KR20040054962A - Mesophilic-Thermophilic co-phase anaerobic digestion of organic wastewater and wastes with inner connection of the mesophilic and thermophilic digester - Google Patents
Mesophilic-Thermophilic co-phase anaerobic digestion of organic wastewater and wastes with inner connection of the mesophilic and thermophilic digester Download PDFInfo
- Publication number
- KR20040054962A KR20040054962A KR1020020081513A KR20020081513A KR20040054962A KR 20040054962 A KR20040054962 A KR 20040054962A KR 1020020081513 A KR1020020081513 A KR 1020020081513A KR 20020081513 A KR20020081513 A KR 20020081513A KR 20040054962 A KR20040054962 A KR 20040054962A
- Authority
- KR
- South Korea
- Prior art keywords
- anaerobic digestion
- digestion tank
- mesophilic
- high temperature
- temperature
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/286—Anaerobic digestion processes including two or more steps
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2866—Particular arrangements for anaerobic reactors
- C02F3/2873—Particular arrangements for anaerobic reactors with internal draft tube circulation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/10—Temperature conditions for biological treatment
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Treatment Of Sludge (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
본 발명은 하폐수의 처리과정에서 발생하는 슬러지, 음식물쓰레기, 농축산폐기물, 유기성산업폐수 등 고농도 유기물을 함유한 폐수 또는 유기성폐기물의 고효율 혐기성안정화를 가능하게 하는 새로운 개념의 혐기성방법과 관련된다.The present invention relates to a new concept anaerobic method that enables high efficiency anaerobic stabilization of wastewater or organic waste containing high concentration organic matter, such as sludge, food waste, concentrated agricultural waste, organic industrial wastewater, which are generated during the treatment of sewage.
하폐수슬러지 등의 유기성 폐수 또는 유기성폐기물의 경우 안정화시키기 위해 보편적으로 사용하고 있는 단상의 재래식 중온 혐기성소화는 20일 이상의 긴 체류시간이 요구되는데 비해 유기물 감량이 평균 50% 미만에 불과하여 효율적이지 못하며, 병원균 사멸율이 낮아 최종처분시 여러 가지 공중보건상의 문제를 유발하고 있다. 따라서, 그 동안 여러 연구자들에 의해 생화학 반응속도가 상대적으로 빠른 고온혐기성소화에 대한 연구가 수행되어 왔다. 그러나, 고온혐기성소화는 일반적으로 유기물 감량율과 병원균 사멸율이 중온혐기성소화에 비해 상대적으로 큰 반면 소화조의 유출수의 수질이 나쁘고, 가온에 필요한 추가적인 비용이 필요하며, 소화상태가 유입슬러지의 성상이나 온도, 유기물부하율 등과 같은 운전인자에 민감하다는 단점을 가진 것으로 알려지고 있다. 최근에는 고온소화공정과 중온소화공정을 직렬로 연결하여 두 공정의 장점을 모두 취하기 위한 TPAD(Temperature phased anaerobic Digestion) 공정이 관심의 대상이 되고 있다. TPAD 공정은 재래식 중온 혐기성소화 및 재래식 고온 혐기성소화에 비해 상대적으로 초기운전 기간이 짧고, 높은 유기물 부하에서 운전이 가능할 뿐만 아니라 병원균 사멸율이 높아 향후 슬러지의 혐기성안정화를 위한 대안공정 중의 한가지로 평가된다. 그러나, TPAD 공정은 여전히 유기물 감량율에서 재래식 중온혐기성소화공정에 비해 큰 차이가 없다는 점이 한계로 남아 있다.Single phase conventional mesophilic anaerobic digestion, which is commonly used to stabilize organic wastewater or organic waste such as sewage sludge, requires a long residence time of 20 days or more, but the organic matter is reduced by less than 50% on average. The low mortality of pathogens causes a number of public health problems at final disposal. Therefore, many researchers have been researching high temperature anaerobic digestion with relatively fast biochemical reaction rate. However, high temperature anaerobic digestion is generally higher in organic matter reduction rate and pathogen killing rate compared to mesophilic anaerobic digestion, while the water quality of the digester's effluent is poor, and additional costs are required for warming. It is known to have a disadvantage of being sensitive to driving factors such as temperature and organic load factor. Recently, a TPAD (Temperature phased anaerobic Digestion) process for taking advantage of both processes by connecting a high temperature digestion process and a medium temperature digestion process in series has been of interest. The TPAD process has shorter initial operation period compared to conventional mesophilic anaerobic digestion and conventional high temperature anaerobic digestion, can be operated at high organic loads, and has a high rate of pathogen killing. Therefore, it is evaluated as one of the alternative processes for anaerobic stabilization of sludge in the future. . However, the TPAD process still has a limitation in that there is no significant difference in organic matter reduction rate compared with the conventional mesophilic anaerobic digestion process.
본 발명에서는 이루고자 하는 기술적 과제는 혐기성소화조에서 일어나는 혐기성 생화학반응에 필요한 생리활성물질 또는 반응의 중간생성물질을 고온혐기성미생물과 중온혐기성미생물이 상호 공유하도록 하여 상호간의 단점을 보완하도록 함과 동시에 고온혐기성미생물과 중온혐기성미생물을 45-75℃의 고온조건 및 20-45℃의 중온조건에 교번하여 노출시킴으로서 활성을 촉진시켜 유기성폐수 또는 유기성폐기물의 유기물감량율과 병원균사멸율로 표현되는 안정화 정도 및 부산물인 메탄가스의 생성율을 극대화하기 위한 새로운 개념의 중온-고온 공상 혐기성소화방법과 관련된다.The technical problem to be achieved in the present invention is to allow the high temperature anaerobic microorganisms and the intermediate temperature anaerobic microorganisms to share the physiologically active substances or intermediates of the reaction required for the anaerobic biochemical reactions occurring in the anaerobic digestion tank to compensate for mutual drawbacks and at the same time high temperature anaerobic By exposing microorganisms and mesophilic anaerobes to high temperature conditions of 45-75 ℃ and medium temperature conditions of 20-45 ℃, they promote activity and stabilize the organic wastewater or organic wastes, and the degree of stabilization and by-products expressed by the rate of pathogen killing. It relates to a new concept of medium to high temperature sci-fi anaerobic digestion to maximize the production rate of phosphorus methane.
도 1은 본 발명인 중온혐기성소화조에 고온혐기성소화조가 내부적으로 연결된 온도 공상공정에 의한 유기성폐수 및 폐기물의 혐기성소화방법 및 이를 이용한 유기성폐수 및 유기성폐기물 처리공정도1 is an anaerobic digestion method of organic wastewater and wastes by a temperature-fancy process in which a high temperature anaerobic digestion tank is connected internally to a medium temperature anaerobic digestion tank of the present invention, and an organic wastewater and organic waste treatment process chart using the same
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
1-1: 유입폐수 또는 폐기물 저장조, 1-2: 유기성 폐수 또는 폐기물 유입펌프, 2-1: 중온 혐기성소화조, 2-2: 중온 혐기성소화조 유출관, 2-3: 중온 혐기성소화조 바이오가스 배출관, 3-1: 내부순환관, 3-2: 순환펌프, 4-1: 고온 혐기성소화조, 4-2: 고온 혐기성소화조 유출수 배출관, 4-3: 고온 혐기성소화조 바이오가스 배출관1-1: inflow wastewater or waste storage tank, 1-2: organic wastewater or waste inflow pump, 2-1: medium temperature anaerobic digestion tank, 2-2: medium temperature anaerobic digestion tank outlet, 2-3: medium temperature anaerobic digestion tank biogas discharge pipe, 3-1: internal circulation pipe, 3-2: circulation pump, 4-1: high temperature anaerobic digester, 4-2: high temperature anaerobic digester effluent discharge pipe, 4-3: high temperature anaerobic digester biogas discharge pipe
본 발명은 유기성폐수 또는 유기성폐기물을 중온혐기성소화조(2-1)로 유입하여 1차 혐기성소화시키고, 그 내용물의 일부를 고온혐기성소화조(4-1)에 유입하여 2차 혐기성소화 반응을 진행시킨 뒤 중온 혐기성소화조에 재순환시킴으로서 중온 혐기성소화반응과 고온 혐기성소화반응의 단점을 상호 보완하고 각각의 장점이 상승작용을 가지도록 하기 위하여 중온혐기성소화조(2-1)에 고온혐기성소화조(4-1)를 내부순환관(3-1) 및 순환펌프(3-2)와 고온소화조 유출관(4-2)을 이용하여 내부적으로 연결한 온도 공상공정에 의한 유기성폐수 및 폐기물의 혐기성소화방법으로 구성된다.In the present invention, organic wastewater or organic wastes are introduced into a medium temperature anaerobic digestion tank (2-1), and first anaerobic digestion is carried out, and a part of the contents is introduced into a high temperature anaerobic digestion tank (4-1) to proceed with a secondary anaerobic digestion reaction. In order to compensate for the shortcomings of the medium-temperature anaerobic digestion reaction and the high-temperature anaerobic digestion reaction by recycling the medium-temperature anaerobic digestion tank, and to make each of them have a synergistic effect, the high temperature anaerobic digestion tank (4-1) It consists of the anaerobic digestion method of organic wastewater and wastes by the internal temperature circulating process connected internally by using the internal circulation pipe (3-1), the circulation pump (3-2) and the high temperature digestion tank outlet pipe (4-2). .
본 발명의 작용을 도1을 이용하여 상술하면 다음과 같다. 유기성폐수 또는 유기성폐기물이 저장조(1-1)로부터 유입펌프(1-2)에 의해 중온혐기성소화조(2-1)에 유입되면 중온 혐기성미생물 또는 이들이 분비한 효소의 생화학작용에 의해 유입폐수에 함유된 유기물의 가수분해 및 산발효반응이 진행된다. 또한, 산발효반응의 최종 생성물인 저급휘발성지방산, 수소 등은 메탄 등의 바이오가스로 전환된다. 중온혐기성소화조(2-1)에서 생성된 바이오가스는 배출관(2-3)을 통하여 배출된다. 중온혐기성소화조(2-1) 내용물의 일부는 내부순환관(3-1) 및 순환펌프(3-2)을 경유하여 고온혐기성소화조(4-1)로 유입된다. 고온혐기성소화조(4-1)에서는 중온혐기성소화조(2-1)에서 미처리 상태로 유입된 유기물의 추가적인 가수분해 반응이 진행되고 가수분해 산물의 일부는 휘발성 지방산으로 전환되는 산발효반응이 급속히 진행된다. 이 과정에서 가수분해효소 등의 고온 혐기성미생물의 대사산물이 빠르게 생성된다. 고온혐기성소화조(4-1)에서 생성된 휘발성지방산의 일부는 최종적으로 메탄과 이산화탄소로 전환되어 바이오가스 배출관(4-3)을 통하여 배출된다. 고온 혐기성소화조(4-1)로 유입된 중온혐기성소화조(2-1) 내용물에는 중온 혐기성미생물과 중온 혐기성소화반응에서 생성된 혐기성소화반응의 생리활성물질을 다량 함유하고 있으며, 이들은 고온혐기성소화조(4-1)에서의 혐기성반응을 촉진하여 고온혐기성소화반응 효율을 극대화시킨다. 또한, 유입 유기성폐수 또는 유기성폐기물에 함유된 병원균은 고온혐기성소화조(4-1)에 체류하는 동안 대부분 사멸된다. 고온혐기성소화조(4-1) 유출수는 중온혐기성소화조(2-1)와 고온혐기성소화조(4-1) 사이에 설치된 유출관(4-2)에 의해 중온혐기성소화조(2-1)로 재 유입된다. 중온혐기성소화조(2-1)에 유입되는 고온혐기성소화조(4-1) 유출수에는 고온 혐기성미생물과 고온혐기성소화조(4-1)에서 고온 혐기성미생물에 의해 생성된 혐기성소화반응의 중간생성물 및 가수분해효소 등의 생리활성물질을 다량 함유하고 있으며, 이들은 중온 혐기성미생물에 의한 생화학반응의 촉진제 역할을 하게되어 중온혐기성소화조(2-1)에서 가수분해 및 산발효, 메탄발효로 대표되는 혐기성소화반응의 효율을 극대화시킨다.Referring to the operation of the present invention with reference to Figure 1 as follows. When organic wastewater or organic wastewater enters the mesophilic anaerobic digestion tank (2-1) by the inflow pump (1-2) from the storage tank (1-1), it is contained in the inflow wastewater by biochemical action of mesophilic anaerobic microorganisms or enzymes secreted by them. The hydrolysis and acid fermentation reaction of the organic matter is carried out. In addition, the lower volatile fatty acids, hydrogen and the like, which are the final products of the acid fermentation reaction, are converted into biogas such as methane. The biogas generated in the middle temperature anaerobic digestion tank 2-1 is discharged through the discharge pipe 2-3. Part of the contents of the middle temperature anaerobic digestion tank (2-1) is introduced into the high temperature anaerobic digestion tank (4-1) via the internal circulation pipe (3-1) and the circulation pump (3-2). In the high temperature anaerobic digestion tank (4-1), an additional hydrolysis reaction of organic matter introduced into the untreated state in the middle temperature anaerobic digestion tank (2-1) proceeds, and an acid fermentation reaction in which a portion of the hydrolyzed products is converted into volatile fatty acids is rapidly progressed. . In this process, metabolites of high temperature anaerobic microorganisms such as hydrolases are rapidly produced. Part of the volatile fatty acids produced in the high temperature anaerobic digestion tank 4-1 is finally converted to methane and carbon dioxide and discharged through the biogas discharge pipe 4-3. The contents of the middle temperature anaerobic digestion tank (2-1) introduced into the high temperature anaerobic digestion tank (4-1) contain a large amount of biologically active substances of the anaerobic digestion reaction generated from the middle temperature anaerobic microorganism and the middle temperature anaerobic digestion reaction. Promote anaerobic reaction in 4-1) to maximize the efficiency of high temperature anaerobic digestion. In addition, pathogens contained in the inflow organic wastewater or organic waste are mostly killed during the stay in the high temperature anaerobic digestion tank 4-1. The outflow of the high temperature anaerobic digestion tank (4-1) flows back into the middle temperature anaerobic digestion tank (2-1) by an outlet pipe (4-2) installed between the middle temperature anaerobic digestion tank (2-1) and the high temperature anaerobic digestion tank (4-1). do. The high temperature anaerobic digestion tank (4-1) effluent flowing into the middle temperature anaerobic digestion tank (2-1) contains the intermediate products and hydrolysis of the anaerobic digestion reactions generated by the high temperature anaerobic microorganisms in the high temperature anaerobic digestion tank (4-1). It contains a large amount of physiologically active substances such as enzymes, and they act as accelerators of biochemical reactions by mesophilic anaerobic microorganisms. Maximize your efficiency.
본 발명의 주요효과는 재래식 중온 및 고온 혐기성소화공정과 비교하여 유기성폐수 및 유기성폐기물의 유기물감량율 및 병원균 사멸율로 대표되는 안정화 정도가 월등하고 소화조 단위부피당 메탄가스 생산량이 많으며, 유출수 수질이 상대적으로 우수하다는 점이다.The main effect of the present invention is that the stabilization degree represented by the organic waste reduction rate and the pathogen killing rate of organic wastewater and organic wastes is superior to the conventional middle temperature and high temperature anaerobic digestion process, the methane gas production per unit volume of digestive tank, the effluent water quality is relatively It is excellent.
하수슬러지를 이용하여 본 발명에 의한 고온·중온 공상 혐기성소화방법의 효과를 나타내기 위한 실시 예를 재래식 중온 및 고온 혐기성소화에 비교한 결과는 아래 표와 같다. 본 발명의 혐기성소화방법에 의한 하수슬러지의 유기물 감량율(VS reduction(%))은 재래식 중온 혐기성소화에 비해서 약 15% 향상되었으며, 그 동안 혐기성소화에 의한 유기물 감량율의 한계 값으로 여겨지던 고온 혐기성소화의 결과보다도 약 12% 높았다. 본 발명에 의한 소화공정의 유출수에 함유된 용해성 화학적산소요구량(SCOD)은 재래식 중온 혐기성소화공정 유출수의 약 85%였으며, 재래식 고온 혐기성소화조 유출수의 약 42%로서 본 발명의 소화방법에 의한 소화조 유출수 수질이 상대적 우수하였다. 본 발명에 의한 소화공정의 비메탄생성량(specific methane yield, mL CH4/g VSremoved)은 재래식 고온 혐기성소화와 중온 혐기성소화에 비해 우수하였으며, 소화슬러지의 병원균 사멸율은 99.6%에 달하여 재래식 중온혐기성소화공정의 경우 66.7%에 비해 월등하였다.The result of comparing the embodiment for showing the effect of the high-temperature, mid-temperature sci-fi anaerobic digestion method according to the present invention using sewage sludge is shown in the following table. The organic matter reduction rate (VS reduction (%)) of sewage sludge by the anaerobic digestion method of the present invention was improved by about 15% compared to the conventional medium temperature anaerobic digestion, and the high temperature, which was considered as the limit value of the organic matter reduction rate by anaerobic digestion, has been It was about 12% higher than the result of anaerobic digestion. Soluble chemical oxygen demand (SCOD) contained in the effluent of the fire extinguishing process of the present invention was about 85% of the conventional middle temperature anaerobic digestion effluent and about 42% of the conventional high temperature anaerobic digestion effluent. The water quality was relatively good. Specific methane yield (mL CH 4 / g VSremoved) of the digestion process according to the present invention was superior to conventional high temperature anaerobic digestion and mesophilic anaerobic digestion, and the rate of killing pathogens of digested sludge reached 99.6%. The digestion process was superior to 66.7%.
<재래식 중온 및 고온 혐기성소화에 비교한 본 발명의Of the present invention compared to conventional mesophilic and high temperature anaerobic digestion
중온혐기성소화조에 고온혐기성소화조가 내부적으로 연결된A high temperature anaerobic digester is connected internally to a medium temperature anaerobic digester
온도 공상공정에 의한 하수슬러지 혐기성 소화성능>Anaerobic Digestion Performance of Sewage Sludge by Temperature Sci-Fi Process>
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20020081513A KR100588166B1 (en) | 2002-12-20 | 2002-12-20 | Anaerobic Digestion Method of Organic Wastewater and Wastes by Temperature Sci-Fi Process Connected Internally to High Temperature Anaerobic Digestion Tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20020081513A KR100588166B1 (en) | 2002-12-20 | 2002-12-20 | Anaerobic Digestion Method of Organic Wastewater and Wastes by Temperature Sci-Fi Process Connected Internally to High Temperature Anaerobic Digestion Tank |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040054962A true KR20040054962A (en) | 2004-06-26 |
KR100588166B1 KR100588166B1 (en) | 2006-06-09 |
Family
ID=37347702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20020081513A KR100588166B1 (en) | 2002-12-20 | 2002-12-20 | Anaerobic Digestion Method of Organic Wastewater and Wastes by Temperature Sci-Fi Process Connected Internally to High Temperature Anaerobic Digestion Tank |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100588166B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101122559B1 (en) * | 2011-12-23 | 2012-03-16 | 지에스건설 주식회사 | Method for biological treatment of organic sludge using high temperature-medium temperature methane fermentation and apparatus used therefor |
KR102059924B1 (en) | 2019-06-03 | 2019-12-27 | 서울시립대학교 산학협력단 | Biological methane upgrading through hydrogenotrophic methanogenesis |
KR102093895B1 (en) | 2019-06-17 | 2020-03-26 | 서울시립대학교 산학협력단 | Biomethanation process for biogas upgrading |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101272243B1 (en) * | 2013-05-07 | 2013-06-11 | 새한환경기술(주) | Temperature selectable apparatus for anaerobic treatment of organic waste |
KR20160085989A (en) | 2015-01-08 | 2016-07-19 | 에스케이케미칼주식회사 | A thermophilic anaerobic digestion method of organic waste by using energy recycle |
AU2020322315A1 (en) | 2019-07-29 | 2022-03-10 | Suez International | Process for anaerobic digestion of carbonaceous material |
US20240228354A1 (en) | 2023-01-11 | 2024-07-11 | Suez International | Process for anaerobic digestion of carbonaceous material |
-
2002
- 2002-12-20 KR KR20020081513A patent/KR100588166B1/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101122559B1 (en) * | 2011-12-23 | 2012-03-16 | 지에스건설 주식회사 | Method for biological treatment of organic sludge using high temperature-medium temperature methane fermentation and apparatus used therefor |
KR102059924B1 (en) | 2019-06-03 | 2019-12-27 | 서울시립대학교 산학협력단 | Biological methane upgrading through hydrogenotrophic methanogenesis |
KR102093895B1 (en) | 2019-06-17 | 2020-03-26 | 서울시립대학교 산학협력단 | Biomethanation process for biogas upgrading |
Also Published As
Publication number | Publication date |
---|---|
KR100588166B1 (en) | 2006-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wiegant et al. | Separation of the propionate degradation to improve the efficiency of thermophilic anaerobic treatment of acidified wastewaters | |
EP2521768B1 (en) | Apparatus and preculture tank for biomethanation of biomass | |
Demirer et al. | Two-phase anaerobic digestion of unscreened dairy manure | |
Song et al. | Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic-and thermophilic digestion of sewage sludge | |
Chu et al. | A pH-and temperature-phased two-stage process for hydrogen and methane production from food waste | |
Buitrón et al. | Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time | |
Nishio et al. | Recent development of anaerobic digestion processes for energy recovery from wastes | |
CA2703715C (en) | System and method for anaerobic digestion of biomasses | |
Selvamurugan et al. | An integrated treatment system for coffee processing wastewater using anaerobic and aerobic process | |
US5525229A (en) | Process and apparatus for anaerobic digestion | |
Wu et al. | Continuous biohydrogen production from liquid swine manure supplemented with glucose using an anaerobic sequencing batch reactor | |
Suksong et al. | Biogas production from palm oil mill effluent and empty fruit bunches by coupled liquid and solid-state anaerobic digestion | |
CN101538103A (en) | Sewage treatment method and equipment thereof | |
Yokoyama et al. | Hydrogen fermentation properties of undiluted cow dung | |
Soo et al. | Recent advancements in the treatment of palm oil mill effluent (POME) using anaerobic biofilm reactors: challenges and future perspectives | |
WO2019102364A1 (en) | High rate anaerobic digestion system for solid organic wastes | |
US6929744B2 (en) | Sludge treatment at a mesophilic temperature | |
KR100352811B1 (en) | Methods for rapid digestion of food wastes and for methane production using three-stage methane fermentaion system | |
KR100588166B1 (en) | Anaerobic Digestion Method of Organic Wastewater and Wastes by Temperature Sci-Fi Process Connected Internally to High Temperature Anaerobic Digestion Tank | |
CN108558129B (en) | Method for treating easily-biochemical sewage and utilizing easily-biochemical sewage in high-value mode | |
EP0159054B1 (en) | A process for producing methane from solid vegetable material | |
KR100783785B1 (en) | Carbon source preparing method for advanced biological treatment of sewage and wastewater | |
US10017795B2 (en) | Methods and systems for converting volatile fatty acids to lipids | |
KR20040035302A (en) | Temperature co-phase anaerobic digestion with internal circulation | |
Shao et al. | Evaluation of ultimate biochemical carbon separation technology based on ultra-short sludge retention time activated sludge system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application | ||
J201 | Request for trial against refusal decision | ||
J301 | Trial decision |
Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20050428 Effective date: 20060425 |
|
S901 | Examination by remand of revocation | ||
GRNO | Decision to grant (after opposition) | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130312 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20140530 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |