KR20040092444A - 신규 유기금속 이리듐 화합물, 그 제조방법, 및 박막의제조방법 - Google Patents

신규 유기금속 이리듐 화합물, 그 제조방법, 및 박막의제조방법 Download PDF

Info

Publication number
KR20040092444A
KR20040092444A KR1020040027583A KR20040027583A KR20040092444A KR 20040092444 A KR20040092444 A KR 20040092444A KR 1020040027583 A KR1020040027583 A KR 1020040027583A KR 20040027583 A KR20040027583 A KR 20040027583A KR 20040092444 A KR20040092444 A KR 20040092444A
Authority
KR
South Korea
Prior art keywords
formula
group
iridium
iridium compound
lower alkyl
Prior art date
Application number
KR1020040027583A
Other languages
English (en)
Other versions
KR100984686B1 (ko
Inventor
다카모리마유미
오시마노리아키
카와노카즈히사
Original Assignee
토소가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 토소가부시키가이샤 filed Critical 토소가부시키가이샤
Publication of KR20040092444A publication Critical patent/KR20040092444A/ko
Application granted granted Critical
Publication of KR100984686B1 publication Critical patent/KR100984686B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/65Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Vapour Deposition (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

CVD법에 의해 이리듐 함유 박막을 형성시키기 위해, 융점이 낮고, 기화특성에서 우수하며, 기판상에의 성막 온도가 낮은 유기금속 화합물을 제공한다.
하기 화학식 1 또는 화학식 2로 표시되는 유기금속 이리듐 화합물:
[화학식 1]
[화학식 2]
식 중에서, R1은 수소 또는 저급알킬기를 나타내고; R2~R7은 각각 수소, 할로겐 등을 나타낸다. 단 R1~R7의 특정 조합을 제외한다; R8은 저급알킬기를 나타내고; R9~R12는 각각 수소, 할로겐 등을 나타낸다. 단, R8~R12의 특정 조합을 제외한다.
이리듐 함유 박막은 원료로서 상기 화합물을 사용하여 CVD법에 의해 제조된다.

Description

신규 유기금속 이리듐 화합물, 그 제조방법, 및 박막의 제조방법{NOVEL ORGANOMETALLIC IRIDIUM COMPOUND, PROCESS OF PRODUCING THE SAME, AND PROCESS OF PRODUCING THIN FILM}
본 발명은 기판 표면에 이리듐 함유박막을 제조하기 위한 재료로 될 수 있는 유기금속 화합물에 관한 것이다.
최근, 기억소자에서는, 고집적화 및 고밀도화를 가능하게 하기 위해, 비유전율(relative dielectric constant)이 큰 강유전체 재료가 활발하게 검토되고 있다.구체적으로는 커패시터 재료로서 Ta2O5, BST(( Ba, Sr) TiO3)등이 검토되고 있다. 이들 커패시터의 전극재료로서 루테늄, 백금, 이리듐 등의 귀금속 박막 또는 이들의 귀금속 산화물 박막이 필요로 된다. 특히 이리듐 및 이리듐 산화물은 금후의 전극재료의 중심으로 주목받고 있다. 이리듐 및 이리듐 산화물 박막의 제조방법으로서는 스퍼터링법 및 화학기상증착법(CVD법)이 사용되고 있다. 특히, CVD법은 금후의 박막 전극 제조 프로세스에서 주류가 될 것으로 생각되고 있다. 이것은 균일한 피막을 제조하기 쉬울뿐아니라 스텝 커버리지가 우수해서, 근년의 회로 및 전자 부재에 대한 고밀도화에 대응할 수 있다.
이 CVD법을 사용해서 박막을 형성시키기 위한 원료물질로서는, 금속화합물 중에서도 융점이 낮고 취급성이 용이한 유기금속 화합물이 적당하다고 생각된다. 종래, 이리듐 또는 이리듐 산화물 박막을 증착시키기 위한 유기금속 화합물로서는, 트리스(디피바로일메타나토)이리듐, 트리스(아세틸아세토나토)이리듐, 시클로펜타디에닐(1,5-옥타디엔)이리듐 등이 검토되어 왔다. 이들 이리듐 화합물은 대기중에서의 안정성이 높고, 독성도 없는 것이기 때문에 CVD 원료로서의 적성을 가지고 있다. 그러나, 이러한 이리듐 화합물은 상온에서는 고체이고, 원료의 기화 및 기판으로의 수송이 어렵다고 하는 문제점을 수반하고 있다.
최근에는 융점이 낮은 이리듐 화합물이 활발하게 연구되고 있다. 이 유기금속 이리듐 화합물의 저융점화의 수법으로서는, 시클로펜타디엔 환에서 적어도 하나의 수소원자를 메틸기 및 에틸기와 같은 저급알킬기로 치환한 화합물로 하는 것이 있다. 예를 들면, 시클로펜타디엔 유도체로서, 에틸시클로펜타디에닐(1,5-시클로옥타디엔)이리듐이 개시되어 있다(예를 들면, JP-A-11-292888). 이 유기금속 화합물은 상온에서 액체이고, 그 융점도 시클로펜타디에닐(1,5-시클로옥타디엔)이리듐에 비해서 낮은 것이기 때문에, CVD법에 적용되는 원료물질로서 필요한 특성을 구비하는 것으로 생각되고 있다. 그러나 이 화합물은 안정성이 극히 높고, 착체의 분해 온도가 높다. 따라서, 필연적으로 성막시의 기판온도를 높게 할 필요가 있다. 또한, 이리듐 산화막이 생성되기 어렵다고 하는 문제점도 있다.
한편, 시클로펜타디에닐(시클로헥사디엔)이리듐 및 시클로펜타디에닐(부타디엔)이리듐은 실온에서 고체여서, 원료의 기화 및 기판으로의 수송에 있어서 문제점을 수반한다(예를 들면, B.F.G.Johnson, J.Lewis, and D.J.Yarrow,J.C.S.Dalton,2084(1972) 및 L.A.ORO,Inorg.Chem. Acta, 21, L6(1977)). 지금까지 상온에서 액체이고 우수한 기화특성을 나타내는 이리듐 착체의 합성에 관한 보고예는 없었다.
본 발명은 상기 기술상의 문제점에 비추어 이루어진 것이다.
따라서, 본 발명의 목적은 CVD법에 의해 기판상에 이리듐 또는 이리듐 산화물을 포함하는 박막을 형성시키기 위한 것으로서, 융점이 낮고, 기화특성에서 우수하며, 성막온도가 낮은 유기금속 화합물을 제공하는 것이다.
본 발명의 다른 목적은 유기금속 화합물을 제조하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 유기금속 화합물을 사용해서 이리듐 함유 박막을 제조하는 방법을 제공하는 것이다.
도 1은 실시예 1에서 얻어진 DSC 곡선을 나타내는 그림이다.
도 2는 비교예 1에서 얻어진 DSC 곡선을 나타내는 그림이다.
도 3은 실시예 5에서 얻어진 X선 회절을 나타내는 그림이다.
도 4는 실시예 6에서 얻어진 DSC 곡선을 나타내는 그림이다.
도 5는 실시예 7 및 8에서 사용된 CVD법의 장치의 개략도이다.
도 6은 실시예 7에서 300℃에서 성막된 Ir 함유 박막의 SEM 이미지를 나타내는 그림이다.
도 7은 실시예 7에서 400℃에서 성막된 Ir 함유 박막의 SEM 이미지를 나타내는 그림이다.
도 8은 실시예 7에서 얻어진 X선 회절 다이어그램을 나타내는 그림이다.
도 9는 실시예 8에서 얻어진 X선 회절 다이어그램을 나타내는 그림이다.
도면에서:
1: 원료용기
2: 항온조
3: 반응조
4: 기판
5: 산화가스
6: 카운터 가스
7: 캐리어 가스
8: 매스플로우 콘트롤러
9: 매스플로우 콘트롤러
10: 매스플로우 콘트롤러
11: 진공펌프
12: 배기
본 발명자들은, 상기 과제를 해결하기 위해 예의 검토를 거듭했다. 그 결과로서, 시클로펜타디엔 유도체에 저급알킬기를 도입함으로써 분해온도를 낮출수 있다는 것을 발견했다. 본 발명자들은, 나아가 상온에서 액체의 융점을 나타내고, 양호한 기화특성 및 분해특성을 가지는 신규한 이리듐 화합물을 얻기 위해, 예의 검토를 거듭했다. 그 결과, 본 발명에 도달하게 된 것이다.
본 발명은, 하기 화학식 1 또는 하기 화학식 2로 표시되는 유기금속 이리듐 화합물을 제공한다.
식 중에서, R1은 수소 또는 저급알킬기를 나타내고; R2, R3, R4, R5, R6, 및 R7은, 동일하거나 또는 상이한 것으로, 각각 수소, 할로겐, 저급아실기, 저급알콕시기, 저급알콕시카르보닐기, 또는 저급알킬기를 나타낸다. 단 R1, R2, R3, R4, R5, R6, 및 R7이 전부 수소를 나타내는 경우를 제외한다.
식 중에서, R8은 저급알킬기를 나타내고; R9, R10, R11, 및 R12는, 동일하거나 또는 상이한 것으로, 각각 수소, 할로겐, 저급아실기, 저급알콕시기, 저급알콕시카르보닐기, 또는 저급알킬기를 나타낸다. 단, R8, R9, 및 R11이 각각 메틸기를 나타내고, R10및 R12가 각각 수소를 나타내는 경우를 제외한다.
또한 본 발명은, 이리듐 화합물, 하기 화학식 3으로 표시되는 시클로헥사디엔 유도체, 및 하기 화학식 4로 표시되는 시클로펜타디엔 유도체를 반응시키는 것을 포함하는, 하기 화학식 1로 표시되는 유기금속 이리듐 화합물의 제조방법을 제공한다.
식 중에서, R1, R2, R3, R4, R5, R6, 및 R7은, 상기에서 정의한 것과 동일한 것이고; M은 알칼리 금속을 나타낸다.
본 발명은 또한 이리듐 화합물, 하기 화학식 5로 표시되는 부타디엔 유도체, 및 하기 화학식 6으로 표시되는 시클로펜타디엔 유도체를 반응시키는 것을 포함하는, 하기 화학식 2로 표시되는 유기금속 이리듐 화합물의 제조방법을 제공한다.
이 때, R8, R9, R10, R11및 R12는 상기에서 정의한 것과 동일한 것이고; M은 알칼리 금속을 나타낸다.
나아가 본 발명은, 화학식 1 또는 화학식 2로 표시되는 유기금속 이리듐 화합물을 원료로 사용하는 것을 포함하는, 이리듐 함유 박막의 제조방법을 제공한다.
이하에서 본 발명을 상세히 설명한다.
본 명세서에서 사용되는 용어의 정의 및 그 구체예에 대해서 설명한다. 본 명세서 및 특허청구범위 중에 기술된「저급」이란 용어는 특히 미리 언급하지 않는한, 이 용어가 부여된 기에 대해서, 1-6의 탄소수를 가지는 직쇄상, 분지상, 또는 환상의 탄화수소기를 함유하는 것을 의미한다.
따라서 R1~R12에 있어서 사용되는 저급알킬기의 예로는, 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, sec-부틸기, tert-부틸기, 펜틸(아밀)기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 1-메틸부틸기, 2-메틸부틸기, 1,2-디메틸프로필기, 헥실기, 이소헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 3-메틸펜틸기, 1,1-디메틸부틸기, 2,2-디메틸부틸기, 1,3-디메틸부틸기, 2,3-디메틸부틸기, 3,3-디메틸부틸기, 1-에틸부틸기, 2-에틸부틸기, 1,1,2-트리메틸프로필기, 1,2,2-트리메틸프로필기, 1-에틸-1-메틸프로필기, 1-에틸-2-메틸프로필기, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로프로필메틸기, 시클로프로필에틸기, 및 시클로부틸메틸기를 들 수 있다. 그 중에서, 메틸기, 에틸기, 프로필기, 이소프로필기, 및 시클로프로필기가 바람직하다.
R2~R7, R9~R12에 있어서 사용되는 저급 알콕시기의 예로는, 메톡시기, 에톡시기, 프로폭시기, 이소프로폭시기, 부톡시기, 이소부톡시기, sec-부톡시기, tert-부톡시기, 펜틸옥시기, 1-메틸부틸옥시기, 2-메틸부틸옥시기, 3-메틸부틸옥시기, 1,2-디메틸프로필옥시기, 헥실옥시기, 1-메틸펜틸옥시기, 1-에틸프로필옥시기, 2-메틸펜틸옥시기, 3-메틸펜틸옥시기, 4-메틸펜틸옥시기, 1,2-디메틸부틸옥시기, 1,3-디메틸부틸옥시기, 2,3-디메틸부틸옥시기, 1,1-디메틸부틸옥시기, 2,2-디메틸부틸옥시기, 및 3,3-디메틸부틸옥시기를 들 수 있다. 그 중에서, 메톡시기, 에톡시기, 및 프로폭시기가 바람직하다.
R2~R7, 및 R9~R12에 있어서 사용되는 저급알콕시카르보닐기의 예로는, 메톡시카르보닐기, 에톡시카르보닐기, 프로폭시카르보닐기, 이소프로폭시카르보닐기, 시클로프로폭시카르보닐기, 부톡시카르보닐기, 이소부톡시카르보닐기, sec-부톡시카르보닐기, 및 tert-부톡시카르보닐기를 들 수 있다. 그 중에서, 메톡시카르보닐기, 에톡시카르보닐기, 프로폭시카르보닐기, 이소프로폭시카르보닐기 및 시클로프로폭시카르보닐기가 바람직하다.
R2~R7및 R9~R12에 있어서 사용되는 저급아실기의 예로는, 포르밀기, 아세틸기, 프로피오닐기, 부티릴기, 이소부티릴기, 바레릴기, 1-메틸프로필카르보닐기,이소바레릴기, 펜틸카르보닐기, 1-메틸부틸카르보닐기, 2-메틸부틸카르보닐기, 3-메틸부틸카르보닐기, 1-에틸프로필카르보닐기, 및 2-에틸프로필카르보닐기를 들 수 있다. 그 중에서, 포르밀기, 아세틸기, 및 프로피오닐기가 바람직하다.
상기한 저급알킬기, 저급알콕시기, 저급알콕시카르보닐기 및 저급아실기에 더하여, 수소원자 또는 할로겐 원자가, 동일하거나 또는 다른 R2~R7, 및 R9~R12에 대해 바람직하게 사용된다. 할로겐 원자의 구체적인 예로는, 불소, 염소, 브롬 및 요오드를 들 수 있다. 그 중에서, 불소 및 염소가 바람직하다.
비록 상기에서 R1~R12의 예를 열거하지만, R8은 바람직하게 탄소수 1-3의 알킬기를 나타내고; R1~R7,및 R9~R12는 각각 바람직하게 수소 또는 저급알킬기를 나타내고, 더욱 바람직하게는 수소 또는 탄소수 1-3의 저급알킬기를 나타낸다. 화학식 1로 표시되는 구체적인 화합물로는 (에틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐 및 (메틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐을 들 수 있고; 화학식 2로 표시되는 구체적인 화합물로는 (에틸시클로펜타디에닐)(2,3-디메틸-1,3-부타디엔)이리듐을 들 수 있다.
전술한 것과 같이, 화학식 1로 표시되는 이리듐 화합물은, 이리듐 화합물, 화학식 3으로 표시되는 시클로헥사디엔 유도체, 및 화학식 4로 표시되는 시클로펜타디엔 유도체를 반응시킴으로써 제조할 수 있고; 화학식 2로 표시되는 이리듐 화합물은, 이리듐화합물, 화학식 5로 표시되는 부타디엔 유도체, 및 화학식 6으로 표시되는 시클로펜타디엔 유도체를 반응시킴으로써 제조할 수 있다.
사용되는 이리듐 화합물의 예로는, 무기이리듐 화합물 및 유기금속 이리듐 화합물, 특히 이리듐의 할로겐화물을 들 수 있다. 이리듐 화합물의 구체적인 예로는, 염화이리듐(III)수화물, 헥사클로로이리듐(IV)산수화물, 헥사클로로이리듐(III)산수화물, 헥사클로로이리듐(III)산나트륨수화물, 헥사클로로이리듐(IV)산나트륨수화물, 헥사클로로이리듐(IV)산칼륨수화물, 헥사클로로이리듐(III)산칼륨수화물, 브롬화이리듐(III)수화물, 트리스(옥살라토)이리듐(III)산칼륨수화물, 헥사클로로이리듐(IV)산암모늄수화물, 클로로펜타아민이리듐(III)염화물수화물, 디클로로테트라키스(시클로옥텐)디이리듐, 디클로로비스(1,5-시클로옥타디엔)디이리듐, 디브로모테트라키스(시클로옥텐)디이리듐, 클로로테트라키스(에틸렌)이리듐, 및 디클로로테트라키스(에틸렌)디이리듐을 들 수 있다.
그 중에서도, 염화이리듐(III)수화물, 헥사클로로이리듐(IV)산수화물, 헥사클로로이리듐(IV)산나트륨수화물, 헥사클로로이리듐(IV)산 암모늄수화물, 디클로로테트라키스(시클로옥텐)디이리듐, 및 디클로로테트라키스(에틸렌)디이리듐이 바람직하고; 염화이리듐(III)수화물, 헥사클로로이리듐(IV)산나트륨수화물, 디클로로테트라키스(시클로옥텐)디이리듐, 및 디클로로테트라키스(에틸렌)디이리듐이 더욱 바람직하다.
화학식 4 및 화학식 6에 있어서, M은 알칼리 금속을 나타낸다. 사용될 수 있는 알칼리 금속의 예로는, 리튬, 나트륨, 및 칼륨을 들 수 있다. 그 중에서, 리튬 및 나트륨이 바람직하다. 화학식 3으로 표시되는 시클로헥사디엔 유도체, 화학식 5로 표시되는 부타디엔 유도체 및 화학식 4 및 6으로 표시되는 시클로펜타디엔 유도체 중에서도, 치환기로서 전술한 바람직한 R1~R12를 포함하는 것이 바람직하다.
반응의 순서는 특히 한정되지 않고, 상기 화합물들을 순차 반응시키거나, 한 번에 반응시켜도 좋다. 바람직하게는, 이리듐 화합물을 화학식 3으로 표시되는 시클로헥사디엔 유도체 또는 화학식 5로 표시되는 부타디엔 유도체와 반응시키고, 그 반응 산물을 화학식 4 또는 화학식 6으로 표시되는 시클로펜타디엔 유도체와 반응시키는 방법이 사용될 수 있다. 후처리는 특히 한정되지 않는다. 그러나, 일반적인 방법으로서, 반응 종료후에 반응 혼합액을 농축시키고; 얻어진 혼합물에서 펜탄, 헥산, 또는 에테르와 같은 유기 용매를 사용해서 목적 화합물을 추출하고; 알루미나를 담체로 하고 적당한 유기 용매를 용리액으로 해서 상기 추출물에 대해 칼럼크로마토그래피를 행하거나, 또는 상기 추출물을 감압하에서 증류 또는 승화시킴으로써, 목적으로 하는 본 발명의 이리듐 화합물을 얻을 수 있다.
화학식 1 또는 화학식 2로 표시되는 화합물을 사용한 이리듐 함유 박막의 제조방법은 특히 한정되지 않으며, CVD법, 원자층 증착법(Atomic Layer Deposition Process: ALD법) 및 스핀 코팅법 중 어느 것을 사용해도 좋다. 화학식 1 또는 화학식 2로 표시되는 이리듐 화합물을 사용해서 막형성을 하는 경우, 기판으로의 원료공급 방법은 특히 한정되지 않는다. 예를 들면, 버블링법 및 리퀴드 인젝션법 중 어느 것을 사용해도 좋다. CVD법 또는 ALD법에 의하여 막을 제조하는 경우, 원료로서 유기금속 이리듐 화합물을 단독 또는 2종 이상 혼합하여 사용한다. 유기금속 이리듐 화합물을 그대로 사용해도 좋고, 또 유기용매에 용해하여 유기금속 이리듐 화합물 용액으로 사용해도 좋다.
사용될 수 있는 유기용매의 예로는, 알콜류(예를 들면, 메탄올, 에탄올, 1-프로판올, 이소프로판올, 및 1-부탄올), 에스테르류(예를 들면, 초산에틸, 초산부틸, 초산 tert-부틸, 및 초산이소아밀), 글리콜에테르류(예를 들면, 에틸렌글리콜 모노에틸에테르, 에틸렌글리콜 모노메틸에테르, 및 에틸렌글리콜 모노부틸에테르), 에테르류(예를 들면, 디에틸에테르, 글라임(glyme), 디글라임, 트리글라임, tert-부틸 메틸에테르, 및 테르라하이드로퓨란), 케톤류(예를 들면, 아세톤, 메틸부틸케톤, 메틸이소부틸케톤, 에틸부틸케톤, 디프로필케톤, 디이소부틸케톤, 메틸아밀케톤, 및 시클로헥사논), 및 탄화수소류(예를 들면, 펜탄, 헥산, 시클로헥산, 에틸시클로헥산, 헵탄, 옥탄, 벤젠, 톨루엔, 및 크실렌)를 들 수 있다. 그러나, 본 발명이 이에 한정되는 것으로 해석되어서는 안된다. 예를 들면, 이들의 군에서 선택된 1종 또는 2종 이상이 사용된다.
[실시예]
본 발명은 실시예를 참고로 해서 더욱 상세히 설명되지만, 본 발명은 이들 실시예에 의해 한정되는 것으로 해석되어서는 않된다.
실시예 1
(에틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐의 합성 및 열분해 특성:
클로로비스(1,3-시클로헥사디엔)이리듐은, G.Winkhaus and H.Singer,Chem.Ber.,99,3610(1966)을 참조하여 합성하였다. 즉, 에탄올 30ml 및 물 20ml에염화이리듐 2.0g 및 시클로헥사디엔 4.3ml를 가하고, 그 혼합물을 리플럭스 조건 하에서 23시간 동안 반응시켰다. 냉각후, 석출물을 여과한 뒤 건조하여, 클로로비스(1,3-시클로헥사디엔)이리듐 1.6g을 얻었다.
THF 10ml중에, 클로로비스(1,3-시클로헥사디엔)이리듐 0.5g을 가하고, 반응 플라스크를 -78℃로 냉각시킨후, 리튬 에틸시클로펜타디에니드 0.18g의 THF 용액 20ml를 첨가했다. 그 혼합물을 -78℃에서 30분 동안 교반후, 서서히 실온까지 승온하여, 17.5 시간 동안 더 반응시키고, 농축해서 이상(泥狀)혼합물(muddy mixture)을 얻었다. 그 이상 혼합물을 헥산을 이용해서 추출하고, 그 추출용액에 대해 알루미나를 이용한 칼럼 크로마토그래피(용리액; 헥산)를 행하여, 하기 화학식 7로 표시되는 목적물인 (에틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐 145mg을 얻었다.
1H-NMR(500 MHz, CDCl3, δppm):
5.12(t, J=2.0Hz, 2H), 5.02(t, J=2.0Hz, 2H), 4.90(m,2H), 3.32-3.37(m,2H), 2.40(q, J=7.5Hz, 2H), 1.39-1.47(m, 2H), 1.25-1.29(m, 2H), 1.11(t, J=7.5Hz, 3H).
IR(neat, cm-1)
810, 1000, 1170, 1315, 1460, 2925
MS(GC/MS, EI):
193Ir에서의 (에틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐의 분자 이온피크: m/z 362
오렌지색 유상 물질.
분해 특성
얻어진(에틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐에 대해서, 열분해특성을 이하와 같이 조사했다.
분해특성 분석 조건
분석 방법: 입력 보상 시차 주사 열량측정(DSC)
분석 조건 :
레퍼런스: 알루미나
불활성가스: 질소, 50ml/min
승온: 10℃/min
얻어진 결과를 도 1에 나타낸다. 본 발명의 이리듐 화합물에 있어서는, 후술되는 비교예 1과 비교했을 때, 분해온도가 저온측으로 시프트된 것을 도 1로부터 명확하게 알 수 있다.
비교예 1
에틸시클로펜타디에닐(1,5-시클로옥타디엔)이리듐의 분해특성:
기지의 화합물인 에틸시클로펜타디에닐(1,5-시클로옥타디엔)이리듐에 대해서, 분해특성을 실시예 1과 동일한 방식으로 조사했다. 얻어진 결과를 도 2에 나타낸다. 도 2에서도 명확한 것처럼, 이 기지의 화합물에서 분해 온도는 실시예 1 및 실시예 6에 기재된 본 발명의 화합물과 비교해서, 고온측에 위치했다.
실시예 2
(에틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐의 합성:
실시예 1에서와 동일한 방식으로, 클로로비스(1,3-시클로헥사디엔)이리듐을 얻었다. THF 15ml중에, 클로로비스(1,3-시클로헥사디엔)이리듐 0.9g을 가하고, 반응 플라스크를 -78℃로 냉각한후, 리튬 에틸시클로펜타디에니드 0.33g의 THF 용액 30ml를 첨가했다. 상기 혼합물을 -78℃에서 30분간 교반후, 서서히 실온까지 승온하여, 1.5 시간 동안 더 반응시키고, 농축해서 이상(泥狀)혼합물(muddy mixture)을 얻었다. 그 이상혼합물을 헥산을 이용해서 추출하고, 그 추출용액을 감압하에서 증류시키는 것에 의해, 목적물인 (에틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐 827mg을 얻었다. 실시예 1에서와 동일한 방식으로,1H-NMR 및 MS 분석을 행하여, 이 화합물이 목적 화합물인 것을 확인했다.
실시예 3
(에틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐의 합성:
실시예 1에서와 동일한 방식으로, 클로로비스(1,3-시클로헥사디엔)이리듐을 얻었다. THF 60ml중에, 클로로비스(1,3-시클로헥사디엔)이리듐 7.8g을 가하고, 반응 플라스크를 -78℃로 냉각한 후, 나트륨 에틸시클로펜타디에니드 2.5g의 THF 용액 100ml를 첨가했다. 상기 혼합물을 -78℃에서 30분간 교반한 후, 서서히 실온까지 승온하여, 1 시간동안 더 반응시키고, 농축해서 이상(泥狀)혼합물(muddy mixture)을 얻었다. 그 이상혼합물을 헥산으로 추출하고, 추출용액을 감압하에서 증류시켜, 목적물인 (에틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐 4.9g을 얻었다. 실시예 1에서와 동일한 방식으로1H-NMR 및 MS 분석을 행하여, 이 화합물이 목적 화합물임을 확인했다.
실시예 4
(메틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐의 합성:
실시예 1에서와 동일한 방식으로, 클로로비스(1,3-시클로헥사디엔)이리듐을 얻었다. THF 20ml중에, 클로로비스(1,3-시클로헥사디엔)이리듐 1.2g을 가하고, 반응 플라스크를 -78℃로 냉각한후, 리튬 메틸시클로펜타디에니드 0.26g의 THF 용액 40ml를 첨가했다. 첨가종료후, 서서히 실온까지 승온하여, 1 시간 동안 반응시키고, 농축해서 이상(泥狀)혼합물(muddy mixture)을 얻었다. 그 이상혼합물을 헥산을 이용해서 추출하고, 그 추출 용액을 감압하에서 승화시켜, 하기 화학식 8로 표시되는 목적물인 (메틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐 101mg을 얻었다.
1H-NMR(500MHz, Benzene-d6, δppm):
4.98(t,J=2.0Hz, 2H), 4.93-4.97(m,2H), 4.87(t,J=2.0Hz,2H),3.42-3.47 (m,2H), 1.98(s, 3H), 1.67-1.74(m, 2H), 1.48-1.54(m, 2H).
MS(GC/MS, EI):
193Ir에서의 (메틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐의 분자이온피크; m/z 352
백색 침상 결정.
실시예 5
(메틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐의 X선 회절:
실시예 4에서 얻어진 (메틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐에 대해서 X선 회절을 행했다. 결과를 도 3에 나타낸다.
실시예 6
(에틸시클로펜타디에닐)(2,3-디메틸-1,3-부타디엔)이리듐의 합성 및 열분해특성:
클로로비스(2,3-디메틸-1,3-부타디엔)이리듐을, G.Winkhaus and H.Singer,Chem.Ber.,99, 3610(1966)을 참조하여 합성했다. 즉, 에탄올 20ml 및 물 10ml에 헥사클로로이리듐(IV)산나트륨 6수화물 1.7g 및 2,3-디메틸-1,3-부타디엔 2.7ml를 가하고, 그 혼합물을 40℃ 가온하에서 23시간 동안 반응시켰다. 냉각후 석출물을 여과, 건조하여, 클로로비스(2,3-디메틸-1,3-부타디엔)이리듐 283mg을 얻었다.
THF 7ml중에, 클로로비스(2,3-디메틸-1,3-부타디엔)이리듐 0.28g을 가하고, 반응 플라스크를 -78℃로 냉각한 후, 리튬 에틸시클로펜타디에니드 0.17g의 THF 용액 15ml를 첨가했다. 그 혼합물을 -78℃에서 5분간 교반후, 서서히 실온까지 승온하여, 1.5 시간 동안 더 반응시키고, 농축해서 이상(泥狀)혼합물(muddy mixture)을 얻었다. 그 이상혼합물을 헥산을 이용해서 추출하고, 추출용액에 대해서 알루미나를 이용한 칼럼크로마토그래피(용리액; 헥산)를 행하여, 하기 화학식 9로 표시되는 목적물인 (에틸시클로펜타디에닐)(2,3-디메틸-1,3-부타디엔)이리듐 159mg을 얻었다.
1H-NMR(500MHz, CDCl3, δppm):
5.01(t, J=2.0Hz, 2H), 4.97(t, J=2.0Hz, 2H), 2.43(d, J=1.5Hz, 2H), 2.36(q, J=7.5Hz, 2H), 3.16(s, 6H), 1.11(t, J=7.5Hz, 3H), -0.05(d, J=1.5Hz, 2H).
IR(neat, cm-1):
810, 1035, 1375, 1450, 2970
MS(GC/MS, EI):
193Ir에서의 (2,3-디메틸-1,3-부타디엔)(에틸시클로펜타디에닐)이리듐의 분자이온 피크; m/z 365
오렌지색 유상 물질.
분해 특성
얻어진(에틸시클로펜타디에닐)(2,3-디메틸-1,3-부타디엔)이리듐에 대해서, 열분해 특성을 이하와 같이 조사했다.
분해특성 분석 조건:
분석 방법: 입력 보상 시차 주사 열량측정(DSC)
분석 조건 :
레퍼런스 : 알루미나
불활성가스 : 질소, 50ml/min
승온 : 10℃/min
얻어진 결과를 도 4에 나타낸다. 도 4에서도 명확한 것처럼, 본 발명의 이리듐 화합물은, 전술한 비교예 1과 비교해서, 분해온도가 저온측으로 시프트되어 있다.
실시예 7
(에틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐을 원료로 한 CVD법에 의한 이리듐 함유 박막의 제조:
도 5에 나타난 장치를 사용하고, 표면에 100nm의 SiO2막이 형성된 Si기판을 기판 4로 사용했다. 원료용기 1내에 (에틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐 10g을 넣어서 오일 배스 2에서 가열하여, 80℃에서 항온상태로 했다. 진공펌프 11 및 압력조절 밸브를 사용해서, 반응조 3을 8Torr, 원료용기 1을 100Torr로 각각 조정했다. 캐리어 가스 7로 질소를 사용하고, 유량을 매스플로우 콘트롤러 10에 의해 100sccm으로 설정했다. 산화가스 5로 산소를 사용하고, 카운터가스 6으로 질소를 사용했다. 산화가스 유량을 매스플로우 콘트롤러 8에 의해 4sccm으로 설정하고, 카운터가스 유량과 산화가스 유량의 합이 100sccm이 되도록 설정했다. 기판 4를 300℃ 및 400℃로 각각 설정하고, 가열상태를 유지하면서 55분간 성막을 행했다. 도 6 및 7는 각각 300℃, 400℃에서 기판상에 성막된 Ir 함유 박막의 SEM 이미지를 나타낸다. 도 8은 이들 막의 X선 회절 다이어그램을 나타낸다. 어느 경우에도Ir 박막이 얻어졌다.
실시예 8
(에틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐을 원료로 한 CVD법에 의한 이리듐 함유 박막의 제조:
도 5에 나타난 장치를 사용하고, 기판 4로는 YSZ(이트리아 안정화 지르코니아)기판을 사용했다. 원료용기 1내에 (에틸시클로펜타디에닐)(1,3-시클로헥사디엔)이리듐 10g을 넣고, 오일 배스 2에서 가열하여, 80℃에서 항온상태로 했다. 진공펌프 11 및 압력조절 밸브를 사용해서, 반응조 3을 8Torr, 원료용기 1을 100Torr로 각각 조정했다. 캐리어가스 7로 질소를 사용하고, 유량을 매스플로우 콘트롤러 10에 의해 100sccm으로 설정했다. 산화가스 5로 산소를 사용하고, 카운터가스 6으로 질소를 사용했다. 산화가스 유량을 매스플로우 콘트롤러 8에 의해 4sccm으로 설정하고, 카운터가스 유량 및 산화가스 유량의 합계가 100sccm이 되도록 설정했다. 기판 4를 300℃ 및 400℃로 각각 설정하고, 가열상태를 유지하면서 55분간 성막을 행했다. 도 9에서는 이들 막의 X-선 회절 다이어그램을 나타낸다. 기판온도가 300℃인 경우에는 Ir 박막이 얻어졌고, 기판온도가 400℃인 경우에는 산화이리듐 박막이 얻어졌다.
나아가, 상기에서 나타나고 기술된 본 발명의 형식 및 상세한 점에 있어서 다양한 변화가 이루어질 수 있음이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다. 그와 같은 변화는 이에 첨부된 특허청구범위의 사상 및 범위내에 포함되어야 하는 것으로 생각된다.
본 발명의 이리듐 화합물의 대부분은 실온에서 액체이어서, 이들을 CVD 원료로 사용하는 경우에는 가스 버블링에 의해 정량적으로 공급할 수 있다. 또한, 이들 화합물을 종래의 재료와 비교했을 때, 저온에서 열분해될 수 있기 때문에, 기판상에 우수한 스텝 커버리지를 가지는 Ir 함유 박막을 형성할 수 있다. 이런 방식으로, 본 발명의 이리듐 화합물로 양산성에서 우수한 CVD법에 의해 Ir 함유 박막을 형성할 수 있다.

Claims (8)

  1. 하기 화학식 1로 표시되는 유기금속 이리듐 화합물.
    [화학식 1]
    식 중에서, R1은 수소 또는 저급알킬기를 나타내고; R2, R3, R4, R5, R6, 및 R7은, 동일하거나 또는 상이한 것으로, 각각 수소, 할로겐, 저급아실기, 저급알콕시기, 저급알콕시카르보닐기, 또는 저급알킬기를 나타낸다. 단 R1,R2, R3, R4, R5, R6, 및 R7이 전부 수소인 경우를 제외한다.
  2. 하기 화학식 2로 표시되는 유기금속 이리듐 화합물.
    [화학식 2]
    식 중에서, R8은 저급알킬기를 나타내고; R9, R10, R11, 및 R12는, 동일하거나 또는 상이한 것으로, 각각 수소, 할로겐, 저급아실기, 저급알콕시기, 저급알콕시카르보닐기, 또는 저급알킬기를 나타낸다. 단, R8, R9, 및 R11이 각각 메틸기를 나타내고, R10및 R12가 각각 수소를 나타내는 경우를 제외한다.
  3. 이리듐 화합물, 하기 화학식 3으로 표시되는 시클로헥사디엔 유도체, 및 하기 화학식 4로 표시되는 시클로펜타디엔 유도체를 반응시키는 것을 포함하는 하기 화학식 1로 표시되는 유기금속 이리듐 화합물의 제조방법.
    [화학식 1]
    [화학식 3]
    [화학식 4]
    식 중에서, R1은 수소 또는 저급 알킬기를 나타내고; R2, R3, R4, R5, R6, 및 R7은, 동일하거나 또는 상이한 것으로, 각각 수소, 할로겐, 저급아실기, 저급알콕시기, 저급알콕시카르보닐기, 또는 저급알킬기를 나타낸다. 단 R1, R2, R3, R4, R5, R6, 및 R7의 전부가 수소를 나타내는 경우를 제외한다; M은 알칼리 금속을 나타낸다.
  4. 이리듐 화합물, 하기 화학식 5로 표시되는 부타디엔 유도체, 및 하기 화학식 6으로 표시되는 시클로펜타디엔 유도체를 반응시키는 것을 포함하는 하기 화학식 2로 표시되는 유기금속 이리듐 화합물의 제조방법.
    [화학식 2]
    [화학식 5]
    [화학식 6]
    식 중에서, R8은 저급알킬기를 나타내고; R9, R10, R11, 및 R12는, 동일하거나 또는 상이한 것으로, 각각 수소, 할로겐, 저급아실기, 저급알콕시기, 저급알콕시카르보닐기, 또는 저급알킬기를 나타낸다. 단, R8, R9, 및 R11이 각각 메틸기를 나타내고, R10및 R12가 각각 수소를 나타내는 경우를 제외한다; M은 알칼리 금속을 나타낸다.
  5. 하기 화학식 1로 표시되는 유기금속 이리듐 화합물을 원료로 사용하는 것을 포함하는 이리듐 함유 박막의 제조방법.
    [화학식 1]
    식 중에서, R1은 수소 또는 저급알킬기를 나타내고; R2, R3, R4, R5, R6, 및 R7은, 동일하거나 또는 상이한 것으로, 각각 수소, 할로겐, 저급아실기, 저급알콕시기, 저급알콕시카르보닐기, 또는 저급알킬기를 나타낸다. 단 R1, R2, R3, R4, R5, R6, 및 R7이 전부 수소인 경우를 제외한다.
  6. 하기 화학식 2로 표시되는 유기금속 이리듐 화합물을 원료로 사용하는 것을 포함하는 이리듐 함유 박막의 제조방법.
    [화학식 2]
    식 중에서, R8은 저급알킬기를 나타내고; R9, R10, R11, 및 R12는, 동일하거나 또는 상이한 것으로, 각각 수소, 할로겐, 저급아실기, 저급알콕시기, 저급알콕시카르보닐기, 또는 저급알킬기를 나타낸다. 단, R8, R9, 및 R11이 각각 메틸기를 나타내고, R10및 R12가 각각 수소를 나타내는 경우를 제외한다.
  7. 제 5 항에 있어서,
    CVD법을 사용하는 것을 포함하는 이리듐 함유 박막의 제조방법.
  8. 제 6 항에 있어서,
    CVD법을 사용하는 것을 포함하는 이리듐 함유 박막의 제조방법.
KR1020040027583A 2003-04-24 2004-04-21 신규 유기금속 이리듐 화합물, 그 제조방법, 및 박막의제조방법 KR100984686B1 (ko)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2003120110 2003-04-24
JPJP-P-2003-00120110 2003-04-24
JPJP-P-2003-00120109 2003-04-24
JP2003120109 2003-04-24
JP2003208975 2003-08-27
JPJP-P-2003-00208975 2003-08-27
JP2003420724 2003-12-18
JPJP-P-2003-00420724 2003-12-18
JPJP-P-2004-00014454 2004-01-22
JP2004014454 2004-01-22

Publications (2)

Publication Number Publication Date
KR20040092444A true KR20040092444A (ko) 2004-11-03
KR100984686B1 KR100984686B1 (ko) 2010-10-01

Family

ID=32966793

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040027583A KR100984686B1 (ko) 2003-04-24 2004-04-21 신규 유기금속 이리듐 화합물, 그 제조방법, 및 박막의제조방법

Country Status (5)

Country Link
EP (1) EP1471567B1 (ko)
KR (1) KR100984686B1 (ko)
CN (1) CN1317286C (ko)
DE (1) DE602004019836D1 (ko)
TW (1) TWI320041B (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090200524A1 (en) * 2008-01-24 2009-08-13 Thompson David M Organometallic compounds, processes for the preparation thereof and methods of use thereof
GB201008584D0 (en) 2010-05-22 2010-07-07 Univ Warwick Novel iridium anti-cancer compounds

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130172A (en) * 1988-10-21 1992-07-14 The Regents Of The University Of California Low temperature organometallic deposition of metals
US5034020A (en) * 1988-12-28 1991-07-23 Platinum Plus, Inc. Method for catalyzing fuel for powering internal combustion engines
JP3511228B2 (ja) 1998-04-03 2004-03-29 株式会社高純度化学研究所 エチルシクロペンタジエニル(1,5−シクロオクタ ジエン)イリジウムとその製造方法及びそれを用いた イリジウム含有薄膜の製造方法
JP4759126B2 (ja) * 2000-10-11 2011-08-31 田中貴金属工業株式会社 化学気相蒸着用の有機金属化合物及び化学気相蒸着用の有機金属化合物の製造方法並びに貴金属薄膜及び貴金属化合物薄膜の化学気相蒸着方法

Also Published As

Publication number Publication date
DE602004019836D1 (de) 2009-04-23
TW200427692A (en) 2004-12-16
CN1597687A (zh) 2005-03-23
KR100984686B1 (ko) 2010-10-01
TWI320041B (en) 2010-02-01
EP1471567A1 (en) 2004-10-27
CN1317286C (zh) 2007-05-23
EP1471567B1 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP5136576B2 (ja) 有機ルテニウム化合物およびその製造方法
US8221837B2 (en) Organometallic compounds and processes for preparation thereof
US7547796B2 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
EP2069373A1 (en) Organometallic precursor compounds
JP4517565B2 (ja) ルテニウム錯体、その製造方法、及び薄膜の製造方法
US20090202740A1 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
WO2005103318A1 (en) High nucleation density organometallic compounds
JP4696454B2 (ja) 新規有機イリジウム化合物、その製造方法、及び膜の製造方法
US7667065B2 (en) High nucleation density organometallic compounds
KR100984686B1 (ko) 신규 유기금속 이리듐 화합물, 그 제조방법, 및 박막의제조방법
KR101126141B1 (ko) 유기 이리듐 화합물, 그의 제법 및 막의 제조방법
JP4553642B2 (ja) 有機イリジウム化合物、その製法、及び膜の製造方法
JP2006036780A (ja) ルテニウム錯体の製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130903

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20140901

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150827

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160831

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170830

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180920

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190919

Year of fee payment: 10