KR20040054823A - Method of enlargement of life cycle of copper mold for continuous casting using mold flux which has larger thermal resistance - Google Patents

Method of enlargement of life cycle of copper mold for continuous casting using mold flux which has larger thermal resistance Download PDF

Info

Publication number
KR20040054823A
KR20040054823A KR1020020081124A KR20020081124A KR20040054823A KR 20040054823 A KR20040054823 A KR 20040054823A KR 1020020081124 A KR1020020081124 A KR 1020020081124A KR 20020081124 A KR20020081124 A KR 20020081124A KR 20040054823 A KR20040054823 A KR 20040054823A
Authority
KR
South Korea
Prior art keywords
mold
copper plate
continuous casting
mold flux
flux
Prior art date
Application number
KR1020020081124A
Other languages
Korean (ko)
Inventor
조중욱
김성연
최희선
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020020081124A priority Critical patent/KR20040054823A/en
Publication of KR20040054823A publication Critical patent/KR20040054823A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/108Feeding additives, powders, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/111Treating the molten metal by using protecting powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/07Lubricating the moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE: A method for enlarging life cycle of mold copper plate for continuous casting using mold flux which has larger thermal resistance is provided to suppress cracking of the copper plate due to thermal strain by lowering heat transfer amount transferred to casting mold from molten steel in a part that is directly under meniscus. CONSTITUTION: The method is characterized in that the copper plate is prevented from being cracked by injecting a mold flux having fast crystallization rate into a continuous casting mold, thereby suppressing a surface temperature of the copper plate of a point that is 205 mm distanced underneath meniscus to 350 deg.C or less, wherein the mold flux comprises 30 to 50 wt.% of CaO, 25 to 40 wt.% of SiO2, 5 wt.% or less of Al2O3, 3 to 8 wt.% of MgO, 5 to 12 wt.% of Na2O and 5 to 10 wt.% of F, and wherein a ratio of Na2O/F is 1.2 to 3.0, a basicity of CaO/SiO2 is 1.1 to 1.7, and crystallizing initiation temperature is 1,150 deg.C or more.

Description

완냉각형 몰드플럭스 적용에 의한 연속주조용 몰드동판 수명 향상방법 {Method of enlargement of life cycle of copper mold for continuous casting using mold flux which has larger thermal resistance}Method of increasing the life cycle of copper mold for continuous casting using mold flux which has larger thermal resistance

본 발명은 완냉각형 몰드플럭스 적용에 의한 연속주조용 몰드동판 수명 향상방법에 관한 것이다.The present invention relates to a method for improving the life of a mold copper plate for continuous casting by application of a slow cooling mold flux.

특히, 본 발명은 전열저항이 큰 몰드플럭스를 투입함에 의하여 동판의 최대온도를 낮춤으로써 열변형에 의한 균열 발생을 억제함으로써 동판의 수명을 향상하는 방법에 관한 것이다.In particular, the present invention relates to a method of improving the life of a copper plate by reducing the maximum temperature of the copper plate by injecting a mold flux having a high heat resistance, thereby suppressing cracking caused by thermal deformation.

제철소의 연속주조공정은, 도 1에 나타나 있는 바와 같이, 턴디쉬(Tundish) (1)내의 용강(2)을 침지노즐(3)을 통해 몰드(4)내에 주입하여 일정 형상의 주편으로 제조하며, 이때 수냉되는 몰드와 접촉된 표면만이 응고된 얇은 주편(이하," 응고쉘 (shell)"이라 한다)(5)과 몰드간의 마찰에 의해 상기 응고쉘이 파단되는 것(이하, "브렉아웃(break-out)"이라 한다)을 막기 위해 윤활제로서 분말 또는 과립형상의 합성슬래그(slag)인 몰드플럭스(mold flux)(6)를 투입하게 된다.In the continuous casting process of the steel mill, molten steel (2) in the tundish (1) is injected into the mold (4) through the immersion nozzle (3) to produce a cast of a predetermined shape as shown in FIG. In this case, the solidified shell is broken by the friction between the thin slab (hereinafter referred to as "shell") 5 and the mold which solidify only the surface in contact with the water-cooled mold (hereinafter, "breakout"). (block-out ") as a lubricant is injected into the mold flux (mold flux) 6, which is a synthetic slag in the form of powder or granules.

몰드플럭스는 이러한 윤활 기능과 함께 주편에서 몰드로의 열유속을 제어하는 전열제어 기능을 갖고있다. 즉, 몰드플럭스는 연속주조용 몰드내의 용강위로 투입되어 미용융층, 반용융층, 용융 슬래그층을 형성하면서 용융하게 되고, 이 용융슬래그가 상하로 진동하는 몰드와 응고쉘간의 틈 사이로 유입되어 얇은 막(이하, "슬래그 필름(slag film)"이라 한다)(7)을 형성한다. 이 슬래그 필름(7)은 주편에서 몰드로의 열전달 매체역할을 한다.In addition to this lubrication, the moldflux has a heat transfer control that controls the heat flux from the cast to the mold. That is, the mold flux is injected onto the molten steel in the continuous casting mold to melt while forming the unmelted layer, the semi-melted layer, and the molten slag layer. (Hereinafter referred to as "slag film") 7 is formed. This slag film 7 serves as a heat transfer medium from the slab to the mold.

기존의 연속주조공정은 주조속도 범위가 분당 약 1.0~2.0m 범위가 가장 일반적인데 비해 최근 급격히 확산되고 있는 박슬래브 연속주조 공정에서는 주조 속도가 분당 3.0m 이상 최대 10.0m 에 이르고 있다. 박슬래브 연속주조법은 기존 공정에 비하여 설비 건설비가 낮고 생산탄력성이 높은 등 여러 가지 장점이 존재하지만 조업의 불안정성이 높아지는 단점도 있다. 이 중 동판의 균열발생으로 인한 수명저하는 가장 심각한 문제점 중 하나이다. 주조 조업중 동판의 온도 특히 몰드플럭스와 접촉하는 표면부위의 온도가 급격히 상승함에 따라 동판에 가해지는 열응력에 의한 변형이 균열을 일으키는 주된 원인이다. 기존 연속주조 공정에 비하여 박슬래브 연속주조시에는 주조속도가 빠르므로 단위시간당, 동판 단위면적당 빠져나가는 열량이 많아지므로 동판 표면온도도 더 높아지게 되어 필연적으로 동판 균열이 증가하게 된다.In the conventional continuous casting process, the casting speed range is about 1.0 ~ 2.0m per minute, whereas in the thin slab continuous casting process, which is rapidly spreading recently, the casting speed is more than 3.0m per minute and up to 10.0m. The thin slab continuous casting method has various advantages, such as low facility construction cost and high production elasticity, compared to the existing process, but also has disadvantages of increased instability of operation. Among these, the lifespan deterioration due to cracking of copper plates is one of the most serious problems. As the temperature of the copper plate, especially the surface portion in contact with the mold flux, rises sharply during the casting operation, deformation due to thermal stress applied to the copper plate is a major cause of cracking. Compared with the existing continuous casting process, in the case of continuous continuous slab casting, the casting speed is faster, so the amount of heat that escapes per unit time and copper plate unit area increases, so the surface temperature of the copper plate is higher, which inevitably increases the copper crack.

동판 균열이 확대되어 내부 냉각수가 유출되면 주조기가 심하게 파손되므로 종래부터 균열이 발생하면 동판 표면을 전체적으로 깎아내어 균열의 확대를 막는 방법을 시행하여 오고 있다. 그러나 이러한 방법은 동판의 수명을 단축시키게 되므로 이에 따른 금전적 손실이 막대한 실정이다.When the copper plate cracks are enlarged and the internal cooling water is leaked, the casting machine is severely damaged. Therefore, when cracks occur, the copper plate surface is cut off as a whole to prevent the cracks from expanding. However, this method shortens the life of the copper plate, so the financial loss is enormous.

상기와 같은 문제점을 해소하기 위하여 창출된 본 발명의 목적은, 박슬래브 연속주조 조업중 동판의 표면온도를 적절하게 낮추는 방법을 개발한 것으로, 구체적으로는 전열저항이 큰 몰드플럭스를 투입하여 매니스커스 부위에서의 전열량, 즉 용강에서 동판으로 전달되는 열량을 획기적으로 감소시킴으로써 동판 표면의 온도가 적정범위 이상으로 과열되는 것을 방지함으로써 동판에 부여되는 열응력을 감소시킬 수 있는 완냉각형 몰드플럭스 적용에 의한 연속주조용 몰드동판 수명 향상방법을 제공함에 있다.An object of the present invention created to solve the above problems is to develop a method of appropriately lowering the surface temperature of the copper plate during the thin slab continuous casting operation, specifically, by introducing a mold flux having a large heat resistance resistance A slow cooling mold flux that can reduce the thermal stress applied to the copper plate by significantly reducing the amount of heat transfer at the curse site, that is, the amount of heat transferred from the molten steel to the copper plate. The present invention provides a method for improving the life of a mold copper plate for continuous casting by application.

이러한 본 발명의 목적은, 강의 연속주조에 있어서, 결정화속도가 빠른 몰드플럭스를 투입하여 매니스커스 직하 205mm 지점의 동판의 표면온도를 350℃ 이하로 억제하여 동판을 균열을 방지하는 것을 특징으로 하는 완냉각형 몰드플럭스 적용에 의한 연속주조용 몰드동판 수명 향상방법에 의해 달성될 수 있다.The object of the present invention is to prevent the cracking of the copper plate by inserting a mold flux having a high crystallization rate in the continuous casting of steel to suppress the surface temperature of the copper plate at 205 mm directly below the meniscus to 350 ° C. or less. It can be achieved by a method for improving the life of the mold copper plate for continuous casting by the application of a slow cooling mold flux.

본 발명의 몰드플럭스는 CaO : 30 내지 50 중량%와, SiO2: 25 내지 40 중량%와, Al2O35 중량% 이하와, MgO : 3 내지 8 중량%와, Na2O : 5 내지 12 중량%와, F : 5 내지 10 중량%로 조성되며, Na2O/F의 비가 1.2 내지 3.0이고, 염기도 (CaO/SiO2)가 1.1 내지 1.7 범위이고, 결정화 개시온도가 1,150℃ 이상인 것이 바람직하다.Mold flux of the present invention is 30 to 50% by weight of CaO, 25 to 40% by weight of SiO 2 , 5% by weight or less of Al 2 O 3 , MgO: 3 to 8% by weight, Na 2 O: 5 to It is composed of 12% by weight, F: 5 to 10% by weight, the ratio of Na 2 O / F is 1.2 to 3.0, the basicity (CaO / SiO 2 ) is 1.1 to 1.7 range, the crystallization start temperature is 1,150 ℃ or more desirable.

도 1은 종래기술에 의한 연속주조 과정을 나타내는 예시도.1 is an exemplary view showing a continuous casting process according to the prior art.

도 2는 종래재의 염기도에 따른 슬래그 필름을 개략적으로 나타내는 구성도.Figure 2 is a schematic view showing a slag film according to the basicity of the prior art.

도 3은 염기도 및 Na2O/F 중량비에 따른 몰드플럭스의 응고수축도.Figure 3 is a solidification shrinkage of the mold flux according to the basicity and Na 2 O / F weight ratio.

도 4는 본 발명에 의한 몰드플럭스에서 슬래그 필름을 개략적으로 나타내는 구성도.Figure 4 is a schematic view showing a slag film in the mold flux according to the present invention.

도 5는 결정화 개시온도와 결정화 속도와의 관계를 나타내는 그래프.5 is a graph showing the relationship between the crystallization start temperature and the crystallization rate.

도 6은 본 발명에 의한 몰드플럭스 교체 투입에 따른 동판내부의 온도변화를 나타내는 그래프.Figure 6 is a graph showing the temperature change inside the copper plate according to the mold flux replacement according to the present invention.

<< 도면의 주요부분에 대한 부호의 설명 >><< Explanation of symbols for main part of drawing >>

1 : 턴디쉬 2 : 용강1: tundish 2: molten steel

3 : 침지노즐 4 : 몰드3: immersion nozzle 4: mold

5 : 응고쉘 6 : 몰드플럭스5: solidified shell 6: mold flux

7 : 슬래그필름7: slag film

이하, 도면을 참조하여 본 발명의 구성을 상세히 설명하면 다음과 같다.Hereinafter, the configuration of the present invention with reference to the drawings in detail.

도 2는 연속주조시 매니스커스 부위를 확대하여 나타낸 것이다. 도 2에서 몰드플럭스 필름은 응고쉘 쪽에서는 액상으로, 동판 쪽에서는 고상으로 나뉘어 지는데 고상 몰드플럭스는 결정화(crystallization) 되거나 혹은 유리질 상태로 응고되어 존재한다. 앞서도 언급하였듯이 몰드플럭스와 접한 표면부의 동판온도는 몰드플럭스를 통하여 용강에서 동판으로 전달되는 열량에 비례하게 되는데, 이에 가장큰 영향을 미치는 것은 몰드플럭스가 얼마나 빠른 속도로 결정화되는지를 나타내는 척도인 결정화 속도이다.Figure 2 shows an enlarged view of the meniscus portion during continuous casting. In FIG. 2, the mold flux film is divided into a liquid phase on the solidification shell side and a solid phase on the copper plate side, but the solid phase flux is crystallized or solidified in a glassy state. As mentioned above, the copper plate temperature in contact with the mold flux is proportional to the amount of heat transferred from the molten steel to the copper plate through the mold flux, which has the greatest influence on the crystallization rate, which is a measure of how fast the mold flux crystallizes. to be.

먼저, 도 3은 염기도에 따른 결정화 속도를 나타내고 있다. 결정화속도는 핫 서모커플법(hot thermocouple method)을 이용하여 평가하였는데 1,350℃에서 완전히 용해한 몰드플럭스를 1,050℃로 급냉시킨 유지하면서 결정화가 완료되기까지 소요되는 시간을 나타내었다. 도 3에서 보듯 고 염기도일수록 결정화에 소요되는 시간이 짧아서 결정화 속도가 빨라지므로 동판온도를 낮추는데 유리하게 작용한다. 단 염기도가 1.7 이상이 되면 오히려 결정화 속도가 느려지는 경향이 나타나는데 이는 이 이상 염기도가 높아지면 결정질의 주성분인 쿠스피다인(cuspidine) 및 소디엄 플루라이드 디칼슘 실리케이트(sodium fluoride di-calcium silicate) 조성에서 벗어나게 되기 때문이다.First, Figure 3 shows the crystallization rate according to the basicity. The crystallization rate was evaluated by using a hot thermocouple method. The time taken for the crystallization to be completed was maintained while quenching the mold flux completely dissolved at 1,350 ° C to 1,050 ° C. As shown in FIG. 3, the higher the basicity, the shorter the time required for crystallization, the faster the crystallization rate, and thus, the lower the copper plate temperature. If the basicity is 1.7 or more, the crystallization rate tends to be slow. If the basicity is higher, the composition of cuspidine and sodium fluoride di-calcium silicate, which are the main crystalline components, Because you will get away from.

도 4는 Na2O/F 비율에 따른 결정화 속도의 변화를 보여주고 있다. 도면 4에서 Na2O/F 비율이 2.0 부근에서 최대의 결정화 속도를 갖게 된다. 이는 이 범위에서는 쿠스피다인과 소디엄 플루라이드 디칼슘 실리케이트가 복합적으로 석출, 성장하기 때문이며 이보다 낮은 영역에서는 쿠스피다인이, 이보다 높은 영역에서는 소디엄 플루라이드 디칼슘 실리케이트만이 주로 석출하므로 전체적인 결정 성장속도가 느려지게 된다.4 shows the change of the crystallization rate according to the Na 2 O / F ratio. In FIG. 4, the Na 2 O / F ratio has a maximum crystallization rate near 2.0. This is because cospidine and sodium fluoride dicalcium silicate are precipitated and grown in this range. Cuspidine is mainly precipitated in the lower region and only sodium fluoride dicalcium silicate in the higher region. The growth rate will slow down.

도 5는 결정화 개시온도와 결정화 속도와의 관계를 나타내는 도면이다. 결정화 개시온도가 높을수록 결정화 속도도 빨라지는데, 이는 고온일수록 확산속도가빨라지므로 3차원 확산에 의하여 성장하는 쿠스피다인 및 소디엄 플루라이드 디칼슘 실리케이트 결정상의 성장이 용이해 지기 때문이다.5 is a diagram illustrating a relationship between a crystallization start temperature and a crystallization rate. The higher the crystallization initiation temperature, the faster the crystallization rate, since the faster the diffusion rate, the easier the growth of the cuspidine and sodium fluoride dicalcium silicate crystal phases grown by three-dimensional diffusion.

아울러 몰드플럭스 성분 중 Al2O3를 5 중량% 이하로 유지하여야 점도 상승으로 인하여 결정화 속도가 늦어지는 것을 막을 수 있다. 또한 MgO는 3 중량% 이상으로 유지하는 것이 필요하다. MgO는 쿠스피다인의 석출 및 성장을 억제하지만 소디엄 플루라이드 디-칼슘 실리케이트의 석출 및 성장은 촉진하는 효과를 갖는다. MgO를 3~8 중량% 범위로 제어할 경우 두 가지 결정상의 석출 및 성장을 가장 극대화 할 수 있게 된다.In addition, Al 2 O 3 in the mold flux component should be maintained at 5 wt% or less to prevent the crystallization rate from slowing down due to the increase in viscosity. It is also necessary to maintain MgO at 3% by weight or more. MgO inhibits the precipitation and growth of cospidines but has the effect of promoting the precipitation and growth of sodium fluoride di-calcium silicate. Controlling MgO in the range of 3 to 8% by weight maximizes the precipitation and growth of the two crystal phases.

실시예Example

0.035 C 중량%, 0.3 Mn 중량%를 포함하여 조성되는 용강을 130톤 레이들에 받아서 박슬래브 연주기를 통해 연속주조하였다. 조업에 앞서 매니스커스 아래 205mm 지점의 동판 내부에 열전대를 삽입하여 주조중 동판온도를 측정하였다.The molten steel, including 0.035 C weight% and 0.3 Mn weight%, was received in a 130-ton ladle and continuously cast through a thin slab player. Prior to operation, the thermocouple was inserted into the copper plate 205 mm below the meniscus to measure the copper plate temperature during casting.

조업 도중에 표 1에 나타낸 것과 같은 비교예 및 실시예 몰드플럭스를 번갈아서 투입하면서 동판 온도의 변화거동을 조사하였다. 표 1에서 나타나 있는 바와 같이, 발명재 몰드플럭스(실시예)는 종래재(비교예)와 비교할 때 결정화속도가 빠른 특징을 갖고 있다. 여기서, 하기 표 1은 종래재 몰드플럭스와 본 발명에 의한 몰드플럭스의 성분 및 물성 비교를 나타내고 있다.During the operation, the change behavior of the copper plate temperature was examined while alternately adding the mold fluxes of Comparative Examples and Examples as shown in Table 1. As shown in Table 1, the invention mold flux (Example) has a feature of faster crystallization rate compared with the conventional material (Comparative Example). Here, Table 1 shows a comparison of the components and physical properties of the conventional mold flux and the mold flux according to the present invention.

도 6은 본 발명에 의한 몰드플럭스 교체 투입에 따른 동판내부의 온도변화를 나타내고 있다. 도 6에서, 비교예 몰드플럭스 투입시에 매니스커스 직하 205 mm 지점의 동판 내부온도는 평균 125℃인데 이 값으로부터 동판 표면온도를 계산하면 440℃에 해당한다. 반면 본 발명에 의한 실시예 몰드플럭스로 교체할 경우 동판 내부온도는 평균 112℃로 떨어지며 이 때의 동판 표면온도는 335℃로 계산된다. 따라서 본 발명에 의한 결정화속도가 빠른 몰드플럭스를 고속주조조업에 적용할 경우 매니스커스 직하의 열유속을 낮추게 되어 동판온도의 상승을 억제함으로써 동판균열 방지가 가능함을 알 수 있다.Figure 6 shows the temperature change in the copper plate according to the mold flux replacement according to the present invention. In Fig. 6, the copper internal temperature at the point of 205 mm immediately below the meniscus at the time of injection of the comparative mold mold is on average 125 ° C, which corresponds to 440 ° C when the copper surface temperature is calculated from this value. On the other hand, in case of replacing the mold flux according to the present invention, the internal temperature of the copper plate drops to 112 ° C on average, and the surface temperature of the copper plate is calculated as 335 ° C. Therefore, it can be seen that when the mold flux having a high crystallization rate according to the present invention is applied to a high speed casting process, the heat flux under the meniscus is lowered, thereby preventing the copper plate cracking by suppressing the increase of the copper plate temperature.

이상에서 설명된 본 발명은 일실시예에 한정되어 설명되었지만, 이에 한정되지 않고 본 발명이 속하는 분야의 통상적인 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 정도의 변형은 본 발명의 기술적 사상에 속하는 것임은 자명하다.Although the present invention described above is limited to one embodiment, the present invention is not limited thereto, and the present invention may be easily modified by those skilled in the art. It is obvious that it belongs to the technical idea.

이상의 구성을 갖는 본 발명은 매니스커스 직하부에서 용강으로부터 주형 몰드로 전달되는 전열량을 낮출 수 있게 됨으로써 열변형에 의한 동판의 균열발생을억제할 수 있는 이점(利點)이 있다.The present invention having the above configuration has the advantage of being able to reduce the amount of heat transfer from the molten steel to the mold mold directly below the meniscus, thereby suppressing the occurrence of cracking of the copper plate due to thermal deformation.

Claims (2)

강의 연속주조에 있어서,In continuous casting of steel, 결정화속도가 빠른 몰드플럭스를 투입하여 매니스커스 직하 205mm 지점의 동판의 표면온도를 350℃ 이하로 억제하여 동판을 균열을 방지하는 것을 특징으로 하는 완냉각형 몰드플럭스 적용에 의한 연속주조용 몰드동판 수명 향상방법.Mold casting copper plate for continuous casting by application of a cool cooling mold flux, which is characterized by preventing the copper plate from cracking by inserting a mold flux with a high crystallization rate to suppress the surface temperature of the copper plate at 205 mm directly below the meniscus below 350 ° C. How to improve your life. 제1항에 있어서,The method of claim 1, 상기 몰드플럭스는 CaO : 30 내지 50 중량%와, SiO2: 25 내지 40 중량%와, Al2O3: 5 중량% 이하와, MgO : 3 내지 8 중량%와, Na2O : 5 내지 12 중량%와, F : 5 내지 10 중량%로 조성되며, Na2O/F의 비가 1.2 내지 3.0이고, 염기도 (CaO/SiO2)가 1.1 내지 1.7 범위이고, 결정화 개시온도가 1,150℃ 이상인 것을 특징으로 하는 완냉각형 몰드플럭스 적용에 의한 연속주조용 몰드동판 수명 향상방법.The mold flux is CaO: 30 to 50% by weight, SiO 2 : 25 to 40% by weight, Al 2 O 3 : 5% by weight or less, MgO: 3 to 8% by weight, Na 2 O: 5 to 12 Wt%, F: 5 to 10% by weight, Na 2 O / F ratio of 1.2 to 3.0, the basicity (CaO / SiO 2 ) is 1.1 to 1.7 range, characterized in that the crystallization start temperature is 1,150 ℃ or more A method for improving the life of a mold copper plate for continuous casting by applying a slow cooling mold flux.
KR1020020081124A 2002-12-18 2002-12-18 Method of enlargement of life cycle of copper mold for continuous casting using mold flux which has larger thermal resistance KR20040054823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020081124A KR20040054823A (en) 2002-12-18 2002-12-18 Method of enlargement of life cycle of copper mold for continuous casting using mold flux which has larger thermal resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020081124A KR20040054823A (en) 2002-12-18 2002-12-18 Method of enlargement of life cycle of copper mold for continuous casting using mold flux which has larger thermal resistance

Publications (1)

Publication Number Publication Date
KR20040054823A true KR20040054823A (en) 2004-06-26

Family

ID=37347573

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020081124A KR20040054823A (en) 2002-12-18 2002-12-18 Method of enlargement of life cycle of copper mold for continuous casting using mold flux which has larger thermal resistance

Country Status (1)

Country Link
KR (1) KR20040054823A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102029366A (en) * 2010-12-14 2011-04-27 西峡龙成冶金材料有限公司 Continuous casting crystallizer covering slag special for extra-thick slab peritectic steel and preparation method thereof
CN110988015A (en) * 2019-12-30 2020-04-10 重庆大学 Hot wire method-based dynamic and interface behavior test method for dissolving solid oxide in molten slag

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102029366A (en) * 2010-12-14 2011-04-27 西峡龙成冶金材料有限公司 Continuous casting crystallizer covering slag special for extra-thick slab peritectic steel and preparation method thereof
CN102029366B (en) * 2010-12-14 2012-10-03 西峡龙成冶金材料有限公司 Continuous casting crystallizer covering slag special for extra-thick slab peritectic steel and preparation method thereof
CN110988015A (en) * 2019-12-30 2020-04-10 重庆大学 Hot wire method-based dynamic and interface behavior test method for dissolving solid oxide in molten slag

Similar Documents

Publication Publication Date Title
CN101885043B (en) High-casting speed mold flux
CN104308104A (en) Novel casting powder and application thereof
JPH08197214A (en) Powder for continuously casting steel
JP2017170494A (en) Continuous casting mold powder of steel and continuous casting method
KR20170011712A (en) Mold flux for continuous casting of high carbon steel
JP4272577B2 (en) Steel continuous casting method
KR20040054823A (en) Method of enlargement of life cycle of copper mold for continuous casting using mold flux which has larger thermal resistance
JP3179358B2 (en) Mold powder for continuous casting
JP6135081B2 (en) Continuous casting method for medium carbon steel
KR960000325B1 (en) Mold flux of continuous casting
JP3389864B2 (en) Mold powder for continuous casting
KR101371959B1 (en) Mold flux for casting TWIP with high Al content and method for producing TWIP using the same
JP4451798B2 (en) Continuous casting method
KR100321022B1 (en) MOLD FLUX FOR MIDDLE CARBON CONTENT AND Mn RICH STEEL
KR20020052121A (en) A mold flux having a larger interfacial thermal resistance in the continuous casting of steel
KR101834421B1 (en) Mold flux and casting method using thereof
KR102300852B1 (en) Mold flux and method of continuous casting of steel using the same
JP3256148B2 (en) Continuous casting method of steel with large shrinkage during solidification process
JP3500894B2 (en) Continuous casting of steel
KR100749025B1 (en) Mold flux and continuous casting method using the same
KR100349151B1 (en) Mold flux containing Zr02 for continous casting medium carbon steel
JP5929744B2 (en) Continuous casting method for round slabs
JPH03210950A (en) Powder for continuous casting
KR102173170B1 (en) Mold flux and casting method using the same
KR101921939B1 (en) Mould Flux

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application