12-31 2011-07-07 웅진케미칼 주식회사 Concrete for spalling resistance and refractory included reinforced fiber
KR101061950B1 (en) 2008-11-07 2011-09-05 삼성물산 주식회사 Super High Strength High Fire Resistance Concrete for Reinforced Concrete Structures
KR101064558B1 (en) 2009-03-05 2011-09-15 한일시멘트 (주) Cement composition for high fire resistance and ultra high strength ultra self-compacting concrete
KR102125818B1 (en) * 2019-06-28 2020-06-24 한국건설기술연구원 High performance fiber reinforced cementitous composite (hpfrcc) for improving spalling resistance, and manufacturing method for the same
KR20230032872A (en) * 2021-08-30 2023-03-07 송원철 Concrete reinforcement material, method for producing the same, and fiber-reinforced concrete including the same material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040097611A (en) * 2003-05-12 2004-11-18 조병완 Performance-improving method of PET recycling polymer concrete to apply highly efficient nano particles
KR100644083B1 (en) 2005-06-27 2006-11-10 삼성물산 주식회사 The fibres for preventing the spalling of concrete
KR101061950B1 (en) 2008-11-07 2011-09-05 삼성물산 주식회사 Super High Strength High Fire Resistance Concrete for Reinforced Concrete Structures
KR100899838B1 (en) * 2008-12-12 2009-05-27 주식회사 엠코 Concrete composition having high performance and fire-resistant
KR101064558B1 (en) 2009-03-05 2011-09-15 한일시멘트 (주) Cement composition for high fire resistance and ultra high strength ultra self-compacting concrete
KR20110078937A (en) 2009-12-31 2011-07-07 웅진케미칼 주식회사 Concrete for spalling resistance and refractory included reinforced fiber
KR102125818B1 (en) * 2019-06-28 2020-06-24 한국건설기술연구원 High performance fiber reinforced cementitous composite (hpfrcc) for improving spalling resistance, and manufacturing method for the same
KR20230032872A (en) * 2021-08-30 2023-03-07 송원철 Concrete reinforcement material, method for producing the same, and fiber-reinforced concrete including the same material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. 조현대, 정재동, "건설현장에서 사용된 수직보호망의 재활용 타당성 분석에 관한 연구", J. Korea Inst. Build. Constr. Vol. 18, No. 5. pp.479~488. 2018.10.
2. 김성배, 김현영, 이나현, 김장호, "재생 PET 섬유가 혼입된 섬유 보강 콘크리트의 강도 및 균열저항 특성", 구조물진단학회지 제14권 제1호, pp.102~108. 2010.01.

Similar Documents

Publication Publication Date Title
Mo et al. Impact resistance of hybrid fibre-reinforced oil palm shell concrete
Mohod Performance of polypropylene fibre reinforced concrete
Krishna et al. Enhancement of properties of concrete using natural fibers
Dharan et al. Study the effect of polypropylene fiber in concrete
Saidani et al. Behaviour of different types of fibre reinforced concrete without admixture
Li et al. Experimental research on mechanical performance of hybrid fiber reinforced cementitious composites with polyvinyl alcohol short fiber and carbon textile
Fu et al. Concrete reinforced with macro fibres recycled from waste GFRP
Gonçalves et al. Evaluating the potential use of recycled glass fibers for the development of gypsum-based composites
Yardimci et al. Effect of fine to coarse aggregate ratio on the rheology and fracture energy of steel fibre reinforced self-compacting concretes
Ehrenbring et al. Experimental method for investigating the impact of the addition of polymer fibers on drying shrinkage and cracking of concretes
Al-Hadithi et al. Flexural behaviour of reinforced concrete beams containing waste plastic fibers
Giancaspro et al. Mechanical behavior of fire-resistant biocomposite
Romero-Gómez et al. Mechanical performance of waste fishing net fibre-reinforced gypsum composites
KR102629091B1 (en) Spalling-resistant high-strength concrete composition with PP fiber and PET mesh chips
Gupta et al. Scope of improving mechanical characteristics of concrete using natural fiber as a reinforcing material
Sujatha et al. Potential of fibre reinforced and cement stabilized fibre reinforced soil blocks as sustainable building units
Domski et al. Selected mechanical properties analysis of fibrous composites made on the basis of fine waste aggregate
Poloju et al. Glass fiber reinforced concrete (GFRC)-strength and stress strain behavior for different grades of concrete
Eswari Experimental investigation on flexural performance of hybrid fibre reinforced concrete
Fantilli et al. The compatibility between wool fibers and cementitious mortars
Jan et al. Evaluation of Effect of Polypropylene on the Mechanical Properties of Concrete
Ramhormozy et al. Effect of polyethylene terephthalate (PET) and polypropylene (PP) fibers on the shear behavior of RC deep beams
Wahab et al. Mechanical properties of concrete added with chicken rachis as reinforcement
Rahman et al. Bamboo reinforced concrete beam
Tesárek et al. Mechanical properties of cement composites reinforced by carbon microfibers: Compressive and bending strength

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant